
 

Abstract: This research extends a previously 
developed work concerning about the use of local 
model predictive control in mobile robots. Hence, 
experimental results are presented as a way to 
improve the methodology by considering aspects as 
trajectory accuracy and time performance. In this 
sense, the cost function and the prediction horizon 
are important aspects to be considered. The platform 
used is a differential driven robot with a free rotating 
wheel.  The aim of the present work is to test the 
control method by measuring trajectory tracking 
accuracy and time performance. Moreover, 
strategies for the integration with perception system 
and path planning are also introduced. In this sense, 
monocular image data provide an occupancy grid 
where safety trajectories are computed by using goal 
attraction potential fields.  
 
Keywords: autonomous mobile robot, computer 
vision control, system identification, model based 
control, predictive control, trajectory planning, 
obstacle avoidance, robot vision. 

1.  INTRODUCTION 

The minimization of path tracking error is considered as 
a challenging subject in mobile robotics. The main 
objective of highly precise motion tracking consists in 
minimizing the error between the robot and the desired 
path. Other aspects as vehicle speed or even acceleration 
profile can also be analyzed as important issues to be 
considered in the path tracking strategies [1]. Hence, the 
dynamics of the robot becomes an important issue in 
planning accurate and safe trajectories, in which 
on-robot sensors provide enough environmental 
knowledge to avoid colliding with obstacles and to reach 
the final desired coordinates. The scientific community 
has carried out several studies in this field. The use of a 
dynamic window approach, with available robot speeds, 
the reactive and safety stopping distances, derived from 
robot motion dynamics, allow WMRs (wheeled mobile 
robots) reactively avoiding obstacles [2]. Rimon 
presented methodologies for exact motion planning and 

control, based on artificial potential fields where 
complete information about the free space and goal are 
encoded [3]. The main drawback of the potential fields is 
the local minimal failures. However, the flexibility is 
reported as an advantage when small or moving 
obstacles are met. Probabilistic Roadmap Method 
(PRM) [4-5] is a methodology not suffered from local 
minimal failures, but with drawbacks as unattractive 
path generation and lack of flexibility. Path optimization 
can be improved using local motions controlled by local 
potential fields [6-7]. Some approaches to mobile robots 
propose using potential fields, which satisfy the stability 
in a Lyapunov sense on a short prediction horizon [8].  

In the present work, model predictive control (MPC) is 
presented as an accurate nonlinear methodology that 
allows an exact trajectory tracking by minimizing the 
cost function.  In this sense, simulated and experimental 
results are presented as an extension of previously 
developed work [9]. Hence, several studies concerning 
about the trajectory tracking accuracy are reported. 
Moreover, a trajectory planning framework consisted of 
a narrow and dense field of view and a goal attracting 
potential field point are used to test the MPC 
performance. From a monocular perception system, a 
local narrow occupancy grid is acquired, which 
constrains the possible WMR trajectories. Thus, the 
selected free cell should avoid the obstacle collisions and 
approach the robot to the final desired configuration 
through the attraction objective field. Once the local 
desired cell is obtained a straight line between the cell 
and the robot is generated. These kinds of trajectories are 
used also to test the performance of robot trajectory 
tracking. The control action consists in steering and 
straight line following, such actions are common to a 
wide range of nonholonomic vehicles [10].  Hence, at 
each perception step, a tracking straight line is 
commanded as a new trajectory to be followed by the 
robot. Thus, experimental results reported assume 
different local grid occupancy frames in order to test 
realistic control trajectories. The visual data are the 
meaningful source of information in order to accomplish 
with the tasks of obstacle detection. However, other data 
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provided by the encoder-based odometer system are also 
considered. 
This paper is organized as follows. Section 1 briefly 
presents the aim of the present work. Section 2 
introduces the MPC methodology and algorithms. The 
WMR PRIM, consisting of a differential driven robot 
with a free rotating wheel, is presented as an available 
platform in order to orient the results [9]. Once the robot 
models are known several simulations are depicted. In 
the Section 3, the experimental results attaining the 
trajectory tracking performance are presented. Hence, 
horizon of prediction, cost function, and time 
performance are studied. Moreover, the experimental 
results are developed within a context of path planning 
strategy. Thus, local monocular visual horizon provides 
an occupancy grid, in which trajectories with safe 
obstacle avoidance can approach the robot to the goal. 
Consequently, it can be used to test the control 
performance. Finally, in Section 4, some conclusions are 
drawn and future research is outlined. 

2.  LOCAL MODEL PREDICTIVE CONTROL  

Model predictive control, MPC, has many interesting 
aspects that can be applied to mobile robot control. In 
comparison to the standard PID control, MPC is the 
most effective advanced control technique with 
significant impact on industrial process control [11]. 
Real-time implementation of MPC in the mobile robotics 
has been developed using global vision sensing [12]. In 
[13], MPC based optimal control was studied, which is 
useful for cases when nonlinear mobile robots are used 
under several constraints. In general, real-time 
implementation is possible when a short prediction 
horizon is used.  By using MPC, the idea of receding 
horizon can deal with the local sensor information. MPC 
is based on minimizing a cost function related to the 
objectives for generating the optimal inputs. 
Experimental trajectory tracking using MPC has been 
also reported. Hence, agricultural robot applications, 
using similar prediction horizons to those in this work, 
are reported in [14], in which the trajectory was 
previously human-assigned and the GPS was used as 
main sensor. In general, global trajectory planning 
becomes unfeasible due to that the sensorial system of 
some robots is only local. Consequently, the local model 
predictive control (LMPC) is proposed to use the 
available visual data in the navigation strategies for the 
goal achievement. Define the cost function as follows: 
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The first term of (2.1) refers to reaching the desired 
coordinates, Xd=(xd,yd,θd). The second one is related to 
the distance between the predicted robot positions and 
the trajectory segment dolX ,  given by a straight line 
between the robot coordinates Xl0=(Xl0,Yl0,ql0) from 
where the local perception frame was acquired, and the 
desired local position Xld=(Xld,Yld,qld) belonging to the 
local perception grid. The last one is related to the input 
signals. The parameters P, Q and R are weighting 
parameters that express the importance of each term. 
The system constraints are also considered: 

 
 

 
 

The limitation of the input signal is taken into account in 
the first constraint. The second constraint is related to 
the obstacle points where the robot should avoid the 
collision. The last one is simply a convergence criterion.  
The MPC algorithm is based on the model knowledge. 
Hence in this section the experimental modelling 
methodology is firstly introduced. The odometer system 
formulation is also given as the necessary data for 
controlling the trajectory tracking. Finally, once the 
models of the robot are known the proposed algorithms 
and simulation results are reported.  
 

2.1 Experimental Model Identification and 
Odometer System Formulation 

In this work the parameter identification is based on the 
black box approaches [15]-[17]. The transfer functions 
are related to a set of polynomials that allow the use of 
analytic methods to deal with the problem of controller 
design. The nonholonomic system dealt with in this work 
was initially considered as a MIMO (multiple input 
multiple output) system, which is composed of a set of 
SISO subsystems with coupled dynamic influence 
between two DC motors. The approach of the multiple 
transfer function consists in carrying out the 
experiments with different speeds. In order to find a 
reduced-order model, several studies and experiments 
were done through the system identification and model 
simplification. The parameters were estimated using a 
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PRBS (Pseudo Random Binary Signal) as the excitation 
input signal. The experiments done consist in exciting 
two DC motors in different (low, medium and high) 
speed ranges. The problem consists in finding a model 
that minimizes the error between the real and estimated 
data by expressing the ARX equation as a lineal 
regression. Fig. 2.1 shows the speed response of the left 
wheel corresponding to a left PBRS input signal.  

 

Fig. 2.1:  Speed output for a left PRBS input signal. 
 
Experimental data is treated before the parameters are 
estimated. This includes data filtering, using the average 
value of five different experiments with the same input 
signal, frequency filtering and tendency suppression. 
The system is identified by using the identification 
toolbox “ident” of Matlab for the second order models. 
The simulation results show that the obtained model fits 
the experimental data well. However, it is observed that 
the dynamics of two DC motors are different and the 
steady gains of coupling terms are relatively small (less 
than 20% of the gains of main diagonal terms). Thus, it 
is reasonable to omit the coupling dynamics so as to 
obtain a simplified model. Finally, the order reduction of 
the system model is carried out by analysing pole 
positions with the root locus method. Afterwards, the 
system models were validated through the experimental 
data and using the PBRS input signal [9].  
 

2.2 Odometer System Expression 
 

Denote (x, y, θ) as the coordinates of position and 
orientation, respectively. Figure 2.2 describes the 
positioning of the robot as a function of the radius of the 
left and right wheels (Re, Rd), and the angular 
incremental positioning (θe, θd), with E being the 
distance between the two wheels and dS the incremental 
displacement of the robot. The position and angular 
incremental displacements are expressed as: 
 

The coordinates (x, y, θ) are 
expressed as:  

 
 
 
 

 

 

 

Fig. 2.2.: Positioning of the robot as functions of the angular 
movement of each wheel. 

 

Thus, the incremental position of the robot can be 
obtained through the odometer system with the available 
encoder information from (2.3) and (2.4). 

 
2.3 LMPC Algorithms and Simulation Results    

 
By using the basic ideas previously introduced, it is 
presented here the LMPC algorithms that can be run in 
the following steps: 
• Read the actual position 
• Minimize the cost function and obtain a series of 

optimal input signals 
• Choose the first obtained optimal input signal as the 

command signal. 
• Go back to step 1 in the next sampling period. 

Minimizing the cost function is a nonlinear problem in 
which the following equation should be verified:  
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It is a convex optimization problem caused by the 
trigonometric functions used in (2.4), [18]. The use of 
interior point methods can solve the above problem [19]. 
Among many algorithms of optimization, the gradient 
descent algorithm [20] was implemented in this work.  

In order to obtain the optimal solution, some constraints 
on the inputs are taken into account: 

• The signal increment is kept fixed within the 
prediction horizon. 

• The input signals remain constant during the 
remaining interval of time.  2
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The above considerations can reduce the computation 
time and result in the smooth behaviour of along the 
prediction horizon. Thus, the set of available inputs is 
reduced to one value. In order to reduce the search for an 
optimal signal value that minimizes the LMPC cost 
function, the possible input sets are considered as a 
bi-dimensional array, as shown in Fig. 2.3. 
 

 
 

Fig. 2.3: Interval search 

The array is decomposed into four zones. The search 
consists in analyzing the central points of each zone. It is 
considered only the region that offers the better 
optimization, where the algorithm is repeated for each 
sub-zone, until no sub-interval can be found. The results 
were obtained by testing all possible inputs and the 
subinterval search algorithm, which were compared by 
simulating a 2m straight line tracking, as shown in Fig. 
2.4.  

 
Fig. 2.4: Trajectory tracking and command speed profiles during 2 
m straight line tracking simulation, by computing the cost function 

for all the input combinations or by using the gradient descent 
method. 

The results show the discrepancy between the two 
methods in which the subinterval gradient descent 
method usually does not give the optimal solution. 
However, when acceleration is produced both results are 
similar.  

 
Figure 2.5 

Fig. 2.5.a illustrates this case by showing the results of 
cost function obtained by all possible inputs, in which a 
unique minimum is found. However, when the 
acceleration process is finished and other criteria as final 
point and desired trajectory distances are considered, 
only suboptimal solutions are obtained. As shown in Fig. 
2.5.b, local minimum can be obtained instead of being 
globally optimal. The gradient descent results can be 
considered as nearly optimal. Once the algorithm was 
proposed, several simulations were carried out to verify 
its effectiveness, and then to make improvement. Thus, 
when only the desired coordinates are considered, the 
robot could not arrive at the final point.  

Fig. 2.6 shows that the inputs can minimize the cost 
function by shifting the robot position to the left due to 
that the left motor has more gain than the right. This 
problem can be easily solved by considering a 
straight-line trajectory from the current point of the 
robot to the final desired point. Thus, the trajectory 
should be included in the LMPC cost function. 

 
Fig. 2.6: Predicted coordinates from speed zero, n=5, m=3. 
The left deviation is due to the bigger left gain of the robot. 

 
Fig. 2.7 shows a simulated result of LMPC for the 
WMR by first using the orientation error as the cost 
function and then the local trajectory distance and the 
final desired point in the optimization.  



 

 
Fig. 2.7: LMPC simulated results following a 45º trajectory. It is 
used firstly squared orientation difference minimization and then 

squared trajectory and final distances minimization. 
 
The prediction horizons between 0.5s and 1s were 
proposed and the computation time for each LMPC step 
was set to less than 100ms, running in an embedded PC 
of 700MHz. The simulated results, using a prediction 
horizon (n=10) and a control horizon (m=5), are shown 
in Fig. 2.8. The computing time for the complete search 
of an optimal input is between 13 and 14 ms when m=3 
and n=5. In the case of using gradient descent method, 
the computing time is set to less than 1ms. 

 
 

Fig. 2.8: Predicted coordinates from speed zero, n=10, m=5. 

 
The possible coordinates available for prediction, as 
shown in Fig. 2.6, depict a denser horizon. Trajectory 
tracking and final point reaching are other interesting 
aspects to be analyzed. Fig. 2.9 shows the results 
obtained in tracking a straight line of 2m using two 
different prediction horizons. 

 
Fig. 2.9: Trajectory tracking in red (n=10, m=5) and in blue (n=5, 

m=3). The larger prediction horizon shows a closer final point 
achievement and worse trajectory tracking. 

 

Fig. 2.10 shows the velocities of both wheels using the 
above strategies. The wide prediction strategy shows a 
softer behaviour due to the larger control horizon. 

 
 

Fig. 2.10: Wheel speeds during the 2m straight line tracking. The 
red and blue dots show the right and left speeds respectively, with 
n=10 and m=5. The magenta and green dot lines depict the right 

and left speeds with n=5 and m=3. 
 

3. EXPERIMENTAL RESULTS  

In this section, two important aspects are analyzed: the 
trajectory tracking and the velocity estimation.   

The trajectory tracking is improved by the adequate 
choice of a cost function that is derived from (2.1) and 
consists of a quadratic function containing some of the 
following four parameters to be minimized: 
 

• The squared Euclidean approaching distance 
between the local desired coordinates, provided by 
the on-robot perception system, and the actual robot 
position. 

• The squared trajectory deviation distance between 
the actual robot coordinate and a straight line that 
goes from the robot coordinates, when the local 
frame perception was acquired, and the local desired 
coordinates belonging to the referred frame of 
perception.  

• The third parameter refers to changes allowed to the 
input signal. However, some constraints over the 
input are considered in section 2.3. 

• The last parameter consists in the squared orientation 
difference that is used only when the desired 
orientation is greater than a selected threshold. In this 
case, other parameters of the cost function are not 
used.    

One consideration that should be taken into account is 
the different distance magnitudes. In general, the 
approaching distance could be more than one meter. 
However, the deviation distance has its magnitude 
normally in the order of cm, which becomes effective 
only when the robot is approaching to the final desired 
point. Hence, when it is tried to reduce further the 
deviation distance to less than 1cm, it is proposed to 
increase the weight value for the deviation distance in the 
cost function.  

In the MPC research, Kalman filter has been employed 
for improving the system performance [21]. In the 



 
present work, the technique of Kalman filter is used for 
the velocity estimation. It is implemented as output 
prediction estimation by using both inputs and outputs, 
and the knowledge of the estimated outputs obtained by 
the system model [22]. The implemented filter is given 
by the following equations: 
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where G, H, C are given by the system model, x~ is the 
estimated system output, y the measured output, and P 
represents the estimation error variance at the instant k. 
The initial value P(0/0) can be set to zero. Thus, 
recursive output estimation can be done, as function of 
the estimated outputs, the inputs, and the last measured 
output: 
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The parameters R1 and R2 are used to model the noise 
variance empirically done in this work. Fig. 3.1 shows 
the acquired and estimated outputs.  
 

 
 

Fig. 3.1: Experimental results of the Kalman filter  
 

3.1 Local Occupancy Grid perception and 
Trajectory Planning by Using Monocular Data  

 
This section introduces first the proposed path planning 
strategy that arises from the local perception knowledge 
and potential attraction field provided by a global 
desired robot configuration. Then, the experimental 
results of trajectory tracking are explained. The 
occupancy grid framework provides a robust and unified 
approach to a variety of problems in spatial robot 
perception and navigation [23]. In this sense, computer 
vision research, developed to obtain scene information, 
has solved many interesting topics by using different 
methods based on the understanding of biological 
systems. Hence, machine vision systems have used some 
features of eyes as stereopsis, optical flow or 
accommodation as meaningful clues [24]-[26]. In this 

paper it is supposed that the occupancy grid is given by 
developed methods [30]. Hence, the local visual data 
provided by the camera are used to plan a feasible 
trajectory and to avoid obstacle collision [9]. Fig. 3.2 
shows the on-robot camera configuration studied in this 
work  
 

 
 

Fig. 3.2: Fixed camera configuration 
with its analysis focused on particular indoor 
environments with flat floor surfaces. In Fig. 3.2, α, β 
and ϕ are angles of the vertical and horizontal field of 
view and the tilt camera pose, respectively. The vertical 
coordinate of the camera is represented by H.  

The scene coordinates can be computed using the 
trigonometric relationships [26]. Figure 3.3 shows a 
local map provided by the camera, which corresponds to 
a viewing field with a horizontal angle of 48º, a vertical 
angle of 37º, H set to 112 cm and a tilt angle of 32º. 
Scene grids of low resolution are used to speed up the 
computing process. Hence, image processing methods, 
such as pyramidal resolution or down sampling 
methods, can be used to compress images [27]. The 
results of coordinate maps can be improved by using 
calibration techniques that allow, for instance, radial 
distortion removal [28]. 

In this research, the wide-path in experimental sense 
should be big enough so as to allow the WMR passing 
without any risk of collision. Thus, this parameter 
should allow a trajectory following deviation as well as 
an enough space in order that the robot can turn around 
itself. When the concept of the wide-path is considered in 
the local visual map, the number of possible local map 
coordinates that can be attained by the robot is reduced 
[29].  

Fig. 3.3 shows a feasible trajectory, including the 
wide-path of WMR, within the local visual map, where 
the allowed trajectory should consider other aspects 
related with robot dynamics such as the safety stop 
distance, the reactive criteria and the visual dead zone. 

 
 



 

 
Fig. 3.3: Available local map coordinates (in green), the necessary 
coordinates free of obstacles and the necessary wide-path (in red) 
 
The available information provided by the camera is 
considered as a local receding horizon where a trajectory 
without obstacles is planned. Hence, a local map with 
feasible coordinates is provided. Optimal free coordinate 
points are obtained by minimizing a cost function J, 
consisting in the Euclidean distance between the global 
desired coordinates and the available local scene 
coordinates:  
 
 

 
 
where (xd,yd) are the global desired coordinates, and 
IMAGE(i,j)=1 means that the visual coordinate is 
occupied by an obstacle. Thus, a local free cell that 
minimizes the cost function objective is selected as the 
local desired coordinates to be achieved by the robot 
[30].  
 

3.2 Experimental Results on Trajectory Tracking  
 
The trajectory tracking accuracy and time performance 
are two important aspects to be considered. The tested 
trajectories are obtained from the available set of local 
map coordinates as shown in Fig. 3.3. The LMPC 
results are analyzed when different trajectories tracking 
are commanded, as it is depicted in Fig. 3.4.  

 
 

Fig. 3.4: Trajectory tracking tested from point to point by 
using the available local map coordinates provided by the 
monocular perception system. 
 
Denote E1 as the average final error, E2 the maximal 
average tracking error, E3 the average tracking error, E4 
the standard deviation of average tracking error. Table 
3.1 presents the statistics concerning about the error 
obtained in cm testing the trajectories shown in Fig. 3.4. 
 

Table 3.1: Point to point trajectory tracking statistics 
Trajectory E1 E2 E3 E4 
From (0,0) 
to (0,130) 

 
4.4cm 

 
0.9cm 

 
0.54cm 

 
0.068 

From (0,0) 
to (34,90) 

 
3.8cm 

 
3.9cm 

 
2.3cm 

 
0.82 

From (0,0) 
To (25,40) 

 
4.5cm 

 
5.3cm 

 
3.9cm 

 
1.96 

 

It can be seen that the accuracy of trajectory tracking, 
when straight line is commanded, has a deviation error 
of 0.54cm. However, when a turning action is 
performed, the error in straight line tracking is bigger as 
consequence of the robot dynamics when it is moving 
forward. Hence, the forward movement consists in 
usually a steering action. Fig. 3.4 gives a clue about 
what is happening. Thus, the major turning angle will 
produce the major deviation distance. Usually, it is very 
difficult to reduce the approaching distance to zero, due 
to the control difficulty of dead zone for the WMR and to 
the fact that the final target is considered in the present 
work as being reached by the robot when the Euclidean 
approaching distance is less than 5cm. 
 
Other interesting results consist in testing the LMPC 
performance when the trajectory is composed of a set of 
points to be tracked. In this sense, when it is regarded to 
the kind of robot used, a pure rotation is possible by 
commanding the same speed with different sense to each 
wheel motor. Hence, when a trajectory is composed of 
many points, two possibilities exist: continuous 
movement in advancing sense, or discontinuous 
movement in which the robot makes the trajectory 
orientation changes by turning around itself at the 
beginning of the new straight segment.  
 
Fig. 3.5 shows the tracking performance of the robot by 
tuning around itself, when the robot follows a trajectory 
composed of a set of points (0,0), (-25,50), (-25,100), 
(0, 150) and (0,200). The reported trajectory deviations 
are less than 5cm. However, the tracking time may reach 
up to 25s. 
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Fig. 3.5: Trajectory tracking with discontinuous movement. 
 
The trajectory tracking strategy with continuous 
movement , for a set of points (0,0), (25,50), (25,100), 
(0,150) and (0,200), is represented in Fig. 3.6. In this 
case, it is reported a bigger trajectory deviation, due to 
the WMR’s mechanical dynamics. The trajectory 
tracking is performed much faster (≤15s). Hence, in the 
continuous moving case, it needs a turning action with a 
minimum radius, once the direction is attained the robot 
deviation is very small. Thus, trajectories following 
straight lines have reported errors less than 1cm. When 
time performance is analyzed the continuous movement 
presents a better behaviour.  
 

 
Fig. 3.6: Trajectory tracking with continuous movement. 
 
 

4. CONCLUSIONS AND FUTURE WORK  
 

In this paper, LMPC strategies have been used to track 
the trajectory and to reach the local desired coordinates, 
which result in the improved accuracy and time 
performance. The desired local points and optimal local 
trajectory are computed by using machine vision data 
and robot constraint information. Hence, the odometer 
system is not just confined to controlling the velocity of 

each wheel. Thus, the absolute robot coordinates were 
used for planning a trajectory to the desired global or 
local objectives. Local trajectory planning was done 
using the relative robot coordinates that correspond to 
the instant when the frame was acquired.  

Research is currently focused on implementing the 
presented methods by developing flexible software tools 
that allow vision methods to be tested and locally 
readable, and virtual obstacle maps to be created taking 
into account the robot’s position and the selected camera 
configuration. The use of virtual visual information can 
be useful for testing the robot in synthetic environments 
and for simulating different camera configurations. 
Further studies on LMPC should be done in order to 
analyze improvements such as changing the tracking 
set-point when the WMR is not close to the desired point 
or its relative performance with respect to other control 
laws. The influence of the motor dead zones is also an 
interesting aspect that should make further efforts.  
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