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Abstract 

For a massless fluid (density = 0), the steady flow along a duct is governed exclusively 

by viscous losses. In this paper, we show that the velocity profile obtained in this limit 

can be used to calculate the pressure drop up to the first order in density. This method 

has been applied to the particular case of a duct, defined by two plane-parallel discs. For 

this case, the first-order approximation results in a simple analytical solution which has 

been favorably checked against numerical simulations. Finally, an experiment has been 

carried out with water flowing between the discs. The experimental results show good 

agreement with the approximate solution. 
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I. Introduction 

Introductory physics textbooks for first-level college students usually devote a 

couple of chapters to fluid statics and dynamics. Regarding the latter, it is common that 

textbooks present first the behavior of inviscid fluids and then introduce viscosity.1-3 

When dealing with inviscid fluids, two general laws (mass and energy conservation) are 

used to justify the two equations commonly used to solve problems of flows within 

ducts: the continuity equation and the so-called Bernoulli equation. The latter, in 

absence of gravitational effects (that is, if the flow does not have a significant vertical 

component), is written as: 
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where p0 and p1 are pressures on sections 0 and 1 respectively, and where the 

corresponding (uniform) fluid velocities are v0 and v1 (Fig. 1). With subindex “ρ” we 

indicate that the pressure change Δp is related to mass density of the fluid, i.e. to its 

inertia. This equation easily describes the change of pressure along a horizontal duct due 

to changes in velocity (which, of course, must be related to changes in the duct section).  

When viscosity is introduced, the simplest case of a cylindrical duct of constant 

section is usually analyzed. For this particular geometry, the pressure difference 

required to balance viscous resistance in the flow, i.e. the so-called Poiseuille equation, 

is given by: 
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where η is the viscosity coefficient of the fluid, R is the duct radius, L is the distance 

between sections 0 and 1 (where pressures p0 and p1 are applied), and Q is the flow rate. 

In contrast with Bernoulli’s equation, pressure losses due to viscosity are nonzero even 
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for a massless fluid. Note that, as explained in most textbooks, Poisseuille’s equation 

can be derived from the balance between pressure and viscous forces applied to an 

infinitesimally thin cylindrical layer of fluid and then integrated over the whole volume 

(Fig. 2). An intermediate result is the velocity distribution (or profile) within the flow, 

which turns out to be parabolic: 
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This non-uniformity of the velocity across a section of the flow justifies the use of the 

average velocity ( v ) in Eq. 2. Obviously, v  is defined as Q/A = Q/πR2. 

A subtle but interesting problem is avoided, however, by most textbooks: what 

happens when a viscous fluid flows through a non-constant section duct? That is, how 

should Bernoulli (i.e. inertial) effects be combined with viscous effects? One might 

think that it is a matter of simply adding the two pressure changes, ρpΔ and ηpΔ , and 

substituting velocities in Eq. (1) by their corresponding average velocities. This is not, 

however, the exact solution to the problem. An approach to solving this issue has been 

provided previously in several papers 4-5. Specifically, one paper4 shows the generalized 

Bernoulli equation including transitory and viscous effects, and derives the 

corresponding specific equations under different conditions (from the simplest steady, 

incompressible, inviscid flow, to the more complex non-steady and viscous flows). 

However, equations in that paper are useful only for streamlines (usually for the 

centerline) and the authors avoid the question of integrating the equation for the whole 

duct. In another paper5, an experiment is suggested to demonstrate the importance of 

considering viscous effects for real fluids (such as water draining out of a cylindrical 

vessel). In this case, the analysis is so particular that it cannot be applied to other flow 

situations.  
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In the present paper, we will approach the question of combining viscous and 

inertial effects. In Section II we derive a new equation for the first-order approximation 

to pressure drop in terms of geometry of the duct and of flow rate, which, in turn, 

depends on both density and viscosity. The general equation derived is then applied to 

the particular case of a radial flow between two plane-parallel discs. The validity of this 

approximate solution, i.e. the “first-order Bernoulli correction” to viscous flow, is 

checked against the results obtained by numerically solving the fluid dynamics (Section 

III). The approximate solution is then applied to analyze the results obtained with a very 

illustrative experiment which is described in Section IV. Finally, Section V summarizes 

the main conclusions of our work. 

 

II. Theoretical development 

II.a. General expression for pressure change 

In general, work associated to pressure changes in a flow is used to 1) change the 

kinetic energy, 2) change the gravitational energy, and 3) balance the dissipation of 

energy due to viscosity. If gravitational effects are removed, we can write the 

relationship with the other two terms, which, expressed as power (i.e. work per unit 

time) is: 
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where A0 and A1 are the areas of sections 0 and 1, respectively, and η

•

w is the energy 

dissipated by viscosity per unit time. The left hand side of Eq. (4) is the power 

introduced in the system through pressure differences. The first term of the right hand 

side is the change in kinetic energy, which is often referred to as the Bernoulli term. The 

other term, as mentioned, is associated with viscosity. Eq. (4) is valid in steady-state 
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conditions if the fluid is incompressible and the velocity of the fluid in any part of 

sections 0 and 1 is perpendicular to these sections (i.e., the velocity vector is parallel to 

the differential area vector and pressure is uniform across the section). The latter 

condition implicitly requires the flow regime to be laminar. Under these conditions, the 

power introduced by pressure differences can be written as in Eq. (4), since, on a 

particular section, this work per unit time is 

QpdAvpdApvdFvW
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where F is the force associated with pressure. Regarding kinetic energy, it can be 

written (for a control volume defined by a given infinitesimal section, dA, and the 

translation of the fluid during a time interval Δt) as 
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Therefore the change of kinetic energy per unit time can be expressed as in Eq. (4). 

Finally, the power dissipated by viscosity can be calculated through the integral: 

∫=
•

V

dVw 2γηη &  (7) 

where V means the volume of fluid limited by sections 0 and 1, and  

dy
dv

=γ&  (8) 

is the deformation rate, y being a direction perpendicular to the fluid velocity. 

Although Eq. (4) is exact under the conditions mentioned above, its application 

is not straightforward because it requires the precise knowledge of the velocity at any 

point of volume V. For viscous (η ≠ 0) and dense (ρ ≠ 0) fluids, analytical solutions for 

v are difficult to obtain, whereas when ρ = 0 or if v is constant along the duct (i.e., there 



 6 

are no changes in section shapes and areas), analytical solutions exist for conduits of 

simple geometry 6. 

Fortunately, we will demonstrate next that Eq. (4) with η

•

w  calculated from the 

velocity profile obtained for a massless fluid (ρ = 0) is a good (first-order) 

approximation to the correct result. Indeed, we can take Taylor’s development (on 

powers of ρ) of the main magnitudes given in Eq. (4): 

( )

( )2)0(

2)0(

ρρ
ρ

ρρ
ρ

η
ηη O

d
wdww

O
d
dvvv

Q

Q

++=

++=

•
••

 (9) 

where superscript (0) means the value computed for ρ = 0. Obviously, the zeroth-order 

approximation to Eq. (4) is: 
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since the Bernoulli term is null at the zeroth order. At first order, the Bernoulli term is 

simply ( ) ( )
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field can be easily calculated for many simple geometries (the most well-known being 

the already mentioned parabolic distribution of velocities). Finally, the key point is that 

the first order approximation of the viscous term is null, that is: 

0=

•
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which means that the viscous term is an extremum (minimum) for the distribution of 

velocities of a massless fluid. A demonstration of this well-known result in fluid 

dynamics7 is given in the Appendix for the very simple case of a plane-parallel duct.   
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Summing up, we can write the first-order approximation to pressure change in a 

viscous flow within a changing section duct as: 
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In the next subsection, this expression will be applied to obtain this pressure change in 

the particular case of a duct defined by two plane-parallel discs where the fluid flows in 

a radial direction. 

 

II.b. Viscous flow within two plane-parallel discs 

If we have a viscous fluid flowing within a plane-parallel duct with height, H, much 

smaller than its width, W (Fig.3), the velocity profile will be parabolic. This can be 

easily deduced from the balance between pressure and viscous forces, when the section 

crossed by the flow is constant. The parabolic profile may be written as: 
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When this expression is integrated over the whole section, A = W·H, we obtain: 
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Moreover, Eq. (14) can be used in combination with Eq. (13) to write the velocity 

profile as a function of the flow rate itself: 
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Eqs. (13) and (15) are exact for a duct of constant section. They still remain 

exact for a massless fluid (ρ = 0) when W changes along the duct. This is so despite the 

fact that the continuity equation implies a change in velocity, since the kinetic energy is 

always zero and does not affect the balance of work performed by pressure. 
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Consequently, these expressions are the zeroth order approximation to the velocity 

distribution between two parallel planes even if the section is not constant. 

In our experiment (see Section IV) the fluid flows between two parallel discs in 

a radial direction (Fig. 4). Therefore, it is a case of a plane-parallel duct where section 

crossed by the flow is not constant. For the infinitesimal volume between r and r + dr, 

however, Eq. (13) applies, so the velocity profile can be written as follows: 
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which, again, when introduced in Eq. (7) and using dpη = Qwd /η

•

 results in: 
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where p(R) is the pressure at the outer boundary of the discs, which have R as their 

maximum radius. This result can also be obtained from Eq. (15), changing W by 2πr, 

and combining Eqs. (4, 7, and 8).  

As far as the Bernoulli term is concerned, it is convenient to use the zeroth-order 

approximation to the velocity profile as expressed in Eq. (15) and adequately written for 

our geometry (i.e. W = 2πr, dA = 2πrdy). With this, integration of the Bernoulli term 

according to Eq. (12) gives: 
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Finally, the combination of Eq. (17) and Eq. (18) when introduced in Eq. (12) gives the 

expression that approximates (to the first order) the pressure in a radial flow between 

two plane-parallel discs: 
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which is written in terms of known or measurable quantities. The second term on the 

right hand side of the equation is the Bernoulli (or inertial) correction to the pressure 

drop computed by considering only the viscous effects (i.e., the third term). The validity 

of this expression will be demonstrated in the following sections. 

Before leaving this section, the reader is encouraged to write Eq. (18) in terms of 

the average velocities, rHQv π21 = and RHQv π20 = , i.e.: 
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Note that this expression is identical to Bernoulli’s elementary Eq. (1) except for the 

extra factor ε which takes into account the effect the velocity profile due to viscosity 

forces. The ε values depend on the duct section: for a plane-parallel duct ε = 54/35, 

whereas ε = 2 for a cylindrical duct. In spite of the simplicity of Eq. (20) we should 

remember that this simple generalization of Eq. (1) is not exact. 

 

III.        Numerical simulations 

 III.a. The pressure change  
 

Following the experimental design detailed in the next section, here we simulate 

the flow of water within two plane-parallel discs of radius 20 cm and separation H (= 

0.5 mm and 0.25 mm). Several simulations have been carried out with constant values 

for the volumetric flow rate Q (2, 3, 4 and 5 L min-1). In all cases, the inlet corresponds 

to a drilled hole of radius 1 cm centered on one of the two discs.   

It is illustrative to investigate the flow regime in terms of the Reynolds number 

Re defined as Re = ρ v D/η, where v  is the average velocity and D is the characteristic 

length of the problem. In fluid dynamics, Re is commonly used as a control parameter 

to determine the flow regime (i.e., either laminar or turbulent) in incompressible viscous 
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fluids with negligible external forces. For circular pipe flows, the minimum critical 

Reynolds number Rec is approximately 2000, which means that flow regimes with Re < 

Rec are laminar. We assume a similar value of Rec for our case.  

For two plane-parallel discs, D = H (see, for instance, ref.[7]) and, from the text 

above Eq. (20), the average velocity is rHQv π2= . Then, the Reynolds number 

expressed in terms of the flow rate Q reads 

ηπ
ρ

r
Q

2
Re =          (21) 

where, for our experiment, ρ = 1000 kg/m3 and η = 1.024 10-3 Pa·s (the viscosity of 

water at 20ºC). Note that Re decreases as r increases. Consequently, Re reaches its 

maximum value for the radius of the drilled hole (r = 1 cm). At this point, and for the 

maximum rate of Q = 5 L/min, Re = 1300 which lies well below the critical value Rec. 

The laminar regime is thus ensured for r > 1 cm, in consistency with the assumption 

made in Section II. The type of flow regime is needed in order to select the physical 

model used by the Computational Fluid Dynamics (CFD) code.  

 The simulations have been done with a CFD commercial software package 

based on the finite volume method (STAR-CCM+). The symmetry of the problem 

allows us to simplify the simulation by analyzing the flow of a two-dimensional (2D) 

rectangular slice of height H ranging from r = 0 to r = R and by imposing an 

axisymmetric boundary condition for the r = 0 edge. This 2D simulation saves 

computational resources while accepting a high number of cells (i.e., small surfaces 

where the governing differential equations will be applied). We have divided the 

rectangular domain into 40,000 cells. Thus, we have squares of side 0.05 mm for the H 

= 0.5 mm case and rectangles 0.025 mm high and 0.05 mm wide (radial direction) for 

the H = 0.25 mm case.   



 11 

 In order to reach the steady state, the CFD code ran the number of iterations 

required for satisfying the convergence criterion based on reaching a threshold value of 

10-3 for the residuals (i.e., weighted differences of the variables between two 

consecutive iterations). In addition, a test with a 2D model containing over 280,000 

cells was performed for the Q = 5 L min-1, H = 0.5 mm case and the solution coincided 

with that obtained with 40,000 cells. 

 The relative pressure as a function of the radial direction is shown in Fig. 5a for 

the H = 0.25 mm case by using the theoretical expression (lines) and by numerically 

solving the fluid flow by means of the CFD code (symbols) for different values of the 

flow rate. In Fig. 5a, thin solid lines correspond to the analytical solution obtained by 

neglecting the Bernoulli correction (i.e., Eq. (19) for a massless fluid ρ = 0). On the 

other hand, thick solid lines refer to Eq. (19) (i.e., including the Bernoulli correction). In 

both cases p(R) has been assumed to be equal to zero, which is the same boundary 

condition adopted for the pressure outlet in the numerical simulations. From Fig. 5b, we 

observe that the analytical solution obtained in Eq. (19) reproduces our numerical 

simulations very well. In contrast, the solution without the Bernoulli correction clearly 

fails to reproduce the simulations, notably for low values of r. Similar results are 

obtained for the H = 0.5 mm case (Fig. 5b).   

 III.b Accuracy analysis 

Despite the good agreement between the analytical and numerical results, one 

may wonder if, for small radii, this agreement is somewhat fortuitous. The puzzling fact 

is that although the Bernoulli correction is calculated through the perturbative method 

developed in Section II.a, it approaches the correct result even when the Bernoulli term 

is as large as one-half of the viscous term (for H = 0.5 mm, Q = 5 L/min and r = 20 mm 
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in Fig. 5b). Let us have a closer look at the value of the Bernoulli term relative to the 

viscous term. 

In fact, the (natural) boundary condition, p = 0 at the outer radius, r = R, 

implies that the Bernoulli correction is zero at this point and that its value 

monotonically increases as r gets smaller. Consequently, the Bernoulli term (as well as 

the viscous one) at any radius r0 is the integration from r = R to r0 of the local pressure 

increments (dp/dr)·dr. This means that the accuracy of our analytical solution can be 

better analyzed at the local level by looking at the pressure derivative instead of the 

pressure itself. This has been done in Fig. 6, where the continuous curves and discrete 

points correspond to the analytical and numerical solutions, respectively. The 

analytical curves indicate that Bernoulli’s contribution to pressure change is greater 

than the viscous losses for r < 30 mm. At r = 35 mm (below this radius the numerical 

simulation becomes unstable for H = 0.5 mm and Q = 5 L/min), the Bernoulli 

contribution relative to the viscous one is as high as 0.8. Despite this large value, the 

discrepancy with the numerical result is only 17% of Bernoulli’s contribution. 

The success of the analytical solution in predicting so large corrections when 

density changes from zero to a finite value is not fortuitous because the Bernoulli term 

of Eq. (19) is obtained with the hypothesis that the velocity profile almost coincides with 

that of ρ = 0 (Eq. (12)) (i.e. a parabola) and this is really the case. In the inset of Fig. 6 

we have plotted the velocity profile averaged over fluid layers of 0.05 mm. At r = 35 

mm, the simulated profile deviates slightly from a parabola, what results in a Bernoulli 

term 8% larger than the analytical correction. This means that the17% discrepancy in 

dp/dr is equally shared by the Bernoulli term and the second order term in ρ of the 

viscous losses (eq.(9)). At r = 60 mm, the velocity profile almost coincides with a 

parabola (inset of Fig.6), the inaccuracy of the Bernoulli term being less than 1%. 
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The main conclusion reached with the reported numerical simulations is that, 

within the range of Q’s and thicknesses covered by the experiment detailed below, the 

approximate analytical solution of Eq.(19) is accurate enough to analyze the 

experimental results. 

 

   IV. Experiment: design and results 

Two discs of radius 20 cm were cut from a 2 cm thick aluminum sheet. One side 

of the sheet was very smooth and flat, so that deviations from perfect flatness were 

below ±0.03 mm over the entire disc surface. In the center of one disc a hole of 2 cm 

diameter was drilled to allow water to flow through, whereas five smaller holes of 0.5 

cm diameter were drilled in the other disc at 2, 3, 7, 11, and 15 cm from the center. A 

plastic hose was connected to every small hole to measure the water pressure by simply 

quoting the height of the water column inside (see Fig. 7). Although we attempted to 

measure the pressure near the center and near the disc boundary, we realized that, due to 

the abrupt variation in flow conditions there, it was not easy to interpret the pressure 

values at these points. 

Between both discs, a thin duct was arranged by positioning them with the help 

of three pairs of screws. Distance H was fixed with calibrated thin steel sheets of 0.25, 

0.30, 0.40, and 0.50 mm. Experiments for thinner ducts were not accurate enough 

because of the flatness inaccuracy and because the hydrostatic pressure deformed the 

discs. 

A controlled flux rate of water entered the plane duct from below the center of 

one disc and came out at the disc contour. A floating-ball flow meter was used to select 

the desired rate Q. The chosen values of Q = 2, 3, 4 and 5 L min-1 were verified by 

volumetric measurements. Water temperature remained almost constant at about 20ºC 
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for all the experiments. For every duct thickness, the series of measurements at the four 

flux rates were repeated four times. In the corresponding figures we quote the average 

values. 

Thus, in Figures 8a-b, we show results of our measurements for the two extreme 

cases (H = 0.25 mm and H = 0.5 mm respectively), along with the theoretical lines that 

include the Bernoulli correction (i.e. Eq. 19). Note that experimental values for r = 2 cm 

are not represented, since at this short distance to the inlet, the flow was hardly 

stabilized (it could be slightly turbulent as a result of the sharp change in direction at the 

inlet) producing quite inaccurate measurements. All values shown are not directly the 

average of the measurements; instead, a correction has been applied in order to take into 

account the unknown pressure at the outlet edge of the discs (i.e. term p(R) in Eq. 19). 

Specifically, a pressure correction of few thousands of Pa has been subtracted for each 

measurement in a series (that is for a given H and Q) in such a way that the root mean 

square difference between the corrected values at r = 7, 11, 15 cm and the 

corresponding analytical values is minimum.  

Figure 8b clearly shows that the experiment that we have carried out is suitable 

to demonstrate the importance of the Bernoulli correction to viscous effects. Indeed, 

experimental values match the analytical lines quite well, and would be far from the 

lines without the Bernoulli correction. This is particularly true for the points at lower r, 

where, as predicted by Eq. 19, the Bernoulli correction has greater effect. Figure 8a also 

confirms these results, although in this case, the measurements are clearly and 

systematically lower than the theoretical values, for r = 3 and 7 cm. We think that this 

error is due to a slight non-flatness of the disks that we caused when using even lower 

separations (H ≤ 0.2 mm) between disks. For these extremely narrow flows, numerical 
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simulations have shown that the high static pressure values induced a plastic 

deformation of the disks. 

Another way to present results of our experiments is used in Figure 9a-b. In this 

figure, the importance of the viscous term in Eq. 19 is stressed, since we show the 

pressure at a given radius (r = 7 cm) as a function of the other two variables, the 

separation between disks H and the flow rate Q. Figure 9a shows values, for two 

different Q, as a function of H. In this case, the dependency between p and H is clearly 

inverse cubic, as is demonstrated by the reference line with slope -3. Similarly, on the 

right panel (Fig. 9b) the values of pressure are represented, for two different H, as a 

function of Q. In this case, the linear relationship is also clear and it is shown through a 

reference line of slope 1.  

 The experiment here described is complementary to the experimental 

demonstration of Bernoulli levitation reported in ref. 8. In their experiment, Waltham et 

al. used air instead of water and the flow was turbulent. The Bernoulli term (Eq. (1))  

was higher than the viscous one, what resulted in a negative pressure between the discs. 

 

V. Conclusions 

Although analytical solutions do not exist for the steady flow of dense fluids along 

ducts of variable sections, it has been shown that the solution in the limit of ρ = 0 can be 

used to calculate the extra pressure variations due to inertial effects (Bernoulli’s 

correction). This method is correct up to the first order in ρ, because the energy 

dissipation is minimal for the velocity distribution of a massless fluid. 

 It is possible to illustrate the method with a good experiment, suitable for 

undergraduate students, consisting of the radial flow of water between two plane-

parallel metallic discs separated by a small distance. If elastic and plastic deformations 
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are avoided, then good agreement between theory and experiment can be expected for a 

reasonable range of experimental conditions. 

 

 

Appendix 

Here we show that the energy dissipation is minimum for a massless fluid (i.e., 

0=ρ ) in a plane-parallel duct of constant section under the assumption of constant  

flow rate Q.   

Let us define L as the length of the duct (0 ≤ x ≤ L), H as its height (–H/2 ≤ y ≤ 

H/2), and W as its width (0 ≤ z ≤ W, with W >> H) (Fig. 3). For symmetry, the velocity 

vector follows (u(y), 0, 0) and its profile satisfies the Navier-Stokes equation for a 

massless fluid, 

y
τ

+
x
p= xy

∂

∂

∂
∂

−0 ,       (A1) 

where τxy is the viscous stress (i.e., the viscous force on direction x acting on a fluid 

surface normal to direction y). For an incompressible fluid in the plane-parallel duct 

here analyzed, the viscous stress reads,  

dy
duη=τ xy .        (A2) 

By substituting Eq. (A2) into Eq. (A1) we obtain, 

L
p=

dy
ud Δ

η
1

2

2

,        (A3) 

where Δp/L is the constant pressure loss per unit length. The integration of Eq. (A3) 

leads to the well-known parabolic velocity profile.  
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The energy dissipation rate due to viscous effects ηδ
•

w  in our control volume V 

reads, 
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 By substituting Eq. (A2) into Eq. (A4), the energy dissipation rate due to viscous 

effects is a positive quadratic form, 
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where the superscript (0) means that this dissipation value corresponds to the velocity 

profile of the massless fluid satisfying Eq.(13). 

Now, let us analyze the implications of slightly modifying this velocity profile. 

This means that now the velocity at a point is u + δu, with δu being the arbitrary 

perturbation in the velocity field. The non-slip condition implies that this perturbation is 

zero at the rigid boundaries (i.e., δu( ± H/2) = 0). In addition, the condition of constant 

flow rate Q implies that, 
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From Eq. (A4), the energy dissipation rate, η

•

w , corresponding to the perturbed 

velocity profile reads, 
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Note that the contribution of the first term within the square brackets in the last 

equality in Eq. (A7) corresponds to )0(
η

•

w (see, Eq. (A5)), whereas the second term refers 
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to the first-order perturbation of the energy dissipation rate ηδ
•

w . Since, from Eq. (A3), 

du/dy ∝ y, we have that,     

[ ] 0
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2/
2/

2/

2/

=−=∝ ∫∫
−

−
−

• H

H

H
H

H

H

udyuy
dy

udydyw δδδδ η ,     (A8) 

where the first integral has been solved by parts and the last equality follows from the 

boundary conditions at the rigid boundaries (first term) and from Eq. (A6) (second 

term). 

The condition here found that ηδ
•

w = 0 for a velocity profile corresponding to a 

massless fluid subject to the constraint of constant flow rate, is equivalent to find the 

extremum of η

•

w  as expressed in Eq. (9). Since the energy dissipation rate η

•

w   for a 

Newtonian incompressible fluid is a positive quadratic form, it follows that the 

extremum is a minimum.  

We propose that readers derive the condition ηδ
•

w = 0 for a duct of constant 

arbitrary section.  If they follow a procedure similar to that given in this Appendix, they 

will find a general property of the solution of the Navier-Stokes equation useful, 

namely:  

2
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∂ ,  xi = y, z.    (A.9) 

 

References 

1. P. A. Tipler, Physics for Scientists and Engineers, (W. H. Freeman and 

Company / Worth Publishers, New York, 1998) 4th  ed., vol.1.. 

2. H. D. Young and R. A. Freedman University Physics, (Addison Wesley 

Longman, USA, 1996) 9th ed.. 



 19 

3. R. A. Serway, Physics for Scientists and Engineers with Modern Physics, 

(Saunders College Publishing, 1986). 4th ed. 

4. C. E. Synolakis and H. S. Badeer, “On combining the Bernoulli and Poiseuille 

equation - A plea to authors of college physics texts”, Am. J. Phys. 57(11), 

1013-1019 (1989). 

5. M. E. Saleta, D. Tobia and S. Gil, “Experimental study of Bernoulli’s equation 

with losses”, Am. J. Phys. 73(7), 598-602 (2005). 

6.  J. Lekner, “Viscous flow through pipes of various cross-sections”, Eur.J.Phys. 

28, 521-527 (2007). 

7.  C. R.. Doering and P. Constantin,” Variational bounds on energy dissipation in 

incompressible flows: Shear flow”, Phys.Rev.E 49 (5), 4087-4099 (1994).  

8.  C. Waltham, S. Bendall and A. Kotlicki, “Bernoulli levitation”, Am.J.Phys. 71 

(2), 176-179 (2003).  



 20 

Figure captions 

 

Figure 1. Flow of an inviscid fluid through a horizontal duct of changing section.  

 

Figure 2. Viscous forces in a cylindrical duct. 

 

Figure 3. Duct defined by two plane parallel surfaces held at a short distance W. 

 

Figure 4. Radial flow between two parallel discs.  

 

Figure 5a-b. Relative pressure as a function of the radial direction for both H = 0.25 mm 

(left) and H = 0.5 mm (right) cases. Thick lines correspond to the analytical solution 

including the Bernoulli correction for different values of the flow rate. In contrast, thin 

lines refer to the analytical solution without taking the Bernoulli correction into account. 

Symbols show the results obtained through numerical simulations. 

 

Figure 6. Deviation of the pressure change for H = 0.5 mm and Q = 5 L/min. The 

numerical simulation (open circles) becomes unstable below r = 0.35 mm for this 

particular H and Q values. Inset: simulated velocity profile (empty circles) compared to 

the parabolic profile (full circles) at 35 (a) and 60 mm (b).  

 

Figure 7. A diagram of the experimental set-up.   

 

Figure 8a-b. Relative pressure as a function of the radial direction for both H = 0.25 mm 

(left) and H = 0.5 mm (right) cases. Lines correspond to the analytical solution 
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including or not the Bernoulli correction for different values of the flow rate. Symbols 

show the results obtained through measurements. The error bars are the standard 

deviation of 8 (for r > 50 mm) or 4 (r = 30 mm) measurements. 

 

 

Figure 9a-b. (Left) Relative pressure as a function of separation between disks, at r = 7 

cm and for two different flow rates. (Right) Relative pressure as a function of flow rate, 

at r = 7 cm and for two different separations between disks. Reference lines have slopes 

-3 and 1 respectively. 
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