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Abstract: The turbot (Scophthalmus maximus) is a commercially valuable flatfish and one 

of the most promising aquaculture species in Europe. Two transcriptome 454-pyrosequencing 

runs were used in order to detect Single Nucleotide Polymorphisms (SNPs) in genes 

related to immune response and gonad differentiation. A total of 866 true SNPs were 

detected in 140 different contigs representing 262,093 bp as a whole. Only one true SNP 

was analyzed in each contig. One hundred and thirteen SNPs out of the 140 analyzed  

were feasible (genotyped), while Ш were polymorphic in a wild population. 

Transition/transversion ratio (1.354) was similar to that observed in other fish studies. 

Unbiased gene diversity (He) estimates ranged from 0.060 to 0.510 (mean = 0.351), 

minimum allele frequency (MAF) from 0.030 to 0.500 (mean = 0.259) and all loci were in 

Hardy-Weinberg equilibrium after Bonferroni correction. A large number of SNPs (49) 

were located in the coding region, 33 representing synonymous and 16 non-synonymous 

changes. Most SNP-containing genes were related to immune response and gonad 

differentiation processes, and could be candidates for functional changes leading to  
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phenotypic changes. These markers will be useful for population screening to look for 

adaptive variation in wild and domestic turbot. 

Keywords: turbot; Scophthalmus maximus; SNP validation; EST database; non-synonymous 

substitution; high-throughput genotyping 

 

1. Introduction 

The turbot (Scophthalmus maximus; Scophthalmidae, Pleuronectiformes) is a commercially 

valuable flatfish that has been intensively cultured since the 1980s. Its production has steadily 

increased up to the present figure of 8549 tons in 2011 (91.2% European production from Spain; [1]) 

and it appears to be one of the most promising aquaculture species in Europe. In response to turbot 

industry demands, genetic markers have been developed in this species in order to evaluate genetic 

resources in both wild and hatchery populations and perform parentage analysis to support genetic 

breeding programs [2–4]. These markers have also been applied to develop genomic tools to identify 

genomic regions associated with productive characters [5–7] and to detect selection footprints in wild 

populations [8]. Increasing growth rate, controlling sex ratio (females largely outgrow males) and 

enhancing disease resistance currently constitute the main goals of genetic breeding programs in  

this species.  

The necessity of understanding the immune response to pathogens of industrial relevance and to 

identify genes involved in the sex differentiation pathway led us to increase genomic resources in 

turbot. As a consequence thereof, an Expressed Sequence Tag (EST) database from cDNA libraries of 

the main immune tissues was constructed using Sanger sequencing [9]. Recently, this database has 

been amplified with two 454 FLX runs [10,11] (454-Life Sciences, Brandford, CT, USA; for  

454-technique methodology see [12,13]). Next Generation Sequencing (NGS) technologies offer the 

ability to produce an enormous volume of data with a very low sequencing cost per base [12]. Thus, 

this turbot EST database is currently composed of ~70,000 unique sequences (~20,000 contigs and 

~50,000 singletons). ESTs are essential to ascertain the gene [14,15], but also to identify polymorphic 

gene-associated markers, such as microsatellites and single nucleotide polymorphisms (SNPs) (type I 

markers; [9,16–18]). Type I markers are very useful for constructing genetic or physical maps, and for 

comparative mapping [7,19,20].  

SNPs have several advantages over other markers when it comes to mapping genes or inferring 

population structure [21]. They can be easily evaluated in silico off public databases and their genotypes 

quickly assessed by mini-sequencing reactions [9,22] or by high-throughput technologies [23,24]. SNP 

alleles are almost exclusively identical-by-descent (IBD) and thus they prevent scoring errors 

associated to homoplasy [25]. They are extremely stable, due to low mutation rates [26], and occur 

more often in the genome than other markers. In the human genome, for instance, there is on average  

1 SNP per 300 bp [27], and their frequency in non-model species has been estimated at ~1 in 200–500 

bases for non-coding DNA and ~1 in 500–1000 bases for coding DNA [28]. In turbot, Vera et al. [29] 

estimated 1 true SNP every ~100 bp from the EST database composed only of Sanger sequences, 

suggesting the existence of large SNP resources in this species. During the last decade, SNP discovery 
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pipelines have been developed for aquaculture species including fish [18,30–35], shellfish [36–38] and 

crustaceans [39,40]. In turbot, a SNP calling tool was included in the turbot database [9] and it has 

been refined in the updated version [11]. In this study, we screened genomic resources available in an 

updated version of the turbot EST database using contigs containing NGS 454-sequences to identify 

and characterize SNPs associated to immune- and reproduction-related genes. These markers will be 

used for further structural genomic analysis focused on quantitative trait loci (QTLs) linked to productive 

traits, as well as for population screening to look for adaptive variation in wild and domestic turbot. 

2. Results and Discussion 

2.1. Database Exploitation and SNP Detection 

The main characteristics of the turbot 454-transcriptome sequencing runs have been described in 

previous studies [10,11]. The used database (version 4.0 September 2011) was constituted by  

71,033 unique sequences, 18,880 contigs and 52,153 singletons including 454-sequences and Sanger 

sequences [9] with a total length of 52,402,177 base pairs (bp, ~52 Mb). However, in order to avoid 

duplicates with the previous SNPs developed from sequences obtained with Sanger methodology [29], 

and since we were mainly interested in validating SNPs at new immune- and reproduction-related 

genes, only contigs composed exclusively of at least four 454-sequences were used for SNP detection. 

Thus, 140 contigs from the turbot database, which met these requirements, were taken into account for 

the SNP development. The total length analyzed was 262,093 bp and contig length ranged from 728 bp 

to 4885 bp, with a mean length value of 1872.09 ± 746.69 bp. The total number of true SNPs detected 

using the program QualitySNP (for true SNP definition see the experimental section) was 866, SNP 

number per contig ranged from 1 to 58, with a mean value of 6.18 ± 8.34. Thus, the expected 

frequency of SNP appearance in the analyzed sequences would be 1 SNP every 302 bp. This value is 

lower than that previously reported in S. maximus (1 SNP each ~100 bp; [29]), but similar to those 

described in non-model species [28]. The success of any genotyping method is reflected in what is 

referred to as the conversion rate and the global success rate. The former only considers the 

polymorphic markers, whereas the latter considers all the markers (monomorphic and polymorphic) 

that were successfully typed within the analyzed samples [41]. Of the 140 true SNPs tested,  

27 (19.3%) could not be genotyped, and thus they were considered to be genotyping failures due to 

technical and/or genotyping problems. Only 2 out of the 113 feasible SNPs (see definition in the 

experimental section) were monomorphic. Therefore, the global success rate and conversion rate were 

80.7% and 79.3%, respectively. Global success rate was very similar to that previously described in 

the species (78.4%), but conversion rate was much higher than previously reported using sequences 

from cDNA libraries (37.7%; see Vera et al. [29]), likely due to the different library construction methods 

and bioinformatic pipeline approaches followed in 454 and Sanger contigs (see experimental section).  

2.2. SNP Performance  

A total of 65 transitions (A/G and C/T) and 48 transversions (A/C, A/T, C/G and G/T) were 

detected among feasible SNPs, A/G being the most common (35) and A/C the least common (6) 

substitutions observed (Figure 1). This represented a transition/transversion (ts/tv) ratio of 1.354. This 
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ratio was lower than that observed by Vera et al. [29] (1.885) and in silico (1.456) by Pardo et al. [9], but it 

was very similar to that described for common carp (Cyprinus carpio) (1.310) [42] and gilthead 

seabream (Sparus aurata) (1.375) [31]. Also, the most frequent transitions and transversions differed 

from previous reports: C/T and G/T, respectively [29], and A/G and A/C [9]. These discrepancies 

could be due to the opposite sequencing directions, as all sequences by Vera et al. [29] and Pardo et al. [9] 

were obtained from the 3' end using cDNA libraries, while those from the 454-run were randomly 

obtained by fragmentation of the whole cDNA according to the cDNA rapid library preparation 

method (Roche Farma, S. A. [43]). Moreover, the longer coding region portion analyzed in 454-runs 

regarding Sanger sequencing in our study may determine differences because of the different selective 

constraints of UTR regarding coding regions. No differences were detected among distribution of the 

variants between tested SNPs and feasible SNPs (χ2 = 0.3115; p = 0.9974). All polymorphic SNP loci 

showed two alleles and all of them agreed with those expected from the database information. 

Figure 1. Distribution of SNP variants analyzed in this study (a) using all SNPs tested;  

(b) using only feasible SNPs. Transitions (ts) and transversions (tv) are indicated in black 

and grey colour, respectively. 
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2.3. SNP Diversity  

Only two loci among the 113 feasible SNPs were monomorphic (SmaSNP_287 and SmaSNP_334). 

Among polymorphic SNPs, unbiased gene diversity (He) estimates ranged from 0.060 at 

SmaSNP_237, SmaSNP_245 and SmaSNP_305 to 0.510 at SmaSNP_225 with a mean value of  

0.344 ± 0.149. The minimum allele frequency (MAF) in the polymorphic markers ranged from 0.030 

(SmaSNP_237, SmaSNP_245 and SmaSNP_305) to 0.500 in SmaSNP_249 with a mean value of 

0.259 ± 0.140. Departures from Hardy-Weinberg equilibrium (HWE) were detected in five markers 

(SmaSNP_253, SmaSNP_271, SmaSNP279, SmaSNP_289, SmaSNP_326; Table 1), although all 

markers were at equilibrium after Bonferroni correction (p = 0.0004). The samples from the 

Cantabrian turbot population were globally in accordance with HWE expectations when tested 

simultaneously for all loci (p = 0.9999). These polymorphic values were in the range to those 

previously described in the species [29], and they were also similar to those reported in other fish 

species [42,44]. No Linkage disequilibrium (LD) was detected among the 6328 loci pairs after 

Bonferroni correction (p = 0.0004). 

Table 1. Annotation, variants and diversity values of the 113 technically feasible SNPs in 

the Cantabric turbot population (33 individuals) used in this study.  

SNP Name Annotation Variants MAF P (HW) He Fis 

SmaSNP_211 Cyclin-dependent kinase 2 interacting protein A/T A = 0.152 0.1307 0.262 0.307 

SmaSNP_212 
Zona pellucida sperm-binding protein 3 

A/G A = 0.152 0.4198 0.265 0.179 

SmaSNP_215 Mitotic specific cyclin-B1 C/T T = 0.212 0.2948 0.338 −0.255 

SmaSNP_216 Pre-mRNA branch site protein p14  A/T T = 0.348 0.7003 0.460 −0.119 

SmaSNP_217 Zona pellucida protein C1  A/G G = 0.258 0.1616 0.390 0.301 

SmaSNP_218 Mitochondrial ribosomal protein S18A G/T T = 0.333 1.0000 0.452 0.061 

SmaSNP_219 U3 small nucleolar ribonucleoprotein protein IMP3 G/T G = 0.409 1.0000 0.491 −0.050 

SmaSNP_220 Coatomer subunit epsilon isoform 1 C/T T = 0.197 0.5750 0.322 0.153 

SmaSNP_222 Signal recognition particle 14 kDa protein G/T G = 0.203 1.0000 0.329 −0.046 

SmaSNP_223 Epithelial cell adhesion protein A/T T = 0.333 1.0000 0.452 0.061 

SmaSNP_224 Transcription initiation factor TFIID subunit D11 C/G G = 0.182 1.0000 0.302 −0.003 

SmaSNP_225 Acidic ribosomal protein P1  A/G G = 0.480 1.0000 0.510 0.059 

SmaSNP_226 Alcohol dehydrogenase Class-3 C/T T = 0.288 0.6913 0.416 −0.093 

SmaSNP_227 Thioredoxin protein 4A  A/G A = 0.242 1.0000 0.373 0.025 

SmaSNP_228 Novel protein similar to vertebrate THAP domain 

containing 4 (THAP4)  

A/G G = 0.212 0.6068 0.340 0.109 

SmaSNP_229 Tumor suppressor candidate 2  A/G A = 0.031 1.0000 0.061 −0.016 

SmaSNP_230 Optic atrophy 3 protein C/T T = 0.266 0.6477 0.397 0.135 

SmaSNP_231 RNA 3'-terminal phosphate cyclase A/C C = 0.266 0.6475 0.397 0.135 

SmaSNP_232 RAD1 homolog  A/G A = 0.438 0.4921 0.501 0.127 

SmaSNP_233 Ubiquitin carrier protein G/T T = 0.409 1.0000 0.491 −0.050 

SmaSNP_234 chromatin accessibility complex protein 1 A/G G = 0.047 0.0504 0.092 0.659 

SmaSNP_235 Nucleolar protein 16  A/G G = 0.258 0.4023 0.389 0.144 

SmaSNP_236 Isopentenyl-diphosphate delta-isomerase 1 C/G G = 0.141 0.4763 0.246 0.111 

SmaSNP_237 Ran-specific GTPase-activating protein  G/T T = 0.030 1.0000 0.060 −0.016 
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Table 1. Cont. 

SNP Name Annotation Variants MAF P (HW) He Fis 

SmaSNP_238 Forkhead box H1  A/G A = 0.453 1.0000 0.503 −0.056 

SmaSNP_239 Stathmin  C/T C = 0.258 0.6436 0.387 −0.174 

SmaSNP_240 Ubiquinol-cytochrome c reductase core I protein C/T C = 0.152 0.5521 0.261 0.072 

SmaSNP_241 BolA-like protein 3  C/G G = 0.313 0.4371 0.438 0.143 

SmaSNP_243 ce ceroid-lipofuscinosis neuronal protein 5 G/T G = 0.455 1.0000 0.504 0.038 

SmaSNP_244 SSU rRNA; Psetta maxima (turbot) C/T C = 0.061 1.0000 0.116 −0.049 

SmaSNP_245 Chromobox protein homolog 3  G/T T = 0.030 1.0000 0.060 −0.016 

SmaSNP_246 Transmembrane protein 208  A/C A = 0.469 0.7198 0.505 −0.114 

SmaSNP_247 Ribosomal protein L18a  A/C A = 0.234 1.0000 0.365 0.058 

SmaSNP_248 Pre-mRNA-processing factor 19 C/T C = 0.318 1.0000 0.440 −0.032 

SmaSNP_249 Alpha-L-fucosidase  A/G A = 0.500 0.7275 0.509 0.106 

SmaSNP_250 Protein phosphatase 2 (Formerly 2A) A/G G = 0.406 0.0598 0.493 0.366 

SmaSNP_252 LON peptidase N-terminal domain and RING 

finger protein 1 

G/T T = 0.167 1.0000 0.282 0.034 

SmaSNP_253 IK cytokine  A/G A = 0.439 0.0348 0.497 −0.402 

SmaSNP_256 Ribonuclease UK114  C/T C = 0.232 0.6038 0.364 0.116 

SmaSNP_257 Inner centromere protein  A/G G = 0.303 0.4239 0.430 0.154 

SmaSNP_259 Beta-galactoside-binding lectin  C/T C = 0.379 0.7242 0.477 −0.079 

SmaSNP_260 Enoyl-Coenzyme A hydratase  A/T A = 0.273 0.3819 0.402 −0.208 

SmaSNP_261 Sept2 protein  A/G G = 0.197 1.0000 0.321 −0.038 

SmaSNP_262 DNA-directed RNA polymerase I subunit RPA34 A/G A = 0.078 1.0000 0.146 −0.069 

SmaSNP_263 Epithelial membrane protein 2 A/G G = 0.379 0.1336 0.480 0.306 

SmaSNP_264 Retinol dehydrogenase 3 C/G G = 0.409 1.0000 0.491 −0.050 

SmaSNP_265 WD repeat-containing protein 54 A/G A = 0.076 1.0000 0.142 −0.067 

SmaSNP_266 tRNA pseudouridine synthase 3  C/T C = 0.136 0.4637 0.240 0.115 

SmaSNP_267 Transmembrane protein 167 precursor  G/T G = 0.258 0.6463 0.387 −0.174 

SmaSNP_270 Flotillin-1  C/G G = 0.438 0.1694 0.502 0.253 

SmaSNP_271 NAD(P)H dehydrogenase quinone 1  A/G G = 0.359 0.0488 0.471 0.403 

SmaSNP_273 Ubiquitin protein ligase E3 component C/T C = 0.484 0.7353 0.508 0.077 

SmaSNP_274 K13213 matrin 3 C/G G = 0.106 0.2983 0.193 0.216 

SmaSNP_275 Dolichol-phosphate mannosyltransferase A/G A = 0.091 0.2209 0.169 0.281 

SmaSNP_276 DNA-directed RNA polymerases i II and III 

subunit rpabc1 

A/G A = 0.197 0.5728 0.322 0.153 

SmaSNP_277 Syndecan 2  A/C A = 0.429 1.0000 0.505 −0.130 

SmaSNP_278 Peptide methionine sulfoxide reductase C/G C = 0.078 1.0000 0.146 −0.069 

SmaSNP_279 Methyltransferase-like protein 21D G/T G = 0.470 0.0129 0.509 0.465 

SmaSNP_281 Phosphatidylinositol transfer protein beta  

isoform-like isoform 2 

C/T T = 0.318 0.4333 0.439 −0.172 

SmaSNP_282 Zona pellucida protein C  A/T T = 0.121 1.0000 0.216 −0.123 

SmaSNP_283 AP-2 complex subunit alpha-2-like G/T G = 0.333 0.2669 0.450 −0.213 

SmaSNP_284 Apoptosis regulator BAX A/G G = 0.409 0.0780 0.493 0.324 

SmaSNP_285 Borealin G/T T = 0.032 1.0000 0.063 −0.017 

SmaSNP_286 Brain protein 44 C/T C = 0.394 0.2691 0.483 −0.255 

SmaSNP_287 Exosome component 8 A/G G =1.000 - 0.000 NA 
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Table 1. Cont. 

SNP Name Annotation Variants MAF P (HW) He Fis 

SmaSNP_288 Atrophin-1 domain containing protein G/T T = 0.439 1.0000 0.500 −0.030 

SmaSNP_289 similar to connectin/titin A/T A = 0.303 0.0018 0.433 0.580 

SmaSNP_290 Ubiquitin carboxyl-terminal hydrolase L5 C/T T = 0.469 1.0000 0.506 0.012 

SmaSNP_292 Histone deacetylase complex subunit SAP18 C/T C = 0.188 0.5568 0.308 −0.216 

SmaSNP_293 Replication protein A 14 kDa subunit C/G G = 0.182 1.0000 0.302 −0.003 

SmaSNP_296 Carbonic anhydrase  G/T G = 0.076 1.0000 0.142 −0.067 

SmaSNP_297 UPF0414 transmembrane protein  C/T C = 0.212 0.6080 0.340 0.109 

SmaSNP_298 Queuine tRNA-ribosyltransferase  C/T T = 0.061 1.0000 0.116 −0.049 

SmaSNP_299 NHP2-like protein 1 C/G C = 0.379 0.1358 0.480 0.306 

SmaSNP_304 Microsomal glutathione S-transferase 3  A/G A = 0.091 1.0000 0.168 −0.085 

SmaSNP_305 Actin related protein 2/3 complex subunit 4  C/T T = 0.030 1.0000 0.060 −0.016 

SmaSNP_306 Cyclophilin B C/G C = 0.061 1.0000 0.116 −0.049 

SmaSNP_307 Dynein light chain Tctex-type 3 C/G C = 0.061 1.0000 0.116 −0.049 

SmaSNP_308 Ependymin-1 A/G A = 0.234 0.3135 0.366 0.231 

SmaSNP_309 C-4 methylsterol oxidase A/G A = 0.297 1.0000 0.424 0.043 

SmaSNP_310 Dynein light chain LC8-type G/T T = 0.045 1.0000 0.088 −0.032 

SmaSNP_311 Rho-related GTP-binding protein RhoF A/T T = 0.394 0.2669 0.483 −0.255 

SmaSNP_312 Golgi SNAP receptor complex member 1 A/T A = 0.188 0.5587 0.308 −0.216 

SmaSNP_314 Ribosomal L1 domain-containing protein 1 A/G A = 0.203 1.0000 0.329 −0.046 

SmaSNP_315 N-alpha-acetyltransferase 50 A/T A = 0.242 1.0000 0.373 0.025 

SmaSNP_316 Oncogene DJ-1 isoform 1 C/T C = 0.453 1.0000 0.503 −0.056 

SmaSNP_317 Wu:fj40d12 protein n = 7 Tax = Euteleostomi 

RepID = A3KP21_DANRE 

A/G A = 0.438 1.0000 0.500 0.000 

SmaSNP_318 Mucin multi-domain protein C/G C = 0.167 0.5617 0.281 −0.185 

SmaSNP_319 Adenosine kinase A/G A = 0.182 0.5575 0.301 −0.208 

SmaSNP_320 No homology found A/G A = 0.394 0.4901 0.486 0.127 

SmaSNP_321 Zymogen granule membrane protein 16 A/G G = 0.333 1.0000 0.451 −0.076 

SmaSNP_322 6-Pyruvoyl tetrahydrobiopterin synthase C/T C = 0.031 1.0000 0.061 −0.016 

SmaSNP_323 Proteasome subunit beta  C/T T = 0.125 1.0000 0.222 −0.127 

SmaSNP_324 RING finger protein 4  A/G A = 0.394 0.0652 0.488 0.379 

SmaSNP_325 Lipocalin C/G C = 0.136 1.0000 0.239 −0.143 

SmaSNP_326 Choline transporter-like protein 2  A/G G = 0.455 0.0311 0.507 0.402 

SmaSNP_328 RNA-binding proteins (RRM domain) C/T C = 0.106 1.0000 0.192 −0.103 

SmaSNP_329 Type II keratin C/G G = 0.061 1.0000 0.116 −0.049 

SmaSNP_330 Novel protein similar to vertebrate thyroid 

hormone receptor interactor 12 (TRIP12)  

C/T T = 0.094 1.0000 0.172 −0.088 

SmaSNP_332 Ribosomal protein S6 kinase A/C A = 0.470 0.7287 0.507 0.103 

SmaSNP_333 Transmembrane 6 superfamily member 2 A/T T = 0.288 0.0796 0.419 0.348 

SmaSNP_334 PREDICTED: hypothetical protein 

LOC100712283 [Oreochromis niloticus]  

C/T T =1.000 - 0.000 NA 

SmaSNP_337 1-Alkyl-2-acetylglycerophosphocholine esterase  C/T C = 0.234 1.0000 0.365 0.058 

SmaSNP_338 CD151 antigen C/T T = 0.266 0.3909 0.395 −0.186 

SmaSNP_339 Arsenite methyltransferase 1 A/T A = 0.313 1.0000 0.436 −0.002 

SmaSNP_340 Receptor expression-enhancing protein 5  C/T T = 0.234 0.6507 0.364 −0.116 
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SNP Name Annotation Variants MAF P (HW) He Fis 

SmaSNP_341 Cathepsin S  C/G G = 0.333 0.1119 0.454 0.332 

SmaSNP_342 Trans-1,2-dihydrobenzene-1,2-diol dehydrogenase  A/G A = 0.424 0.2818 0.494 −0.226 

SmaSNP_343 High mobility group protein 2 G/T G = 0.470 0.2980 0.508 0.224 

SmaSNP_346 ATP-binding cassette, sub-family A (ABC1) C/T T = 0.288 1.0000 0.417 0.055 

SmaSNP_347 Myomesin 1a (skelemin) C/T T = 0.091 1.0000 0.168 −0.085 

SmaSNP_348 Retinoic acid receptor responder protein 3  A/G G = 0.439 1.0000 0.500 −0.030 

SmaSNP_349 Nucleophosmin 1 A/C A = 0.258 0.6466 0.387 −0.174 

2.4. SNP Position within Genes: Synonymous vs. Non-Synonymous Substitutions  

Consensus sequences of contigs containing polymorphic SNPs were compared using NCBI BLAST 

with public databases, namely UniRef90, NCBI’s nr, KEGG, COG, PFAM, LSU and SSU. The 

subsequent BLAST output was then parsed with Auto FACT [45]. All contigs containing feasible 

SNPs were annotated (except SmaSNP_320, Table 1). The informative strand, reading frame, and stop 

codon at each contig were recorded using homology with the highest homologous annotated sequence 

in public databases. Nine feasible SNPs (8.0%) could not be positioned, because no consistent reading 

frames were detected (indicated as “unknown” location on Table 2). Fifty-five SNPs (48.7%) were 

located in untranslated regions (UTR), either in the 5' UTR (17, 15.0%) or 3' UTR (38, 33.6%), which 

is in accordance with the approximately double length of 3' compared to 5' UTR [9]. On the other 

hand, 49 SNPs (43.4%) were localized in the coding region (Table 2), a percentage of SNPs higher 

than previously reported in the species (24.7%, [29]) and in other aquaculture fish species (e.g., 

Atlantic salmon 24%, [32]; Atlantic cod 17.4%, [34]). All these studies followed a 3' UTR Sanger 

sequencing strategy, and therefore the coding region was less represented than in the case of the 454 

Roche runs after a cDNA rapid library preparation protocol, which accounts for the differences 

observed. This result shows the utility of the NGS methodologies for SNP detection in the coding 

region. Thirty-three (29.2%) of these 49 SNPs were synonymous, and 16 (14.2%) were  

non-synonymous. On the other hand, the relationship between synonymous vs. non-synonymous 

changes (2:1) was lower than in other species [46,47]. Evolutionary constraints should preferentially 

eliminate non-synonymous variation because it is usually associated with deleterious mutations [35].  

Non-synonymous SNPs in coding regions represent alternative allelic variants of a gene, which can 

determine functional changes in the corresponding proteins and lead to phenotypic changes. Among 

these genes there can be found a retinol dehydrogenase (SmaSNP_264), three zona pellucida proteins 

(SmaSNP_212, SmaSNP_217, SmaSNP_282) related to reproduction processes, and a lipocalin 

(SmaSNP_325) involved in tear secretion (Table 2). 

In the present study, we used sequences obtained from two transcriptome 454-pyrosequencing runs, 

one related to immune system [10] and another one from the hypothalamic pituitary-gonad axis [11]. 

Thus, GO terms were mainly related to immune response and reproduction processes (Table 2). The 

non-synonymous variation was associated with genes involving either immune response or sex 

differentiation processes. A large number of SNP linked to annotated genes were identified and validated. 

This set of markers are being used for population genomic studies and turbot genetic map enrichment, 

both approaches providing useful information for evolutionary and turbot industry applied studies.  
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Table 2. Predicted position, SNP location within genes and their correspondent 

synonymous vs. non-synonymous variants of the 113 technically feasible SNPs.  

SNP Name SNP location/effect GO term 

SmaSNP_211 3' UTR phosphorylation (GO:0016310) 

SmaSNP_212 Non synonymous reproduction (GO:0000003) 

SmaSNP_215 Synonymous mitotic cell cycle (GO:0000278) 

SmaSNP_216 3' UTR protein localization to cell division site (GO:0072741) 

SmaSNP_217 Non synonymous binding of sperm to zona pellucida ( GO:0007339) 

SmaSNP_218 Non synonymous protein import into mitochondrial matrix (GO:0030150) 

SmaSNP_219 3' UTR ribonucleoprotein complex biogenesis (GO:0022613) 

SmaSNP_220 Synonymous ribosomal large subunit assembly (GO:0000027) 

SmaSNP_222 5' UTR regulation of peptidoglycan recognition protein signaling pathway (GO:0061058) 

SmaSNP_223 Synonymous cell adhesion (GO:0007155) 

SmaSNP_224 Synonymous DNA-dependent transcription, initiation (GO:0006352) 

SmaSNP_225 3' UTR ribosomal large subunit assembly (GO:0000027) 

SmaSNP_226 Synonymous cellular alcohol metabolic process (GO:0044107) 

SmaSNP_227 Synonymous thioredoxin biosynthetic process (GO:0042964) 

SmaSNP_228 5' UTR regulation of nucleotide-binding oligomerization domain containing signaling 

pathway (GO:0070424 ) 

SmaSNP_229 3' UTR immune response to tumor cell (GO:0002418) 

SmaSNP_230 3' UTR reproduction (GO:0000003) 

SmaSNP_231 Non synonymous phosphorylation of RNA polymerase II C-terminal domain (GO:0070816) 

SmaSNP_232 Synonymous resolution of meiotic recombination intermediates (GO:0000712) 

SmaSNP_233 Synonymous ubiquitin-dependent protein catabolic process (GO:0006511) 

SmaSNP_234 3' UTR regulation of macrophage inflammatory protein 1 alpha production (GO:0071640) 

SmaSNP_235 Synonymous protein localization to nucleolar rDNA repeats (GO:0034503) 

SmaSNP_236 Synonymous T-helper 1 cell activation (GO:0035711) 

SmaSNP_237 5' UTR termination of G-protein coupled receptor signaling pathway (GO:0038032) 

SmaSNP_238 Non synonymous transcription initiation from RNA polymerase III type 2 promoter (GO:0001023) 

SmaSNP_239 5' UTR Not found 

SmaSNP_240 Synonymous MHC class I protein complex assembly (GO:0002397) 

SmaSNP_241 3' UTR reproduction (GO:0000003) 

SmaSNP_243 Non synonymous neuronal stem cell maintenance (GO:0097150) 

SmaSNP_244 Unknown Not found 

SmaSNP_245 5' UTR reproduction (GO:0000003) 

SmaSNP_246 Synonymous intracellular protein transmembrane transport (GO:0065002) 

SmaSNP_247 Non synonymous ribosomal protein import into nucleus (GO:0006610) 

SmaSNP_248 3' UTR regulation of mitotic recombination (0000019) 

SmaSNP_249 3' UTR alpha-L-fucosidase activity (GO:0004560) 

SmaSNP_250 3' UTR modulation by virus of host protein serine/threonine phosphatase activity 

(GO:0039517) 

SmaSNP_252 3' UTR regulation of macrophage inflammatory protein 1 alpha production (GO:0071640) 

SmaSNP_253 Synonymous regulation of cytokinesis (GO:0032465) 

SmaSNP_256 Synonymous regulation of ribonuclease activity (GO:0060700) 
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Table 2. Cont. 

SNP Name SNP location/effect GO term 

SmaSNP_257 Synonymous centromere complex assembly (GO:0034508) 

SmaSNP_259 3' UTR complement activation, lectin pathway (GO:0001867) 

SmaSNP_260 3' UTR amitosis (GO:0051337) 

SmaSNP_261 3' UTR protein processing (GO:0016485) 

SmaSNP_262 Synonymous RNA polymerase I transcriptional preinitiation complex assembly (GO:0001188) 

SmaSNP_263 Synonymous membrane protein proteolysis (GO:0033619) 

SmaSNP_264 Non synonymous reproduction (GO:0000003) 

SmaSNP_265 5' UTR ribosomal subunit export from nucleus (GO:0000054) 

SmaSNP_266 Synonymous reproduction (GO:0000003) 

SmaSNP_267 3' UTR smoothened signaling pathway involved in regulation of cerebellar granule cell precursor cell 

proliferation (GO:0021938) 

SmaSNP_270 3' UTR flotillin complex (GO:0016600) 

SmaSNP_271 Synonymous NAD(P)H dehydrogenase complex assembly (GO:0010275) 

SmaSNP_273 3' UTR regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle (GO:0051439) 

SmaSNP_274 Unknown reproduction (GO:0000003) 

SmaSNP_275 Synonymous dolichyl-phosphate beta-D-mannosyltransferase activity (GO:0004582) 

SmaSNP_276 Synonymous transcription from RNA polymerase III type 2 promoter (GO:0001009) 

SmaSNP_277 3' UTR T-helper 2 cell activation (GO:0035712) 

SmaSNP_278 3' UTR cellular response to methionine (GO:0061431) 

SmaSNP_279 Non synonymous protein import (GO:0017038) 

SmaSNP_281 5' UTR regulation of beta 2 integrin biosynthetic process (GO:0045115) 

SmaSNP_282 Non synonymous regulation of binding of sperm to zona pellucida (GO:2000359) 

SmaSNP_283 3' UTR cellular macromolecular complex subunit organization (GO:0034621) 

SmaSNP_284 Non synonymous regulation of apoptotic process (GO:0042981) 

SmaSNP_285 Synonymous chromosome passenger complex localization to kinetochore (GO:0072356) 

SmaSNP_286 5' UTR brain development (GO:0007420) 

SmaSNP_287 Non synonymous extracellular vesicular exosome assembly (GO:0071971) 

SmaSNP_288 Unknown Not found 

SmaSNP_289 Unknown Not found 

SmaSNP_290 Synonymous regulation of ubiquitin-specific protease activity (GO:2000152) 

SmaSNP_292 3' UTR suppression by virus of host TAP complex (GO:0039589) 

SmaSNP_293 3' UTR DNA replication preinitiation complex assembly (GO:0071163) 

SmaSNP_296 Synonymous carbon utilization (GO:0015976) 

SmaSNP_297 3' UTR membrane protein proteolysis (GO:0033619) 

SmaSNP_298 Non synonymous queuine tRNA-ribosyltransferase activity (GO:0008479) 

SmaSNP_299 Synonymous Not found 

SmaSNP_304 Synonymous reproduction (GO:0000003) 

SmaSNP_305 3' UTR protein-DNA complex subunit organization (GO:0071824) 

SmaSNP_306 3' UTR behavioral response to stimulus (GO:0007610) 

SmaSNP_307 Synonymous reproduction (GO:0000003) 

SmaSNP_308 Non synonymous Not found 

SmaSNP_309 Synonymous testosterone secretion (GO:0035936) 

SmaSNP_310 3' UTR dynein-driven meiotic oscillatory nuclear movement (GO:0030989) 

SmaSNP_311 3' UTR suppression by virus of host tapasin activity (GO:0039591) 
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Table 2. Cont. 

SNP Name SNP location/effect GO term 

SmaSNP_312 5' UTR Not found 

SmaSNP_314 Synonymous regulation of macrophage inflammatory protein 1 alpha production (GO:0071640) 

SmaSNP_315 3' UTR menopause (GO:0042697) 

SmaSNP_316 3' UTR T-helper 1 cell activation (GO:0035711) 

SmaSNP_317 5' UTR Not found 

SNP Name SNP location/effect GO term 

SmaSNP_318 Unknown Not found 

SmaSNP_319 5' UTR phosphorylation (GO:0016310) 

SmaSNP_320 Unknown Not found 

SmaSNP_321 3' UTR Golgi to plasma membrane protein transport (GO:0043001) 

SmaSNP_322 3' UTR regulation of ATP citrate synthase activity (GO:2000983) 

SmaSNP_323 3' UTR regulation of G-protein beta subunit-mediated signal transduction in response to host (GO:0075162) 

SmaSNP_324 Non synonymous cytokinesis, actomyosin contractile ring assembly (GO:0000915) 

SmaSNP_325 Non synonymous tear secretion (GO:0070075) 

SmaSNP_326 5' UTR Not found 

SmaSNP_328 Unknown Not found 

SmaSNP_329 5' UTR regulation of type II hypersensitivity (GO:0002892) 

SmaSNP_330 Unknown Not found 

SmaSNP_332 5' UTR phosphorylation (GO:0016310) 

SmaSNP_333 5' UTR Not found 

SmaSNP_334 5' UTR Not found 

SmaSNP_337 3' UTR juvenile-hormone esterase activity (GO:0004453) 

SmaSNP_338 3' UTR inflammatory response to antigenic stimulus (GO:0002437) 

SmaSNP_339 Synonymous T-helper 1 cell activation (GO:0035711) 

SmaSNP_340 Synonymous regulation of G-protein coupled receptor protein signaling pathway (GO:0008277) 

SmaSNP_341 Synonymous sperm entry (GO:0035037) 

SmaSNP_342 Unknown Not found 

SmaSNP_343 Synonymous collagen metabolic process (GO:0032963) 

SmaSNP_346 3' UTR chromatin silencing at silent mating-type cassette (GO:0030466) 

SmaSNP_347 3' UTR nucleoside oxidase activity (GO:0033715) 

SmaSNP_348 5' UTR retinoic acid receptor signaling pathway (GO:0048384) 

SmaSNP_349 3' UTR T-helper 1 cell activation (GO:0035711) 

3. Experimental Section  

3.1. EST Database, SNP Detection and Annotation 

Sequences were obtained from two transcriptome 454-pyrosequencing runs of turbot cDNA 

libraries, one belonging to the immune transcriptome [10] and another one from the hypothalamic 

pituitary-gonad axis [11]. A brief description of both runs is shown in Table 3. All the 454-reads were 

assembled with MIRA [48], and they make up the 454-sequences incorporated into the turbot database. 

In order to create contigs and detect SNPs, these 454-sequences were assembled alongside Sanger 

sequences available [9] in the database with CAP3 [49] using default parameters. This is a common 

strategy when dealing with hybrid Sanger-454 assemblies [50]. The resulting ACE format assembly 



Int. J. Mol. Sci. 2013, 14 5705 

 

 

file was fed into QualitySNP [51] in conformity with the bioinformatic pipeline described by  

Vera et al. [29]. Briefly, QualitySNP uses three filters for the identification of reliable SNPs: Filter 1 

screens for all potential SNPs with the requirement that every allele is represented in more than one 

sequence (each contig has to have at least a depth of 4 sequences); filter 2 uses a haplotype-based 

strategy to detect reliable SNPs after reconstructing confident haplotypes with an algorithm that 

minimizes false haplotypes due to the occurrence of sequencing errors; and filter three screen SNPs by 

calculating a confidence score based on sequence redundancy and quality (only sequences with 

PHRED >20 were used). SNPs that pass filters 1 and 2 are called real SNPs and those passing all 

filters are called true SNPs [51]. Resulting files were processed with our own custom Perl programs to 

extract relevant information. The obtained data were imported into a mySQL server [52]. A  

user-friendly web access interface was designed so that contig graphs are clickable and the output 

visually refined with color-coded nucleotide views [53]. A graphical interface allowing for SNP 

database search by alleles, contig depth, and annotation was set up. EST annotation of these contigs 

was performed using BLASTx, which searches proteins using a translated nucleotide query [54]. Only 

E-values lower than 10−5 were considered for gene annotation (Table 1, Table S1). 

Table 3. Description of two transcriptome 454-pyrosequencing runs of turbot.  

 Inmune 1 Hypothalamic pituitary-gonad axis 2 
Samples   
Number of individuals 52 30 
Origin Commercial fish farm Commercial fish farm 
Data   
Number of reads  915,782 1,191,866 
Total megabases (Mb) 291.04 341.20 
Average read length 317.8 286.0 
Assembly   
Number of contigs 55,504 65,472 
Mean length (bp) 671.3 625.9 
Average contig coverage 4.4 4.6 

1 From Pereiro et al. [10]; 2 From Rivas et al. [11]. 

3.2. SNP Genotyping and Validation 

DNA of all individuals analyzed was extracted from a piece of caudal fin using standard  

phenol-chloroform procedures [55].  

SNPs identified were validated and genotyped with the MassARRAY platform (Sequenom,  

San Diego, CA, USA) following the protocols and recommendations provided by the manufacturer. 

Briefly, the technique consists of an initial locus-specific polymerase chain reaction (PCR), followed 

by single-base extension using mass-modified dideoxynucleotide terminators of an oligonucleotide 

primer that anneals immediately upstream of the polymorphic site (SNP) of interest (see [56,57] for 

more technical information). The distinct mass of the extended primer identifies the SNP allele. Primer 

sequences, SNP position, expected variants and annotation for the 140 tested SNPs are shown on 

Supplementary Table 1. MALDI-TOF mass spectrometry analysis in an Autoflex spectrometer was 

used for allele scoring.  
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Assays were designed for 140 true SNPs always located in different sequences and were combined 

in 7 multiplex reactions including 24 SNPs each except for multiplex 5 (23 SNPs), 6 (18 SNPs) and  

7 (3 SNPs) (see Supplementary Table 1 for multiplex information). SNP multiplexes were designed  

in silico and tested on a panel of 8 turbot individuals from a wild Cantabrian (northern Spain) 

population. SNPs were classified based on manual inspection as “failed assays” (in case that the 

majority of genotypes could not be scored and/or the samples did not cluster well according to 

genotype), and feasible SNPs (markers with proper and reliable genotypes), these being either 

monomorphic or polymorphic. 

3.3. Gene Diversity and Population Analysis 

In order to estimate genetic diversity parameters, all SNPs were genotyped for polymorphism 

evaluation in a sample of 33 individuals (including the 8 individuals used for marker performance) 

from the wild Cantabrian population previously used. 

Estimates of genetic diversity (unbiased expected heterozygosity (He) and minimum allele 

frequency (MAF)) were estimated using FSTAT 2.9.3 [58]. The conformance to Hardy-Weinberg 

(HW) and genotypic equilibria were obtained using GENEPOP 4.0 [59,60]. Conformance to HWE was 

checked using the complete enumeration method [61] because only two alleles were detected at each 

locus. Bonferroni correction was applied when multiple tests were performed [62].  

3.4. Detection of Synonymous/Non-Synonymous SNPs 

All the six possible reading frames of the consensus sequence of each containing SNP functionally 

annotated contig were obtained using ORF (Open Reading Frame) Finder application [63]. The best 

candidate frame (usually the longest one) was compared against the NCBI protein database using 

BLASTp and BLASTx, and the protein with highest E-value was downloaded and aligned with the 

selected frame for SNP location using Clustal W [64] implemented in BioEdit v. 7.1. [65]. This 

approach enabled us to locate SNPs by looking at the coding region. For those SNPs in the coding 

region, the resulting amino acid sequences of both variants were translated to determine whether SNP 

variants were synonymous or non-synonymous. Gene onthology (GO) terms were searched using 

QUICKGO [66] and AmiGO [67] utilities.  

4. Conclusions  

A total of 140 contigs (total length 262,093 bp) formed exclusively by 454-pyrosequencing reads 

were used to identify new putative SNPs in S. maximus. One hundred and thirteen SNPs of the 140 

tested were amplified and genotyped, 111 being polymorphic in a wild Cantabrian population, 

showing the utility of the new NGS techniques for true SNP detection (conversion rate = 79.3%). 

Diversity levels at the population were similar to previous studies [29,42,44] and were in accordance 

with HWE expectations. An important number of these polymorphic SNPs were located in the coding 

region and 16 of them (14.4%) represented non-synonymous changes at genes related to immune 

response and gonad differentiation processes as shown by the detected GO terms. Therefore, these 
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SNPs are valuable resources for future population genetics, high-resolution genetic maps, quantitative 

trait loci (QTL) identification, association studies and marker assisted selection (MAS) breeding in turbot.  
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