
  

Abstract - In a previous paper a novel Generalized Multiobjective Multitree model (GMM-model) was proposed. 
This model considers for the first time multitree-multicast load balancing with splitting in a multiobjective context, 
whose mathematical solution is a whole Pareto optimal set that can include several results than it has been possible to 
find in the publications surveyed. To solve the GMM-model, in this paper a multi-objective evolutionary algorithm 
(MOEA) inspired by the Strength Pareto Evolutionary Algorithm (SPEA) is proposed. Experimental results 
considering up to 11 different objectives are presented for the well-known NSF network, with two simultaneous data 
flows. 
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1 Introduction 
Traffic engineering (TE) is concerned with improving 
the performance of operational networks, usually taking 
into account QoS (Quality of Service) requirements. The 
main objectives are to reduce congestion hot spots, 
improve resource utilization and provide adequate QoS 
for final users. These aims can be achieved by setting up 
explicit routes through the physical network in such a 
way that the traffic distribution is balanced across 
several traffic trunks, giving the best possible service, 
i.e., minimum delay, packet losses, jitter, etc. 
When load balancing techniques are translated into a 
mathematical formulation, a heuristic or a practical 
implementation, different conflicting objectives are 
found and hence they have been considered in the 
literature  as minimizing: maximum or average link 
utilization, maximum, average and / or total hop count, 
maximum, average and / or total delay, bandwidth 
consumption, flow assignation, packet loss, queue size, 
number of Label Switching Paths (LSPs) in a Multi-
Protocol Label Switching (MPLS) implementation, jitter 
and different cost functions. Clearly, when all these 
objectives are considered, it can be seen that the problem 
is multiobjective, as already recognized by several 
authors [2, 3, 7, 8]. It should be noted that in a pure 
multi-objective context, no objective needs to be 
considered as more important than the others, no a priori 
weighting of the objectives is needed and no a priori 
constraint on any objective is necessary; therefore, the 
solution of a Multiple-Objective Problem (MOP) is 
usually a whole set of optimal compromised solutions, 

known as a Pareto set [10]. Approximating the set of 
Pareto instead of locating a single solution allows a 
decision marker to consider only the reduced set of 
alternatives, to see the trade-offs among the objectives 
and to determine preferences among the conflicting 
objectives. 
One interesting solution to the balancing alternative is 
the multipath approach, in which data is transmitted 
through different paths to achieve an aggregated, end-to-
end bandwidth requirement. Several advantages of using 
multipath routing are discussed in [6]. Links do not get 
overused and therefore do not get congested, and so they 
have the potential to aggregate bandwidth, allowing a 
network to support a higher data transfer than is possible 
with any single path. Furthermore, some authors have 
expanded this idea by proposing to split each flow into 
multiple subflows in order to achieve better load 
balancing [4, 11]. For a load balancing model to be 
general, unicast considerations are not enough and 
multicast should also be considered, as already proposed 
in [1, 2, 3, 4, 5, 7, 8, 9].  
A Generalized Multiobjective Multitree model (GMM-
model) proposed in previous work [13] is 
commented in section 2. A Multi-Objective 
Evolutionary Algorithm (MOEA) which is able to solve 
the proposed GMM-model is presented in section 3, 
given its recognized ability for solving MOPs [2, 3, 10, 
12]. Moreover, GMM-model considers a multitree-
multicast load balancing problem with splitting in a 
multiobjective context, for the first time, using an 
evolutionary approach. To illustrate the resolution of the 
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GMM-model using a MOEA, section 4 presents 
experimental results. Final conclusions and future work 
are left for section 5. 
 
 
2 Generalized multiobjective multitree 
model 
In previous work we have proposed a Generalized 
Multiobjective Multitree model (GMM-model) [13] that 
considers simultaneously for the first time, multicast 
flow, multitree, and splitting.  
The proposed GMM-model considers a network 
represented as a graph G(N, E), with N denoting the set 
of nodes and E the set of links. The set of flows is 
denoted as F. Each flow f∈F can be split into Kf 
subflows that after normalization can be denoted as 
fk; k = 1, … |Kf|. In this case, fk indicates the fraction of 

f∈F it transports, and 1
1

=∑
=

fK

k
kf . For each flow f∈F we 

have a source sf ∈N and a set of destination or egress 
nodes Tf ⊂ N. Let t be an egress node, i.e. t ∈Tf. Let 

tf
ij

kX  denote the fraction of subflow fk to egress node t 

assigned to link (i,j) ∈ E, i.e. 0≤ tf
ij

kX ≤1. 
GMM-model considers 11 objective functions: Maximal 
link utilization (φ1), Total hop count (φ2), Hop count 
average (φ3), Maximal hop count(φ4), Maximal hop 
count variation for a flow (φ5), Total delay (φ6), Average 
delay (φ7), Maximal delay (φ8), Maximal delay variation 
for a flow (φ9), Total bandwidth consumption (φ10), and 
number of subflows (φ11). Moreover, considers 7 
constraints: Flow conservation constraints for every 
source node, for every destination and for every other 
node; a subflow uniformity constraint, to ensure that a 
subflow fk always transports the same information; link 
capacity constraint; constraint on the maximum number 
of subflows. 
At this point, it is important to point out that the 
mathematical solution of the proposed GMM-model is a 
complete set X* of Pareto optimal solutions x*∈X*, i.e. 
any solution x’ outside the Pareto set (x’∉X*) is 
outperformed by at least one solution x* of the Pareto set 
(∃x* f x’); therefore, x’ can not outperform x* even if 
not all the objective functions are considered. 
Consequently, under the same set of constraints, any 
previous model or algorithm, that only considers a 
subset of the proposed objective functions, either as a 
SOP or MOP, can find one or more solutions calculated 
with the GMM-model or dominated by solutions x*∈X* 
of this model. 

In conclusion, by using the GMM-model it is possible to 
calculate the whole set of optimal Pareto solutions. This 
includes any solution that has been previously found 
using most of the already published alternatives that 
consider any subset of the proposed objective functions. 
Now it may be clear why we call this model generalized. 
 
 
3 GMM resolution using a MultiObjective 
Evolutionary Algorithm 
To solve the GMM-model, a Multiobjective 
Evolutionary Algorithm (MOEA) approach has been 
selected because of its well-recognized advantages when 
solving MOPs in general and TE load balancing in 
particular [2, 3, 7, 8]. A MOEA, as a genetic algorithm, 
is inspired by the mechanics of natural evolution (based 
on the survival of the fittest species). 
At the beginning, an initial population of Pmax feasible 
solutions (known as individuals) is created as a starting 
point for the search. In the next stages (or generations), a 
performance metric, known as fitness, is calculated for 
each individual. In general, a modern MOEA calculates 
fitness considering the dominance properties of a 
solution with respect to a population. Based on this 
fitness, a selection mechanism chooses good solutions 
(known as parents) for generating a new population of 
candidate solutions, using genetic operators like 
crossover and mutation. The process continues 
iteratively, replacing old populations with new ones, 
typically saving the best found solutions (which is 
known as elitism), until a stop condition is reached. 
In this paper, an algorithm based on the Strength Pareto 
Evolutionary Algorithm (SPEA) [12] is proposed. It 
holds an evolutionary population P and an external set 
Pnd with the best Pareto solutions found. Starting with a 
random population P, the individuals of P evolve to 
optimal solutions that are included in Pnd. Old dominated 
solutions of Pnd are pruned each time a new solution 
from P enters Pnd and dominates old ones. 
 
3.1 Encoding 
Encoding is the process of mapping a decision variable x 
into a chromosome (the computational representation of 
a candidate solution). This is one of the most important 
steps towards solving a TE load balancing problem using 
evolutionary algorithms. Fortunately, it has been 
sufficiently studied in current literature. However, it 
should be mentioned that to our best knowledge, this 
paper is the first one that proposes an encoding process, 
as shown in Fig. 1, that allows the representation of 
several flows (unicast and / or multicast) with as many 
splitting subflows as needed to optimize a given set of 
objective functions. 



In this proposal, each chromosome consists of |F| flows. 
Each flow f, denoted as (Flow f), contains |Kf| subflows 
that have resulted from splitting and which flow in 
several subflows (multitree, for load balancing). Inside a 
flow f, every subflow (f,k), denoted as (Subflow f,k), uses 
two fields. The first one represents a tree (Tree f,k) used 
to send information about flow f to the set of destinations 
Tf, while the second field represents the fraction fk of the 
total information of flow f being transmitted.  
Moreover, every tree (Tree f,k) consists of |Tf| different 
paths (Path f,k,t), one for each destination t∈Tf. Finally, 
each path (Path f,k,t) consists of a set of nodes Nl 
between the source node sf and destination t∈ Tf 
(including sf and t). For optimality reasons, it is possible 
to define (Path f,k,t) as not valid if it repeats any of the 
nodes, because in this case it contains a loop that may be 
easily removed from the given path to make it feasible. 
Moreover, in the above representation, a node may 
receive the same (redundant) information by different 
paths of the same subflow; therefore, a correction 
algorithm was implemented to choose only one of these 
redundant path segments, making sure that any subflow 
satisfies the optimality criteria. 
 

(Subflow f,k) (Tree f,k) fk

(Path f,k,t1) (Path f,k,t|Tf|)(Path f,k,t) ......(Tree f,k)

Nsf NtNn ......(Path f,k,t)

CHROMOSOME (Flow |F|)(Flow 1) (Flow f)... ...

(Flow f) ...(Subflow f,k) (Subflow f,|Kf|)...(Subflow f,1)

(Subflow f,k) (Tree f,k) fk(Tree f,k) fk

(Path f,k,t1) (Path f,k,t|Tf|)(Path f,k,t) ......(Path f,k,t1) (Path f,k,t|Tf|)(Path f,k,t) ......(Tree f,k)

Nsf NtNn ......Nsf NtNn ......(Path f,k,t)

CHROMOSOME (Flow |F|)(Flow 1) (Flow f)... ... (Flow |F|)(Flow 1) (Flow f)... ...

(Flow f) ...(Subflow f,k) (Subflow f,|Kf|)...(Subflow f,1) ...(Subflow f,k) (Subflow f,|Kf|)...(Subflow f,1)

 
Fig 1. Chromosome representation. 
 
3.2 Initial Population 
To generate an initial population P of valid 
chromosomes we have considered each chromosome at a 
time, building each (Flow f) of that chromosome at a 
time. For each (Flow f) we first generate a large enough 
set of different valid paths from source sf to each 
destination t∈ Tf (see line 1 of Fig. 6). Then, an initial 
|Kf| is chosen as a reasonable random number that 
satisfies constraints on the maximum number of 
subflows. To build each of the |Kf| subflows, we 
randomly generate a tree with its root in sf and leaves in 
Tf by randomly selecting a path at a time for each 
destination, from the previously generated set of paths. 
Trees are conformed by a path-set, which can contain 
redundant segments; i.e. two paths belonging to a tree 
with different destinations can meet themselves in more 
than one node causing redundant subflow information 
transmission between those pair of nodes. To correct this 
anomaly, a repair redundant segments process is 

defined: the shortest path of this tree should be taken as 
a pattern and then for each of the remaining paths in the 
tree, find its shortest segment starting at the latest node 
(branching node) in the pattern. The resulting segment 
will be a pattern segment starting at its source to the 
branching node joint with the old segment starting at 
branching node to the destination. Later, an information 
fraction of fk=1/|Kf| is initially set. 
In this initialization procedure (see lines 2-3 of Fig 6), 
chromosomes are randomly generated one at a time. A 
built chromosome is valid (and accepted as part of the 
initial population) if it also satisfies link capacity; 
otherwise, it is rejected and another chromosome is 
generated until the initial population P has the desired 
size Pmax. 
 
3.3 Selection 
Good chromosomes of an evolutionary population are 
selected for reproduction with probabilities that are 
proportional to their fitness. Therefore, a fitness function 
describes the “quality” of a solution (or individual). An 
individual with good performance (like the ones in Pnd) 
has a high fitness level while an individual with bad 
performance has a low fitness. In this proposal, fitness is 
computed for each individual, using the well-known 
SPEA procedure [12]. In this case, the fitness for every 
member of Pnd is a function of the number of 
chromosomes it dominates inside the evolutionary set P, 
while a lower fitness for every member of P is calculated 
according to the chromosomes in Pnd that dominate the 
individual considered. A roulette selection operator is 
applied to the union set of Pnd and P each time a 
chromosome needs to be selected. 
 
3.4 Crossover 
We propose two different crossover operators: flow 
crossover and tree crossover. With flow crossover 
operator (line 10.a in Fig 6), |F| different chromosomes 
are randomly selected to generate one offspring 
chromosome that is built using one different flow from 
each father chromosome, as shown in Fig 2. A father 
may be chosen more than once, contributing with several 
flows to an offspring chromosome. 
The tree crossover operator is based on a two-point 
crossover operator, which is applied to each selected pair 
of parent chromosomes (line 10.b in Fig 6). In this case, 
the crossover is applied by doing tree exchanges 
between two equivalent flows of a pair of randomly 
selected parent-chromosomes, as shown in Fig. 3. 
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Fig 2. Flow crossover operator. 

 

CHROMOSOMES Two-point crossover

OFFSPRING
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Fig 3. Tree crossover operator. 

 

Tree crossover without normalization of the information 
fraction fk usually generates infeasible chromosomes. 

Therefore, a normalization process
∑
=

=
fK

k
kkk fff

1

*
,is 

used as a last step of a tree crossover operator. 
 
3.5 Mutation 
This operator could improve the performance of an 
evolutionary algorithm, given its ability to continue the 
search of global optimal (or near optimal) solutions even 
after local optimal solutions have been found, not 
allowing the algorithm to be easily trapped in local sub-
optimal solutions. Each time that an offspring 
chromosome is generated, a (generally low) mutation 
probability pm is used to decide if the mutation operator 
should be applied to this chromosome (line 11 in Fig 6). 
To apply a mutation operator, we first randomly choose 
a (Flow f) of the new offspring, in order to later select 
(also randomly) a (Subflow f,k) on which the mutation 
will actually apply; therefore, what we implement is a 
subflow mutation operator. For this work, we propose a 
subflow mutation operator with two phases: segment 
mutation and subflow fraction mutation.  
For segment mutation phase, a (Path f,k,t) of (Tree f,k) is 
randomly chosen. At this point, a node Nj of (Path f,k,t) 

is selected as a Mutation Point. The segment mutation 
phase consists in finding a new segment to connect the 
selected Mutation Point to destination t (see Fig 4), 
followed by the already explained (see B - Initial 
Population) repair redundant segment process, to 
achieve better chromosome quality. 
 

Path f,k,t Mutation Point

Nsf NtNj oldest segment...

Nsf new segmentNj... Nt

Path f,k,t Mutation Point

Nsf NtNj oldest segment...

Nsf new segmentNj... Nt

 
Fig 4. Segment mutation. 

 

Finally, the subflow fraction mutation phase is applied to 
(Subflow f,k) by incrementing (or decrementing) flow 
fraction fk in δ (see Fig 5), followed by the normalization 
process that has already been explained. 
 

(Tree f,1) f 1 ... (Tree f,k) f k ... (Tree f,|Kf|) f |Kf|

Flow f Mutation Point

(Tree f,1) f 1 ... (Tree f,k) f k±δ ... (Tree f,|Kf|) f |Kf|

Incrementation / decrementation subflow fraction

(Tree f,1) f 1* ... (Tree f,k) f k±δ* ... (Tree f,|Kf|) f |Kf|
*

Normalization process

(Tree f,1) f 1 ... (Tree f,k) f k ... (Tree f,|Kf|) f |Kf|

Flow f Mutation Point

(Tree f,1) f 1 ... (Tree f,k) f k ... (Tree f,|Kf|) f |Kf|

Flow f Mutation Point

(Tree f,1) f 1 ... (Tree f,k) f k±δ ... (Tree f,|Kf|) f |Kf|

Incrementation / decrementation subflow fraction

(Tree f,1) f 1 ... (Tree f,k) f k±δ ... (Tree f,|Kf|) f |Kf|
(Tree f,1) f 1 ... (Tree f,k) f k±δ ... (Tree f,|Kf|) f |Kf|

Incrementation / decrementation subflow fraction

(Tree f,1) f 1* ... (Tree f,k) f k±δ* ... (Tree f,|Kf|) f |Kf|
*

Normalization process

(Tree f,1) f 1* ... (Tree f,k) f k±δ* ... (Tree f,|Kf|) f |Kf|
*(Tree f,1) f 1* ... (Tree f,k) f k±δ* ... (Tree f,|Kf|) f |Kf|
*

Normalization process

 
Fig 5. Subflow fraction mutation following by 
normalization process. 

 

1 Obtain initial set of valid paths 
2 Generate the initial population P of size Pmax 
3 Normalize fractions and remove redundant 

segments for every chromosome in P 
4 Initialize set Pnd as empty 
5 DO WHILE A FINISHING CRITERIOM IS NOT SATISFIED 

{ 
6  Add non-dominated solutions of P into Pnd 
7  Remove dominated solutions in Pnd 
8  Calculate fitness of individuals in P and Pnd 
9  REPEAT Pmax times { 

 Generate new chromosomes-set C using 
 
a Tree crossover with Selection (in P ∪ Pnd) 

and normalization process 
10 

 b Flow crossover with Selection (in P ∪ Pnd) 
11 

 With probability pm mutate set C and 
normalization process and remove redundant 
segments 

12 
 Add to P valid chromosomes in C not yet 

included in P 
13  END REPEAT 
14 END WHILE 

Fig 6: Proposed MOEA 
 

 
4 Experimental Results 
Although the aim of this work is to present a general 
model and not to discuss the best way to solve it, this 
section presents a simple problem and the corresponding 



experimental results using the proposed MOEA, as an 
illustration of what has been previously stated. 
 
4.1 Network Topology 
The chosen topology is the well-known 14-node NSF 
(National Science Foundation) network (|N|=14). The 
costs on the links represent the delays (dij) and all links 
are assumed to have 1.5 Mbps of bandwidth capacity 
(cij = 1.5 Mbps ∀(i,j)∈E). Two flows with the same 
source, sf=N0, are considered. The egress subsets are 
T1={N5, N9} and T2={N4, N9, N12}. The transmission 
rates are b1=256 Kbps for the first flow and b2=512 Kbps 
for the second flow. 
 
4.2 Resolution of the Test Problem 
A complete set of found non-dominated solutions (best 
calculated approximation to the optimal Pareto set X* in 
a run) had 748 chromosomes. This large number is due 
to the large number of objective functions and the fact 
that the same set of subtrees with different fractions fk of 
the flows are considered as different solutions because 
each one represents another compromise between 
conflicting objective functions. When needed, a 
clustering technique, that is included in the implemented 
SPEA, may be used to reduce the number of calculated 
non-dominated solutions to a maximum desired number 
[12]. Since there is no space to present all 748 non-
dominated solutions, Table 1 shows some of the best 
calculated solutions considering one objective function 
at a time. Each row (identified by an ID given in the first 
column) represents a non-dominated solution whose 
chromosome is omitted to save space. The following 11 
columns represent the different objective functions. The 
cells in bold emphasize an optimal objective value. To 
better exemplify a solution, certain chromosomes were 
omitted from Table 1. 
Some solutions presented in Table 1 are clearly non-
dominated because they are the best ones in at least one 
objective, like the ones with ID=1 with the minimum 
value of φ1 or ID=10 with the minimum value of φ2 and 
φ3 to just name a few. However, most solutions are non-
dominated because they are different compromise 
solutions. As an example, solutions from ID=1 to ID=15 
are all optimal considering φ4, but each one represents a 
different compromise between conflicting objective 
functions.  
In this example when a flow is not split into subflows, 
we potentially need the least amount of LSPs (φ11=2) and 
there is no hop count or delay variations between 
subflows (φ5=0, φ9=0), as shown in solutions with ID=2, 
10, 18 and 20. However, it is possible to have a delay 
variation (φ9>0) even when there is no hop count 

variation (φ5=0) if at least one flow is split (φ11>2), like 
the non-dominated solutions with ID=16 and 17. 
 

Table 1 
Some calculated Pareto Front solutions 

ID φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10 φ11

1 16,7% 26 3,3 4 1 288 22,5 47 17 4096 3 
2 33,3% 16 3,2 4 0 180 36,0 39 0 4096 2 
3 25,0% 26 3,3 4 1 275 20,9 47 17 4608 3 
4 33,3% 25 3,1 4 1 277 21,8 45 17 4608 3 
5 33,3% 26 3,3 4 1 282 22,1 45 17 4352 3 
6 33,3% 25 3,1 4 1 277 21,5 45 17 4864 3 
7 33,3% 27 3,4 4 1 305 22,8 47 11 4224 3 
8 33,3% 26 3,3 4 1 282 21,9 45 17 4480 3 
9 25,0% 25 3,1 4 1 279 22,2 47 17 4352 3 
10 33,3% 15 3,0 4 0 163 32,6 39 0 4608 2 
11 33,3% 26 3,3 4 1 282 21,8 45 17 4544 3 
12 33,3% 26 3,3 4 1 282 22,0 45 17 4416 3 
13 25,0% 28 3,5 4 1 315 23,3 47 11 4480 3 
14 33,3% 25 3,1 4 1 271 21,4 47 11 4352 3 
15 33,3% 26 3,3 4 1 282 22,2 45 17 4288 3 
16 50,0% 25 3,6 5 0 245 25,2 47 2 5792 3 
17 50,0% 28 4,0 7 0 254 26,5 56 2 5312 3 
18 50,0% 19 3,8 5 0 154 30,8 41 0 4864 2 
19 33,3% 153 4,8 10 7 1545 7,1 104 77 6176 13 

 
4.3 Correlation Analysis 
A correlation analysis between each pair of objective 
functions was also performed to get an idea of the real 
necessity of using (or not) that large a number of 
objective functions. A very large correlation clearly 
means that if one objective function is optimized another 
one with a high correlation is also indirectly optimized.  
Table 2 presents these correlation values between the 11 
objective functions, considering the whole experimental 
set of 748 non-dominated solutions. 
 

Table 2 
Correlations between objective functions 

 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10 φ11 
φ1 -0,22 -0,16 -0,24 -0,26 -0,25 0,19 -0,28 -0,19 0,09 -0,20 

φ2  0,69 0,77 0,80 1,00 -0,80 0,78 0,78 0,56 0,98 

φ3   0,78 0,48 0,66 -0,35 0,62 0,41 0,52 0,59 

φ4    0,82 0,76 -0,61 0,90 0,73 0,47 0,72 

φ5     0,81 -0,81 0,85 0,93 0,34 0,80 

φ6      -0,81 0,79 0,78 0,53 0,98 

φ7       -0,69 -0,78 -0,36 -0,85 

φ8        0,83 0,40 0,75 

φ9         0,33 0,77 

φ10          0,53  
 

As shown in Table 2 there are very large correlations 
between some objectives, such as: 
• the total hop count (φ2) and total delay (φ6), with a 

correlation of almost 1, this is easy to understand 
given that a longer path usually implies more delay; 

• the total hop count (φ2) and number of subflows 
(φ11), with a value of 0.98, given that the use of 
splitting implies the use of multiple-routes and 
therefore, more links; 



• the maximal hop count (φ4) and maximal delay (φ8), 
with a correlation of 0,90, because the longest path in 
the hop count normally has the longest delay. Since 
the same reasoning applies for the minimal path, it is 
also easy to understand the high correlation of 0,93 
for 

• the hop count variation (φ5) and delay variation (φ9). 
Finally, 

• the total delay (φ6) and the number of subflows (φ11) 
with 0.98, as a logical consequence of the high 
correlation of both objective functions with the total 
hop count (φ2). 

 
More experimental results are needed to make a final 
conclusion, but  it is clear that all objective functions are 
not really needed at the same time. We have considered 
them for sake of completeness, just to make sure that an 
optimal solution from a previous work that consider a 
given objective will also be a solution of the GMM-
model. 
 
 
5 Conclusions 
Any optimal single objective solution, like the ones 
proposed in several previous papers, would be a solution 
of the GMM-model or dominated by a Pareto solution of 
it when all analysed objective functions are 
simultaneously considered. 
To solve the presented GMM-model, a Multi-Objective 
Evolutionary Algorithm (MOEA) inspired by the 
Strength Pareto Evolutionary Algorithm (SPEA) has 
been implemented, proposing new encoding process to 
represent multitree-multicast solutions using splitting. 
This MOEA found a set of 748 non-dominated solutions 
for a very simple multicast test problem based on the 
well-known NSF network. A correlation analysis of this 
set of non-dominated solutions was also included, 
emphasizing that several objective functions are highly 
correlated and therefore, not really needed for some 
practical applications. 
For future work, we plan to improve MOEA solving 
more complex problems, considering different 
topologies and including some objective functions that 
still haven’t been considered, such as Packet Loss. 
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