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Abstract

This thesis deals with the segmentation of brain magnetic resonance imaging applied to

multiple sclerosis patients. This disease is characterised by the presence of white matter

lesions in this image modality. After a thorough analysis of the state-of-the-art on this

topic, pointing out the importance of prior knowledge, and a subsequent review of atlas-

based segmentation of brain imaging, we propose two different multiple sclerosis lesion

segmentation pipelines based on the conclusions of these studies. The first one provides an

initial tissue classification using a modified expectation-maximisation algorithm, which is

later on refined with a lesion segmentation step based on thresholding and a regionwise false

positive reduction approach. The second one focuses only on the segmentation of lesions

and uses an ensemble classifier alongside a rich feature pool including image intensities,

probabilistic atlas maps, an outlier map and contextual information. Both approaches are

tested against a novel database comprising imaging data from three different hospitals with

a variable lesion load per case. The evaluation, carried out in a quantitative and qualitative

manner, includes a comparison and uses several metrics for detection and segmentation.

The analysis of the results points out a better performance relative to state-of-the-art

approaches, with a clear improvement on the first pipeline in terms of detection, and a

clear improvement on the second pipeline in terms of segmentation.
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Resum

Aquesta tesi es centra en la segmentació de imatges de ressonància magnètica del cervell

aplicada a pacients d’esclerosi múltiple. Aquesta malatia es caracteritza per l’aparició de

lesions de matèria blanca, visibles en aquesta modalitat d’imatge. Després d’un anàlisi ex-

haustiu de l’estat de l’art en aquest tòpic, remarcant la importància de la informació prèvia,

i també de la segmentació basada en atles del cervell, proposem dues estratègies diferents

per a la segmentació de lesions basades en les conclusions d’ambdós estudis. La primera

proporciona una classificació inicial dels teixits mitjaņcant una extensió de l’algorisme de

esperaņca-maximització, que es refina posteriorment amb un procés de segmentació de les

lesions basat en una binarització inicial i una conseqüent estratégia de reducció de falsos

positius a nivell de regió. La segona proposta es focalitza bàsicament en la segmentació de

lesions i utilitza una combinació de classificadors febles entrenats amb un ric conjunt de

característiques que inclou imatges d’intensitat, mapes probabilístics provinents d’un atles,

un mapa d’intensitats atípiques i informació contextual. Ambdues estratègies han estat

provades amb una nova base de dades formada per imatges de tres hospitals diferents amb

diferent càrrega lesional per cas. L’avaluació d’aquestes proves, que s’ha dut a terme de

forma quantitativa i qualitativa, inclou una comparativa i utilitza diferents mètriques de

detecció i segmentació. L’anàlisi d’aquests resultats apunta a un millor rendiment relatiu

a l’estat de l’art actual, amb una millor detecció per part de la primera estratègia i una

millor segmentació per part de la segona.
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Resumen

Esta tesis se centra en la segmentación de imágenes de resonáncia magnética del cerebro

aplicada a pacientes de esclerosis múltiple. Esta enfermedad se caracteriza por la aparición

de lesiones de materia blanca, visibles en esta modalidad de imagen. Después de un análisis

exhaustivo del estado del arte en este tópico, remarcando la importáncia de la información

previa, y segmentación basada en atlas del cerebro, proponemos dos estrategias diferentes

para la segmentación de lesiones basadas en las conclusiones aportadas por estos estudios.

La primera proporciona una classificación inicial de los tejidos mediante una extensión

del algoritmo de esperanza-maximización, que es refinada con un proceso de segmentación

de las lesiones basado en binarización y una estrategia de reducción de falsos positivos

a nivel de región. La segunda se focaliza básicamente en la segmentación de lesiones y

utiliza un agregado de classificadores entrenado con un rico conjunto de características

que incluyen imágenes de intensidad, mapas probabilísticos provenientes de un atlas, un

mapa de intensidades atípicas e información contextual. Las dos estrategias han estado

validadas con una nueva base de datos formada por imágenes de tres hospitales diferentes

con diferente carga lesional por caso. La evaluación de estas pruebas, que se han relizado

de forma cuantitativa y cualitativa, incluye una comparativa y utiliza diferentes métricas

de detección y segmentación. El análisis de estos resultados apunta a un mejor rendimiento

relativo al estado del arte actual, con una mejor detección por parte de la primera estrategia

y una mejor segmentación por parte de la segunda.
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Chapter 1

Introduction

Our first assignment is a documentary,

they’re like real movies but with ugly people

Abed, “Community (Season one)” (2009)

1.1 Multiple sclerosis (MS)

Multiple sclerosis (MS) is the most frequent non-traumatic neurological disease causing

the most disability in young adults. It is relatively common in Europe, the United States,

Canada, New Zealand, and parts of Australia, but rare in Asia, and the tropics and subtrop-

ics of all continents. In regions having a temperate climate, the incidence and prevalence

of MS increase with latitude, both north and south of the equator. Multiple sclerosis is

between two and three-times more common in women than in men; men have a tendency

for a later disease onset with a poorer prognosis. The incidence of MS is low in childhood,

increases rapidly after the age of 18, reaches a peak between 25 and 35, and then slowly

declines, becoming rare at 50 and older. The world estimate is between 1.3 and 2.5 million

cases of MS, with Western Europe having 350, 000 [69]. Prevalence and incidence of MS is

increasing around the world according to the latest epidemiological studies.

This disease is a chronic, persistent inflammatory-demyelinating and degenerative disease

of the central nervous system (CNS), characterised pathologically by areas of inflamma-

tion, demyelination, axonal loss, and gliosis scattered throughout the CNS, often causing

motor, sensorial, vision, coordination, deambulation, and cognitive impairment [50]. Re-

lapses and progression are the two major clinical phenomena of prototypic MS. Relapses

are considered the clinical expression of acute focal or multifocal inflammatory demyeli-

nation disseminated in the CNS. Remission of symptoms early in the disease is likely the

1
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Figure 1.1: Tissue and lesion segmentation of two MRI images of the same patient.

result of remyelination, resolution of inflammation, and compensatory mechanisms such

as redistribution of axolemmal sodium channels and cortical plasticity. These recovery

mechanisms are less effective after recurrent attacks.

Conventional magnetic resonance imaging techniques (MRI) are highly sensitive for de-

tecting MS plaques and can provide quantitative assessment of inflammatory activity and

lesion load. MRI-derived metrics have become established as the most important paraclin-

ical tool for diagnosing MS, for understanding the natural history of the disease and for

monitoring the efficacy of experimental treatments [150]. This image modality also offers a

high contrast between the main brain tissues, namely grey matter (GM), formed by neuron

nuclei; whitte matter (WM), formed by neuronal axons; and the cerebrospinal fluid (CSF)

protecting the brain.

For a quantitative analysis of focal lesions in both individual and temporal studies, man-

ual or semi-automated segmentations of different MR images have been used to compute

the total number of lesions and the total lesion volume (see figure 1.1). Manual delin-

eation of MS lesions, however, is both challenging and time-consuming because of the

large number of MRI slices for each patient that compose the three-dimensional informa-

tion. Moreover, it is prone to intra-observer variability (the same study analysed by the

same neuroradiologist at a different time) and inter-observer variability (the same study

analysed by different neuroradiologists).

The development of fully automated MS segmentation methods, which can segment

large amounts of MRI data and do not suffer from intra- or inter-observer variability,

has become an active research field. Unfortunately, the results of these fully automated
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Figure 1.2: Lesion segmentation example. MS lesions, highlighted in orange, are small and

their intensity usually overlaps the intensity distribution of other tissues.

methods show less agreement with manually segmented scans than those obtained with

segmentations of independent observers due to the intensity overlap with other features.

Moreover, when evaluating MS segmentation methods, there is a lack of an in vivo method

to obtain a reliable ground truth data mainly because of the large intra- and inter-observer

variability. Disagreements between segmentations may have a great influence on some

evaluation measures due to the small volume of the lesions (see figure 1.2).

Automatic segmentation systems would, without doubt, help neuroradiologists to im-

prove the diagnosis and follow-up in MS patients, both in clinical studies investigating

future MS therapies and in every-day clinical practise. This may save time for the neu-

roradiologists and provide less subjective measures which will, in turn, provide better

comparisons and analysis of the MS disease evolution.

1.2 MS in magnetic resonance imaging (MRI)

1.2.1 Why use MRI?

Magnetic resonance imaging is the most sensitive technique for the detection of demyeli-

nating lesions in the central nervous system (CNS) in MS patients [77]. As a consequence

of this high sensitivity, MRI has become an essential technique, not only in MS diagnosis,

but also as a pronostic marker in the initial phase of the disease according to the frequency

and gravity of future clinical recurrence, as well as future impairment rate [34, 120]. More-

over, MRI contributes to a better comprehension of its natural history and the evaluation

of the effectiveness of new treatments [152, 80].

The new diagnostic criteria proposed by McDonald et al. [149, 171, 211, 170] highlight
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Figure 1.3: MRI scanner scheme with its main parts. Image extracted from

http://www.magnet.fsu.edu/education/tutorials/magnetacademy/mri/.

MRI discoveries, by providing an MS diagnostic in patients with a single clinical episode

when MRI proves the presence of spatially and temporally disseminated demyelinating

lesions in the central nervous system [180, 181].

1.2.2 What is MRI?

An MRI system, as shown in figure 1.3, consists of the following components:

• A large magnet to generate the magnetic field and shim coils to make the magnetic

field as homogeneous as possible. This magnetic field aligns the hydrogen nuclei of

the brain.

• A radiofrequency (RF) coil to transmit a radio signal into the body part being imaged.

This radio signal is applied after aligning the hydrogen nuclei with the high magnetic

field.

• A receiver coil to detect the returning radio signals due to the nuclei relaxation.

• Gradient coils to provide spatial localisation of the signals applying additional mag-

netic fields. These additional magnetic fields can be used to only generate detectable

signals from specific locations in the body (spatial excitation) and/or to make mag-

netisation at different spatial locations precess at different frequencies, which enables
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k-space encoding of spatial information.

• A computer to reconstruct the radio signals into the final image (usually by means

of Fourier transforms).

The voxel intensity of an MR image is determined by four basic parameters: proton den-

sity, T1 relaxation time, T2 relaxation time, and flow. Proton density is the concentration

of protons in the tissue in the form of water and macromolecules (proteins, fat, etc). The

T1 and T2 relaxation times define the way the protons revert back to their resting states

after the initial RF pulse. The most common effect of flow is loss of signal from rapidly

flowing arterial blood.

The contrast in an MR image can be manipulated by changing the pulse sequence pa-

rameters. A pulse sequence sets the specific number, strength, and timing of the RF and

gradient pulses. The two most important parameters are the repetition time (TR) and the

echo time (TE). The TR is the time between consecutive 90 degree RF pulses. The TE is

the time between the initial 90 degree RF pulse and the echo.

The most common pulse sequences are the T1-w and T2-w spin-echo sequences. The

T1-w sequence uses a short TR and a short TE (TR < 1000 ms, TE < 30 ms). The

T2-w sequence uses a long TR and a long TE (TR > 2000 ms, TE > 80 ms). The T2-w

sequence can be employed as a dual echo sequence. The first or shorter echo (TE < 30 ms)

is proton density (PD) weighted or a mixture of T1 and T2. This image is very helpful for

evaluating periventricular pathology such as multiple sclerosis, because the hyperintense

plaques are contrasted against the lower signal CSF. More recently, the FLAIR (fluid

attenuated inversion recovery) sequence has been introduced. FLAIR images are T2-w

with the CSF signal suppressed, presenting a high contrast between tissue and lesions. As

a consequence, these images have become a useful tool for every-day clinical practise.

However, the correlation between the burden of lesions observed in conventional MRI

scans and the clinical manifestations of the disease remains weak. The discrepancy be-

tween clinical and conventional MRI findings in MS is explained, at least partially, by the

limited ability of conventional MRI to characterise and quantify the heterogeneous features

of the MS pathology. Other quantitative MR-based techniques, however, have the poten-

tial to overcome such a limitation of conventional MRI. Indeed, magnetisation transfer

MRI, diffusion tensor MRI (DTI), proton MR spectroscopy, and functional MRI (fMRI)

are nowadays contributing to elucidate the mechanisms that underlie injury, repair, and

functional adaptation in patients with MS [79, 146].
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(a) (b) (c) (d) (e)

Figure 1.4: Different MRI images of the brain: a) T1-w image, b) T2-w image, c) PD-w

image and d) FLAIR image and their e) tissue segmentation: CSF appears dark blue, GM

appears blue, WM appears white and lesions appear red.

1.2.3 What are MR images of MS patients like?

Looking at figure 1.4, contrast differences between conventional MRI caused by different

relaxation times are clear. For instance, the CSF appears dark in both T1 and FLAIR,

while its the brightest tissue in T2 and has similar intensities to GM in PD. On the other

hand, WM is the brightest tissue in T1, has an intermediate grey level in FLAIR, similar

to GM, and has the lowest signal in both PD and T2. Finally, GM also appears with an

intermediate grey level in T2 and T1 in comparison with to the other two brain tissues.

Both acute and chronic MS plaques appear as focal high signal intensity areas in T2-

w images (including FLAIR), reflecting their increased tissue water content. The signal

increase indicates edema, inflammation, demyelination, reactive gliosis and/or axonal loss

in proportions that differ from lesion to lesion. They are typically discrete and focal in the

early stages of the disease, but become confluent as the disease progresses.

Gadolinium-enhanced T1-w imaging (consisting of applying a contrast agent before

aquiring the image) is highly sensitive in detecting inflammatory activity. This technique

detects disease activity 5 to 10 times more frequently than clinical evaluation of relapses,

suggesting that most of these enhancing lesions (EL) are clinically silent. Individual

and temporal MRI studies have shown that the formation of new MS plaques is often

associated with contrast enhancement, mainly in the acute and relapsing stages of the

disease.

Approximately 10% to 20% of T2 hyperintense lesions (HL) are also visible as areas

of low signal intensity compared with normal appearing white matter (WM) in T1-w

images. These so-called T1 black holes (BH) have a different pathological substrate

that depends, in part, on the lesion’s age. Chronic black holes correlate pathologically



1.2. MS in magnetic resonance imaging (MRI) 7

(a) (b)

Figure 1.5: a) Slice of an MRI volume with clear intensity inhomogeneities (the leftmost

part is darker than the right) and noise (mainly in the WM). b) Slice of an MRI volume

where different non-brain structures appear (i.e. skull, eyes, fat).

with the most severe demyelination and axonal loss, indicating areas of irreversible tissue

damage. T1-w images have a higher specificity than T2-w images for detecting lesions with

irreversible tissue damage and may serve as surrogate markers of the disability progression

in clinical trials.

1.2.4 Is MRI perfect?

Even though MRI has become an interesting imaging tool, several issues arise from the

capture process causing undesired image artifacts. Some of these artifacts are usually dealt

with during the scanning procedure. For instance, motion artifacts due to inadvertent head

movement can be corrected using fast sequences and constraining the patient’s head. Some

others may require a calibration procedure or rescan. For example, peak artifacts due to

a high signal value that darkens the whole image or aliasing caused by using a small field

of view.

However, some artifacts are inherent to the capture system and can not be dealt with

during acquisition. As with any capture system, signals are corrupted by noise often as-

sumed additive and following a Rician distribution. In the case of MRI, this noise is caused

by the gradient magnets (the ones responsibles for voxel localisation). Inhomogeneities in

the magnetic field as well as patient properties cause a smooth inhomogeneity field across

the MRI (see figure 1.5(a)). This artifact is also known as bias field. Even though these

two issues can not be avoided on acquisition, they can be reduced in order to increase the
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(a) (b)

Figure 1.6: 2D synthetic example of the partial volume effect. a) Represents the real tissues

and how they are sampled while b) shows the results of sampling zones with both tissues.

signal to noise ratio (SNR).

The gradient magnets are also partially responsible for the so-called partial volume effects

(PVE). During localisation, the image space is discretised in volumes that may comprise

more than one tissue. For instance, the cortex is folded in sulcus containing WM. These

frontiers are usually scanned as a voxel, blurring the real edges between tissues (see figure

1.6).

Moreover, the presence of other non-brain tissues (see figure 1.5(b)) affects intensity

distributions in the image. This is also inherent to the capture process but is not as much

an artifact as it is an issue for automatic segmentation systems. It is not clear how the

probability density function of each main tissue (GM, WM, and CSF) is altered by these

external intensities, but segmentation results are usually improved when those voxels are

masked out.

1.2.5 What are we dealing with?

At this point, we have seen why MRI has become a powerful technique in clinical practise for

MS. Thanks to the presence of water molecules in the brain, and more precisely, hydrogen

nuclei, MRI scanners can provide volumetric soft tissue information with a high contrast.

Moreover, by tunning capture parameters, such as the pulse sequence or relaxation times,

different volume sequences can be acquired. The most widely used images in MS trials are

PD-w, T1-w, T2-w, and FLAIR.

Focusing on MS lesions, they usually appear as bright spots in PD-w and T2-w im-

ages (including FLAIR). Furthermore, all these lesions can be subdivided into 3 groups
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depending on their pathology and properties in other imagess:

• Hyperintense lesions (HL): These are lesions that only appear in the abovementioned

images and are the most frequent.

• Enhancing lesions (EL): These lesions appear as bright spots in T1-w images after ap-

plying a contrast agent, commonly Gadolinium, and represent current imflammatory

activity.

• Black holes (BH): These lesions are named for their appearence, since they are char-

acterised as “dark regions” in T1-w images. These lesions represent chronic and

irreversible damage.

A reliable and robust automatic segmentation of these lesions could be used in clinical

practise to diagnose the disease according to McDonald’s criteria. Following the current

revision of these criteria from Polman et al. [170], a patient with just one attack (and

thus only 1 imaging exploration) could be diagnosed with MS if the following criteria for

dissemination in space (DIS) and time (DIT) are met:

• DIS: One lesion is found in at least 2 of the 4 MS-typical regions of the CNS (periven-

tricular, juxtacortical, infratentorial, or spinal cord).

• DIT: Simultaneous presence of asymptomatic EL and HL lesions at any time.

As stated above, an automatic system to detect and segment MS lesions would prove

helpful in the clinical practise to diagnose, as well as to evaluate a patient’s follow-up and

the effect of drug therapy.

1.3 Scope of the research

The Computer Vision and Robotics group (VICOROB) of the University of Girona has

been working on medical image analysis since 1996, mainly in segmentation and registration

of mammographic images. Thanks to their previous knowledge acquired through several

medical projects, the group recently started to focus their research on brain MRI analysis.

This new line of research started with the segmentation of MS lesions and has expanded to

other fields such as temporal analysis, registration (temporal and intersubject) or atrophy

analysis.
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All these studies have been carried out within the funded research projects PI09/91918

“SALEM: Segmentación Automática de Lesiones de Esclerosis Múltiple en imágenes de

resonancia magnética” awarded by the Instituto Carlos III, and the VALTEC09-1-0025

“Salem: toolkit para la segmentación automática de lesiones de esclerosis múltiple en reso-

nancia magnética” awarded in 2009 by the Generalitat de Catalunya within the “Projectes

de valorització VALTEC”.

The goal of both projects is twofold: to create a novel dataset with imaging data from

three different hospitals using three different scanning machines from different manufac-

turers and to study and develop techniques to segment MS lesions that can be transferred

to experts for clinical use. Within these projects, in which this PhD was the starting point

of the research, there has been a strong relationship with medical expert teams in the field

of multiple sclerosis. Specifically:

• From the Hospital Vall d’Hebron: Dr. Rovira, who is the director of the “Unitat

de Ressonància Magnètica-Centre Vall d’Hebron” (URMVH) and has participated

in several research projects funded by public and private institutions in the last few

years, as well as Dr. Pareto and technicians Huerga and Corral. This group is part

of the MAGNIMS network, a European network of centers that share an interest in

the MS study through MRI.

• From the Clínica Girona: Dr. Vilanova and Dr. Barceló are the codirectors of the

“Unitat de ressonància magnética” at the Clínica Girona and are members of several

national and international radiology societies.

• From the Hospital Josep Trueta: Dr. Ramió-Torrentà, who is the current coordinator

of the “Unitat de Neuroimmunologia i Esclerosi Múltiple”, as well as Drs. Quiles and

Valls, who work for the radiology unit. The relationship with this hospital arose from

a previous collaboration with Dr. Gich within the project EM-Line that studied MS

rehabilitation through interactive activities and games.

1.4 Objectives

As part of the SALEM framework, this PhD thesis’ main goal is

the proposal of a new pipeline capable of classifying brain tissues

and detecting MS lesions in magnetic resonance imaging.
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This objective refers to the segmentation of a set of images from a patient at a given stage

and does not include the temporal evolution of that patient.

This general goal can actually be divided into several sub-goals focused on the different

stages of this thesis. The first sub-goal is to exhaustively analyse the state of the

art of MS lesion segmentation techniques. This objective aims to review the current

MS lesion segmentation strategies to better understand their advantages and drawbacks.

With this analysis, it was clear that images are corrupted by several artifacts and using

prior knowledge can improve the results.

Following this notion, our second sub-goal is the analysis of the state of the art

in atlas-based segmentation applied to brain MRI. Atlas-based segmentation is an

important field of brain MRI analysis due to its strength to intrinsically encode spatial

constraints (such as the location of certain structures) and the capability of adapting prior

knowledge to a specific subject. Our main research hypothesis throughout this thesis

is that the use of an atlas can overcome the limitations of the current detection and

segmentation approaches.

The only thing left before the segmentation process is to reduce all the image artifacts.

Thus, our third sub-goal is to analyse different tools for MRI preprocessing. These

preprocessing steps can be divided into five main groups: noise reduction due to the

capturing process, the correction of the bias field inherent to this image modality, inter-

subject intensity normalisation by means of histogram matching, skull stripping to remove

non-brain tissue that can bias segmentation results, and registration to adapt a healthy

tissue atlas to the subject’s space. Public software solutions will be tested as part of the

whole preprocessing pipeline.

With the images corrected and the atlases prepared, the next step and fourth sub-goal

is to implement a new proposal exploiting the strengths of the best methods

of the state-of-the-art and reducing their weaknesses. This proposal will be atlas-

based for the aforementioned reasons.

Finally, in order to test our results, the last sub-goal consists of creating a novel

database with imaging data from three different hospitals that can be used by

other members of the group.

1.5 Document structure

This thesis is structured as follows:
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• Chapter 1. Introduction. This chapter presented the background, objectives and

planning of this thesis project. In the following chapters, all details regarding MS

segmentation are presented and extended in order to present the current techniques

in this field and to introduce a new proposal.

• Chapter 2. A review on automated MS lesion segmentation. After stating

the problem in chapter 1, we will review the most recent techniques dealing with this

problem focusing on advantages and drawbacks. A classification of these techniques

in supervised and unsupervised strategies will also be introduced, emphasising atlas-

based segmentation methods. Finally, the reported results will be gathered, along

with the most common evaluation measures and databases followed by the extracted

conclusions.

• Chapter 3. Brain atlases: concepts and application. After the review in

chapter 2, we will further investigate one of the most common and powerful strategies.

Atlas-based segmentation has been a wide research topic in brain MRI due to its

strength in using prior knowledge to segment either tissues or common structures.

We provide an overview of the most important steps in these approaches: atlas

creation, atlas registration and the final segmentation.

• Chapter 4. MS lesion segmentation proposals. Two new supervised pipelines

(both based on an atlas) will be presented. First we introduce their mutual prepro-

cessing steps and then we explain the two different approaches in detail. The first is

based on the expectation-maximisation algorithm and tissue segmentation, while the

second uses an ensemble classifier with state-of-the-art contextual features together

with an outlier map.

• Chapter 5. Experimental results. The methods implemented will be tested

and evaluated with real data using common similarity measures. In this chapter,

we present our results, pointing out strenghts and weaknesses as we also present and

describe a novel database comprising imaging data from three different hospitals with

different lesion loads.

• Chapter 6. Conclusions. In this final chapter, conclusions summarising the work

developed are presented. Based on these conclusions, possible solutions are also

introduced to be implemented as future works.



Chapter 2

A review on automated MS

lesion segmentation

What’s that? A gun? I got a gun. He got a gun.

He got a gun... Everybody got guns!

Gyp Rosetti, “Boardwalk Empire (Season three)” (2012)

2.1 MS lesion segmentation

In image analysis, segmentation is defined as the process of delimiting a region with certain

properties. For instance, such regions could be the sky in a landscape picture, a star in

astronomical images or a certain brain tissue in MRI. Related to this concept, detection

is defined as the process of finding an object in a certain image. For instance, we could

detect a car in a street scene, a cluster of stars forming a galaxy in a satellite image or an

MS lesion. Usually, when dealing with detection, a rough estimation of the region occupied

by the object is enough. However, both segmentation and detection can be performed and

evaluated together.

Another important concept of artificial intelligence is classification, which is defined as

the process of assigning a certain category to a new observation using a set of observations

whose category is known. This definition implies a two-step process where, first, a model

is learned in the training set and, afterwards, the model is tested on the new observations

to determine this category. When applied to image pixels (or voxels), the classification

becomes a segmentation, since a label is assigned to each pixel delimiting a region.

In this chapter, the recent state-of-the-art of automated MS lesion segmentation is re-

13
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viewed [141]. Firstly, the main image features used as input for the different segmentation

algorithms are analysed. Afterwards, a classification of the different strategies is proposed

and the most significant works in this field are described. Finally a discussion and conclu-

sions are presented.

2.1.1 Features used for lesion segmentation

Based on the assumption that different brain tissues have different grey-level intensities, the

most common feature used for lesion segmentation is the voxel intensity [15]. Furthermore,

the appearance of the tissue and the lesions depends on the MR image used (see figure 1.3

from the previous chapter, which shows four examples of different MRI scans of a patient

with MS lesions).

Analysing the literature, one may distinguish between single-channel or multi-channel

approaches, i.e. approaches that use only one MR image or those that combine several

images. Single-channel approaches are mainly used to segment the brain tissues. For

instance, T1-w images are widely used for this purpose, since they show the best contrast

between the three main brain tissues: WM, GM, and CSF. This initial tissue segmentation

may then be used to help obtain the final lesion segmentation, and T2-w and PD-w are the

classical images for detecting MS lesions. Another example of the single-channel approach

is the segmentation of MS lesions using just the FLAIR sequence [121]. The multi-channel

approaches, on the other hand, use at least two of the PD-w, T1-w, T2-w, and FLAIR

images. One of the benefits of using more than one of the different MR images is that

it increases the intensity feature space, producing a better discrimination between brain

tissues. Furthermore, more than one kind of image may be required because MS lesions

can appear independently in different images [244], depending on their subtype.

Additional features are used in some approaches to include spatial information in the

algorithms. This is usually done using Markov Random Fields (MRF) to model neigh-

bourhood interactions [228, 249]. If the parameters controlling the strength of the spatial

interactions are properly selected, smoother structures are obtained. Alternatives to MRF

that also include spatial information are the fuzzy connectedness (FC) segmentation meth-

ods [225] or the inclusion of a probabilistic atlas [125].

Moreover, most of the algorithms can be roughly divided into either global or local de-

pending on the information they use (i.e. the feature extraction process). Global methods

extract features from the whole image and then use this information to classify each voxel

independently. In contrast, local methods use only local information to create, in many
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cases, an undetermined number of local regions. The challenge that these local methods

must overcome is to combine these local regions to build a global and meaningful segmen-

tation.

2.2 Classification of lesion segmentation approaches

In this section, the MS lesion segmentation methods are described according to the clas-

sification shown in tables 2.1, 2.2, 2.3 and 2.4. Notice that the tables offer an overview

of all these works with respect to the strategy, the type of MR images used, the type of

lesions detected and the algorithms. The criteria used to select these methods are based

on several aspects: 1) representative works for each of the identified strategies; 2) the re-

ported experimental results and the evaluation measures used by the authors; and 3) the

data sets used to perform the experiments (synthetic, real cases, and data from the MS

Lesion Segmentation Challenge 2008 [208], which enables a quantitative comparison of the

evaluation results).

The papers are divided between supervised and unsupervised segmentation strategies.

Supervised approaches are those based on using some kind of a priori information or

knowledge to perform the MS lesion segmentation. The group of supervised strategies is

further subdivided into two sub-groups of approaches. In the first group all the approaches

use atlas information and therefore require the application of a registration process to

the analysed image to perform the segmentation. In the second group all the approaches

perform an initial training step on features extracted from manually segmented images

annotated by neuroradiologists. The methods in this second group employ the image

intensities previously segmented by an expert to train a classifier that segments the tissues

and lesions of the MR images.

With regard to the unsupervised strategies, where no prior knowledge is used, two differ-

ents sub-groups can also be identified. A sub-group of methods that segment brain tissue

to help lesion segmentation and another sub-group that use only the lesion properties for

segmentation. In the first sub-group, there are methods that either segment the tissue first

and then the MS lesions, or segment the tissue and the lesions at the same time. In the

second sub-group, the methods directly segment the lesions according to their properties,

without providing tissue segmentation. The advantage of segmenting the tissue is that

neuroradiologists can also evaluate the GM tissue volumetry and monitor the progression

of cerebral atrophy.
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Figure 2.1: Flowchart of the supervised strategies based on atlas.

2.2.1 Supervised strategies based on atlas

Looking at the strategies based on atlas information, it is possible to distinguish between

the use of both statistical and topological atlases. A statistical atlas provides the prior

probability of each voxel to belong to a particular tissue class. This statistical atlas is built

from a set of manual segmentations of the structures of interest, where the boundaries of

each structure are used to make a smooth probability map and to account for anatomical

variations beyond those present within the training set. Notice that the use of an atlas can

be helpful in classifying tissues in the presence of noise or inhomogeneities [56] (an atlas

takes spatial information into account), or in order to segment lesions as deviations from

normal human brains. On the other hand, a topological atlas is a parcellation of the brain

that is edited to encode a specific topology for each structure and group of structures.

This topological atlas is usually used to preserve topology and to lower the influence of

competing intensity clusters in regions that are spatially disconnected, while the statistical

atlas affects the segmentation of adjacent structures that have similar intensity. As shown

in the flowchart of figure 2.1, notice that in atlas-based segmentation methods, the analysed
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Article Algorithms Images Lesions

Kamber (1995) [119] Different classifiers PD, T1, T2 HL

Van Leemput (2001) [135] EM + MRF PD, T1, T2 HL

Zijdenbos (2002) [251] ANN PD, T1, T2 HL

Wu (2006) [244] kNN PD, T1c, T2 EL & BH & HL

Bricq (2008) [35] FAST-TLE + HMC T2, FLAIR HL

Kroon (2008) [125] PCA T1, T2, FLAIR, DTI (FA, MD) HL

Prastawa (2008) [174] Region partitioning T1, T2 HL

Shiee (2008) [198] FCM PD, T1, T2, FLAIR HL

Shiee (2008) [197] FCM T1, T2, FLAIR HL

Souplet (2008) [204] EM + GMM T1, T2, FLAIR HL

Tomas (2009) [220] Bayes T1, T2, FLAIR HL

Akselrod-Ballin (2009) [2] FLD + Decision Forest PD, T1, T2, FLAIR HL

Shiee (2010) [199] FCM T1, T2, FLAIR HL

Geremia (2011) [92] Random forests T1, T2, FLAIR HL

Schmidt (2012) [187] EM + Thresholding T1, FLAIR HL

Table 2.1: Summary of the supervised approaches based on atlas for MS lesion seg-

mentation with respect to the sequences, algorithms and lesions. The acronyms for

the algorithms stand for (in alphabetical order): Artificial neural networks (ANN),

expectation-maximisation (EM), fast trimmed likelihood estimator (FAST-TLE), fuzzy

c-means (FCM), fisher linear discriminant (FLD), hidden Markov chains (HMC), k-

nearest neighbours (kNN), Markov random fields (MRF) and principal components analysis

(PCA). The acronyms for the lesions and sequences stand for: Diffusion tensor imaging

(DTI), fractional anisotropy (FA), mean diffusivity (MD), black holes (BH), enhanced

lesions (EL), and hyperintense T2 lesions (HL).

MR image has to be registered with the atlas before the segmentation is done. Hence, the

challenge for these atlas-based approaches is to align the atlas and the images, thereby

converting the segmentation problem into a registration problem.

The first example of table 2.1 is the proposal by Kamber et al. [119], where the inputs

for the training step are not voxel intensities but rather their probabilities of belonging

to WM, GM, or CSF tissue categories. Using this prior information as a pattern, their

approach trains and tests a set of different classifiers to segment MS lesions.

Van Leemput et al. [135] provide another example of an atlas-based approach for MS le-

sion segmentation1. They proposed an intensity-based tissue classification using a stochas-

1 This software is publicly available at http://www.medicalimagecomputing.com/downloads/ems.php

as an add-on to the well-known SPM package (http://www.fil.ion.ucl.ac.uk/spm/).
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tic model extracted from an expectation-maximisation (EM) algorithm [64], while simulta-

neously detecting MS lesions as outliers that were not well explained by the model. In this

method, a prior classification is derived from a digital brain atlas that contains information

about the expected location of WM, GM, and CSF. Their approach also corrects for MRI

field inhomogeneities, estimates tissue-specific intensity models from the data itself, and

incorporates contextual information into the classification using an MRF.

Following the outlier concept, Schmidt et al. [187] presented an automated tool based on

outlier models. First, tissues were segmented using SPM on the T1-w image. Afterwards,

tissue distributions were estimated on the FLAIR image using the segmentation results.

These distributions were then used to estimate outlier maps for each tissue that were

added. With this final outlier map, a threshold was estimated to obtain a mask that was

refined using a region growing approach.

The k-nearest neighbour (kNN) [71] is probably the commonest of supervised classifi-

cation methods. With this algorithm a test sample is classified by the majority class of

its closest neighbours. kNN makes strong assumptions about the data, i.e. that there is

no correlation among different multivariate channels and that all variances are the same.

Based on this classifier, Wu et al. [244] proposed the automatic segmentation of MS lesions

into three subtypes: enhancing lesions, black holes and hyperintense lesions. An intensity-

based statistical kNN classifier is combined here with atlas segmentation to extract WM

masks. Based on the assumption that lesions are only found within WM regions, the au-

thors discard all the lesions outside the masks. Moreover, partial volume problems are

corrected using morphological operators. Another supervised approach relying on atlas

information is provided by Zijdenbos et al. [251]. This method2 uses the probability - ex-

tracted from the atlas - that tissue is WM, GM, or CSF and uses the intensities from T1-w,

T2-w and PD-w as inputs to an ANN classifier, which performs the lesion segmentation.

There are more examples of atlas-based approaches. The method proposed by Shiee et

al. [197, 198, 199] segments brain tissues in an iterative way, interleaving a fuzzy segmen-

tation and defining topologically consistent regions. MS lesions are identified as dark holes

inside the WM. The authors use multi-channel images to segment the major structures of

the whole brain. Basically, their method is an atlas-based segmentation technique employ-

ing a topological atlas and a statistical atlas, together with the well-known fuzzy c-means

(FCM) algorithm [29] which performs the classification. As reported by Shiee et al., the

advantage of using the topological atlas is that all segmented structures are spatially con-
2 This software is publicly available at http://www.bic.mni.mcgill.ca/, as part of the INSECT ap-

plication.
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strained, thereby allowing subsequent processing to perform cortical reconstruction and

cortical unfolding. The automated atlas-based segmentation method presented by Bricq

et al. [35] performs tissue classification using an algorithm based on the trimmed like-

lihood estimation of a mixture model [102], while the lesions are outliers to the model.

Neighbourhood information is encoded by the hidden Markov chain (HMC) model and

also incorporates the use of a statistical atlas. Prastawa and Gerig [174] proposed a fully

automated lesion segmentation method that combines outlier detection and region parti-

tioning, and is based on using an atlas of healthy subjects to detect lesions as outliers. The

algorithm is iterative and alternates between estimating the intensity probability density

functions (PDF), computing voxelwise spatial probabilities, correcting for intensity inho-

mogeneities and partitioning the images into spatially coherent regions. Notice that the

intensity PDF for the healthy brain tissue is computed using samples obtained from the

atlas. The minimum covariance determinant robust estimation scheme is then applied to

the intensity samples of healthy tissues to determine inliers and outliers. The inlier samples

are used to form the PDF of the brain tissue intensities, while the outliers are assigned to

the lesion class, similar to the approach of Van Leemput et al. [135]. Moreover, a watershed

algorithm that takes the neighbourhood information into account is used to initialise the

segmentation. Therefore, segmented regions are used rather than individual voxels. The

authors argued that the use of regions helps to significantly reduce false positives inherently

linked to conventional voxel-based classification.

Kroon et al. [125] introduced a method based on a local feature vector for automated

lesion segmentation of multi-channel MRI data. Their local feature vector contains neigh-

bourhood voxel intensities, histogram, and probabilistic atlas information. The histogram

information is added to provide the model with low pass intensity information of a certain

region, while the atlas probability allows it to exclude false MS voxel detection in areas

where MS is less probable. Principal component analysis (PCA), with a log-likelihood

ratio, is then used to classify each voxel. Using a different algorithm, Souplet et al. [204]

proposed a method designed to detect hyperintense signal areas on a T2-FLAIR sequence3.

They first apply an EM algorithm to perform the segmentation in T1-w and T2-w images.

This segmentation, using an atlas, allows them to initialise, for each voxel, the probability

of belonging to the different tissue intensities modelled as Gaussian mixture models. From

the resulting tissue segmentations, the authors propose to automatically apply a thresh-

old for the T2-FLAIR sequence to detect the most plausible lesions in the hyperintense

signals. In this final step an enhanced FLAIR image is generated to allow a better lesion

3This software is publicly available at http://www-sop.inria.fr/asclepios/software/SepINRIA.
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segmentation.

Following the idea of Prastawa and Gerig [174], Tomas et al. [220] used the samples ex-

tracted from an atlas to train a classifier. This procedure to extract healthy tissue training

samples is based on the work of Scully et al. [188], who extended the intensity feature space

to obtain better discrimination between tissue clusters. Subsequently, their method uses

an atlas to create a distance map from which training samples were selected. With this

training data, a Bayes classifier performed the MS lesion segmentation. This approach also

introduced an atlas-based post-processing step to remove false positive lesions. A different

classification approach, was presented by Geremia et al. [92]. This approach introduced the

use of meta-features based on context and simmetry to further aid the segmentation. To

compute these features, a fast technique based on image integrals is used. After their com-

putation, these features combined with atlas probabilities and image intensities were used

to create a huge feature pool to train a random forest algorithm. Finally, Akselrod-Ballin

et al. [33] proposed a multi-scale approach that combines segmentation with classification

to automatically segment MS lesions in multi-channel MR images. Their method uses seg-

mentation to obtain a hierarchical decomposition of the MR images, which produces a rich

set of features describing the regions in terms of intensity, shape, location, neighbourhood

relations, and anatomical context. The atlas information is applied in this step to obtain

statistical features. Afterwards, segmentation is performed using a decision forest along

with Fisher linear discriminant analysis to deal with multiple features.

In conclusion, atlas-based approaches can be used to segment both the tissue and the

lesions. Moreover, atlases make it possible to treat the lesions as outliers in the tissue, to

introduce spatial information into the segmentation process and to reduce the false positive

lesion segmentations. As a drawback, these approaches rely on building an atlas, which is

not a simple task. In addition, they also introduce the registration problem into the MS

lesion segmentation. Note that this registration step is even more difficult when dealing

with cases with severe atrophy, large numbers of lesions, etc.

2.2.2 Supervised strategies based on learning from manual segmentation

The second group of supervised approaches uses manually-segmented images annotated by

neuroradiologists to segment the MS lesions. Figure 2.2 shows the flowchart followed by

these algorithms. Note that unlike atlas-based approaches these approaches do not need

any registration process between the analysed images and the atlas. In contrast, these

methods use mainly the image intensities of different MR images to train a classifier for
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Figure 2.2: Flowchart of the supervised strategies based on learning from manual segmen-

tation.

the segmentation purpose. As reported by several authors, the use of prior knowledge

to guide the segmentation of MS lesions improves the robustness of the algorithms, thus

reducing the volume of false positive lesions compared to purely data-driven segmentations.

Note that some of the approaches classified in this category may be similar to strategies

described in the previous section. However, the majority of the strategies included here

rely on a training process performed using features extracted from manually-segmented MR

images. Furthermore, some of these methods include the use of registration algorithms that

focus on the intra-sequence and inter-sequence pre-processing registration steps. Table 2.2

shows that a large number of proposals have followed this strategy, most of them being

multi-channel approaches. Furthermore, different classifiers or a combination of them, for

example, ANN, kNN, AdaBoost, Bayesian classifiers, and decision trees, have been used

to perform the segmentation.

Goldberg et al. [94] use local thresholding to select the brightest regions of the image.

Afterwards, the lesions are segmented by looking for closed contours and using different

morphological properties such as area, perimeter and shape. For segmentation, an ANN is



22 Chapter 2. A review on automated MS lesion segmentation

Article Algorithms Images Lesions

Goldberg (1998) [94] ANN PD, T2, FLAIR EL & HL

Alfano (2000) [3] Spatial clustering PD, T1, T2 HL

Anbeek (2004) [6] kNN PD, T1, T2, FLAIR, IR HL

Anbeek (2005) [5] kNN PD, T1, T2, FLAIR, IR HL

Sajja (2006) [186] Parzen windows PD, T2, FLAIR HL

Datta (2006) [55] Parzen windows + MGR PD, T1, T2, FLAIR BH

Anbeek (2008) [7] kNN FLAIR HL

Scully (2008) [188] Bayes T1, T2, FLAIR HL

Morra (2008) [156] AdaBoost T1, T2, FLAIR, DTI (FA, MD) HL

Subbanna (2009) [209] Simulated annealing + MRF PD, T1, T2 BH & HL

Lecoeur (2009) [133] Graph cuts PD, T1, T2 HL

Table 2.2: Summary of the supervised approaches based on learning for MS lesion seg-

mentation with respect to the sequences, algorithms, and lesions. The acronyms for the

algorithms stand for (in alphabetical order): Artificial neural networks (ANN), k-nearest

neighbours (kNN), morphological grayscale reconstruction (MGR) and Markov random

fields (MRF). The acronyms for the lesions and sequences stand for: Diffusion tensor imag-

ing (DTI), fractional anisotropy (FA), mean diffusivity (MD), black holes (BH), enhanced

lesions (EL), and hyperintense T2 lesions (HL).

trained and used to classify the regions. Alfano et al. [3] also used previous segmentations

of normal tissues to extract features used to train a spatial clustering algorithm. The

authors stated in their experiments that their approach was also suitable for monitoring

changes in the disease over time.

Anbeek et al. applied the kNN classifier in two studies. The aim of the first was

exclusively to detect MS lesions [6] and spatial features were included in the classifier to

achieve better lesion segmentations; in the second study, the aim was to model all brain

tissues [5] and in this case, the kNN classifier was used to classify tissues and lesions

simultaneously. It is important to mention that the authors tested their multi-channel

approach using information from T1-w, inversion recovery (IR), PD-w, T2-w, and FLAIR

images, concluding that the incorporation of the T1-w, PD-w or T2-w did not significantly

improve the segmentation results of the different brain tissue types.

From a different viewpoint, Sajja et al. [186] proposed segmenting CSF and lesions using

a Parzen windows classifier and then segmenting WM and GM using a parametric method.

The assumption behind this approach is that GM and WM, but not lesions and CSF, follow

a Gaussian distribution. Therefore, the authors first classify CSF and hyperintense T2-w
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lesions using a Parzen classifier and then the remaining brain parenchyma - excluding CSF

and lesions - is classified into GM and WM using the PD-w and T2-w images and an MRF

together with an EM algorithm. This method also exploits contextual information by using

a fuzzy-connectedness to minimise the false negative lesion classifications. In another work,

the authors also proposed segmenting black holes (considered as regional minima) in MS

using a similar strategy [55]. After applying the previous segmentation method, black hole

segmentation is achieved by using morphological grey-scale reconstruction in T1-w images.

The work of Scully et al. [188] introduced a new parametric method to the field of MS

lesion segmentation. This method uses a vector image joint histogram, built over a training

set, as an explicit model of the feature vectors indicating lesion. This model is then used to

generate samples to train a naive Bayesian classifier which proceeds to classify the vector

image composed of the T1-w, T2-w, and FLAIR images. Using a different strategy, Morra

et al. [156] proposed a framework to automatically segment sub-cortical structures in brain

MR images. Their method uses an AdaBoost algorithm to learn a unified appearance and

context model which is then used to perform the lesion segmentation. Their feature pool

includes intensity, position, and neighbourhood features.

Subbanna et al. [209] presented a fully automated framework for identifying MS lesions

in multi-channel MR images. Manual segmented images are used to extract intensity his-

tograms of both tissue and lesions. From the histograms, multivariate Gaussian distribu-

tions are estimated and used in the MRF classification step, which incorporate local spatial

variations and neighbourhood information. Finally, Lecoeur et al. [133] also presented an

optimised supervised lesion segmentation method using multi-channel MR images. Their

proposal creates an optimised spectral gradient colour space from single-channel images.

Based on this transformation, they then apply a graph cuts segmentation. As argued by

the authors, the graph cuts algorithm provides an optimal solution for the joint use of

regional and border information in a way similar to how MRFs work.

To summarise, the use of manually annotated data allows expert knowledge to be in-

corporated into MS segmentation approaches. Moreover, as shown in table 2.2, having

initial segmentations allows a large variety of classifiers (ANN, kNN, EM, Bayes, etc) to

be applied. As in the atlas-based approaches, selecting a good initial MRI training set is

an important step. Another issue with many lesion segmentation algorithms, particularly

those that employ training data to model lesion intensity profiles, is that they are depen-

dent on a specific acquisition sequence. These approaches must be modified or re-trained

to process data acquired using alternative pulse sequences.
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Figure 2.3: Flowchart of the unsupervised strategies based on tissue properties.

Article Algorithms Images Lesions

Freifeld (2007) [83] EM + CGMM PD, T1, T2 HL

Khayati (2008) [121] Bayes + AMM + MRF FLAIR HL

García-Lorenzo (2008) [88] EM + MeS T1, T2, PD HL

García-Lorenzo (2008) [89, 87] EM PD, T1, T2 HL

García-Lorenzo (2008) [90] EM T1, T2, FLAIR HL

Table 2.3: Summary of the unsupervised approaches based on tissue for MS lesion seg-

mentation with respect to the sequences, algorithms and lesions. The acronyms for the

algorithms stand for (in alphabetical order): Adaptive mixtures method (AMM), con-

strained Gaussian mixture models (CGMM), expectation-maximisation (EM), mean shift

(MeS) and Markov random fields (MRF). The acronyms for the lesions and sequences stand

for: Hyperintense T2 lesions (HL).

2.2.3 Unsupervised strategies segmenting tissue

There are several works in which the main principle consists of applying an unsupervised

algorithm to segment the tissue and the lesions, as it is schematically shown in the flowchart

of figure 2.3. These approaches usually detect lesions as outliers on each tissue rather than

adding a new class to the classification problem. For instance, Freifeld et al. [83] first

initialise their algorithm based on a pre-segmentation using k-means and its subsequent

decomposition into a mixture of many spatially-oriented Gaussians per tissue (constrained

GMM) in order to capture the spatial layout [97]. The intensity is considered as a global

parameter and is constrained to be the same value for a set of related Gaussians per tissue.

In order to detect the lesions, a set of rules that distinguishes between normal tissue regions

and lesions is defined. Following initialisation, voxel-wise GMM parameters are learned

via an EM algorithm. Finally, an active contour algorithm is used to delineate lesion
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Figure 2.4: Flowchart of the unsupervised strategies based on lesion properties.

boundaries.

García-Lorenzo et al. [88] combined a modified version of the EM-based method (mEM)

to the trimmed likelihood estimator with the mean shift algorithm [48] to segment MS

lesions. A local segmentation approach (mean shift) is used to generate local regions in the

images, while an EM variant is employed to classify the regions obtained into healthy tissue

or lesions. In another work by García-Lorenzo et al. [90, 89, 87], the authors presented

a modified version of the spatio temporal robust expectation-maximisation (STREM) [1]

to perform the MS lesion segmentation. Their approach is based on three main processes:

robust estimation of healthy tissues using the mEM introduced above, refinement of out-

lier detection, and application of lesion rules. The authors included in another work the

possibility to semiautomatically improve the segmentation by using an interactive graph

cuts approach [86]. Khayati et al. [121] combined an adaptive mixtures method (AMM),

MRF and a Bayesian classifier to simultaneously classify the three main brain tissues and

the MS lesions using only FLAIR images. In particular, they first propose to segment the

brain into four classes: WM, GM, CSF and “others”. Afterwards, inside the “others” class,

lesions are dealt with as outliers not correctly explained by the model.

In conclusion, this set of algorithms are based on classifying the outliers coming from a

previous tissue segmentation in order to provide the lesion segmentation. Notice that the

results of the lesion segmentation depend highly on the quality of the tissue segmentation.

Furthermore, not all the tissue segmentation methods take abnormal cases (with severe

lesions, atrophy, etc) into account.
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Article Algorithms Images Lesions

Bedell (1998) [26] Threshold Subtraction T1, T1c, AFFIRMATIVE EL

Boudraa (2000) [33] FCM PD, T2 HL

He (2002) [106] MGR T1, T1c, AFFIRMATIVE EL

Datta (2007) [54] MGR T1, T1c, T2, FLAIR EL

Saha (2009) [185] FCM T2 HL

Table 2.4: Summary of the unsupervised approaches based on lesion properties for MS le-

sion segmentation with respect to the sequences, algorithms and lesions. The acronyms for

the algorithms stand for (in alphabetical order): Fuzzy c-means (FCM) and morphological

grayscale reconstruction (MGR). The acronyms for the lesions and sequences stand for:

Attenuation of fluid by fast inversion recovery with magnetisation transfer imaging with

variable echoes (AFFIRMATIVE), enhanced lesions (EL), and hyperintense T2 lesions

(HL).

2.2.4 Unsupervised strategies segmenting only lesions

The last group of unsupervised approaches is based on using only the lesion properties to

perform the MS lesion segmentation, avoiding hence the tissue segmentation step (figure 2.4

summarises the flowchart of this strategy). For instance, Bedell and Narayana [26] present

an automated segmentation and quantification of contrast-enhanced lesions based on per-

forming threshold subtraction to eliminate enhancing structures such as choroid plexus.

The authors reported that all MS lesions larger than 5 mm3 were successfully identified

and the automated analysis produced no false positive or false negative lesions above this

volume in 13 different patients. The method used by Boudraa et al. [33] performs a FCM

algorithm two times to detect lesions. The first FCM algorithm has the goal of obtaining

two clusters: one that groups together CSF and lesions, and another that groups together

WM and GM. Afterwards, a second FCM algorithm is applied to distinguish between le-

sions and CSF. A final post-processing step based on anatomical knowledge is performed

to remove extra segmented structures. This strategy assumes that, in the first step, all the

lesions have been grouped together within a specific cluster and then, in the second step,

this cluster is resegmented to distinguish between healthy tissue and lesions, taking spatial

information into account. Saha et al. [185] automatically determine the number of clus-

ters by introducing genetics into the algorithm. Membership values of points to different

clusters are computed based on a point symmetry based distance rather than using the

Euclidean distance. The chromosomes encode the centers of a number of clusters, whose

value may vary.
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He and Narayana [106] also proposed a method for the automated identification and

segmentation of contrast-enhanced MS lesions in brain MR images. This method relies

on an adaptive local segmentation derived from morphological grey-scale reconstruction

operations to identify both lesion and non-lesion enhancements. Similarly, Datta et al. [54]

developed a method for the identification and quantification of gadolinium (Gd) enhance-

ments. This is also a multi-channel MRI approach and aims to identify enhancements using

morphological operations. These enhancing lesions are further segmented based on fuzzy

connectedness. Their experimental results show that accurate segmented Gd enhancements

are obtained.

In regard to this strategy, one should note that unlike the methods presented in the

previous section, these approaches do not rely on an initial WM, GM and CSF tissue seg-

mentation. Moreover, they are useful for segmenting special lesions such as black holes and

enhancing lesions. As a drawback, however, they have to specifically define the properties

used in each image, which is not an easy task. It should be noted that some artefacts may

share the same lesion properties.

2.2.5 Summary of the strategies

Four strategies used to deal with the automated MS lesion segmentation have been pre-

sented. In what follows a brief summary of these strategies, summarising the main advan-

tages and drawbacks is provided (see the scheme in figure 2.5). Moreover, a more detailed

description of a representative algorithm of each strategy is presented.

The approaches have been classified between supervised and unsupervised algorithms.

The inherent advantage of supervised algorithms is that they can automatically learn the

characteristics of both normal tissue and lesions. However, their main problem is that

they rely on having a good training set, which may be difficult to obtain. Two supervised

strategies have been identified according to the procedure the annotations are introduced

into the algorithms: with or without using a registration step. The advantage of atlas-

based approaches is that spatial information is inherently used, although registration is

also a challenging task. On the other hand, training-based approaches allow to use real

characteristics of the tissues and the lesions, but spatial information has to be imposed in

a further step since it is not included in the training process. We have also seen that there

is a group of techniques which are unsupervised and therefore do not depend on a training

step, being more generalised algorithms. This group of unsupervised techniques has been

subdivided into two different strategies according to the use of the tissue information. The
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Figure 2.5: Advantages and drawbacks of the different reviewed MS lesion segmentation

strategies.

advantage of using tissue information is that may help in localising the lesions. However,

the correct segmentation of the tissue is critical in these approaches. On the other hand,

defining rules according to the lesion features allows to identify special lesions, although

the rules may change with the used modality and scanning machine.

An example of supervised MS lesion segmentation by using atlas registration is the

method of Souplet et al. [204], which used the EM algorithm to maximise the log-likelihood

between the MRI data (T1-w, T2-w, and FLAIR images) and a Gaussian model of 10

classes: WM, GM, CSF, 6 GM/CSF partial volume classes, and one outlier class repre-

senting mostly the vessels. In this approach, the probability of each voxel to belong to the

different classes is first initialised thanks to the a priori registration with the atlas.

After the initialisation process, the two steps of the EM algorithm are iterated. In

the maximisation step, the parameters of each class (mean and covariance) are computed

from the voxel intensities and their probabilities of belonging to the different classes. The

parameters of the partial volume classes are computed as a proportion of the pure tissue

parameters, while the parameters of the outlier class are obtained as a fraction of the CSF

parameters. Therefore, in the expectation step, the probability of each voxel to belong

to the different classes is updated using the Gaussian function with the class parameters

and the atlas values as prior probabilities. Finally, when the algorithm converges, a bi-

dimensional Gaussian distribution is estimated for each class including GM, WM, CSF,

and partial volumes as well as all the voxel probabilities related to those distributions.
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After the EM segmentation, the obtained GM mask is used to compute the mean and

standard deviation values of this region in the FLAIR image which in turn are used to

determine a threshold that allows the lesion segmentation. The FLAIR image contrast

is first enhanced using morphological operations and then thresholded for obtaining an

initial lesion mask. In order to reduce false positives, this mask is further refined using the

WM mask with the cavities filled (representing a “healthy WM" mask) and the CSF and

WM masks coming from the EM. Therefore, the lesion voxels are defined as those that are

present in the “healthy WM” but not present in the real WM nor CSF masks.

The approach of Subbanna et al. [209] is a clear example of a supervised framework

for identifying MS lesions in multi-channel MRI using manually segmented images. These

manual segmentations are used to extract intensity histograms of both tissue and lesions

using the intensities from PD-w, T1-w and T2-w images. A multivariate Gaussian distri-

bution is then fitted to those histograms. In the case of lesions, two different Gaussians

are estimated: black holes (visible on both T1-w and T2-w images) and other lesions (only

visible in T2-w images). These intensity distributions are then used in a MRF optimi-

sation scheme, where the energy of a given segmentation is optimised using a simulated

annealing approach. This energy, is defined by three different terms: a data term which is

computed using the voxel intensities and the intensity distributions previously computed;

a gradient term which is computed from the intensity distributions and the neighbouring

voxel intensities; and finally a weighting term which is defined as the number of voxels that

belong to a given class.

García-Lorenzo et al. [87] proposed an unsupervised method to classify each voxel of

the brain as belonging to one of the four classes: MS lesions, WM, GM, and CSF, using

only the intensities from PD-w, T1-w, and T2-w images. Firstly, the image intensities are

modelled with a GMM, where each Gaussian represents one of the normal appearing brain

tissues (GM, WM and CSF). In order to obtain the maximum likelihood estimation of the

distribution parameters for each tissue (mean, covariance matrix, and mixing proportions),

the EM algorithm is used. In this approach the authors proposed two contributions to

improve the initialisation step of the EM and the sensibility to outliers when estimating

the distribution parameters. First of all, instead of using an atlas as initialisation, several

random initialisations of the distribution parameters are used, iterating the algorithm 50

steps using only the T1-w image. Afterwards, the classification with the highest likelihood

is used to create a histogram for each tissue on each image to obtain its mean and variance.

The covariance matrix for each tissue is then defined as a diagonal matrix with the variances

of each image. In order to increase the robustness to outliers, the trimmed likelihood
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estimator is used when computing the tissue parameters. Instead of using all of the voxels,

a fraction of them with the lowest probability is rejected. In other words, the likelihood

is only computed with the voxels most likely to belong to the model. Once the tissues

have been segmented, the outliers with a Mahalanobis distance higher than a certain

threshold are considered as possible lesions. This initial estimate is subsequently refined

using heuristic rules. For instance, lesions should be hyperintense in PD-w and T2-w

images, lesions smaller than a certain area (i.e. 9 mm3) should be discarded, and lesions

should be contiguous to WM and not to the brain border.

With a different strategy, Datta et al. [54] proposed an unsupervised method which

does not rely on a tissue segmentation for identification and quantification of gadolinium

enhancements using FLAIR images together with pre- and postcontrast T1-w images.

The enhanced lesions on the postcontrast images are identified as regional maxima using

an iterative elementary geodesic morphological reconstruction. A regional maximum on

an image is defined as a group of connected voxels with signal intensities greater than

the immediate neighbours. The original postcontrast T1-w image is eroded with a three-

dimensional structuring element to obtain a T1′-w image. Afterwards, elementary geodesic

dilation consisting on first dilating the image with the structuring element, followed by the

point-wise minimum with the T1-w image is applied to the T1′-w image. This process is

iterated until no change in the morphologically reconstructed image is found. Afterwards,

regional maxima are obtained subtracting this image to the original postcontrast T1-w

image. These hyperintense areas also include contrast passing within the vascular system

and certain structures that lack a blood-brain barrier. In order to reduce these false

positives lesions are also segmented in FLAIR using the method proposed by Sajja et

al. [186]. Those postcontrast maxima that are not correlated with a FLAIR lesion are

discarded. Moreover, the remaining false positives may be also discarded using a change

ratio map obtained from the substraction of pre- and postcontrast T1-w images. Finally,

the lesion boundaries are refined using the fuzzy connectivity approach proposed by Udupa

et al. [225].

Qualitative examples showing the result of automatic MS lesion segmentation algorithms

are illustrated in figure 2.6. This figure provides visual examples from the representative

methods of each strategy described in this section. The first row shows an example of

the supervised approach based on atlas proposed by Souplet et al. [204], the second row

corresponds to the supervised approach based on training from Subanna et al. [209], the

third row illustrates the results from the unsupervised segmentation approach based on

tissue of García-Lorenzo et al. [87], while the last row shows the result of the unsupervised
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approach based on lesion properties from Datta et al. [54]. Note that this last algorithm was

especifically designed to detect gadolinium-enhanced lesions in post-contrast T1 images.

2.3 Results

MS lesion segmentation approaches are usually evaluated using different quantitative mea-

sures and both synthetic and real MRI volumes. The most common data sets used in

the works analysed and the typical measures computed for the evaluation are described in

this section. Finally, a comparison and discussion of the results presented by the different

approaches, highlighting the most interesting aspects, is also presented.

2.3.1 MS databases

As mentioned in the introduction, one of the main difficulties when comparing MS lesion

segmentation approaches is the lack of a common database (with ground truth data) for

training and testing the algorithms. Fortunately, this is becoming less of an issue with the

appearance of new databases designed to meet this particular objective.

Synthetic databases are useful as an initial framework for testing the various approaches

to segmentation. BrainWeb [47] is becoming a standard synthetic database for evaluating

both tissue classification and MS lesion segmentation algorithms. BrainWeb contains sim-

ulated T1-w, T2-w and PD-w brain MRI data based on two anatomical models: a normal

brain and a brain containing MS lesions. Moreover, this database provides different models

according to parameters such as slice thicknesses, noise levels and levels of non-uniformity

intensity. These simulated data sets are available in three orthogonal views - axial, sagittal,

and coronal - although the majority of algorithms use only the axial view.

Even though synthetic data sets are useful for an initial evaluation, they are not as chal-

lenging as real data sets. In most cases, algorithms that are correctly tuned for synthetic

data may not be successfully applied to a real in vivo acquired volume. Therefore, segmen-

tation algorithms have to be tuned and tested with MRI volumes of real patients. A review

of the work of recent years has highlighted a noticeable lack of a public MS MRI databases

supplied by hospitals. However, the recent MS Lesion Segmentation Challenge (2008) [208]

has provided a common framework for evaluating these algorithms, and for making com-

parisons among them. The MRI data for this competition was acquired separately by

the Children’s Hospital Boston (CHB) and the University of North Carolina (UNC). In

total, 53 brain MRI volumes that were randomised into three different groups: 20 training
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Figure 2.6: MS lesion segmentation examples. Each row shows the result of a representa-

tive algorithm of each reviewed strategy. From top to bottom: supervised approach based

on atlas (Souplet et al. [204]), supervised approach based on training (Subanna et al. [209]),

unsupervised approach based on tissue (García-Lorenzo et al. [87]), and unsupervised ap-

proach based on lesion (Datta et al. [54]). (a) shows the original images, (b) shows the

results of the automatic MS lesion segmentation algorithms, and (c) the corresponding

ground-truth annotations.
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(a) (b)

Figure 2.7: Generated 3D volume with MS lesions segmented by two different experts

showing a large inter-rater variability. Note here the importance of using more than one

manual annotation when evaluating the automatic algorithms (example extracted from the

MICCAI challenge).

MRI volumes (including ground truth); 25 testing volumes (without ground truth) that

were downloadable before the contest for training/validating the different algorithms; and

8 testing volumes used for the real contest from which the different participants extracted

their on-site results.

2.3.2 Evaluation measures

The results are evaluated in different ways in the reviewed papers. However, all the mea-

sures are based on comparing the result of automated segmentations with the ground

truth, which is usually annotated by an expert. In order to avoid intra- and inter-observer

variability, segmentations from more than one expert should be used, since this provides

a more consistent ground truth. Strategies such as the STAPLE algorithm [237] allows

annotations from different experts to be fused. This is an important issue specially when

considering the small volume of each lesion which may produce significant differences in

the evaluation measures. Figure 2.7 shows an example of large discrepancy between two

different expert annotations of the same patient (inter-rater variability).

Automated segmentations and ground truth can be compared by either comparing each

voxel in each lesion (voxel-to-voxel), or using the whole detected lesion (lesion-to-lesion).

Note that in both cases, voxels and lesions can be classified as a true positive (TP), false

positive (FP), true negative (TN), or false negative (FN). Obviously, the objective is to
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Name Computation

H
ar
d

Accuracy |TN|+|TP |
|TN|+|TP |+|FP |+|FN|

Percentage agreement

Dice similarity coefficient (DSC) 2×|TP |
2×|TP |+|FP |+|FN|

Error rate |FP |+|FN|
|FP |+|FN|+|TP |+|TN|

Sensitivity

|TP |
|TP |+|FN|

Overlap Fraction

Percentage of Correct Estimation

True Positive Fraction/Rate

Specificity |TN|
|TN|+|FP |

True Negative Fraction/Rate

False Positive Fraction/Rate 1 - Specificity

Under estimation fraction (UEF) |FN|
|TN|+|FN|

False Negative Volume Fraction

Over estimation fraction (OEF) |FP |
|TN|+|FN|

Extra Fraction

Overlap objects fraction
Nobj(TP )

Nobj(Ref)

So
ft

Probabilistic similarity index
2×

∑
Px,gs=1∑

1x,gs=1+
∑

Px

Probabilistic overlap fraction
∑

Px,gs=1∑
1x,gs=1

Probabilistic extra fraction
∑

Px,gs=0∑
1x,gs=1

Table 2.5: Common measures used in the evaluation of MS lesion segmentation methods.

obtain the maximum number of TPs and TNs, and at the same time reduce the number

of FPs and FNs. However, in practice, one should find the best trade-off between these

values, since increasing the number of TPs usually increases the number of FPs, while

reducing the number of FNs also reduces the number of TNs. In fact, there is permanent

debate about the best option: should we try to obtain more TPs or reduce FNs? One could

argue that it is preferable to reduce the FNs at the expense of increasing FPs. However,

increasing the number of FPs also leads to reduced confidence among neuroradiologists in

computerised tools.

Table 2.5 summarises the most common measures used to evaluate the MS lesion seg-

mentation algorithms. A distinction between two main groups has been done: those that

evaluate a “hard” result (i.e. each voxel is assigned to only one tissue type) and those

that provide a probabilistic result (i.e. each voxel has a membership value for belonging to

the different tissue types). However, one should notice that all these measures are highly

related. For instance, the probabilistic similarity index (PSI) is equivalent to the Dice
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similarity coefficient (DSC) if the final segmentation is binary. Note also that different

researchers used the same evaluation measure but under different names.

Other measures used that are not related to the ones described in the table are those

based on distance measures (in voxels or in millimetres). The aim of these measures is to

evaluate how far the boundaries of an obtained lesion segmentation are from those of the

real one. Although in general, these measures are not common in most of the analysed

works, they were used in the MS Lesion Segmentation Challenge [208].

In conclusion, although DSC has become something of a standard measure for evaluating

MS lesion segmentation methods, none of the measures are perfect for this purpose. In

fact, as stated by Cárdenes et al. [40], various different measures (i.e. measures based on

intensity values, distances and connectivity) should be combined to obtain a more objective

and reliable assessment.

2.3.3 Analysis of the results

This section provides a qualitative comparison of the results obtained by the analysed state-

of-the-art approaches. Table 2.6 summarises the data, the evaluation measures, and the

results obtained. As already mentioned, a quantitative evaluation among these approaches

is a difficult task due to the variability in the data sets and in the measures used.

Table 2.6 clearly shows that the most commonly-used evaluation measures are the DSC

and sensitivity (also known as the overlap fraction). The results obtained using real data

range from 0.47 to 0.808 for the Dice coefficient. The highest Dice coefficients reported

involving a large amount of data were obtained by Sajja et al. [186], who used 23 volumes

from which they obtained a mean Dice coefficient of 0.78. The work presented by Van

Leemput et al. [135] provides an example of how the variability of the ground truth affects

the results obtained. Using the same automatically segmented data and comparing them

with two different expert annotations, the DSC varies more than 10% (from 0.47 to 0.58).

These results illustrate the usefulness of algorithms that combine the ground truth.

Several works also use sensitivity and specificity as evaluation measures (see table 2.6).

Observe that the specificity reported by the different methods is always close to 1. This is

because this measure evaluates the ratio between the number of voxels correctly classified

as healthy divided by the number of voxels automatically classified as healthy. Therefore,

considering that lesions are small spots within the whole volume, the specificity value

always tends to be close to 1.
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Article Synthetic Real (Database) Measures Results

Kamber (1995) [119] - 12x56s (Montreal Neurological Inst.) Error rate 0.02-0.04

Goldberg (1998) [94] - 14x10s (Sheba Medical Center) Sensitivity 0.87
Specificity 0.96

Bedell (1998) [26] - 13v (Univ. of Texas Medical School at Houston) Qualitative -

Boudraa (2000) [33] - 10x22s (Hôpital d’Antiquaille) Sensitivity 0.65

Alfano (2000) [3] - 84x16s (Univ. Federico II) Sensitivity 0.81

Van Leemput (2001) [135] - 50v (BIOMORPH project ) DSC 0.47 & 0.58

Zijdenbos (2002) [251] - 29v (Montreal Neurological Inst.) DSC 0.60

He (2002) [106] - 5v (Univ. of Texas Medical School at Houston) Kappa 0.9

Anbeek (2004) [6] - 20x38s (Univ. Medical Center Utrecht) DSC 0.80
Sensitivity 0.79

OEF 0.19

Anbeek (2005) [5] - 10x5s (Univ. Medical Center Utrecht) DSC 0.808
Sensitivity 0.815
Specificity 0.999

Datta (2006) [55] - 14v (Sanjay Gandhi Post-Graduate DSC 0.73± 0.11

Inst. of Medical Sciences) Sensitivity 0.72± 0.13

OEF 0.27± 0.21

UEF 0.28± 0.13

Sajja (2006) [186] - 23v (Sanjay Gandhi Post-Graduate DSC 0.78± 0.12

Inst. of Medical Sciences) Sensitivity 0.88± 0.13

OEF 0.38± 0.27

UEF 0.11± 0.13

Wu (2006) [244] - 6x2v (Slotervaart Hospital) Sensitivity 0.70 (T2)
0.62 (BH)

Specificity 0.98 (T2)
0.99 (BH)

Datta (2007) [54] - 22v (Sanjay Gandhi Post-Graduate DSC 0.76± 0.18

Inst. of Medical Sciences) Sensitivity 0.74± 0.22

OEF 0.25± 0.62

UEF 0.26± 0.22

Khayati (2008) [121] - 20x12∼20s (Koorosh Diagnostics DSC 0.7504
and Medical Imaging Center) Sensitivity 0.7402

OEF 0.2303

Garcia-Lorenzo (2008) [88] 7v (McConnel Brain Imaging Centre) DSC 0.55± 0.05

Garcia-Lorenzo (2008) [90] 3v (MR and Image Analysis Research Centre) DSC 0.56

Tomas (2009) [220] - 9v (Boston Children’s Hospital) Sensitivity 0.65± 0.29

FPR 0.71± 0.21

Subbanna (2009) [209] - 10v (Montreal Neurological Inst.) DSC 0.71
FPR 0.00
FNR 0.10

Akselrod-Ballin (2009) [2] - 25+16vx24s (Scientific Inst. Ospedale San Raffaele) DSC 0.53± 0.1

Sensitivity 0.55± 0.13

Specificity 0.98± 0.01

Accuracy 0.97± 0.01

Shiee (2010) [199] - 10v (National Multiple Sclerosis Society) DSC 0.63

Freifeld (2007) [83] BW (n3bf0) - DSC 0.77
BW (n9bf0) 0.73

Garcia-Lorenzo (2008) [88] BW (n3bf0) DSC 0.87
BW (n3bf20) 0.85
BW (n3bf40) 0.63

Shiee (2008) [198] BW (n3bf0) - DSC 0.720
BW (n9bf0) 0.591

Shiee (2010) [199] BW (n3bf0) - DSC 0.812

Table 2.6: Summary of the results presented in the articles analysed. For the simulated

BrainWeb (BW) database, the noise and bias field of the tested volume (nxbfy means noise

x and bias field y) are included. For the real data the number of slices (s) or volumes (v)

and the origin of the database are shown. The two results for Van Leemput et al. are

obtained by using the segmentation by two different experts as a ground-truth, while Wu

et al. distinguish the results between T2 lesions (T2) and black holes (BH). DSC stands

for Dice Similarity Coefficient and the m ∼ n means that there were between m and n

slices.
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The last four methods shown in table 2.6 used the simulated BrainWeb phantom to

provide quantitative results. As already mentioned, the BrainWeb helps to compare the

performance of different approaches more effectively. For example, each of these four

methods included simulations with 3% added Gaussian noise and with zero bias field.

The results show that the approach of García-Lorenzo et al. [88] clearly outperforms the

others, obtaining a DSC of 0.87. The methods of Freifeld et al. [83] and the two by Shiee

et al. [198, 199] obtained DSC values of 0.77, 0.72, and 0.81 respectively under the same

conditions. Furthermore, García-Lorenzo et al. [88] also report the difference between

using simulated data and using real MRI data when evaluating algorithms. Notice that

when evaluating the same approach but using seven real volumes from the McConnel Brain

Imaging Centre, the DSC drastically dropped to 0.55.

Finally, the quantitative results published during the 2008 MS Challenge4 [208] are

presented in this section. The reported results are summarised in figure 2.8, which consists

of three plots showing the results obtained when using three different evaluation measures:

(a) the true positive rate (per lesion), (b) the false positive rate (per lesion), and (c) the

average symmetric surface distance, which measures how far away the correctly segmented

lesions are from the ground truth. The results in the plots have been ordered according

to the final ranking in the on-site testing competition (from left to right). Notice that

these plots illustrate slight differences in the results when using the ground truth from the

UNC experts or from the CHB centre. Slightly better performances were obtained when

using the annotations from the CHB expert during the training. As suggested by Styner

et al. [208], this may be due to the fact that the UNC ground truth was obtained from

two experts, while the CHB ground truth was obtained from only one expert. In fact,

the training and testing processes for the UNC can be performed using ground truth from

different experts while this is not possible at the CHB centre. In general, figure 2.8(a)

shows that there is room for improvement regarding the true positive rates. The best

performances were obtained by Souplet et al. [204], Anbeek et al. [7] and Shiee et al. [197],

each of whom had true positives rates of around 60%. There is also room for improvement

regarding the false positive rates (see figure 2.8(b)), the best results being obtained by

García-Lorenzo et al. [89], Bricq et al. [35], and Morra et al. [156], each with false positive

rates of around 50%. This is to say, from each pair of marked lesions, only one was correctly

placed. However, as stated in [186], this problem can be successfully overcome by applying

an automated post-processing step for false positive reduction. Finally, figure 2.8(c) shows

4All this information can be found in: http://grand-challenge2008.bigr.nl/ and

http://www.midasjournal.org/browse/publication/638
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the average symmetric surface distance. Using this measure based on the distance from

the ground truth to the lesion surface contour, the best results were obtained by Souplet

et al. [204], Anbeek et al. [7], Shiee et al. [197], Bricq et al. [35] and Kroon et al. [125],

with results of between 5 and 10 mm. Considering that the nominal diameter of an MS

lesion is about 7mm [234], the results obtained, although promising, are still far from the

requirements of a perfect automated volumetric tool.

In addition to the results obtained from the manual segmentations, the MS Chal-

lenge organisers computed a composite segmentation using the well-known STAPLE algo-

rithm [237]. Specifically, the input for STAPLE included all the manual segmentations, as

well as the segmentations provided by the workshop participants. Hence, it represented a

composite of two human experts and nine automated segmentation methods. With respect

to this evaluation experiment, the best sensitivities (which were from the works of Anbeek

et al., Morra et al. and Kroon et al.) were around 0.5 while the specificities were close to

1, showing the ability of these algorithms to identify lesions correctly. These experiments

using the STAPLE segmentation illustrate the improvement in reducing the false positive

rate. In summary, the quantitative evaluation performed in the MS segmentation Chal-

lenge 2008 [208] has revealed both the challenges facing the participants as well as the need

to develop new approaches to MS lesion segmentation.

2.4 Discussion

As seen in previous sections, the most widely-used feature in all segmentation methods is

voxel intensity, which is commonly employed with a multi-channel approach. In addition,

features based on modelling the voxel neighbourhood are also used in some approaches

to introduce (local) spatial information to the algorithms. Regarding the modalities, T1-

w images are widely used for the tissue segmentation and also for the black holes and

enhanced lesion segmentation. T2-w and PD-w images are typically used for detecting MS

lesions. However, the major drawback of these images is the similarity in the intensities of

lesions and CSF. Due to this similarity, the discrimination between ventricles and lesions

may be difficult, especially when they are connected. Some approaches perform another

segmentation step to solve this problem. FLAIR images also provide good discrimination

between lesions and healthy tissue but, as some authors have pointed out, they have

problems when dealing with sub-cortical structures.

In regard to the segmentation algorithms shown in table 2.3, note that the vast majority
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Figure 2.8: Results extracted from the works presented in the 2008 MS Challenge. Each

plot details the results when using ground truth provided by either the UNC or the CHB

experts. (a) shows the true positive rate per lesion, (b) the false positive rate per lesion, and

(c) the average distance between obtained and ground truth segmentations. The results

are ordered according to the final ranking in the on-site testing competition.
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belong to the clustering family [85]. However, clustering algorithms do not naturally

deal with the spatial information needed to obtain proper segmentations. This can be

introduced using Markov random fields or fuzzy connectedness. The most widely-used

clustering approaches are based on the FCM algorithm [29] and the EM algorithm [64].

The FCM is usually used to group the different tissues of the brain into three (WM,

GM, CSF) or five (WM, GM, WM+GM, CSF, GM+CSF) different classes [15]. The

aim of using five classes is to take partial volume effects into account, allowing a voxel

to be composed of more than one tissue type. The EM algorithm also allows different

models to be used for different tissues, which is indeed very useful since WM and GM

can be assumed to follow Gaussian distributions while CSF does not follow any known

distribution [186]. Despite the fact that EM methods are usually more accurate in the

presence of noise than those of the C-Means family, they share with them the possibility

of converging to a local maximum (or minimum). In a way similar to the EM, the AMM

algorithm also allows distributions to be estimated. As argued by Khayati et al. [121]

the advantages of the AMM over the EM are the non-requirement of initial knowledge

for the number of terms and the initial estimate for the parameters. Moreover, as all the

data are not used simultaneously to update the parameter estimation, less computational

time is required. Although the clustering approaches introduced above are unsupervised

algorithms, there are also supervised approaches which use these clustering algorithms to

perform the classification. See for instance the works of Shiee et al. [198, 197] and of

Souplet et al. [204].

While iterative approaches are inherently unsupervised approaches (even though they

may use a priori information), supervised approaches have also been proposed for the

purpose of MS lesion segmentation. Most methods rely on pattern recognition techniques

to detect voxels that are either outliers to the tissue models or are similar to the lesion

model (derived from a training set). In general, these methods tend to be more robust if

a good training set is provided. However, collecting enough representative samples for a

fully automated and accurate system may be difficult due to differences between scanning

machines, patient anatomy, or expert reading. A large variety of supervised classifiers such

as kNN, ANN, or Bayes are used for the MS lesion segmentation problem.

Atlas registration is another way of tackling MS lesion segmentation in brain MR images.

These approaches are useful since the lesion intensities often overlap with the intensities of

other structures in the brain. Hence, atlases might provide valuable contextual information

to eliminate possible false positives. As a drawback, the registration process is a computa-

tionally intensive procedure. Moreover, the results obtained by these methods are affected
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by the physiological variability of each subject and may lead to erroneous results in the

case of diseased brains. This is because atlases are based on normal brains and lesions are

very variable in size, shape and location, making it difficult to construct of atlases from

diseased brains (although this has been analysed in [125]).

An analogous problem to atlas registration is the temporal registration of MRI volumes.

This procedure is necessary to track and compare the atrophy of the WM and GM, as

well as to monitor the evolution of MS lesions. However, this registration can also be

used to detect lesions, which are defined as those regions with apparent local volume

variation [217, 177, 73]. Note that a registration step will be also needed for including

information coming from other modality images [22] such as DTI [32].

Regarding the evaluation measures, the Dice coefficient and sensitivity are the two most

commonly-used measures for lesion segmentation. Both measures take the number of true

positives and false negatives into account, while the main difference is that the DSC also

considers the number of false positives. On the other hand, specificity is usually high

because this measure takes the number of true negatives into account and since lesions are

small spots in the image, specificity has values close to 1 (the accuracy measure behaves

in the same way as well).

Analysing the results, note that those methods that accomplished DSC values above

0.7 (which is considered a good segmentation result) use prior knowledge to help the

detection and delimitation of the lesions. This prior knowledge is mostly defined by a set

of manual segmentations that can aid to model a tissue intensity distribution or constrain

it using either a classification scheme [6, 5, 209] or a registration based [55, 121] approach.

However, this information may also be encoded as a set of pre-defined rules [55] such as that

enhancing lesions should appear brighter in T1-w images with gadolinium enhancement

than in T1-w images without enhancement.

We have also pointed out the difficulty of making quantitatively comparisons of results

that are obtained using different databases, mainly because there is not a standardised

evaluation measure nor a common public database. Note that even when using the same

evaluation measures, cases with significant different lesion load like the ones shown in

figure 2.9, can bias the results. Observe that it is likely to have a higher false positive

rate in (b) than in (a) due to the small lesion volume of that patient. In respect to this

difficulty of performing evaluations, the MS Challenge has helped to create a data set that

can become a standard for evaluating the automated segmentation of MS lesions. In this

competition, supervised strategies obtained the best results with the best ranked method
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(a) (b)

Figure 2.9: Generated 3D volume with different lesion load.

being an atlas-based strategy presented by Souplet et al. [204]. This method uses a tissue

based strategy aided by a probabilistic atlas that provides prior knowledge during the

tissue segmentation step. As pointed out in section 2.2.5, the advantage of the supervised

algorithms is that they can automatically learn the characteristics of both normal tissue

and lesions, while the algorithms which follow an atlas-based approach incorporate also

spatial information to perform the segmentation task (as is done by Souplet et al. [204]).

2.5 Conclusions

This chapter has reviewed the automated approaches for MS lesion segmentation, clas-

sifying them according to the strategy used. In addition, the results obtained by these

approaches have been summarised and compared, reviewing also the most common data

sets and evaluation measures used in this field. We observed that the automated seg-

mentation of different MS lesion types in MRI is a challenging task due to heterogeneous

intensity values among the different MR images (enhancing lesions, black holes, and hy-

perintense lesions). Despite recent progress, there is not yet a specific automated lesion

segmentation approach robust enough to emerge as a standard for clinical practice. The

main reasons for this are the unsatisfactory results they produce, the high computational

demand required, or their insufficient generalisation capability. Moreover, most of these

approaches are unable to locate MS lesions inside the sub-cortical structures of the brain.

Finally, we would like to point out the importance of using prior knowledge to guide the

lesion segmentation. Supervised approaches that rely on similar segmented cases usually
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outperfom unsupervised strategies. Moreover, atlas-based approaches (a subcategory of

supervised), provide a good starting point for tissue segmentation and outlier detection.
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Chapter 3

Brain atlases: concepts and

application

There’s two ways to deal with mystery:

uncover it, or eliminate it.

Andrew Ryan, “Bioshock” (2007)

3.1 Atlas based segmentation

As presented in chapter 1, the automated segmentation of MR brain images is a challenging

task due to image artifacts (such as intensity inhomogeneities and partial volume effects)

and due to the fact that different anatomical structures may share the same tissue con-

trast. Hence, a priori anatomical information is essential for simplifying the segmentation

task [39], as concluded in chapter 2. Prior information may be provided in different ways,

for instance, as a set of predefined rules based on known tissue properties, or as a set of

manual expert annotations. In this study, we focus on anatomical priors from an atlas to

be matched to the target volume we wish to segment. Here, we consider an atlas as two

image volumes: one intensity image (or template) and one segmented image (or labelled

image). Note however that, as stated in [9], active shape models [52] or active appearance

models [51] can also be considered as atlases since they bring spatial prior knowledge to

the segmentation process.

At this point, the segmentation turns into a registration problem. Volumetric registration

is often done in two steps. Firstly, a global registration (affine or rigid transformation) is

performed to obtain an initial alignment at a low computational cost. Secondly, a local

45
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registration is applied to adapt general models to a specific anatomy. Note that this local

registration provides a better match between different brains at the expense of a high

computational cost. Multi-resolution strategies may be used to reduce this computational

cost [182].

Medical image registration has been widely reviewed in the literature [144, 137, 110, 167,

93]. These studies include reviews of registration techniques that can be used to align an

atlas to an unseen MRI scan. However, in this chapter we will review the use of atlases

for automatic segmentation of the brain, in general, to study its history and evolution to

extract strengths and weaknesses that can be, later on, applied to MS lesion segmentation.

In particular, we first distinguish between three different ways of integrating the atlas

information into the whole segmentation process: Label propagation, Multi-atlas propaga-

tion and Probabilistic atlas-based segmentation. We then go on to review the atlas-based

segmentation methods according to their medical target: those that segment the brain and

its internal structures (such as the amygdala or putamen), those that target brain tissues

in healthy brains, those that target brain tissues in fetus, neonates and elderly subjects,

and, finally, those that segment damaged brains with either focal lesions (such as multiple

sclerosis lesions) or space-occupying lesions (like tumours).

For comparison purposes, atlas-based segmentation methods should be applied to a

common database and quantitatively validated using ground truth. Unfortunately, only

very few of such methods and databases are publicly available. Atlas-based segmentation

methods also aim to segment different targets, such as, for instance, brain structures, brain

tissues, or lesions. Our contribution is closely related to this idea, comparing atlas-based

segmentation approaches qualitatively and quantitatively according to their strategy, target

and accuracy reported in the literature.

The rest of this chapter is organised as follows. In section 3.2, we introduce the different

types of public atlases, also describing their creation process. Then, in section 3.3, we

present the strategies used to integrate atlases into the segmentation process. Finally,

in section 3.4 we analyse and classify the reviewed methods according to the ultimate

objectives of segmentation.

3.2 Type of brain atlases

The construction of a realistic anatomical brain atlas is a time-consuming task, especially

when aimed at describing human data variability. Public atlas repositories have been



3.2. Type of brain atlases 47

created to provide the research community with MRI data to go with the manual seg-

mentations (or annotations) performed by expert radiologists. The contribution of these

repositories is twofold: firstly, they allow the training of new segmentation algorithms, and

secondly they allow evaluation data to be standardised for the developed algorithms.

3.2.1 Topological atlases

First attempts at atlas construction of the human brain were based on a single subject.

In the literature these atlases are called topological, single-subject or deterministic atlases.

The single-subject atlas is often a volume image that has been selected from a data set to

be representative of the objects to be segmented in other images (average size, shapes or

intensity).

In medicine, pioneering work was done with the Talairach atlas [213, 214], which was

proposed to identify deep brain structures in stereotaxic coordinates. One of the first

deterministic digital atlases was provided by the Visible Human Project of the National

Library of Medicine [139]. The goal of this project was to create complete and detailed

three-dimensional anatomical representations of normal male and female human bodies.

These representations were obtained through the acquisition of transverse computed to-

mography (CT), MR, and high-resolution cryosection images of male and female cadavers.

Also derived from a digitised cryosectioned human brain, the Karolinska Institute and

Hospital, Stockholm, created a computerised brain atlas that was designed for display and

analysis of tomographic brain images. The atlas includes the brain surface, the ventricular

system and about 400 structures, and all Brodmann areas [98, 218].

Nowadays, the vast majority of deterministic atlases are generated from imaging acquisi-

tion. For instance, the Surgical Planning Laboratory’s (SPL) digital brain atlas, developed

by the Harvard Medical School [122], is based on a 3D MR atlas of the human brain to

visualise spatially complex structures. For CT acquisitions, Bajcsy et al. [21, 20] created an

artificial CT anatomical atlas based on the stained slices of a dead soldier’s brain belong-

ing to a 31 year-old normal male (from the so-called Yakovlev Collection). The McConell

Brain Imaging Center [47] provides the research community with a digital brain phantom,

based on 27 high-resolution scans from the same individual. Its average resulted in a high-

resolution (1 mm isotropic voxels) brain atlas with an increased signal-to-noise ratio. This

brain template is the reference data in the BrainWeb simulated brain database. Recently,

twenty new normal anatomical models have become available as well as an anatomical

model of a brain with MS lesions.
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3.2.2 Probabilistic atlases

Atlases based on a single-subject are not constructed to represent the diversity of human

anatomy. To better characterise the variability of anatomical structures, atlases have been

constructed on the basis of populations. These atlases are often cited as population-based,

statistical or probabilistic atlases. Such templates are in continuous evolution, as new im-

ages can easily be incorporated. Moreover, the population represented by a probabilistic

atlas can be easily subdivided into groups according to specific criteria (age, sex, handed-

ness, etc.). As for single-subject atlases, the first population-based atlases were based in

Talairach space [111, 242]. Later, to compensate for the implicit limitations of Talairach

space, such as poor resolution across slices (from 3 to 4 mm), population-based atlases

from MR images were proposed. A composite MRI data set was constructed by Evans et

al. [75] from several hundreds of normal subjects (239 males and 66 females of 23.4 ± 4.1

years old). All the scans were first individually registered in the Talairach coordinate sys-

tem. Afterwards, they were intensity normalised and, finally all the scans were averaged

voxel-by-voxel and probabilistic maps for brain tissue were created. The same procedure

for constructing an average brain was later used by the International Consortium for Brain

Mapping (ICBM) on 152 brains and later on 452 brains [129]. Figure 3.1 shows the tissue

probabilities for one central slice of the ICBM452 template. The UCLA Laboratory Of

Neuro Imaging (LONI), which is a member of the ICBM, provides also atlases for MR

brain imaging contrasts, such as T2-weighted or diffusion tensor imaging (DTI) [130].

Another widely-used repository for MRI brain data is the Internet Brain Segmentation

Repository (IBSR) [147]. The MRI studies contained in this database have also been used

either to define a set of topological atlases for multi-atlas strategies (using the included

manual segmentations) or to construct a probabilistic atlas after co-registering all the

segmented cases to a standard space and computing the frequency of each voxel to belong

to a specific structure [199, 25].

Interest in disease-based atlas construction [148, 74] has increased in recent years. For

instance, the ICBM provides an Alzheimer’s disease template. Disease atlases allow quanti-

tative examination of the history and evolution (due to natural disease evolution or reaction

to clinical treatment) of a specific disease.

Important questions arise when generating population-based atlases, such as selecting a

reference space or the registration method for the data alignment. Many researchers have

proposed new strategies to create unbiased average templates and multi-subject registra-

tion [99, 62, 118, 30, 142, 165, 253, 49].
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Figure 3.1: ICBM452 population-based atlas [129]: a) T1-weighted mean, b) white matter,

c) grey matter, and d) cerebrospinal fluid.

3.3 Segmentation strategies

In formulating atlas-based segmentation, we can define the input image to be segmented,

I(x), as I : x ∈ R3 7→ I(x) ∈ RN , where x represents the 3D voxel coordinates, and N is

the number of intensity values of multi-spectral MRI data for each voxel. Following this

notation, when dealing with single-subject atlases, we can differentiate between the grey

level volume, πI(x), defined as πI : x ∈ R3 7→ πI(x) ∈ R, and the corresponding labelled

volume, πL(x), defined as πL : x ∈ R3 7→ πL(x) ∈ L, where L = {1, . . . , C} and C is the

number of labels. If probabilistic atlases are available, for each class c the probabilistic

volume πP
c (x) is defined as πP

c : x ∈ R3 7→ πP
c (x) ∈ R where c ∈ {1, . . . , C}.

By definition, volumes πI(x), πL(x) and πP
c (x) are on the same spatial coordinates,

which we refer to as the atlas space Xπ. On the other hand, the input image usually lies

in a different space, which we refer to as the image space XI . Therefore, in order to use

the atlas information, a transformation τ : xπ ∈ Xπ 7→ xI ∈ XI must be found in the space

of all possible transformations T . The process of finding this transformation is commonly

known as image registration and is defined in equation 3.1 as an optimisation problem,
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where τ̂ is the estimated transformation and δ is a similarity metric used to compare the

input image and the transformed intensity image volume of the atlas.

τ̂ = arg max
τ∈T

δ(I(x), πI(τ(x))). (3.1)

Finally, we can define the final segmentation, S(x), as S : x ∈ R3 7→ S(x) ∈ L.

3.3.1 Label propagation

Once the registration problem is solved, the easiest and fastest way to assign a label to

each input image voxel is to propagate the atlas labels to image space, XI [21, 91, 154, 46,
41, 114, 57, 60, 19, 123, 244, 42]. This segmentation procedure is defined as:

S(x) = πL(τ̂(x)). (3.2)

With this strategy, the segmentation process relies on a registration process that aims

to estimate the anatomical differences between the atlas and the input image volumes.

Registration errors exist in all real-world applications but errors are larger if differences

between two images are large. We assume that the atlas is close to the subject’s anatomy.

Otherwise, in cases where large anatomical differences exist, large registration errors may

cause important segmentation errors.

Global rigid and affine transformations are usually enough when dealing with intra-

subject medical applications, such as longitudinal studies of illness progression or multi-

modal registration for radiotherapy planning. However, when dealing with inter-subject

applications such as atlas matching, the anatomical variation between different subjects

can only be captured using non-rigid algorithms.

Volume partitioning can be performed to account for these local deformations. In gen-

eral, either the moving image (usually the atlas) or the target image or both image volumes

are decomposed on smaller sub-volumes and these sub-volumes are then registered in a hi-

erarchical manner using rigid and affine transformations [109, 8, 103].

Other partitioning approaches define a uniform grid, usually called the free-form defor-

mation grid, and then apply a non-linear transform to each of the grid vertices. Depending

on accuracy and time efficiency requirements, grid vertices can be defined as the voxels for

the whole volume. Common non-linear transforms based on mathematic transformations

are, for instance, cosine based functions [11], B-spline curves [182, 159] or level set partial
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differential equations [229]. Other functions used to define a displacement field are based

on the thermodynamics concept of demons [216, 231], optical flow models [230, 172] or

elasticity properties [21, 91].

3.3.2 Multi-atlas label propagation

Label propagation has been extended to multiple atlases to better deal with the registra-

tion errors obtained when using a single atlas and also to better account for anatomical

variability. With an atlas database, those voxels with low agreement between different

label propagations can be discarded in order to minimise outliers. Due to its strengths

over simple label propagation, this technique presents an improvement in accuracy when

dealing with the segmentation of objects with well-defined shape that may present slight

deformations between images.

There are two important considerations to take into account when dealing with a set of

atlases. The first is related to the number of atlases to be used to segment a new patient

and how to select them. We refer to this issue as the selection criteria problem. Different

studies [124, 243, 4, 143] conclude that using more than one topological atlas improves

accuracy, but that it is not necessary to use all the cases in a database.

Two principal methods exist for choosing the best matching cases: either using meta-

information (which may not always be available), or using similarity metrics to compare

the images. In order to use this second method, the new image must be aligned to all the

manually segmented cases. One possible technique is to warp all atlases into a common

space, and the subject to be segmented will then be matched in this space. This consider-

ably reduces the number of registrations. However, with this strategy, there exists a strong

dependency on the initially selected reference space. Therefore, new group-wise registra-

tion techniques [99, 62, 118, 30, 142, 165, 253, 49] may prove a better way of solving this

issue. These techniques try to register all the subjects together constructing an average

reference template at each step. It is also advisable to use a combination of similarity

metrics to avoid bias from using the same metric as in the registration step.

The question of how atlases should be combined remains. Voting rules are commonly

applied [124, 243, 4, 143, 107, 10]:

S(x) = arg max
c

P∑
i=1

wi(x) · f(πL
i (τ̂i(x)), c), (3.3)

where c represents a class, P is the number of atlases, wi is a weight function that may
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vary for each atlas voxel and f is defined as:

f(πL
i (τ̂i(x)), c) =

{
1 : πL

i (τ̂i(x)) = c.

0 : πL
i (τ̂i(x)) 6= c.

(3.4)

This step can be seen as a specific case of classifier fusion. Within this voting procedure,

the function wi(x) can either be defined as a constant value for all atlases to use a majority

voting strategy [245, 178] (wi(x) = 1
P ), a different constant value for each atlas to use

globally-weighted voting [126] (wi(x) = Ki) or a function for each voxel to use locally-

weighted voting [10, 115] (wi(x) = fi(x)). Recently, a generative probabilistic model for

this fusion step was presented by Sabuncu et al. [184].

Other combination strategies based on the Expectation Maximisation (EM) algorithm

have also been presented [237, 179]. However, these methods usually obtain a lower accu-

racy when compared to local weighting methods [10]. Intuitively, these techniques weight

each atlas according to estimated agreement or similarity with respect to the other atlases.

However, in the case where the atlases with the highest agreement are not the best match

for the subject being segmented, such a weighting procedure may bias the segmentation.

3.3.3 Probabilistic atlas-based segmentation

When probabilistic atlases are used, voxel probabilities can be integrated as part of a

statistical Bayesian framework [103, 228, 135, 82, 14, 227, 35, 36, 204] as defined by:

S(x) = arg max
c
p(I(x)|c) · p(c), (3.5)

where p(I(x)|c) represents the conditional probability of the intensities, and p(c) are the

class priors. Probabilistic atlases can also be used within variational frameworks [199, 25,

145, 198, 197]:

S(x) = arg min
c

(Ed + λ · Es), (3.6)

where Ed is the data energy term, Es is the smoothness energy term, and λ is a user-defined

parameter.

Either parametric (for instance using Gaussian mixture models) or non-parametric ap-

proaches (for instance using Parzen windows) can be used to estimate p(I(x)|c) and Ed.

Initial estimates of such models often use propagation of the atlas probabilities [14, 35,
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Figure 3.2: Advantages and drawbacks of the different reviewed atlas-based segmentation

strategies.

36, 145]. Class priors (p(c)) and smoothness term (Es) may also be encoded using atlas

probabilities [204], sometimes in combination with other spatial priors [199, 25, 103, 228,

135, 82, 227, 198, 197] often modelled by Markov Random Models.

Some other methods [42, 119, 251, 125, 2] directly combine atlas probabilities with other

image features such as voxel intensities or spatial coordinates (x) to train a classifier. These

classifiers allow several features to be combined without the need to estimate a probability

distribution in a high dimensional space.

The above-mentioned strategies use all the atlas probability values after registering the

atlas with the patient. In order to reduce the effect of registration errors, some approaches

select only a subset of voxel samples with high probability per class. These atlas samples

can then be used to train a classifier [45, 233, 61, 220], to estimate class distributions [173,

174], or as initialisation points for a contour based segmentation [96].

3.3.4 Summary

In this section, we have presented three strategies for dealing with the information pro-

vided by an atlas (see the scheme in figure 3.2 for a summary of the main advantages and

drawbacks for each strategy). The most straightforward technique is to assign atlas labels

after registration of the intensity atlas volume with the subject we wish to segment. This

label propagation technique is highly dependent on both the atlas image and the registra-

tion procedure, and it may not be desirable when dealing with subjects from very different

populations. Nevertheless, label propagation is widely used as a segmentation method to

define a region of interest (ROI) for further segmentation [244, 119, 220] or to initialise an
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active contour strategy [19, 66].

Furthermore, several topological atlases can be taken into account to improve the capture

of anatomical variability between different scans. This multi-atlas propagation is in fact an

extension of label propagation. Therefore, these techniques are desirable when segmenting

objects with a well-defined shape where there is low anatomical variability between different

images.

Finally, when using probabilities (either from a probabilistic atlas or a combination of

topological atlases), a probabilistic model of the input images can be estimated. This

probabilistic model, which may be unknown, can be estimated by different methods (i.e.

parametric, non-parametric, or trained classifiers) that apply outlier rules to segment the

images into new classes not present in the atlas. Moreover, these models may also be

learned from a subset of image voxels to reduce the effect of registration errors.

3.4 Segmentation methods and clinical targets

Tables 3.1, 3.3, 3.5 and 3.6 offer a compact overview of methods to segment the brain

using atlas information. We have grouped the segmentation algorithms into four categories

according to their medical target: 1) brain structures with well-defined shapes (such as the

whole brain or the hippocampus), 2) brain tissues in healthy subjects (namely GM, WM

and CSF), 3) brain tissues in challenging populations such as fetuses, neonates, and elderly

subjects, and 4) damaged brains with either focal lesions (e.g. white matter lesions) or

space-occupying lesions (e.g. tumours). Figure 3.3 depicts the relation of these different

categories with the types of atlases used. The tables also specify the type of atlas used, the

registration technique applied, and the corresponding atlas-based segmentation strategy.

In this section, we briefly describe these methods followed by a qualitative and quan-

titative evaluation of the results reported in the literature. We select the Dice similarity

coefficient (DSC) as a measure for comparison since it is the most commonly used in the

studies analysed.

3.4.1 The brain and its internal structures

The brain itself may be the first structure to be targeted. The procedure of removing

non-brain tissue is a well-known pre-processing step in brain imaging. Several reviews and

comparisons have been presented recently [134, 31, 78, 104], concluding that, among all
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Figure 3.3: Diagram of how atlases are used to segment structures, healthy tissue

(in both healthy and challenging population), and abnormal tissue and lesions. The

MR brain data sets and their manual segmentations were provided by the Center

for Morphometric Analysis at Massachusetts General Hospital and are available at

http://www.cma.mgh.harvard.edu/ibsr/.

brain segmentation methods, atlas-based segmentation (mainly by label propagation of

probabilistic atlases) is applied as an initial step, although further processing is needed to

obtain a good brain segmentation [206, 190].

In this section, we focus on the segmentation of the internal structures of the brain

such as the amygdala (AMY), accumbens (ACC), caudate (CAU), hippocampus (HIP),

pallidum (PAL), putamen (PUT), or the thalamus (THA) (as shown in figure 3.4). Note

that these structures present well-defined shapes that show some anatomical variability

between subjects.

Due to the lack of clearly defined edges between some brain structures and substructures,

approaches based solely on voxel intensities are expected to produce poor results [82].

Therefore, a priori spatial information for anatomical structures is required. Several studies

have adopted label propagation strategies, focusing their contribution on developing new

registration techniques based on, for instance, elasticity [21, 91, 154, 114, 57], deformation

vectors [46], fluid mechanics [41], thermodynamics [60], optical flow [19], or hierarchical

methods [123]. Propagated labels can later be extended to define a fuzzy label map (with

higher values for voxels inside the label masks and lower values for voxels outside the

masks) guiding a fuzzy controller. For instance, Ciofolo and Barillot [42] designed a fuzzy

controller to guide a competitive level set approach initialised by cubes inside the brain
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Atlas type Registration transforms

Article Statistical Topological Global transforms Local transforms Strategy

Bajcsy (1983) [21] No 1 manual Affine Elastic LP

Gee (1993) [91] No 1 manual Affine Elastic LP

Miller (1993) [154] No 1 manual Affine Mechanoelastic LP

Collins (1995) [46] No 1 manual Affine Deformation vectors LP

Christensen (1996) [41] No 1 manual Affine Fluid mechanics LP

Davatzikos (1997) [57] No 1 manual Affine Elastic LP

Iosifescu (1997) [114] No 1 manual Affine Elastic LP

Dawant (1999) [60] No 1 manual Affine Demons LP

Baillard (2001) [19] No 1 manual No Optical flow LP

Fischl (2002) [82] 12 manual No Affine No PA

Klein (2005) [123] No 1 manual Affine Mindboggle LP

Klein (2005) [124] No 19 manual Affine Mindboggle MA

Heckemann (2006) [107] No 29 manual Affine B-splines MA

Pohl (2006) [168] 80 manual No Affine Hierarchical PA

Han (2007) [103] 80 manual No Affine Hierarchical PA

Bazin (2008) [25] 18 manual 1 manual Rigid No PA

van der Lijn (2008) [227] 19 manual No Affine B-splines PA

Aljabar (2009) [4] No 275 manual Affine B-splines MA

Artaechevarria (2009) [10] No 18 manual Affine B-splines MA

Ciofolo (2009) [42] No 1 manual Rigid Hierarchical LP

Lötjönen (2010) [143] No 17 manual Affine Hierarchical MA

Table 3.1: Classification of automated atlas-based segmentation methods for structures.

Rows are the segmentation targets, while columns refer to: the type of atlas, the number

of volumes used to build the atlas, the registration method, and the atlas strategy (Label

Propagation (LP), Multi-Atlas Propagation (MA), and Probabilistic Atlas segmentation

(PA)).

scan.

As mentioned in section 3.3, multi-atlas approaches have become a recent area of re-

search on automated atlas-based segmentation to provide improved capture of anatomical

variability. Heckemann et al. [107] proposed the combination of 29 topological atlases after

registration via a vote rule decision fusion approach. This technique treats each propa-

gation as a separate classifier and then applies the label with the maximum number of

occurrences to each voxel. A similar study by Klein et al. [124] assigned a structure label

to each voxel by applying the findings of their previous study [123] on 19 atlases.

When using a large database with previously segmented cases some of the segmenta-

tions can deviate greatly from the new subject and therefore bias the result and decrease

segmentation accuracy. To resolve this issue, Aljabar et al. [4] presented a new approach

based on selecting a subset of volumes instead of using all 275 cases (the total number of

volumes in the database). The selection was based on taking both volume similarity and

meta-information into account. Moreover, as pointed out by Artaechevarria et al. [10],

even if the best atlases are chosen, their variability can affect the final result depending

on the fusion technique applied. In this last study, the authors proposed different weight-
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Figure 3.4: Internal structures of the brain. a) Axial plane, b) sagittal plane, c) coronal

plane, and d) 3D representation of the following structures: thalamus (blue), putamen

(black), pallidum (yellow), hippocampus (purple), caudate (orange), amygdala (red) and

accumbens (green).

ing methods: either globally, using similarity measures for the whole volume, or locally,

using a small neighbourhood area. In their study, local methods were found to improve

the final segmentation when compared to global methods. The same conclusion was ob-

tained by Lötjönen et al. [143], who reviewed selection and combination algorithms as well

as non-rigid registration. Furthermore, they noticed that although atlas selection meth-

ods provided better segmentation results than random selection, there was still a clear

difference with respect to the results obtained when knowing the optimal set of atlases.

While these studies create a statistical atlas and keep the labels with the highest prob-

ability per voxel, there are others that use atlas probabilities on a complex statistical

framework (mainly based on Bayes theorem). For instance, van der Lijn et al. [227] cre-

ated a probabilistic atlas by averaging different topological atlases and then incorporated

those probabilities as an energy term in a graph-cuts segmentation approach.

Fischl et al. [82] proposed segmenting brain structures using the Iterated Conditional

Modes (ICM) algorithm [28] after defining the transformation between a probabilistic atlas

and the subject. This optimisation algorithm starts with initial estimates for the parame-

ters, called conditional modes, and proceeds to update the segmentation sequentially until

the optimum is found. In this case, the volume is defined as a Markov Random Field

(MRF) to explicitly include spatial information. The ICM is initialised with the maxi-

mum a posteriori (MAP) estimate of the segmentation. In a subsequent work, Han and

Fischl [103] proposed applying a pre-processing step to this framework, consisting in atlas

intensity normalisation for enhancing the performance on different scanning platforms.

In a similar way, segmentation and registration can be combined in a probabilistic frame-
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Real data

Article CAU THA PUT PAL HIP AMY ACC Test data (MRI system)

Dawant (1999) [60] 0.86 - - - - - - 8v (Siemens 1.5T)

Fischl (2002) [82] 0.88 0.79 0.71 0.71 0.81 0.79 - 14v (GE 1.5T) + 13v (Siemens 1.5T)

Klein (2005)+ [123] - - - - - - - 10v (Siemens 3T)

Klein (2005)+ [124] - - - - - - - 10v (Siemens 3T) + 10v (GE 1.5T)

Heckemann (2006) [107] 0.90 0.90 0.90 0.80 0.81 0.80 0.70 30v (GE)

Pohl (2006) [168] - 0.894 - - - - - 22v (GE 1.5T)

Han (2007) [103] 0.84 0.88 0.85 0.76 0.83 0.75 - 14v (GE 1.5T) + 13v (Siemens 1.5T)

van der Lijn (2008) [227] - - - - 0.858 - - 20v (Siemens 1.5T)

Bazin (2008) [25] 0.781 0.773 0.817 - - - - 18v (IBSR)

Aljabar (2009) [4] 0.881 0.908 0.898 0.818 0.834 0.777 0.758 275v (*)

Artaechevarria (2009) [10] 0.83 0.88 0.87 0.81 0.75 0.72 0.68 18v (IBSR)

Ciofolo (2009) [42] 0.60 0.77 0.66 0.56 - - - 18v (IBSR)

Lötjönen (2010) [143] 0.866 0.899 0.905 0.844 0.819 0.767 - 18v (IBSR)

Table 3.2: Summary of brain structure segmentation results using the DSC metric. Ad-

ditional information on the number of volumes (v) and the MRI system is also given.

Acronyms in alphabetical order: Amygdala (AMY), Accumbens (ACC), Caudate (CAU),

Hippocampus (HIP), Pallidum (PAL), Putamen (PUT), and Thalamus (THA). +Results

by Klein et al. [123, 124] are reported for the brain as a whole rather than providing values

for each structure. *Aljabar et al. [4] do not specify the MRI system used.

work via an EM algorithm [64] or the Fuzzy C-Means (FCM) [29] algorithm. The EM

algorithm computes the probability of each entry of the data set belonging to a certain

distribution. It then estimates the hidden parameters of this distribution which maximise

the previous expectation in an iterative manner until convergence is reached. Even though

great convergence properties are found, this algorithm can lead to non-desired local min-

ima, especially when only relying on the data itself. Therefore, proper initialisation and

spatial information are introduced into the framework using atlas-based approaches. For

instance, Pohl et al. [168] proposed using the EM algorithm to find the optimum param-

eters for registration while labelling each voxel to a brain structure. On the other hand,

FCM inherently treats each class as a Gaussian with the same variance, since it only takes

class centroid and membership values for each voxel into account. Note that no spatial

information is encoded in the original algorithm. However, Bazin and Pham [25] proposed

modifying the objective function to include spatial constraints as well as probabilities from

a statistical atlas. Segmentation masks were then constrained by a topological atlas to

ensure that topology was preserved. Finally, growing and thinning techniques were used

to refine the final delineations of the brain structures.

Regarding the experimental evaluation of these works, the Dice Similarity scores for

the central nuclei (amygdala, accumbens, caudate, hippocampus, pallidum, putamen, and

thalamus) are summarised in table 3.2. This table includes information about the data
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sets used for validation. Even if some of the approaches [25, 42, 143, 10] use the same data

set (IBSR), a quantitative comparison of all methods is difficult due to the variability of

the testing data. Furthermore, the number of cases used for testing varies, ranging from

10 to 30 volumes, with the exception of Aljabar et al. [4], who used a larger database of

275 subjects to show the influence of atlas selection.

We would like to point out that the results obtained by Klein et al. [123, 124] are

not included since they provide similarity values for the whole brain instead of structure-

based values. However, in their last study, the authors provided a comparison of the

similarity values when increasing the number of atlases, showing also an increase in the

Dice coefficient. This behaviour can also be observed in table 3.2, where the best Dice

values for each structure are obtained from multi-atlas approaches [4, 143, 107], closely

followed by statistical frameworks [103, 82, 168]. Notice that Aljabar et al. [4] obtained

the best results on some structures (the thalamus, the hippocampus, and the accumbens)

by applying selection strategies in their multi-atlas approach. Furthermore, among the

approaches using IBSR data, the method of Lötjönen et al. [143] outperformed the others

for all structures. Note that this method is also based on a multi-atlas strategy.

Only few studies focus on evaluating how algorithms are affected by image variability

within different scanning devices. For instance, Klein et al. [123, 124] and Han and Fis-

chl [103, 82] validated their methods with MRI data acquired from different machines. This

later study also demonstrated the importance of normalising the atlas and the subject in-

tensities when using different scanning machines, obtaining higher DSC values after atlas

normalisation when using data sets from two different MRI scanners. Almost all of the

studies in table 3.2 segment images from 1.5T devices. Only Klein et al. [123, 124] applied

their method to MRI images acquired at higher magnetic fields (3T). The recent multi-site

and multi-scanner database maintained by the Alzheimer’s Disease Neuroimaging Initia-

tive (ADNI) [160] will allow researchers to test the robustness of developed algorithms on

different scanning devices.

Segmentations for central nuclei structures have a DSC of between 0.70 and 0.90, show-

ing good agreement between manual and automatic segmentation. The best segmentation

results are obtained for the caudate, the thalamus, and the putamen structures, with values

of 0.90, while the segmentations of the amygdala, the hippocampus, and the accumbens

achieve values near 0.80 when using multi-atlas strategies.
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Atlas type Registration transforms

Article Statistical Topological Global transforms Local transforms Strategy

Van Leemput (1999) [228] ICBM No Affine No PA

Marroquin (2002) [145] ICBM No Affine Level set PA

Cocosco (2003) [45] 53 manual No Affine No PA

Grau (2004) [96] 29 manual No No Demons PA

Ashburner (2005) [13] ICBM No Affine Cosine PA

Awate (2006) [14] ICBM No Affine No PA

Vrooman (2007) [233] 22 manual No Affine B-Splines PA

Bricq (2008) [36] ICBM No Affine B-splines PA

Table 3.3: Classification of automated atlas-based segmentation methods for healthy tis-

sues. Rows are the segmentation targets, while columns refer to: the type of atlas, the

number of volumes used to build the atlas, the registration method, and the atlas strategy

(Label Propagation (LP), Multi-Atlas Propagation (MA), and Probabilistic Atlas segmen-

tation (PA)).

3.4.2 Brain tissues in healthy subjects

MRI has become a standard modality for brain tissue segmentation due to its high effec-

tiveness in contrasting between tissue types. However, some image artefacts like the partial

volume effect, image noise and intensity non-uniformities (also known as bias field [232])

can considerably increase the difficulty of segmentation work. In addition to these artefacts,

the large differences that may exist between sulci and gyri patterns for various subjects

are the main issues when dealing with brain tissue segmentation.

Numerous approaches have been proposed for MR brain tissue segmentation [164, 43,

210] and only some use atlas priors. Atlas-based approaches for brain tissue segmentation

are mostly within a statistical framework and make use of probabilistic atlas priors (see

section 3.3.3).

Van Leemput et al. [228] proposed accounting for neighbouring relationships between

voxels through an MRF model. Distribution parameters were then estimated using the EM

algorithm using bias field estimation to aid the segmentation task. Due to the need for

initialisation, the authors decided to use atlas probabilities as a prior classification and to

constrain the classification process at each iteration by multiplying the E-step probability

by the one given by each atlas voxel. In a similar way, Bricq et al. [36] proposed including

Markovian properties to account for voxel relationships by means of hidden Markov chains.

After applying this theory to MRI, model parameters were also estimated with EM using

atlas probabilities during initialisation and each subsequent iteration step. In order to

increase the robustness, Marroquin et al. [145] proposed a novel variant of the EM algorithm

which also relies on atlas information for initialisation. This algorithm substitutes the
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expectation step by using the MAP estimator to compute the MRF parameters followed by

the maximiser of posterior marginal estimate instead of the maximisation step. Therefore,

using the atlas values for initialisation, this algorithm iterates until convergence is achieved.

While most segmentation approaches using Markov theory rely on a parametric estima-

tion, non-parametric methods are quite powerful themselves, as pointed out by Awate et

al. [14]. In their study, the Parzen-window technique is used to estimate a Markov prob-

ability density function (PDF) without imposing strong parametric models on the data.

This data-driven technique, which is also initialised using atlas probabilities, provides the

ability to model and learn arbitrary PDFs. However, corrupted volumes may bias this

estimation and cause misclassification errors.

All the above methods rely on an initial registration step and then apply a segmentation

framework. However, both steps are closely related, since atlas registration can benefit

from an initial segmentation, while brain tissue segmentation requires prior information

such as atlas probabilities, which are obtained from the atlas registration process. Hence,

by combining both steps, Ashburner and Friston [13] proposed a novel method for seg-

menting brain tissues while correcting the bias field and refining atlas registration. In their

approach, the ICM algorithm is used to estimate the final segmentation, while Gaussian

Mixture Model parameters are estimated via EM using atlas probabilities and volume in-

tensity. A Levenberg-Marquardt algorithm is then applied to correct the bias field and

refine atlas alignment.

Probabilistic atlases can also be translated to topological ones. By applying a threshold

to the probabilities, topological masks may be obtained for each tissue. Once registered to

the subject volume, these masks can be applied in order to select a set of representative

tissue samples from the subject. These are the samples that are then used to train a classi-

fier. This is the main idea of the approach by Cocosco et al. [45] and Vrooman et al. [233],

who extracted tissue samples using an atlas and then used the minimum spanning tree al-

gorithm to reduce outliers. These samples were used to train a k-Nearest Neighbour (kNN)

classifier. This algorithm uses the distance in feature space between the current voxel and

each training sample to assign the label with most votes from among its k closest neigh-

bours. Although this algorithm proposes a simple implementation, its major drawback is

its high computational cost. Similarly, Grau et al. [96] applied the watershed transform

to segment tissues. The simple and intuitive foundation of this algorithm consists in sim-

ulating the flooding of a region while considering image intensities as heights. However,

one of the major drawbacks associated with this approach is that the obtained results may
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BrainWeb Real data

Article GM WM GM WM Test data (Scanner)

Van Leemput (1999) [228] 0.93 0.92 0.836 0.821 9v (Sigma 1.5T)

Marroquin (2002) [145] 0.891 0.892 0.797 0.812 20v (*)

Cocosco (2003)+ [45] - - - - 43v (*)

Grau (2004) [96] 0.890 0.946 - - -

Ashburner (2005) [13] 0.932 0.961 - - -

Awate (2006) [14] 0.92 0.96 0.807 0.887 18v (*)

Cocosco (2007) [233] - - 0.915 0.937 12v (*)

Bricq (2008) [36] 0.975 0.980 0.799 0.865 18v (*)

Table 3.4: Summary of healthy tissue segmentation results with DSC metric. Results are

given for both real and BrainWeb images, where available. Additional information is also

given on number of volumes (v) and MRI system. +Results by Cocosco et al. [45] are

reported using the kappa similarity measure.

be over-segmented. The authors proposed setting some initial markers, corresponding to

each tissue class, to overcome this issue. Skeletons are calculated by thresholding a statis-

tical atlas and then removing outliers; the resulting skeletons are considered as the initial

markers.

The lack of a gold standard for brain tissue classes in real images makes the quantitative

evaluation of segmentation algorithms difficult. The BrainWeb phantom [47] provides

a standard platform for comparing healthy brain approaches, but results on synthetic

phantoms cannot be extrapolated to real conditions. Table 3.4 summarises the results

for WM and GM on both synthetic and real data1, including also information on data

acquisition. The number of volumes used to test the methods ranges between 10 and

40, which does not significantly differ from the reviewed segmentation methods for brain

structures.

Contrary to the methods presented in section 3.4.1 for deep brain structure segmenta-

tion, no tissue segmentation methods rely on label or multi-atlas propagation. Moreover,

most brain tissue segmentation uses statistical atlases instead of topological ones. Tissue

segmentation strategies are often based on probabilistic atlas segmentation. Furthermore,

parametric estimation algorithms are most widely used, with DSC values over 0.90 on the

BrainWeb phantom. For instance, values of 0.975 for GM and 0.980 for WM (both close

to perfect agreement) are reported by Bricq et al. [36], who used the EM algorithm with

atlas probabilities for initialisation and then include prior probabilities at each step.

Even though significant agreement is found for synthetic data, DSC values decrease

when these methods are applied to real cases. Awate et al. [14], who obtained worse results

than Bricq et al. [36] when evaluating the BrainWeb phantom, obtained better results when
1CSF is not included since some methods do not include it in their segmentation.
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Atlas type Registration transforms

Article Statistical Topological Global transforms Local transforms Strategy

Mortamet (2005) [157] ICBM No Affine No PA

Prastawa (2005) [175] 3 manual No Affine No PA

Weisenfeld (2006) [238] 13 manual No Affine No PA

Xue (2007) [246] No 3 manual Affine No LP

Murgasova (2007) [158] 1 manual (37) No Affine B-Splines LP,PA

Smith (2007) [202] 141 manual No Affine Cosine PA

Habas (2008,2010) [100, 101] 14 manual No Affine Elastic PA

Weisenfeld (2009) [239] 15 manual No Affine No PA

Table 3.5: Classification of automated atlas-based segmentation methods for challenging

populations. Rows are the segmentation targets, while columns refer to: the type of atlas,

the number of volumes used to build the atlas, the registration method, and the atlas

strategy (Label Propagation (LP), Multi-Atlas Propagation (MA), and Probabilistic Atlas

segmentation (PA)).

testing with real data. These prove the need to use real data sets in conjunction with

synthetic phantoms to evaluate and compare segmentation methods.

3.4.3 Brain tissues in challenging populations (fetus, neonates, and el-
derly subjects)

There are specific populations such as fetuses and newborns that are particularly challeng-

ing for atlas-based segmentation methods. Automated segmentation of these populations is

a key tool for brain development studies. Their specific characteristics (such as spatial and

temporal variations of the image contrast due to myelination and folding of the growing

brain, and low signal to contrast ratio and high partial volume effects due to fast acqui-

sition sequences to avoid motion) represent new challenges for brain tissue segmentation

when compared to adult brain segmentation. Consequently, on the one hand, anatomical

priors are needed to reduce the complexity of segmenting fetus and neonate brains, while

on the other hand constructing these atlases is difficult due to the constantly evolving

anatomy. Figures 3.5a and 3.5b show intra-utero fetal and newborn brains, respectively.

Pioneer studies on these populations were carried out on newborns and pre-term infants.

Some groups proposed supervised classification methods [235, 238, 239, 175] using both MR

signal (multi-spectral contrast in some cases) and spatial priors. Probabilistic atlases are

either used to train the classifier [239] or to be included as features for classification [175].

Bayesian frameworks (see equation 3.5) for neonatal segmentation were suggested in [246].

Label propagation was used prior to the non-supervised statistical tissue segmentation to

mask some structures. A label propagation approach [158] has also been presented to
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Figure 3.5: a) Fetus at 31 weeks of gestational age, b) premature newborn, c) 61 year-old

woman and d) 66 year-old woman with dementia.

create a population-specific atlas for young children.

Very few studies exist related to the automated segmentation of fetal brain tissues [44,

100, 18, 101]. Indeed, only one research group has recently proposed a spatio-temporal

probabilistic atlas and an atlas-based segmentation of developing brain tissues in young

fetuses [100, 101].

Elderly subjects (see figure 3.5c) are another challenging population due to the loss of

tissue volume related to ageing [157, 202, 219], also known as normal atrophy [68]. Still,

the same registration methods are used as for young subjects. In this context, special

attention needs to be paid to atlas selection and in cases where younger atlases are not

representative of the elderly anatomy age and sex-specific atlases [136] can be used. It

should be noted that the aging effect is also present in brains containing abnormal regions.
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Atlas type Registration transforms

Article Statistical Topological Global transforms Local transforms Strategy

F
o
ca
l
le
si
on

s

Kamber (1995) [119] 12 manual No Rigid No LP, PA

Van Leemput (2001) [135] ICBM No Affine No PA

Zijdenbos (2002) [251] 53 manual No Rigid No PA

Wu (2006) [244] Yes No Affine B-splines LP

Bricq (2008) [35] 31 manual No Affine B-splines PA

Kroon (2008) [125] ICBM No Affine B-splines PA

Prastawa (2008) [174] ICBM No Affine No PA

Shiee (2008) [198, 197] 18 manual 1 manual Rigid No PA

Souplet (2008) [204] ICBM No Affine No PA

Akselrod-Ballin (2009) [2] ICBM No Affine Cosine PA

de Boer (2009) [61] 12 manual No Affine B-splines PA

Tomas (2009) [220] 15 manual 15 manual No B-splines LP, PA

Shiee (2010) [199] 18 manual 1 manual Rigid No PA

Geremia (2011) [92] ICBM No Affine No PA

Schmidt (2012) [187] ICBM No Affine Cosine PA

S
p
ac
e-
o
cc
u
p
y
in
g
le
si
on

s

Kyriakou (1999) [128] No 1 manual Affine Elastic LP

Dawant (1999) [58] No 1 manual Affine Demons LP

Warfield (2000) [236] No 1 manual No Elastic LP

Moon (2002) [155] ICBM No Affine No PA

Shen (2002) [194] 1 manual 1 manual Affine Hierarchical LP

Bach Cuadra (2004) [17] No SPL Affine Demons LP

Duay (2004) [70] No 1 manual No Elastic LP

Liu (2004) [140] No 1 manual Affine Hierarchical LP

Prastawa (2004) [173] ICBM No Affine No PA

Stefanescu (2004) [205] No 1 manual Rigid Grid-based LP

Pollo (2005) [169] No SPL Affine B-Demons LP

Nowinski (2005) [161] No 1 manual No Non-linear LP

Bach Cuadra (2006) [16] No SPL Affine Optical flow LP

Zacharaki (2008) [248, 247] No 1 manual Affine Elastic LP

Table 3.6: Classification of automated atlas-based segmentation methods for brains with

lesions. Rows are the segmentation targets, while columns refer to: the type of atlas,

the number of volumes used to build the atlas, the registration method, and the atlas

strategy (Label Propagation (LP), Multi-Atlas Propagation (MA), and Probabilistic Atlas

segmentation (PA)).

3.4.4 Brain tissues and lesions in pathological brains (MS, Alzheimer,
tumors, etc.)

Abnormal atrophy (see figure 3.5d) is a common feature among neuro-degenerative brain

disorders such as mild cognitive impairment, Alzheimer’s disease, or schizophrenia. This

pathological tissue loss 2 is not present on healthy atlases and is thus usually overlooked

under the assumption that the registration step will capture it. As for healthy elderly

subjects, the strategies presented in the previous sections are also used on these cases [107,

105, 63, 240, 241, 250]. Disease-specific atlases could be used to improve segmentation

results [148, 74].

Damaged brains may contain more than subtle brain tissue loss, such as, for instance,

2Note that the tissue loss due to aging is present as well.
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focal tissue lesions or large space-occupying lesions. Obviously, atlases do not contain such

damaged areas as they vary greatly in size, shape, and location. Therefore, new strategies

or extensions to existing methods are needed to deal with these pathological cases. Below,

we distinguish between two kind of brain lesions. First, focal tissue lesions, which represent

those produced by the loss and inflammation of tissue, as in strokes and multiple sclerosis.

In these cases, registration error due to lesion areas not present in the atlas are neglected.

Second, space-occupying lesions, like tumours, which induce a deformation on the patient’s

brain anatomy and where the deformation field caused by the lesion needs to be estimated.

Focal tissue lesions

At first glance, table 3.6, presents again the atlas-based papers discussed in chapter 2 and

listed in table 2.1. However, here we present a brief summary of those methods from the

atlas perspective and taking into account the concepts introduced in this chapter.

Segmentation methods that deal with focal tissue lesions usually rely on the use of

healthy brain atlases to segment brain tissues and consider lesions as outliers. Figure 3.6

illustrates some examples of focal tissue lesions.

In most cases, following detection of the outliers a subsequent analysis is usually per-

formed to ensure that outlier regions are actually lesions. These methods can be seen as

an extension of healthy tissue and structure approaches that use a statistical frameworks,

introducing a new class into the segmentation algorithm. For instance, Seghier et al. [189]

extended the tissue segmentation approach of Ashburner and Friston [13] to detect stroke

lesions, while Schmidt et al. [187] also used the SPM toolbox to create an outlier map to

detect and segment MS lesions. On the other hand, Van Leemput et al. [135] extended

their previous work [228] to detect multiple sclerosis lesions by searching for outliers that

follow a set of user-defined rules, i.e. lesions should appear as hyper-intense on both PD-w

and T2-w images. In a similar way, Bricq et al. [35] applied their hidden Markov chain ap-

proach [36] to detect multiple sclerosis lesions as outliers, while Shiee et al. [199, 198, 197]

modified their fuzzy segmentation algorithm [25] to segment lesions inside WM tissue.

Similarly, Souplet et al. [204] extended a previous study by Dugas-Phocion et al. [72]

based on segmenting tissues with an EM approach by including pure tissue and partial

volume classes. Using pure tissue masks, normal appearing tissue parameters (mean and

standard deviation) were estimated on the T2-FLAIR image to define a lesion threshold.

Furthermore, Shen et al. [195, 196] proposed to automatically detect stroke lesions by
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Figure 3.6: Focal tissue lesions. a) Enhancing MS lesions, b) black holes in MS, c) hyper-

intense MS lesions, and d) Medial Cerebral Artery ischaemia.

comparing voxel-to-voxel the inconsistency between the result of applying an unsupervised

tissue segmentation of the patient scans and the probability priors obtained within an

atlas. Those regions where the inconsistency is large are assumed to be part of the lesion.

The unsupervised methods mentioned above can be biased by unhealthy tissues. In-

tuitively, supervised methods relying on tissue samples from lesion and non-lesion classes

should perform better than unsupervised methods, since no intensity distribution models

are assumed. For instance, Kamber et al. [119] compared three different classifiers. In

their study, a probabilistic atlas was used to provide the classifiers with features as well

as to constrain the search within the WM areas. Following the same idea, Wu et al. [244]

implemented a kNN classifier trained on 20 voxels for each class. Following classification, a

probabilistic atlas was used to relabel GM and multiple sclerosis lesions taking WM regions

into account.

On the other hand, Zijdenbos et al. [251] used a probabilistic atlas as features to train

an artificial neural network classifier. The input features included three MRI modalities

and three spatial tissue priors from the atlas. Similarly, Geremia et al. [92] used a random

forests approach where atlas probabilities were used as features and to create contextual

meta-features that were used during the training. Furthermore, healthy atlases could be

extended, as proposed by Kroon et al. [125]. In this study, segmented lesions were manually
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warped to the ICBM atlas (from SPM) and this was used as a feature of a PCA-based

classification framework which was trained with lesion and non-lesion samples. Developing

a more general framework, Akselrod-Ballin et al. [2] proposed segmenting the volume in

different regions using a graph-based algorithm. These regions were then characterised with

a rich set of extracted features (comprising probabilities taken from an atlas) and classified

using a decision forest along with the Fisher linear discriminant. This combination of

segmentation and region classification helped to reduce misclassification at voxel level due

to noisy data.

Atlases can also be used to sample healthy-looking tissue voxels. For instance, de Boer et

al. [61] extended the healthy tissue classification from Cocosco et al. [45] to deal with white

matter lesion segmentation. Similarly to Souplet et al. [204], after tissue segmentation a

histogram of all GM voxels in T2-FLAIR is created and a threshold is defined to segment

the lesions.

Atlases also provide a way to select abnormal tissue samples while estimating healthy

ones. For example, Prastawa et al. [173, 174] proposed using the Minimum Covariance

Determinant to estimate tissue PDFs using healthy samples. Outliers to this estimation

are then considered as abnormal tissue.

Finally, a combination of training sample points and WM area refinement for multiple

sclerosis segmentation was presented by Tomas and Warfield [220]. This approach used

a set of topological atlases to define healthy tissue samples, obtained using the STAPLE

algorithm [237], and to create a probabilistic atlas from the average of these manual seg-

mentations. Multiple sclerosis samples were then defined as intensity outliers by comparing

the reference group and the subject volumes. Subsequently, a Bayes classifier was trained

to select lesion and non-lesion voxels. Since some of these voxels were misclassified as false

positives, this classification was refined using WM regions extracted from the probabilistic

atlas.

Different lesion sizes and locations make the comparison of segmentation methods even

more challenging than the evaluation for segmenting healthy brain tissue and structures.

Furthermore, evaluation measures would differ for different lesion sizes and types (mul-

tiple sclerosis, strokes or tumours). Public data sets for lesions along with ground truth

segmentations are rare. As far as we know, only the BrainWeb site [47] provides a public

synthetic phantom to validate multiple sclerosis lesions, and data for only 20 subjects from

the training set of the 2008 Multiple Sclerosis Challenge are available.

Results with both synthetic and real data for white matter lesions are summarised in
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BrainWeb Real data

Article Abnormal Abnormal Test data (Scanner)

Kamber (1995)+ [119] - - 12v (Philips 1.5T)

Van Leemput (2001) [135] - 0.49 23v (Philips 1.5T)

Zijdenbos (2002) [251] - 0.60 29v (*)

Prastawa (2004) [173] - 0.854 3v (*)

Wu (2006) [244] - 0.6 12v (Siemens 1.5T)

Shiee (2008) [198] 0.677 0.531 10v (Philips 3T)

Akselrod-Ballin (2009) [2] - 0.53, 0.55 25v (*) + 16v (*)

de Boer (2009) [61] - 0.72 209v (GE 1.5T)

Tomas (2009) [220] - - 9v (GE 3T)

Shiee (2010) [199] 0.789 0.633 10v (Philips 3T)

Table 3.7: Evaluation of reviewed methods for abnormal tissue segmentation. DSC is pre-

sented for both real and BrainWeb simulated data, where available. Additional information

is also given on number of volumes (v) and MRI acquisition devices. Studies presented in

the MS Grand Challenge 2008 are not reported here since different evaluation measures

were used and only off-site results are provided for all of them. +Results by Kamber et

al. [119] are reported using error measures.

table 3.7, including information on data acquisition. The number of tested subjects ranges

between 10 and 30 for these studies, with the exception of de Boer et al. [61], who used

209 volumes to validate their method. Similarly to methods used for structure and healthy

brain tissue segmentation, abnormal tissue segmentation approaches are validated using

a small number of cases. Validation with larger data sets would be desirable in order to

assess their usability in clinical practice.

As with approaches used for healthy tissue segmentation, brain tissues and lesions are

mostly segmented using a probabilistic atlas segmentation framework. This is because

most lesion segmentation methods are extensions of approaches used for healthy tissue

segmentation. Note also that white matter regions are often used to confine lesions to a

region of interest in order to reduce false positives.

Finally, we would like to briefly recall here the quantitative results published during the

2008 Multiple Sclerosis Challenge3 [208]. A total of 53 volumes were separately acquired by

the Children’s Hospital Boston (CHB) and the University of North Carolina (UNC) for this

competition: 20 volumes for training, 25 public volumes before the contest for validation

and 8 volumes for on-site testing. Five of the nine methodologies presented during the

challenge used an atlas-based strategy [35, 204, 197, 125, 174] with the best results of the

competition obtained by Souplet et al. [204], using an EM algorithm initialised with atlas

probabilities.

3All this information can be found at: http://grand-challenge2008.bigr.nl/ and the open journal

www.midasjournal.org/browse/publication/638

http://grand-challenge2008.bigr.nl/
www.midasjournal.org/browse/publication/638
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Figure 3.7: Space-occupying lesions: a) meningioma, and b) astrocytoma.

Space-occupying lesions

Examples of space-occupying lesions are shown in figure 3.7. These lesions induce large

deformations and lack clear anatomical detail due to infiltration and edema [167], making

the registration of diseased brains with normal atlases difficult. When space-occupying

lesions are present, registration methods aim to capture not only the anatomical variability

but also the deformations induced by the tumour. Thus the assumption of small and

smooth deformations is clearly violated [16, 247].

The original works of applying atlas-based segmentation to the presence of tumours were

by Kyriakou and Davatzikos [128] and Dawant et al. [58]. The aim of both approaches

was to estimate how the presence of the lesion affected brain tissues and structures. The

approach of Kyriakou and Davatzikos [128] modelled the soft tissue deformations induced

by the tumour using a finite-element method, and subsequently, they registered the topo-

logical atlas with a transformed patient image from which the tumour was removed. As

for Dawant et al. [58, 59], the patient (including the tumour) was registered with a seeded

version of the atlas that included a region with the same intensity properties as the tu-

mour, which was manually segmented previously. Bach Cuadra et al. [17] and Pollo et

al. [169] improved this approach by avoiding registration of the full volumes, assuming a

radial tumour growth from a single voxel seed. A similar assumption was taken into ac-

count by Nowinski and Belov [161], who proposed a non-linear tumour deformation after

registration of the patient volume and the atlas using Talairach registration. All these

methods required a precise pre-segmentation of the tumour, usually performed using semi-

automatic algorithms [236]. More sophisticated models of lesion growth are proposed by

the authors of the HAMMER [194] and the ORBIT [248, 247] frameworks.

Some other methods [70, 205, 140], instead of having a lesion growth model, apply
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different rigidity constraints to the tumour area. For instance, Duay et al. [70] locally adapt

the elasticity of the transformation, hence allowing large deformations around the tumour.

Pre-segmentation of the tumour was not necessary. Stafanescu et al. [205] introduce specific

rigidity parameters for the tumour, and Liu et al. [140] assume local rigidity by means of

a Markov Random field-maximum a posteriori approach. However, both approaches again

require a priori segmentation of the lesion.

Moon et al. [155] extended Van Leemput et al.’s [228] tissue segmentation approach for

detecting brain tumours. The authors used the same EM approach but extended the num-

ber of classes with a tumour class. The prior spatial probabilities of the tumour location

were introduced into the algorithm by multiplying the atlas probabilities by the difference

image of the pre and post-contrast images. Prastawa et al. [173], prior to detecting MS

lesions as seen in section 3.4.4, also proposed detecting tumours and edemas by using the

Minimum Covariance Determinant to estimate tissue PDFs using healthy samples, and

determining the diseased regions as the resulting outliers of the model.

Results for tumours [173] (DSC of 0.854 using only 3 cases) and general white matter

lesions [61] (DSC of 0.72 using a large data set of 209 cases) show a good agreement in

real data. Unfortunately, in the specific case of WM lesions corresponding to MS lesions,

segmentation results show lower DSC values, like, for instance, the 0.633 obtained by

Shiee et al. [199] using a statistical framework based on the fuzzy clustering algorithm.

This indicates that there is a need for further development of MS lesion segmentation.

3.5 Discussion: How can we use an atlas to segment MS

lesions?

As defined in chapter 1, MS lesions are abnormalities in the brain tissues. In our case, this

lesions are WM abnormalities due to the demyelination of the neuronal axons. Clinically

and statistically, MS lesions can be considered as tissue outliers. In fact, as we have seen in

section 3.4.4, lesions behave as outliers in terms of image intensities and can be segmented

using normal appearing tissue information to discard them.

Therefore, an atlas becomes a powerful tool for MS lesion segmentation within proba-

bilistic frameworks. To be precise, the use of probabilistic atlases and outlier rules (i.e.

a certain distance to a tissue distribution) are the most common strategies when dealing

with this type of lesions (see table 3.6). As pointed out in section 3.4.4, focal lesions are

small enough and rarely cause edema. Thus, when compared to the deformation intro-
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duced by a large tumour, small misregistration errors can be neglected or treated as part

of the probabilistic segmentation.

Another important aspect when detecting and segmenting lesions as outliers is the def-

inition of the tissue model. Once again, looking at table 3.3 the most common approach

is to use a probabilistic atlas within a probabilistic framework when dealing with healthy

patients. As pointed out in section 3.4.4, most of these strategies can be extended to

include MS lesions as outliers.

While probabilistic atlases can aid and guide tissue and lesion segmentation, topolog-

ical atlases that delimit structure boundaries can also be used to impose certain spatial

constraints to the segmentation as proposed by Shiee et al. [199]. Such constraints can be

used to detect common lesions appearing around certain structures which can later be used

to diagnose a MS patient according to the criteria described in chapter 1. For instance,

periventricular lesions could be detected and characterised thanks to the segmentation of

the ventricles.

To summarise, probabilistic frameworks are the most common approach to segment MR

images of MS patients. On these cases, the importance of the atlas is twofold. On the one

hand, tissue distributions and probabilities can be estimated. On the other hand, outliers

of these distributions can be also estimated using a probabilistic atlas. Finally, label

propagation and topological atlases can also be used to impose certain spatial constraints

on the segmented lesions.

3.6 Conclusions

In this chapter we have presented the basics of atlas-based segmentation and we have

reviewed its application in brain MRI. First, we described an atlas as a set of images

including at least an intensity image considered a template and a segmented image and we

presented a summary of the atlases’ history in brain imaging [76]. We also differentiated

between topological atlases, having only a labelled image, and probabilistic atlases, including

a set of probabilistic maps.

Afterwards, we presented three different approaches to atlas-based segmentation: label

propagation, where a single labelled image is used for segmentation after registration, multi-

atlas propagation, where a set of labelled images are combined in the image space to obtain

a segmentation, and probabilistic atlas segmentation, where probabilistic atlases are used

as part of a probabilistic or variational framework.
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Finally, we presented several works involving atlas-based segmentation divided into

four categories according to their medical target: brain structures presenting well-defined

shapes, brain tissues in healthy subjects, brain tissues in challenging populations and le-

sions damaged brains including the MS papers from chapter 2. For each category, we also

presented the reported results for each strategy and a discussion.
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Chapter 4

MS lesion segmentation

proposals

Sometimes your mistakes can surprise you.

My biggest mistake for instance, brought me here.

Harold Finch, “Person of Interest (Season two)” (2013)

4.1 Overview

In order to develop our proposal, we presented the state-of-the-art on MS lesion segmenta-

tion in chapter 2. After a thorough analysis, we concluded that supervised approaches are

preferred to unsupervised ones thanks to the strength of using prior knowledge. Moreover,

one of the most common techniques to introduce this prior knowledge was to use a so-

called atlas. Therefore, in chapter 3, we introduced the atlas concept and defined various

strategies to use them for segmentation. Furthermore, we presented all the possible clinical

targets of the brain in order to point out strengths and weaknesses that could be applied

to MS lesion segmentation.

In this capter, we commence with a presentation of our preprocessing pipeline, with

several steps to enhance our images and prepare the atlas, followed by two different atlas-

based approaches: the first based on tissue segmentation, and the second fully supervised

and based on training from manual expert annotations.

75
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4.2 Preprocessing

In chapter 1 we explained how difficult it is to achieve a robust and automatic brain MRI

segmentation due to numerous facts: variable imaging parameters, overlapping intensities,

noise, partial volume effect, gradients, motion, echoes, blurred edges, normal anatomical

variations, and susceptibility artefacts [191]. Therefore, before applying any approach to

MS lesion segmentation, there are generally two preprocessing steps to be carried out: first,

the minimisation of those image artefacts and second, the removal of nonbrain tissue, such

as the skull, from the image. Other optional preprocessing steps such as the equalisation

of soft brain tissues or registration between different MR images may be applied. In this

section, these steps are briefly described.

As stated, the capture process itself corrupts MR images with various artefacts. This

can lead to inaccurate segmentation. However, from the image processing viewpoint, it is

common to simplify all these problems [201] by defining the observed intensities, Î, of each

voxel x as:

Î(x) = βI(x) + ε (4.1)

where I(x) is the real intensity, β is a multiplicative smooth bias field that causes intensity

inhomogeneities due to the sensitivity of the reception coil and ε represents additive noise.

While it is often assumed that ε follows a Gaussian distribution, there have been different

approaches to correct the bias field β. This is an important issue since voxels belonging to

different tissues may be assigned with the same grey-level value when varying this term.

Two different studies have reviewed different ways to overcome this preprocessing step

problem [112, 232]. Both studies classify these methods into various groups: segmentation-

based, filtering-based, surface fitting-based, histogram-based, and other specific techniques.

However, as pointed out by Hou [112], none of these methods has been shown to be superior

to the others and exclusively applicable.

Skull stripping is another important preprocessing step since fat, the skull, skin, and

other nonbrain tissues may cause misclassifications in some approaches due to the intensity

similarities with brain structures [53]. This is also the case of brain sub-cortical structures,

where advanced analysis is not readily applicable since the intensity characteristics that

overlap between different structures may reduce the reliability of automated segmenta-

tion methods. Two works have analysed and compared the state-of-the-art methods to

extract brain regions from MR images. The first study, by Boesen et al. [31], compared
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four systems: Statistical Parametric Mapping (SPM2) [12], the Brain Extraction Tool

(BET) [203], the Brain Surface Extractor (BSE) [193], and their own Minneapolis Con-

sensus Strip (McStrip) [176]. They validate these systems with three data sets of T1-w

images. The second study, by Hartley et al. [104], compared only the accuracy of BET

and BSE against 296 PD-w images. In both studies, manual segmentations were used as

the “gold standard”. Boesen et al. [31] concluded that the McStrip, a hybrid algorithm

incorporating intensity thresholding, nonlinear warping, and edge detection, consistently

outperformed SPM2, BET, and BSE. Furthermore, other studies [117, 244] also suggest

performing this region removal task before applying the inhomogeneity correction. In this

way, the correction would be carried out only on those voxels belonging to the internal

brain tissues.

As already mentioned, other preprocessing steps can be applied to improve the clas-

sification of tissues and the subsequent lesion segmentation. Examples of such prepro-

cessing pipeline approaches can be found in studies by Zijdenbos et al. [251] and Hou and

Huang [113]. The steps in their pipeline approach include registration between different MR

images [23], intensity normalisation [192], and the transformation to a standard space to

facilitate atlas-based segmentation (as presented in chapter 3). For example, the Talairach

coordinate system is used to describe the location of brain structures that are independent

from individual differences in the size and overall shape of the brain [214]. Some approaches

also use intra-sequence and inter-sequence preprocessing registration steps. Intra-sequence

registration enables the correction of the misregistration between the acquisition steps,

since standard multi-slice acquisition sequences are acquired in multiple, interleaved passes

(this step is only used when applicable to the actual acquisition sequence, such as a multi-

slice dual-echo). On the other hand, the inter-sequence registration can help compensate

for possible (and likely) patient motion between scans.

Ultimately, as in many image processing applications, the choice of all these preprocess-

ing steps is a trade-off between algorithmic complexity (i.e. the number of tunable param-

eters), flexibility, and processing speed (although nowadays this is not a critical issue since

a few hours of processing time for a large series of images is acceptable). Moreover, this se-

lection may also depend on the demands made of the developed pipeline or on user-defined

criteria in terms of accuracy, reproducibility, and consistency over time or across data sets

acquired on different scanners. For our segmentation methods, we decided to follow the

preprocessing pipeline presented in figure 4.1: firstly, the skull is removed; secondly, the

noise and intensity inhomogeneities are reduced; afterwards, an atlas is registered to the

corrected images; and, finally, the images are normalised for all patients.
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Figure 4.1: Flowchart of the preprocessing steps used for both segmentation methods.

4.2.1 Skull stripping

As pointed out before, Boesen et al. [31] concluded that their novel McStrip method [176]

outperformed the others. This algorithm incorporates atlas-based segmentation with de-

formable registration, intensity thresholding with connectivity constraints, and edge de-

tection with morphological operations. However, this method is not publicly available.

BET, a tool from the FSL toolbox [116], is a freely available algorithm based on T1-w

images and is widely used in brain MRI processing. While the voxel misclassification is

fairly superior when compared to the McStrip [31], the differencies in accuracy are not

significant when compared with other freely available tools such as BSE or SPM [104].

Therefore, we decided to use this tool to perform the skull stripping.

The BET algorithm uses a deformable model that evolves to fit the brain’s surface by

the application of a set of locally adaptive model forces. First, robust higher and lower

intensity boundaries are estimated from the intensity histogram to obtain a rough threshold

between the brain and other tissues. With this initial mask, the centre-of-gravity is found

along with a rough size of the head. Afterwards, the initial deformable model is created

inside the brain using a tessellation of a sphere’s surface. Finally, the model is allowed to

slowly deform following forces that preserve smoothness and keep the surface well-spaced

while, at the same time, pushing to the brain’s edges. This process is repeated until a
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: Skull stripping example: a,d) Original slices; b,e) the same slices with a super-

imposed mask obtained using BET, and c,f) the same slices after removing the nonbrain

tissues.

suitable solution is obtained increasing the smoothness constraint. An example of skull

stripping is shown in figure 4.2.

The BET’s main parameter is the fractional intensity threshold. This parameter, which

is by default 0.5, is used to compute the force component responsible for fitting the surface

model to the real brain surface interacting with the image. Furthermore, BET also offers

different options to interact with. For instance, there is an option to do a cleanup for the

eyes and the neck, as well as options to do a robust brain centre estimation or to include

a T2-w image.

In our preprocessing pipeline, we decided to apply the BET algorithm to the T1-w

images.
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4.2.2 Bias correction and noise reduction

An intensity in which where the observed intensities from the images are corrupted by an

additive noise and a multiplicative bias field is defined by equation 4.1. Other models used

in the literature are described by Vovk et al. [232]. However, this simplified model with

additive noise and multiplicative bias is the most widely used in brain MRI.

Following this model, the first step to recover the real intensity values would be to

eliminate, or reduce, the noise signal since the bias field is assumed to affect the original

intensity values independently of the noise. Therefore, after the skull stripping, we perform

a noise reduction step based on anisotropic diffusion [166].

Anisotropic diffusion algorithms are formulated in order to preserve specific image fea-

tures while also reducing noise. For instance, light-dark transitions defining the edges

between tissues are important and thus should be kept. Standard isotropic diffusion meth-

ods move and blur those boundaries causing artifacts similar to those observed as partial

volume effects. In contrast, anisotropic diffusion methods are formulated to specifically

preserve those edges.

In our proposal we use an anisotropic diffusion filter that tends to preserve edges over

smoother regions according to the gradient magnitude at each point. This filter is publicly

available as part of the Insight toolkit (ITK) software library and is implemented as an

N-dimensional version of the classic Perona and Malik anisotropic diffusion equation for

scalar images [166].

After noise reduction, the only issue from equation 4.1 that remains is the multiplicative

bias field. Amongst the various bias correction algorithms that deal with this smooth

multiplicative field, the well-known nonparametric nonuniform normalisation (N3) [201]

has become a de facto standard for a variety of imaging acquisition strategies. The original

method iteratively seeks a field, modeled using B-splines, that maximises the high frequency

content of the distribution of tissue intensity. This algorithm is fully automatic and requires

no prior knowledge contributing to its high popularity within the community.

Recently, Tustison et al [224] proposed two improvements to this method and a new

implementation rebranded Nick’s N3 (N4) based on the ITK library. These two major

changes affect the B-splines modeling and the iterative optimisation scheme. The new

B-spline approximation allows for smaller control point spacing, obviates the need of a

regularisation parameter, and permits the specification of a weighted mask that could

be used in a segmentation framework. Moreover, it allows for a multi-scale optimisation
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: Denoising and bias correction example: a,d) Slices after skull stripping; b,e)

the same slices after denoising, and c,f) the same slices after applying bias correction.

approach that reduces time and improves convergence.

Therefore, we decided to use the N4 bias correction filter provided as part of the ITK

library, combined with the anisotropic diffusion filter to obtain the original intensity image

I(x). An example of this procedure is shown in figure 4.3.

4.2.3 Inter-subject normalisation

After dealing with the major artifacts and issues of brain MRI presented in chapter 1, no

further preprocessing steps would be required when processing each image independently.

However, if a supervised approach based on training is used, another major issue should

be tackled. We are referring to inter-subject normalisation.

On every classification approach, the training and testing datasets should be normalised

in order to keep the data in the same range. In our case, we have images from different
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patients with initial intensity differences that are intensified after applying noise reduction

and bias correction. These differences between intensity profiles may cause misclassification

errors since lesions do not have the same intensity values for each patient.

Therefore, we propose applying an inter-subject normalisation algorithm focused on the

intensity histogram of each patient. First, a model image is chosen (either randomly or

arbitrarily). This image’s histogram will then be used as a template for the other images in

the same database. Afterwards, all other image distributions are matched to this histogram

using the method proposed by Nyúl et al. [132] and implemented as part of the ITK library.

This algorithm computes histogram landmarks (which can be either peaks and valleys, or

concrete percentils) for the images to be matched and creates a look-up table (LUT) to

transform the intensities from one image to another. While the brain’s anatomy and lesions

may change from patient to patient, the tissue percentages are mostly the same for each

patient and the relative volume of the lesions compared to the whole brain is relatively

small in comparison.

4.2.4 Atlas registration

Rigid registration is usually sufficient when dealing with intra-subject medical applications,

such as temporal studies of the same subject. However, when dealing with inter-subject

applications, such as atlas matching, nonrigid algorithms can explain local anatomical

variations between the template and the subject brain that global methods fail to reproduce

(i.e. GM sulci).

In our proposal, we have decided to implement with ITK one of the most common

methods based on a multi-resolution approach [182] with a starting pre-registration using

affine transformations to globally align the atlas template and the patient’s scan, followed

by a multi-resolution B-spline transformation. Within the registration framework, the

mutual information metric is used as part of the optimisation process.

Similarity map

When the registration is completed, a similarity volume is computed comparing the moved

atlas template and the patient’s T1-w image. For both images, we create a patch for each

voxel of an arbitrary size and compute a similarity metric between them. The normalised

cross-correlation metric is chosen over other similarity metrics due to its invariance to

linear intensity brightness, and also to decouple the similarity volume process from the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.4: Example of atlas registration: a,g) T1-w image; b,h) atlas template; c,i) simi-

larity map; d,j) CSF probability map; e,k) GM probability map and f,l) WM probability

map.
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optimisation one and reduce the bias introduced when using the same metrics for both

processes. Therefore, the similarity map is defined by the following equation:

φ(x) =

∑
i∈[x,Nx]

(IT1(i)− IT1x )(πI(i)− πIx)√ ∑
i∈[x,Nx]

(IT1(i)− IT1x )2
√ ∑
i∈[x,Nx]

(πI(i)− πIx)2

, (4.2)

I
T1
x =

1

|Nx|
∑

i∈[x,Nx]

IT1(i), (4.3)

πIx =
1

|Nx|
∑

i∈[x,Nx]

πI(i), (4.4)

where IT1(x) is the T1-w image of the patient (used as the fixed image), πI(x) is the atlas

template image (used as the moving image) and Nx is the 3D neighboring area of pixel x.

The resulting similarity map expresses a local relation between the resulting transforma-

tion and the image we want to segment, highlighting those regions where the deformation

adapts to the new case and darkening the regions where the optimisation process could not

reach the desired accuracy. Therefore, this map can then be used as a weighting volume for

the probabilistic atlases in a similar manner to the fusion step of multi-atlas propagation

strategies [107, 10]. Figure 4.4 shows an example of atlas registration and the similiarity

map.

4.3 Tissue inference by statistical segmentation using expec-

tation maximisation and lesion outlier thresholding (TISSUE-

LOT)

The expectation-maximisation (EM) [64] algorithm is one of the most widely used in the

literature for tissue segmentation. A quick look at the tables from chapter 2 corrobo-

rates this fact, that was reinforced in chapter 3 while describing probabilistic approaches

based on probabilistic atlases. This algorithm interleaves the two interconnected main

procedures that it is named after. During the expectation step, the probabilities for each

datapoint pertaining to a given distribution are estimated, while in the maximisation step

these distribution parameters are computed using the estimated probabilities. While being

theoretically simple, it is capable of adapting to different statistical models, although it is

mainly used to estimate Gaussian distributions.
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Figure 4.5: Flowchart of the first pipeline used to segment tissues and lesions.

For instance, Souplet et al. [204] adapted the EM algorithm to tackle partial volume

(PV) effects. In their approach, which is an extension of the algorithm presented by

Dugas-Phocion et al. [72], two main types of classes are defined: pure tissue classes, which

are assumed to follow a Gaussian distribution and comprise CSF, GM, and WM; and

partial volume classes, which are defined as proportions between GM and CSF. While

other interactions may occur (such as WM and CSF around the ventricle boundaries),

those are excluded due to their slight influence and the possibility of defining them using

CSF and GM proportions.

After this initial tissue segmentation, where lesions are misclasified inside a tissue (mainly

partial volumes and GM), a thresholding approach is applied followed by a refinement of

this initial lesion mask. This thresholding step is applied exclusively to the FLAIR image

and no correspondence between the other images is directly applied.

In this section, we will further explain the basics of this approach and present our

contributions, introduced as part of our first lesion segmentation pipeline (see figure 4.5)

based on atlas. All the steps in the proposed pipeline are applied to the images after the

preprocessing. This means our initial images comprise the corrected T1-w, T2-w, PD-w

and FLAIR images plus the CSF, GM and WM probabilistic maps in image space.
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4.3.1 Tissue classification with expectation-maximisation (EM)

As stated earlier, the original method from Dougas-Phocion et al. [72] proposed to segment

the brain introducing the concept of partial volume effects. To that extent, partial volume

classes are introduced in what follows.

Within this framework, we define the pure tissue class set PT = {CSF,GM,WM}. For
each class c ∈ PT , its intensity distribution is modeled as the following multidimensional

Gaussian distribution:

yc ∼ N(µc,Σc). (4.5)

Given two pure tissue classes, c1 and c2, a PV voxel x with a proportion α of class c1

(and hence a proportion 1 − α of class c2), its intensity I(x) is a random variable yPV
that can be computed as yPV = αyc1 + (1 − α)yc2 . Considering all the PV voxels, α

is uniformly distributed, however, if α is set as a constant, yPV follows the subsequent

Gaussian distribution:

yPV ∼ N(αµc1 + (1− α)µc2 , αΣc1 + (1− α)Σc2) (4.6)

Dougas-Phocion et al. [72] and Souplet et al. [204] decided to sample α at different

constant values in the range (0, 1) and set c1 and c2 as CSF and GM. A constant for the

number of PV classes was defined in order to select those proportions. Furthermore, they

introduced two different outlier classes to deal with imaging artifacts. For instance, Dugas-

Phocion et al. defined an outlier class to differentiate between what the atlas considers as

CSF but is actually a vessel, while Souplet et al. defined a pure outlier class based on the

Mahalanobis distance.

While these two strategies reduce the variance of the PV and CSF classes, it creates small

clusters that do not provide extra information and can sometimes collapse and become an

empty set. For example, vessels may not be visible in low resolution images or may be

represented by only a few voxels. Therefore, we simplified the partial volume approach

fixing α to 0.5 and using only a PV class. In fact, we observed that most artifacts and

lesions are classified inside this class, as well as the interfaces between CSF and GM.
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Initialisation

Initialisation is a crucial aspect of the EM algorithm. Without proper initial parameters the

algorithm may take longer to converge or, even worse, fall in a local maximum. Commonly,

distribution parameters are estimated either semi-automatically or automatically, and the

algorithm starts in the expectation step. However, probability maps (such as atlases) can

also be used to estimate the initial tissue parameters as part of the maximisation step.

This is the case in tissue segmentation approaches that rely on atlas-based segmentation.

For instance, Souplet et al., used the registered atlas for pure tissue classes and, afterwards,

PV class parameters were calculated following equation 4.6.

However, atlas registration may cause several errors close to the cortex region even when

using deformable registration. This is due to the high spatial variability caused by the gyri

and sulci of the brain. Moreover, lesions are usually masked inside WM due to their

nonexistance in healty tissue atlases, even though they do not share the same intensity

distribution.

Therefore, initial estimates relying solely on the probabilistic maps after registration

may be corrupted by those errors, causing biased initial estimates for the mean and a high

variability for each tissue. While those issues can later be overcome with several iterations,

reducing them decreases computation time and improves convergence. In our proposal, we

combine the atlas probabilities with the similarity map computed during registration and

set a threshold T π to select only those atlas probabilities that are meaningful to the class.

As a consequence, not all the voxels are used to initialise the model.

Expectation

In the expectation step, the probability of belonging to the different classes of each voxel

is updated with the application of Bayes’ rule:

p(c|I(x)) = p(I(x)|c)p(c). (4.7)

As we explained before, each class (including the partial volume class) follows a Gaussian

distribution with parameters θc = {µc,Σc}, where c ∈ {CSF,GM,WM,PV }. Therefore,

p(I(x)|c) can be computed using the following probability density function:

p̂i(I(x)|c, θ̂i−1
c ) =

1√
(2π)D|Σc|

e−
1
2

(I(x)−µ̂i−1
c )t(Σ̂i−1

c )−1(I(x)−µ̂i−1
c ), (4.8)
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where p̂i(I(x)|c, θ̂i−1
c ) is the approximation of p(I(x)|c) at iteration i with the previously

estimated parameters θ̂i−1
c and D is the number of features. In our case D = 3, since we

use T1-w, PD-w, and T2-w images, the most commonly used MR images for tissue and

lesion segmentation, as stated in chapter 2.

To compute the priors for each class p(c), Dugas-Phocion et al. proposed two different

approaches. If probability atlases are available for all classes, p(c) = πP
c . On the other

hand, when no atlases are available, p(c) is re-estimated at each iteration using the following

equation:

p̂i(c) =

Nvoxels∑
x=1

p̂i−1(c|I(x))

Nvoxels
, (4.9)

where Nvoxels is the total number of voxels. The first approach, introduces a local estimate

for each voxel, imposing contextual and spatial constraints, while the second is a global

estimate for all the voxels. However, no hybrid approach is proposed by either Dugas-

Phocion et al. or Souplet et al. for when some probability atlases are present (i.e. pure

tissue classes). Therefore, we propose to create a PV atlas defined as:

πPPV (x) =
1

2
(πP

CSF (x) + πP
GM(x)), (4.10)

since we defined the class PV as an equal proportion of both CSF and GM . With this

new atlas, we finally have a probability map for each class that can be used as a local prior

probability. However, the probability maps must be normalised again since
C∑
c
πP
c (x) = 1.

As pointed out in chapter 3, registration errors are common when registering a template

to a new image. These errors arise from differences in anatomy that cannot be captured

by the optimisation procedure and increase when dealing with an outlier class, such as MS

lesions, that is not present in the atlas template. To take these errors into account, we

compute a similarity map as explained in section 4.2.4 to weight the probability maps as

priors. However, if we really want to reduce the effect of the atlas on those regions where

anatomical differences are present, we must use another prior estimation since the weighting

is applied equally to all classes for each voxel. Therefore, we propose the introduction of a

simple neighbouring factor as expressed by the following equation:

p̂i(c) = φ(x)πP
c (x) + (1− φ(x))

∑
j∈Nx

p̂i−1(c|I(j))

|Nx|
, (4.11)
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where φ(x) represents the similarity map, Nx represents the 3D neighbouring voxels of x,

and p̂i−1(c|I(j)) represents the probability of voxel j of pertaining to class c computed at

the previous iteration.

Maximisation

In the maximisation step, the parameters of each class are computed from the voxels’

intensities and their probabilities of belonging to the different classes. The partial volume

class parameters are obtained as a proportion of the pure tissue parameters.

A common way to compute the mean and covariance matrix is to use the maximum

likelihood estimator (MLE) [72, 204]:

θ̂c = arg max
θc

Nvoxels∏
x=1

p(I(x)|θc). (4.12)

However, the MLE is sensitive to outliers and, as a consequence, one of the parameters can

become arbitrarily large. García-Lorenzo et al. [87] proposed using a trimmed likelihood

estimator to reduce the effect of those outliers. This new estimator uses the Mahalanobis

distance to discard those voxels that could be considered outliers when computing the

Gaussian parameters.

In our approach, we use an aproximation of such estimator where a probability threshold

is used instead of the Mahalanobis distance to compute the class parameters θ̂ic as follows:

µ̂ic =

∑
x∈X̃

p̂i(c|I(x))I(x)∑
x∈X̃

p̂i(c|I(x))
, (4.13)

Σ̂i
c =

∑
x∈X̃

p̂i(c|I(x))(I(x)− µ̂ic)t(I(x)− µ̂ic)∑
x∈X̃

p̂i(c|I(x))
, (4.14)

X̃ = {x : p̂i(c|I(x)) > T π}, (4.15)

where T π is the probability threshold used during the initialisation step.

Final tissue segmentation

Once the algorithm converges, meaning the probability maps p̂i(c|I(x)) obtained at the

expectation step stay the same, or after a certain number of steps the iterative process is
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: Example of tissue segmentation: a,d) T1-w image; b,e) FLAIR image; and c,f)

final tissue segmentation S(x).

halted and two separate outputs are obtained. On the one hand, we have an estimation

of tissue Gaussian parameters θ̂c, and, on the other hand, we have a set of probabilistic

maps. Therefore, to obtain a final tissue segmentation, we apply the following equation,

which we introduced in chapter 3:

S(x) = arg max
c

p̂endf(c|I(x)), (4.16)

where S(x) is the segmentation and p̂end(c|I(x)) represents the probability map for class c

obtained at the last step of the EM algorithm. An example of this segmentation, alongside

a T1-w image and a FLAIR image, used to segment the lesions, is illustrated in figure 4.6.

4.3.2 Lesion segmentation with FLAIR

As introduced in chapter 1, lesions appear hyperintense in FLAIR images. Moreover, GM

voxels, the normal appearing tissue with the highest intensity in these images, have a
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darker distribution than lesion voxels. As a consequence, there is a noticeable difference

between normal appearing tissues and lesions in these images. Therefore, lesions that are

misclassified by the EM algorithm are actually hyperintense outliers of the GM FLAIR

intensity distribution. Moreover, those lesions should be either segmented as a GM-based

class (pure GM or PV) or WM (black holes) and should always be surrounded by WM.

FLAIR thresholding

In order to find a threshold for the FLAIR image, we first assume that GM intensities

follow a Gaussian distribution in the FLAIR image (as we did for the other MRI images

to segment the tissues). We also assume that lesions are hyperintense outliers of this

distribution. With these two assumptions, we can estimate a threshold TF as follows:

T F = µF
GM + γσF

GM , (4.17)

where the µF
GM and σF

GM are the distribution parameters of GM on the FLAIR image and

γ is an empirical parameter used to determine the outliers.

To estimate the tissue parameters, the GM mask, obtained in the previous step, is

applied to the FLAIR image to compute a histogram (see figure 4.7). Since lesions are

usually part of the GM mask (due to their intensity similarities in PD-w and T2-w images),

the histogram is biased by the high lesion intensities. This bias does not affect the peak

of the histogram, which is used to define the mean, however, it can affect the estimation

of the standard deviation. Therefore, we use the full width at half maximum (FWHM)

expression to compute it [61].

FWHM is an expression of the extent of a function, given by the difference between the

two extreme values of the independent variable (FLAIR intensities) at which the dependent

variable (histogram frequency) is equal to half of its maximum value. If the considered

function is the normal distribution (as we assumed for GM) the relationship between

FWHM and the standard deviation is:

σF
GM =

FWHM

2
√

2 ln(2)
, (4.18)

where σF
GM is the standard deviation of GM on the FLAIR image we are looking for.

Upon obtaining µF
GM and σF

GM and using them to compute T F by means of equation 4.17,

we apply it to the FLAIR image to obtain an initial lesion mask where other hyperintense
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Figure 4.7: FLAIR histogram for the GM tissue. The red line represents the peak used

to compute the mean, while the green line represents the full width at half maximum

(FWHM) used to compute the standard deviation.

artifacts are also included. This mask must be refined, since a large number of false positive

lesions are usually found.

Mask refinement

After thresholding, the mask is relabeled in order to divide it into different regions. A

region is defined as a set of voxels that are connected using a 3D neighborhood cube of

connectivity 26. That means that 2 voxels belong to the same region if they are directly

connected in a 3D space. We decided to use a region-wise refinement step [174, 2, 61] to

reduce FP in terms of detection due to artifacts.

In order to differentiate lesions from other regions, we define a set of rules that are true

for WML:

• Lesions are mostly classified as WM and GM-based classes (PV and pure

GM). In the case of WM, most lesions share a similar intensity profile to that tissue

in T1-w images and have a high probability in the WM map (due to registration
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limitations); while in the case of GM, lesions share the same intensity profile in

T2-w and PD-w images. Furthermore, black holes share the same intensity profile

in T1-w images and present low values in the similarity map (weighting down the

atlas probabilities during segmentation). To determine if a region follows this rule, a

positive mask (containing WM, PV, and pure GM) and a negative mask (containing

the background and all other tissues) are defined and for each region the proportion

between positively and negatively masked voxels is computed. If this proportion is

higher than the user-defined threshold Tωt , the region is labeled as WML.

• Lesions are surrounded by WM. We are only focusing on WML, therefore all

lesion regions should be surrounded (mostly) by WM voxels. To determine if a

region follows this rule, a positive mask (containing only WM) and a negative mask

(containing the background and all other tissues) are defined and for each region the

proportion between all its positive and negative neighbouring voxels is computed. If

this proportion is higher than a user-defined threshold TωN , the region is labeled as

WML.

• Lesions should not be present between the ventricles. As stated in chapter 1,

one of the typical MS lesion locations is the surrounding of the ventricles. However,

these lesions rarely appear between them and hyperintense regions in these areas are

usually due to artifacts. Therefore, we remove all the regions that are close to the

centre of the brain (which is usually between the ventricles).

• Lesions should be of a minimum size. Due to noise and inhomogeneities, some

voxels may present random high intensities. These voxels are usually corrected during

the preprocessing, however, some of them might still be considered as lesions after

thresholding the FLAIR image. To remove these small outliers, we discard all regions

that do not conform to a minimum size.

Finally, all the regions discarded according to one (or more) of these rules are reclassified

according to the tissue segmentation. An example of the final segmentation (including

lesions and tissues) is presented in figure 4.8.

4.4 Boosting with outliers and other spatial tools (BOOST)

In section 4.3, we have presented an atlas-based approach to introduce prior knowledge

to the segmentation process. As introduced in chapter 2, other common supervised ap-
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: Example of the TISSUE-LOT pipeline segmentation: a,d) FLAIR image; b,e)

tissue segmentation; and c,f) final segmentation including tissue and lesions.

proaches rely on the use of a classification algorithm. These algorithms usually involve

two stages. In the first stage, a model is estimated on a training set composed of a set of

features and their corresponding ground truth. This model can be as simple as a linear

discriminator [119], or as complex as an artifical neural network [94]. In the second and

final stage, this model is tested on a new dataset to classify it.

Most classification algorithms differentiate between lesion and not lesion (object and

background), however, other algorithms can use multiple labels and produce a probabilis-

tic tissue map as a result. These probabilistic maps are usually the result of using an

ensemble of classifiers such as bagging [92] or boosting [156]. These strategies combine

simple discriminative classifiers that focus on a small subset of a rich feature pool to clas-

sify a small subset of the training set. One of the advantages of this specialisation is the

implicit feature selection applied to the dataset. These strategies give a stronger impact to

the most discriminating features while underscoring or discarding the less discriminating

ones.
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Figure 4.9: Flowchart of the second pipeline used to segment lesions using a trained clas-

sifier.

A rich pool of features is important when using ensemble classifiers. These features can

comprise common features used for classification such as image intensities [119, 61], spatial

locations [6], atlas probabilities [94] or more complex features such as meta-features that

exploit contextual information [92]. These approaches have been extensively used in other

imaging fields such as object detection [200] or astronomical source detection [223].

As a second pipeline (see figure 4.9), we proposed a classification approach based on

an ensemble classifier of regression stumps with a rich feature pool that combines multi-

channel image intensities, probability maps, contextual meta-features, and an outlier map

based on image intensities.

4.4.1 Outlier map

Lesions are usually seen as hyperintense regions in PD-w, T2-w images, and FLAIR im-

ages. However, lesions may present a wide range of grey level values in T1-w images

(ranging from normal appearing WM to CSF). Although FLAIR provides a good contrast

between tissues and WML, it also presents some disadvantages and artifacts that may

cause misclassifications and false positive (FP) detections [162]. Moreover, lesions should

also appear in PD-w and T2-w images, while most FLAIR artifacts should not be present.
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Figure 4.10: Scheme of the outlier map computation. θc represents the mean and covariance

matrix of each tissue c used to compute the Mahalanobis distance to obtain the outlier

maps for that tissue.

Therefore, we decided to extend the map presented by Schmidt et al. [187] to a mul-

tidimensional outlier map using PD-w and T2-w images to reduce the FP presence (see

figure 4.10). Since WML have a higher intensity than all 3 tissues, the original approach

consisted of assigning to each voxel the positive distance (0 otherwise) to the tissue dis-

tribution for WM, GM and CSF previously estimated using the EM algorithm presented

in the previous section. We propose extending this approach to multi-channel using the

Mahalanobis distance as follows:

Oc(x) =

d(x, θc) if ∀s : Is(x) > µsc

0 otherwise
(4.19)

where x represents the voxel coordinates, s ∈ {T2, PD, FLAIR}, c ∈ {CSF,GM,WM},
θc = {µc,Σc}, and d(x, θc) is computed using the following equation:

d(x, θc) =

√
(I(x)− µc)tΣ−1

c (I(x)− µc). (4.20)

Afterwards, we sum the three tissue maps and weight them using the WM probabilistic

atlas to reduce the effect of outliers outside the tissue. Finally, we relax this map using

neighbouring information for each voxel as follows:

O(x) = O(x)
∑
j∈Nx

O(j) + πP
WM(j)−O(j)πP

WM(j)

|Nx|
, (4.21)
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Figure 4.11: Scheme of the meta-features used. The 3D regions R1 and R2 are randomly

sampled inside a fixed neighbourhood around the central voxel x, and their means are

compared to that voxel.

O(x) = πP
WM(x)T1(x)

∑
c

Oc(x). (4.22)

With this smoothing, we want to reduce the effect of isolated spurious hyperintense voxels

not surrounded by WM or other outlier voxels.

4.4.2 Context meta-features

Even though the outlier map can be used to detect lesions as hyperintense outliers, due to

image artifacts, other regions may present similar properties. These false positive regions

are usually located in unlikely places for WML (such as inside the cortex). Contextual

information or spatial constraints can, therefore, aid automated strategies to differentiate

between real lesions and artifacts present in the MRI scans.

To introduce this information, we propose using meta-features similar to those presented

by Geremia et al. [92]. These meta-features (see figure 4.11) provide a comparison between

the voxel on channel V1 (which can be either a probabilistic map or an intensity image)

and the mean of two different regions (R1 and R2) on channel V2 as follows:

λ(x) = V1(x)− V2(R1)− V2(R2) (4.23)

where V1, V2 ∈ {Id, πPc ,O}, Id is the image d ∈ {T1, PD, T2, FLAIR}.

The three-dimensional regions R1 and R2 are randomly sampled (in size, shape and

location) in a neighbouring cube around the voxel x, and the mean for them is efficiently

computed using integral volume processing [200].
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4.4.3 Boosting classifier

At this point, we have a rich pool of features characterised by 4 intensity channels (T1-w,

PD-w, T2-w, and FLAIR), 3 probabilistic atlases (CSF, GM, and WM), an outlier map, a

set of randomly sampled context features, and a set of training cases. From these training

cases, we randomly sample a set of positive examples pertaining to WML and negative

samples pertaining to any tissue with a ratio of 1 positive example for 3 negative ones (to

account for the 3 possible tissues). These samples are the ones used to train a classifier.

We decided to use the Gentleboost algorithm [84, 221], which is based on the simple idea

that the sum of weak classifiers can produce a strong classifier (see figure 4.12). This algo-

rithm has been widely used for different segmentation applications within the VICOROB

group [223, 222, 163] and offers a comprehensive description of the most discriminating

features used. In the Gentleboost algorithm, the weak classifiers used at each round are

simple regression stumps with one of the features:

hi(p) = a ψ(p > T h
i
) + b, (4.24)

where a and b are the parameters of the regression stump, being a = 2, b = −1 the values

obtained in the perfect case, and a = 0 and b = 0 the values obtained in a random example,

ψ(χ) refers to the Heaviside step function (0 if χ < 0; 1 otherwise), and T hi is the threshold

that determines if pattern p belongs to the object class. At each round, the values of the

parameters a, b, and T hi are selected to minimise the error of the classifier:

e = min

Nt∑
t=1

(zi(y − hi(vft ))2), (4.25)

where vft is the value of feature f ∈ {Id, πPc ,O, λ} for the training data point t, y is the

lesion label (being 1 or −1) and zi the training data weights at round i. The minimisation

is done by exhaustively looking for all the values of T hi since, assuming a fixed T hi , the

values of a and b are automatically assigned. Hence, the value of b corresponds to the mean

weighted label of the instances lower than the threshold, while a is the mean weighted label



4.4. Boosting with outliers and other spatial tools (BOOST) 99

Figure 4.12: Example of a boosting training with linear classifiers in a 2D feature space.

Green dots represent positive examples, red dots represent negative ones and the lines

represent a linear classifier. After defining a classifier, those samples that are misclassified

are given a higher weight while the correctly classified ones are given a lower weight in order

to correctly classify the misclassified samples. The process is repeated until convergence

or until a certain number of rounds has been achieved.
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of the instances greater than the threshold (minus b to satisfy eq. 4.24):

b =

∑
t∈T f
∇

yt · zit∑
t∈T f
∇

zit
, (4.26)

a =

∑
t∈T f
4

yt · zit∑
t∈T f
4

zit
− b, (4.27)

where T f∇ = {t : vft < T h
i} and T f4 = {t : vft ≥ T h

i}.

At each round, only the feature f i that obtains the minimum error e is selected and

used in the testing step to classify the new data. Moreover, at each round of the boosting

the weights zt are updated, increasing the possibility of correctly classifying the previous

incorrectly classified instances in the following round. In the Gentleboost algorithm, the

data weights are updated using:

zi+1
t = zite

y·hi(vf
i

t ). (4.28)

Hence, when testing new data, the final (strong) classifier is computed using the weak

classifier created at each round of the boosting. Therefore, the testing data is classified

according to the sign of the sum of weak classifiers:

H(v) =

Nrounds∑
i

hi(vf
i
). (4.29)

Therefore, voxels being part of a lesion should obtain positive values while the rest of the

voxels should obtain negative values. Furthermore, the absolute value of H(v) shows the

confidence of the classified data. To obtain a final lesion mask, the output of H(v) must be

thresholded. An example of this thresholding and the outlier map is shown in figure 4.13.

Moreover, the classifier also returns the f i features selected. These features can be used

more than once.

4.5 Summary

In this chapter, we have presented two different pipelines based on two different supervised

approaches, both including an atlas. Moreover, these approaches share an initial prepro-

cessing pipeline which comprises several steps to reduce the image artifacts and issues
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(a) (b) (c)

(d) (e) (f)

Figure 4.13: Example of the BOOST pipeline segmentation: a,d) outlier map; b,e) output

of the classifier (H(v)); and c,f) final lesion segmentation.

introduced in chapter 1. In this section, we will summarise these pipelines, which will be

evaluated in the next chapter, and highlight our contributions.

4.5.1 Preprocessing pipeline

Before segmentation, different preprocessing steps must be applied to prepare the images

for further analysis. The first step consists of the removal of the skull and other nonbrain

tissues. This step is applied by means of the publicly available BET tool [203], which

is a part of the FSL toolbox. Afterwards, a gradient anisotropic diffusion filter [166]

is applied, followed by the N4 ITK algorithm [224] to reduce image noise and intensity

inhomogeneities.

Once the images are enhanced, we apply two other preprocessing steps needed by the

subsequent segmentation pipelines. First, in order to improve the training step of our

classification approach, we normalise the intensity images of the same dataset using a
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histogram matching approach [132]. Finally, as part of any atlas-based segmentation, the

atlas template and probabilistic maps provided by the ICBM [129] are aligned within a two-

stage registration approach. Initially, a global affine transformation between the patient’s

T1-w image and the atlas’ template is estimated using the mutual information metric and a

gradient step descent optimiser, which thereafter is expanded and refined using a B-spline

transformation to define local deformations [182]. When the atlas is finally warped into

the image space, a similarity map representing the voxelwise normalised cross-correlation

between the patient’s T1-w image and the template is computed.

Due to its pipeline nature, each preprocessing step may propagate and produce new

errors that may, in turn, affect both segmentation approaches. For instance, if the eyes are

not cleanly removed, their intensity distribution may affect the bias processing and registra-

tion, and as a consequence bias the tissue distributions computed inside the TISSUE-LOT

pipeline and the lesion model estimated by the BOOST pipeline.

4.5.2 TISSUE-LOT pipeline

Our first approach combines the atlas information with the intensity images to, first, pro-

duce a tissue segmentation estimate and, then, use this information as part of an outlier

thresholding approach to segment lesions.

The initial tissue segmentation is conducted as part of a modified EM approach where 4

main classes are indetified: CSF, GM, WM, and PV. This approach shares some similarities

with Souplet et al.’s proposal [204]. However, we proposed a set of differences to improve

convergence, increase the robustness of the tissue parameters estimates, and reduce the

effect of missregistration errors. Our first contribution consists of creating a PV atlas

that is used during the expectation step as a prior. Furthermore, we redefine the priors

by introducing our similarity map computed during registration to weight the atlas and

include neighbouring information in those areas where the registration failed to capture

tissue deformations. With those changes, we assure an smooth segmentation (without

small, random voxels) which is not absolutely driven by the atlas. Finally, in order to

improve the tissue parameter estimation, we use a threshold and a trimmed likelihood

estimator to compute the mean and covariance matrix during the maximisation step.

Once we obtain this initial tissue segmentation using T1-w, T2-w and PD-w images, we

apply the GM mask to the FLAIR image, where lesions appear hyperintense in contrast

with all the other tissues, to compute its distribution parameters from the histogram. In

order to reduce the effect of misclassified lesion voxels, the mean is estimated using the
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peak, while the standard deviation is computed using the FWHM. Afterwards, a threshold

based on those two parameters and a user-defined one is applied to the image to obtain an

initial lesion mask. This mask is further refined to reduce false positives by applying a set

of rules based on MS lesion properties.

4.5.3 BOOST pipeline

Our second approach comprises an ensemble classifier approach trained with intensity

images, atlas probabilities, an outlier map computed using the TISSUE segmentation al-

gorithm, and a set of contextual meta-features.

Firstly, an outlier map is computed from the estimated parameters during the EM seg-

mentation approach. This map is constructed in several steps. Initially, a positive tissue

outlier map is estimated for CSF, GM, and WM using T2-w, PD-w, and FLAIR images,

since lesions appear hyperintense on these images. Afterwards, these tissue outlier maps

are summed and weighted using the WM probability map and the T1-w image. Finally,

neighbouring information is applied to smooth the map.

Secondly, a set of contextual meta-features is computed using all the previous features.

To compute these features, two cubes are defined around a neighbouring area of each voxel,

and their mean is compared to the voxel’s intensity.

Finally, a gentleboost classifier based on regression stumps is trained with all the fea-

tures. Afterwards, the classifier is tested with the new image and a map with the confidence

for each voxel is obtained. This map is, at last, thresholded to obtain a final lesion seg-

mentation.
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Chapter 5

Experimental results

You cannot lose if you do not play.

Marla Daniels, “The Wire (Season one)” (2002)

5.1 Evaluation

Evaluation is a recurring topic when dealing with medical image analysis. Depending on

the application, the process of validating a certain approach can be as complex as the

approach itself due to different complications [226]. However, the two main key aspects to

take into account in any medical image analysis application are the databases with which

the approach will be tested and the evaluation measures that will be computed.

As introduced in chapter 2, one of the main difficulties in MS lesion segmentation is the

lack of a common database to train and test the algorithms. Most strategies are tested

with their own private database, difficulting the task of a fair and quantitative comparison

among different methods. Moreover, there is no baseline method to which a new strategy

can be compared, even though we pointed out some of the most promising approaches as

part of the conclusions in chapter 2.

On the other hand, there is a clear tendency to use the same evaluation measures to

validate MS lesion segmentation methods. In chapter 2, we also described all the different

measures that have been discussed throughout the literature, with special emphasis on

overlap measures. Specifically, the DSC has become a de facto standard for brain MRI

segmentation in general as pointed out in chapter 3. However, as we will further discuss,

using only a similarity index is not enough to capture all the strengths and weaknesses of

a concrete segmentation approach.

105
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Therefore, in this chapter we will, first, introduce the database we used to evaluate our

two proposals described in chapter 4. Afterwards, we will present the measures we chose

followed by the results for each pipeline. Finally, we will present a comparison and a

discussion of the results obtained, pointing out the important aspects of each pipeline.

5.2 Databases

In chapter 2, we briefly introduced a database of real cases that was provided as part of the

MICCAI conference’s MS lesion segmentation challenge 2008 [208]. Nowadays, the website

for the challenge hosts the files for the 20 training cases (10 from the CHB and 10 from the

UNC) with T1-w, T2-w and FLAIR images. In order to test the methods with the whole

database, a petition has to be made through the website.

On the other hand, within the SALEM project’s framework, we created a novel database

with images from 3 different scanning machines. Furthermore, for each hospital, patients

with different lesion load were scanned.

5.2.1 MS Lesion Segmentation Challenge 2008 database

As part of MICCAI 2008, the program included a workshop to serve as a common frame-

work to test and compare different approaches to segment MS lesions. To that extent, a

public database was created with imaging data from two different centres, the University of

North Carolina (UNC) and the Children’s Boston Hospital (CHB), comprising 53 different

cases: 20 training volumes (with ground truth) and 25 testing volumes were readily avail-

able before the conference; and 8 final volumes were provided for on-site testing during the

conference. Nowadays, only the training volumes can be downloaded from the workshop’s

website. Further processing with other cases is available after petitioning the organisers at

the expense of finally being ranked with all the other approaches that tested their methods

with the database.

Challenge’s images were obtained using a 3T MRI scanning machine. While the higher

magnetic field provides higher spatial resolution thus reducing partial volume effects, it

also causes new artifacts or stronger artifacts than using a 1.5T scanning machine. For

instance, intensity inhomegeneities are usually stronger and the volume presents a smooth

but visible darkening through the z coordinate of the FLAIR image. Common intensity

inhomogeneity algorithms do not deal with or can not accurately correct these issues. As a

consequence, the estimated threshold is biased, producing a high number of FP inside the
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a) b) c)

d) e) f)

Figure 5.1: Examples of MS challenge 2008 for the CHB hospital, a) T1-w image, b) T2-w

image, and c) FLAIR image; and the UNC hospital, d) T1-w image, e) T2-w image, and

f) FLAIR image.

GM. In order to reduce these artifacts, a filtering approach based on MRF and neighboring

information was used. However, this filtering is not necessary when dealing with 1.5T

images, such as the ones that are part of the SALEM database, the focus of this PhD.

In this chapter, we will present this database and evaluate the proposed pipelines with it.

Also, a report with some initial results obtained using the challenge database is included

in appendix A. Furthermore, this appendix includes results obtained using the BrainWeb

synthetic phantom.

5.2.2 SALEM database

One of the main goals of the SALEM project was to create a novel database with images

from three different hospitals to evaluate the effect of different scanning machines on the

proposals.

For each hospital, 15 different patients were scanned with the same protocol (T1-w,

T2-w, PD-w and FLAIR): from Hospital Vall d’Hebron, using a 1.5T Siemens Simphony
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Quantum with 2D conventional spin-echo T1-w (TR 653 ms, TE 14 ms), dual echo PD

T2-w (TR 2800 ms, TE 16 / 80 ms), and FLAIR (TR 8153 ms, TE 105 ms, and TI 2200

ms); from Hospital Josep Trueta, using a 1.5T Philips Intera (R12) with 2D conventional

spin-echo T1-w (TR 450 ms, TE 17 ms), dual echo PD T2-w (TR 3750 ms, TE 14 / 86

ms), and FLAIR (TR 9000 ms, TE 114 ms, and TI 2500 ms); and from Clínica Girona,

using a 1.5T GE Signa HDxt, with 3D fast spoiled gradient T1-w (TR 30 ms, TE 9 ms),

fast spin echo T2-w (TR 5000-5600 ms, TE 74-77 ms), PD-w (TR 2700 ms, TE 11.9 ms),

and FLAIR (TR 9002 ms, TE 80 ms, and TI 2250 ms). All the images were acquired in

axial-view with a slice thickness of 3 mm (1 × 1 × 3 mm). Examples of the images from

each hospital are presented in figures 5.2, 5.3 and 5.4;

From each hospital, patients with different lesion load were scanned as illustrated in

figure 5.5. By looking at both the box and bar plots, there is a clear difference between

the lesion load among the three hospitals.

Hospital Vall d’Hebron showed the lowest mean (3.1 cm3) and median lesion load (1.62

cm3) per patient. Besides, most of the cases have a lesion load inferior to the mean. On

the other hand, Hospital Josep Trueta has the highest mean (18.03 cm3) and median lesion

load (10.54 cm3) of all three hospitals. This hospital also has a high variability in terms

of lesion load. For instance, the minimum and maximum lesion loads are 0.19 cm3 and

52.48 cm3 respectively. The last hospital, Clínica Girona, presents a mean (10.34 cm3) and

median (5.03 cm3) value in-between the other two hospitals. Furthermore, the lesion load

of these cases presents a similar variability to Vall d’Hebron (even though this hospital has

the case with the highest lesion load of all three hospitals with 67.78 cm3). Looking at

all 45 patients, most have a lesion load lower than the mean lesion load for each hospital.

This is due some of the cases having an exceptionally higher lesion load than the other

cases handled at each hospital (as observed in the box plots).

Finally, all the lesions of each patient were accurately annotated by a trained technician

and confirmed by expert radiologists from Hospital Vall d’Hebron. All the annotations were

done on the PD-w images and semiautomatically delineated using JIM c© software1. These

annotations will be used as the ground truth for comparison against our two proposals.

1Xinapse Systems, JIM software webpage, http://www.xinapse.com/home.php.

http://www.xinapse.com/home.php
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a) b) c) d)

Figure 5.2: Examples of central slices from Hospital Vall d’Hebron: a) T1-w images; b)

PD-w images; c) T2-w images; and d) FLAIR images.
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a) b) c) d)

Figure 5.3: Examples of central slices from Hospital Josep Trueta: a) T1-w images; b)

PD-w images; c) T2-w images; and d) FLAIR images.
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a) b) c) d)

Figure 5.4: Examples of central slices from Clínica Girona: a) T1-w images; b) PD-w

images; c) T2-w images; and d) FLAIR images.



112 Chapter 5. Experimental results

a) b)

Figure 5.5: Lesion load per hospital: red represents Hospital Vall d’Hebron, green rep-

resents Hospital Josep Trueta and blue represents Clínica Girona. a) Bar plot for each

patient with the mean lesion load per hospital represented by a line. b) Box plot for the

three hospitals.

5.3 Evaluation measures

In chapter 2 we introduced the difference between detection and segmentation. As a

reminder, detection is the process of finding a lesion (represented by the overlap of at

least one voxel between the ground truth and the automatic segmentation [208]), while

segmentation is the process of delimiting the volume of that region. In this section, we

will separate the evaluation measures we used according to which of these processes is

analysed. On the one hand, we have regionwise measures that evaluate the detection,

while on the other hand, we have voxelwise measures that evaluate the segmentation. In

this section we will describe some of the measures introduced in chapter 2 according to

this distinction [208].

As stated in the previous sections, we assume that manual annotations from a single

expert are the ground truth for all the measures presented. In consequence, when validating

a segmentation, we are actually evaluating how close it is to the expert’s. However, as

pointed out in chapter 2 (see figure 2.7), there might be huge differences if two different

experts annotate the same patient. This inter-observer variability is important since some

lesions might be missed or oversegmented by the expert.
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5.3.1 Detection

First of all, we start describing the measures we use to evaluate the lesion detection. Detec-

tion is the most important process in clinical practice since radiologists usually count the

number of lesions instead of looking at the total lesion volume. Therefore, it is important

to first evaluate if a method can detect all the lesions of a given case. Consequently one

common measure is the true positive fraction (TPF):

TPFr =
#TPr
|Mr|

, (5.1)

where #TPr represents the number of lesions detected by the algorithm that overlap by

at least one voxel with a manually annotated lesion, and |Mr| is the total number of

manually annotated lesions. This relative measure provides information about how many

lesions are detected (and missed): a value of 0 indicates that no lesion was found, while a

value of 1 indicates that all the lesions were correctly detected. However, it does not take

into account how many of the lesions detected are actually lesions. Therefore, it is also

common to estimate the false positive fraction (FPF):

FPFr =
#FPr
|Ar|

, (5.2)

where FPr represents the lesions detected by the algorithm that do not overlap with any

manually annotated lesion, and |Ar| is the total number of detected lesions. Similarly to

the TPF measure, the FPF is a relative measure. A value of 0 indicates that all the lesions

detected are actually lesions, while a value of 1 indicates that all the regions detected

are not lesions. In order to complement these two measures, we also compute the Dice

similarity coefficient (DSC):

DSCr =
2 ·#TPr
|Ar|+ |Mr|

. (5.3)

This measure gives a high value to the TP detections, while also taking into account

missed and wrongly detected lesions, and its values vary between 0 - 1, where 1 denotes

the exact similarity and 0 denotes that no lesion was correctly detected. To further ease

the interpretation of the DSC, we can utilize the relationship between the DSC and the

Kappa coefficient [81]. Zijdenbos et al. showed that under certain assumptions [252]

(independent inter-raters and a higher number of TN than the sum of TP, FP and FN) the

DSC is asymptotically equal to the Kappa coefficient. According to Landis et al. [131], the
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Kappa coefficient values can be divided into six categories: less than 0, “No agreement”,

0-0.2, “Slight agreement”; 0.2-0.4, “Fair agreement”; 0.4-0.6, “Moderate agreement”; 0.6-0.8,

“Substantial agreement”; 0.8-1.0, and “Almost perfect agreement”.

5.3.2 Segmentation

Even though we presented the previous measures to validate detection, they can also be

used to evaluate the segmentation. The only difference is that instead of looking at detected

regions and manually annotated lesions, we have to analyse the voxels labelled as lesion by

the segmentation method and those voxels labelled by the expert. Therefore, the previous

equations are redefined as follows:

TPFv =
#TPv
|Mv|

, (5.4)

FPFv =
#FPv
|Av|

, (5.5)

DSCv =
2 ·#TPv
|Av|+ |Mv|

, (5.6)

where TPv represents the voxels labelled as lesion by both the expert and the segmentation,

FPv represents the voxels mislabelled as lesion, |Av| represents the total number of voxels

automatically segmented as lesion and |Mv| represents the total number of lesion voxels in

the ground truth.

All these measures provide a relative value of the detection and segmentation’s accuracy.

This means that the effect of one misclassified voxel (or region) is quite different between

those cases were the lesion load is small and those cases were the lesion load is high.

Therefore, to obtain a fair comparison, cases should be grouped according to the total

lesion volume.

The next measure we introduce was also used as part of the MS Challenge 2008 workshop.

The average surface distance (ASD) provides an evaluation of the segmentation. For each

lesion, the voxels in contact with the background (or another tissue) are selected as bor-

dering voxels. This process is applied to both ground truth and automatically segmented

lesions. Afterwards, for each bordering voxel of a segmentation (manual or automatic) the

closest bordering voxel of the other segmentation is found and the distance between them

is computed. Finally, all the distances are averaged to compute the final ASD. A value of 0

indicates a perfect overlap between the ground truth and the segmentation obtained. This
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measure does not check if the lesion is detected in both segmentations; therefore, bordering

voxels for FP and FN lesions will always obtain values higher than 0.

Finally, we compute a measure related to detection that only involves segmentation.

That measure is once again computed using the DSC to evaluate segmentation, taking

only TP detected lesions into account. Consequently, for each true lesion, we evaluate its

segmentation independently from the others. Afterwards, we average these values for each

patient to obtain a measure on how accurate the segmentation is when a lesion is found.

5.4 TISSUE-LOT results

The TISSUE-LOT pipeline presents 2 main steps aimed at two different goals. Initially,

a tissue segmentation (including pure CSF, pure GM, pure WM, and PV) is obtained

by means of a modified EM for Gaussian distributions guided by the ICBM atlas of 452

patients 2. Afterwards, a lesion segmentation step, based on thresholding and a posterior

refinement, is applied. In this section, we will first discuss the parameters used as part

of the lesion segmentation, followed by the analysis of the results obtained in terms of

detection and segmentation using the SALEM database.

5.4.1 Parameters

In chapter 4 we introduced the two main steps of this proposal. For the initial tissue

segmentation, a convergence parameter was introduced. This parameter, which is a prob-

ability threshold, discards voxels with low probabilities to reduce the variability of the

estimated Gaussian distributions for pure tissues and improve convergence. Theoretically,

a probability lower than 50% would indicate that the voxel has a higher chance of not

being part of the tissue, and, therefore, it should not be included during the parameter

estimation. Higher probability thresholds provide smaller distributions with high probabil-

ities when the intensities are close to the mean. However, if this threshold is set too high,

the real tissue variability might be missrepresented by a small set of the data. Therefore,

we propose setting the T π threshold to 75%, which is an intermediate value.

However, as pointed out previously, this initial tissue segmentation presents a missclas-

sification of lesion voxels due to the lack of a lesion class. As a consequence, a second

step to resegment these lesions proved essential. In our case, a thresholding followed by a

2Publicly available at http://www.loni.ucla.edu/ICBM/Downloads/Downloads_Atlases.shtml

http://www.loni.ucla.edu/ICBM/Downloads/Downloads_Atlases.shtml
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refinement based on rules is used to obtain this lesion segmentation.

Thresholding step

In chapter 4, we defined lesions as hyperintense GM outliers in FLAIR. Moreover, we

assumed that the pure GM tissue follows a Gaussian distribution and is the most intense,

normal appearing tissue in FLAIR. In order to differentiate between lesions and tissues, we

proposed using a thresholding technique based on these assumptions were the threshold is

obtained using the mean and standard deviation of GM in FLAIR. The equation of this

threshold depends on a positive empirical parameter γ.

According to the formal definition of a Gaussian distribution G(µ, σ) and a random

variable Y ∼ G(µ, σ), there is a 50% probability that a random sample y ∈ Y will have a

value higher than µ. This probability is reduced to 2.2% for a value higher than µ + 2σ.

Extrapolating this to our case, theoretically, 97.8% of GM voxels should have a value under

µF
GM + 2σF

GM , while outlier voxels (not belonging to GM) should present a higher intensity

value. Therefore, theoretically, a value greater or equal to 2 could be used for γ.

In practice, not all the lesion voxels are actually outliers (due to partial volume effects or

inhomogeneities in extreme slices) and not all the hyperintensities are actually lesions. To

fix the second issue, we used the abovementioned parameters as part of a refinement step.

On the other hand, to include as many lesion voxels as possible, σ must be set empirically

(preferably between 2 and 3). Since the refinement step may mask the real effect of the

thresholding parameter, in what follows, we present an exhaustive comparison of the result

of varying γ between 0 and 3 without refinement.

Figure 5.6 offers a summary of the effect of varying γ to estimate the threshold in terms of

detection and segmentation. For each γ value, a threshold is obtained in all 45 cases which

is evaluated using the TPF and FPF measures in terms of detection and segmentation.

Looking at the detection plot, we can see how the FPF slowly decreases as the threshold

increases. However, the TPF presents a different tendency: there is an initial increase

(until γ = 2), and then it stabilises. This phenomenon is explained by how the TPF is

computed. To estimate the number of detected TP, the automatically segmented lesions

are counted only once. Therefore, if a big lesion contains 3 different GT lesions, only 1

TP will be counted. As the threshold increases, this big lesion tends to split into smaller

lesions, increasing the detection rate.

On the other hand, looking at the segmentation plot, we can see how both FPF and
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a) b)

Figure 5.6: Effect of γ during thresholding in terms of a) detection and b) segmentation.

For each γ value, the mean TPF (green) and FPF (red) for all cases is plotted with

a continous line, while a standard deviation under and over the mean are plotted in a

dashed line. In terms of detection, there is an overall slight decrease of FP, with an initial

increase in TP followed by a slight decrease as the threshold increases. However, in terms

of segmentation there is an overall decrease of both TP and FP.

TPF decrease as the threshold increases, even though the TPF decreases at a higher rate.

This phenomenon is caused by the decrease in number of voxels segmented by the higher

threshold. This also proves how most artifacts segmented as lesions are also hyperintense,

and hence, more information is needed to differentiate them from real lesion voxels.

Due to γ = 2 being the highest TPF point in terms of detection, we will set this value as

default and reduce the elevated FPF (both in terms of detection and segmentation) using

the refinement step.

Refinement step

As mentioned before, lesions are misclassified as a tissue during the first step of this

approach. Due to their intensities, lesions tend to be classified as either WM or a GM-

related class as demonstrated in figure 5.7. In other words, lesion voxels are rarely classified

as CSF (on average only 1.42% of the voxels), as stated in chapter 4. Therefore, the

threshold Tωt , according to the first rule stating that lesion areas should not contain CSF,

can be restrictive and can be set to 0.9 to discard those lesions that are completely inside

CSF. Moreover, a similar threshold is also used when checking the neighbouring voxels of

the lesion areas. As observed in figure 5.7, most of the voxels surrounding lesions are, in

fact, WM voxels (with an average of 63.98% and a minimum case of 36.70% of the voxels).
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a) b)

Figure 5.7: Tissue labels for a) GT lesions and b) neighbouring voxels. Each colour

represents a tissue label assigned during the EM segmentation. In the first bar plot, we

can observe how WML are rarely classified as CSF (with a mean of 1.42%); while in the

second plot we observe how neighbouring voxels for GT lesions mostly belong to WM (with

a mean of 63.98%).

Hence, a low TωN (0.6 in our experiments), would be adequate to discard voxels completely

inside GM or CSF and keep lesions that are close to the ventricles or the cortex.

While the bar plots presented in figure 5.7 comprise only cases from our database, a

clear tendency in both phenomena is observed, even though the cases are obtained from

three different scanning machines with different lesion load. Consequently, it is expected

that new cases should also present a similar behaviour.

The other parameter used as part of the refinement is the minimum size a lesion is

allowed. In our experiments, we set this parameter to 10 voxels (representing 30 mm3

approximately), which would approximately represent a cube with 3 mm edges [24].

5.4.2 Evaluation

To evaluate the method, we will use the parameter values presented in the previous section.

Consequently, during the tissue segmentation step, the probability threshold T π will be

set to 75%. Afterwards, during the FLAIR thresholding, the parameter γ will be set to

2; thus, only the hyperintense voxels further than 2 deviations from the GM mean in the

FLAIR image will be considered as lesions. Finally, the thresholds Tωt and TωN will be

set to 0.9 and 0.6 respectively, meaning that all the lesions having less than 90% of the

voxels previously classified as either WM or a GM-based class and are surrounded by less

than 60% of WM voxels will be discarded, as well as those lesions with a voxel size lower
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a) b)

Figure 5.8: True positive fraction vs false positive fraction for the TISSUE-LOT pipeline.

a) Comparison between TPF (green cirles) and FPF (red crosses) separated by hospitals

and ordered by number of GT lesions. b) Boxplot comparison between TPF (green) and

FPF (red) separated by hospital.

than 10 (30 mm3).

First, we will present the results for this pipeline in terms of detection, followed by the

results in terms of segmentation with the measures described in section 5.3.

Detection

Even though the thresholding step is a voxelwise process, this pipeline has a strong region-

wise component. After the initial segmentation, the refinement step is applied lesionwise

in order to reduce FP in terms of detection. As a consequence, this improvement has a

higher effect in detection than segmentation (since the segmentation of each lesion is not

changed).

Figure 5.8 presents a regionwise comparison between the TPF and FPF in terms of

detection for all the cases. The first plot, which is ordered by number of lesions in the GT,

presents this comparison for each case separated by hospitals, while the box plot presents

the comparison for each hospital.

For all three hospitals, there is a clear tendency for the FPF to decrease as the lesion load

increases. On the one hand, this tendency is explained due to the highest probability of

correctly detecting lesions when there is a higher number of GT lesions. On the other hand,

this tendency is also explained by the number of the measure. By being a proportional

measure, the effect of an FP lesion in the measure is higher when there is a small number of
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a) b)

Figure 5.9: Regionwise DSC for the TISSUE-LOT pipeline. a) DSC values (yellow squares)

separated by hospitals and ordered by number of GT lesions. b) Boxplot DSC values

separated by hospital.

detected lesions (which is indirectly related to the number of real lesions). This tendency

can also be observed in the boxplot for Hospital Vall d’Hebron, which has the lowest

number of GT lesions (774 as opposed to 1514 and 926 for Hospital Josep Trueta and

Clínica Girona respectively). In any case, these results also demonstrate the strength of

the refinement step. Looking again at figure 5.6, we can clearly see how the mean FPF for

any γ value exceeds 90%, while the mean FPF value for the final segmentation is 49.12%,

(71.03%, 35.56% and 40.78% for Hospital Vall d’Hebron, Josep Trueta, and Clínica Girona

respectively).

On the other hand, looking at the TPF, there is no clear tendency for this measure for

any hospital. Furthermore, when looking at the boxplots for each hospital, the results in

terms of TPF are similar for Hospital Vall d’Hebron and Clínica Girona, while Hospital

Josep Trueta’s box is smaller, and this hospital obtains a lower mean (34.36% compared

to 44.28% and 45.49%) and median (31.25% compared to 36.67% and 42.86%).

Finally, figure 5.9 shows the DSC in terms of detection for all cases. Once again, the first

plot presents this measure for each case separated by hospitals and ordered by number of

GT lesions, while the box plot presents the measure for each hospital. These two graphics,

present a summary of the abovementioned characteristics. Due to the decreasing tendency

for FPF as the number of GT lesions increases, as well as the TPF increasing tendency

for Vall d’Hebron’s cases, the DSC also increases alongside the number of GT lesions.

Moreover, due to the lack of a clear tendency in terms of TPF for the other two hospitals,

no tendency is observed for the DSC measure either. Furthermore, Vall d’Hebron’s cases
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a) b)

Figure 5.10: Voxelwise TPF vs FPF for the TISSUE-LOT pipeline. a) Comparison between

TPF (green cirles) and FPF (red crosses) separated by hospitals and ordered by the total

lesion load. b) Boxplot comparison between TPF (green) and FPF (red) separated by

hospital.

present the lowest DSC mean (0.33) and median (0.31), as well as a wider box, while the

other two hospitals present a smaller box with Clínica Girona presenting the highest mean

of the two (0.50 as opposed to 0.44) and median (0.52 ass opposed to 0.43).

Segmentation

As stated in the detection analysis, this pipeline has a strong focus on detection. In

fact, the whole refinement is regionwise and can cause FN lesions that directly affect

segmentation measures and decrease accuracy measures, depending on the size of these

lesions. Moreover, due to the lack of segmentation refinement for TP or the size of FP

lesions, accuracy measures might be further decreased.

Similar to figure 5.8, figure 5.10 presents a voxelwise comparison between the TPF and

FPF in terms of segmentation for all the cases. The first plot, which is ordered by the

total lesion load instead of the number of GT lesions, presents this comparison for each

case separated by hospitals, while the box plot presents the comparison for each hospital.

Looking at the plot for each case, a tendency to decrease of the voxelwise FPF is also

globally observed according to the lesion load. This decrease is strongly related to the

FPF decrease in terms of detection. By removing FP lesions, many FP voxels are also

removed. However, the mean FPF segmentation percentages are higher than the detection

percentages for each hospital: Hospital Vall d’Hebron, which obtained a 71.03% for detec-
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a) b)

Figure 5.11: Voxelwise DSC for the TISSUE-LOT pipeline. a) DSC values (yellow squares)

separated by hospitals and ordered by total lesion load. b) Boxplot DSC values separated

by hospital.

tion, presents a 89.78% for segmentation; Hospital Josep Trueta, which obtained a 35.56%

for detection, presents a 63.40% for segmentation; and Clínica Girona, which obtained a

40.78% for detection, presents a 68.11%. In terms of TPF, only Vall d’Hebron presents a

clear tendency to increase when the total lesion volume increases. This can be explained

by the small lesion load of most of this hospital’s cases. However, no tendency is observed

for the other two hospitals.

According to these two segmentation measures, and looking at the box plot, we can see

that the best ranking hospital in terms of TPF is Clínica Girona with the highest mean

(44.05% compared to 32.52% and 39.97% for Vall d’Hebron and Josep Trueta respectively)

and median (44.06% compared to 32.52% and 39.97%). On the other hand, the best

ranking hospital in terms of FPF is Hospital Josep Trueta with the lowest mean and

median (62.50% compared to 93.66% and 67.44% for Vall d’Hebron and Clínica Girona

respectively). For both measures, Vall d’Hebron’s cases obtain the lowest scores, partially

due to the low lesion load.

Closely related to these two measures, the DSC values for each case, separated by hos-

pital, are presented in figure 5.11. Similar to figure 5.9, the results observed in terms of

voxelwise TPF and FPF can be summarised by this measure. For instance, we see there

is a tendency for DSC to increase according to the lesion load for each hospital. This is

partially due to the decrease in FPF, but is also strengthened for Hospital Vall d’Hebron

by the increase in the TPF. Furthermore, we observe how the worst ranking hospital for

both TPF and FPF also obtains the worst ranking in terms of DSC, while the other two
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a) b)

Figure 5.12: Average surface distance and average DSC for all lesions. a) Box plot for the

average surface distance separated by hospitals and b) box plot for the average DSC for

all TP lesions separated by hospital.

hospitals obtain similar results: Vall d’Hebron scoring a 0.14 mean and 0.08 median; Josep

Trueta scoring a 0.36 mean and 0.38 median; and Clínica Girona scoring a 0.32 mean and

0.37 median. According to the DSC-Kappa relationship, these values represent an slight

agreement between the TISSUE-LOT pipeline and the GT. Moreover, as observed in 5.11,

for some cases, we obtain results that would be considered a fair and/or moderate agree-

ment between both the manual and automatic segmentation (with a maximum value of

0.65).

Finally, figure 5.12 shows the box plots for the last two segmentation measures, loosely

related to detection. These boxplots reinforce the results observed in the DSC segmentation

values. On the one hand, Hospital Vall d’Hebron scores the highest average surface distance

(with a wide box) and the lowest average DSC per TP lesion. On the other hand the boxes

for the other two hospitals are similar to each other, with only slight differences in their

mean and median for both measures.

Looking at each of these two measures in general, we observe how the average surface

distance obtains a 10.10 mm mean and a 6.69 mm median. This difference is mainly caused

by the bias of FP and FN detections having a higher impact in Vall d’Hebron’s cases. On

the other hand, looking at the DSC for the TP detection, we observe a mean DSC of 0.38

and a median value of 0.40. This measure reinforces the computation of the TPF when

there is only 1 voxel overlap since, according to kappa, there is a fair agreement between

the expert annotations and the TISSUE-LOT pipeline.
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5.5 BOOST results

The BOOST pipeline presents a supervised strategy based on training a gentleboost en-

semble classifier. This proposal also includes the computation of several novel features to

characterise the lesions we want to segment. First, we will discuss the parameters and how

we conducted the experiments, followed by the analysis of the results obtained in terms of

detection and segmentation.

5.5.1 Parameters

In chapter 4, we introduced this proposal as a training-based approach with a rich pool

of features. As features, we introduced a boosting map and a set of randomly sampled

contextual meta-features. The number of computed features is one of the parameters

to take into account and is related to the number of rounds used to train the classifier.

Moreover, in order to train the classifier, a number of lesion voxels and non-lesion voxels

must be randomly sampled. The number of voxels for both sets is also a parameter to

optimise. The outlier of these parameters, as well as the effect of the optimisation map

and the strategy used to evaluate the results, will be discussed in this section.

Once the training is finished, the new image is tested and a map defining the likeliness

of each voxel to be a lesion is obtained. This map, which is not a binary mask, must be

thresholded in order to obtain a final lesion mask. In this section, we will also study how

we obtain this threshold.

Outlier map

In a previous work [38], we evaluated the effect of using our outlier map as a feature. To

this effect, we performed 2 different experiments: one using only image intensities, atlas

probabilities, and 800 context features, and a second one where we extended the feature

pool by adding the outlier map as a feature and as part of the context feature computation

described in chapter 4. For both experiments, we used a leave-one-out strategy for each

hospital independently.

For this study, only the patients at Hospital Vall d’Hebron and Hospital Josep Trueta

were used and the results obtained in terms of the DSC measure are summarised in fig-

ure 5.13. In this plot, the images are ordered in terms of lesion load in ascending order.

Therefore, the last image is the one with the highest lesion load. On average, when using
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a) b)

Figure 5.13: Comparison between using (green) or not using (blue) our outlier map as a

feature. a) DSC values for the images from Hospital Vall d’Hebron and Hospital Josep

Trueta, with the cases ordered by the total lesion load. b) Qualitative comparison between

using the outlier map (green), training the classifier without the map (blue) and the GT

(yellow).

the lesion map, DSC values were higher (with the exception of those cases with a low lesion

load), pointing to a better training and classification process when this feature is included.

Training parameters

In [38], we also presented how to compute a threshold for the map obtained after using the

trained classifier on a new case. To obtain this threshold, we tested the classifier with the

training images and computed the optimal threshold for each one according to the Dice

similarity coefficient (DSC) value. Afterwards, the mean of those thresholds was used on

the new patient’s output.

To optimise the rest of the parameters of our approach, we perform several tests on the

number of contextual meta-features for the training, the number of boosting rounds, and

the number of pixels selected for training. In order to evaluate each parameter individually,

we fixed the values of the other parameters and repeated each experiment ten times. As

expected, better results were obtained for all these parameters when we increased them,

although we realised that from a certain point, this increment was almost inappreciable.

However, in all the cases, it also produced a huge increment in the computational cost,

so it is important to find the optimal parameters to maximise the performance without

increasing the computational cost too much. After evaluating the results, we decided

to set the number of contextual meta-futures at 800 and select a total of 10.000 and
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30.000 samples for lesion and not lesion from all the training images. It is also important

to mention that the performance of the results also increased with a higher number of

boosting rounds during the training process. However, after 400 rounds the improvement

was almost inappreciable, while the computational cost increased drastically.

Experiments

In order to perform the experiments, we reproduced all the steps that involved a random

sampling. During the feature extraction step, we created 5 different feature sets for each

experiment (with random R1 and R2 regions) per hospital. 800 different contextual meta-

features were computed for each case and feature set.

During the training step, for each training set containing 14 images from the same

hospital, we randomly sampled 5 different sets of positive and negative examples. These

samples were then used to train the classifier with a leave-one-out strategy. Finally, this

classifier was used on the testing image to perform the segmentation. Therefore, for each

patient we obtained 25 different classification maps that were thresholded to obtain the

final segmentation. In the following sections, we will present the results obtained for each

measure for these segmentations.

5.5.2 Evaluation

To evaluate the method, we used the parameter values presented in the previous section.

Consequently, the gentleboost algorithm was trained with a rich feature pool of 4 images

(T1-w, PD-w, T2-w, and FLAIR), 3 probabilistic maps (CSF, GM, WM), our outlier map,

and 800 contextual meta-features (for a total of 808 features). This training was performed

using a leave-one-out strategy with a random sampling of 10.000 positive examples and

30.000 negative examples for 400 rounds. Afterwards, this classifier was tested against

these training images to compute an optimal threshold for each case’s map and was also

tested with the new image to obtain a lesion map. Finally, the optimal thresholds will be

averaged to obtain a final threshold to compute our final lesion mask.

First, we will analyse the features chosen during the training step. Subsequently, we will

present the results for this pipeline in terms of detection, followed by the results in terms

of segmentation with the measures described in section 5.3.
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Figure 5.14: Pie chart of the boosting selected features. The outer circle presents the

features according to their topology: atlas features (blue), image features (orange) and the

outlier map (yellow). The inner circle presents the same features distinguishing between

contextual features based on atlas (light green) or image (darker green).

Feature analysis

One of the advantages of using a gentleboost classifier is the possibility of obtaining an

ordered list of the features selected. The order determines the importance of the selected

feature. Accordingly, the first feature would be the most discriminative one, while the

last one is usually focused on a small subset of all the voxels. In all the experiments, we

observed that the first feature is always the outlier map. This statement reinforces the

importance of the outlier map within the framework and emphasises its strength within

the framework.

However, the outlier map as a feature is only used, on average, in 2.90%, 5.70% and

4.50% of the rounds for Vall d’Hebron, Josep Trueta and Clínica Girona respectively.

Similar percentages are observed for probabilistic maps, while image features are rarely

used and the majority of the features are contextual, as illustrated by figure 5.14. If we

further study the use of contextual features, we observe how the most used ones are image-

based, while atlas-based contextual features have a higher percentage than the sum of all

the non-contextual features.

Finally, from the rich pool set of 808 features, only 250 unique features on average for

all hospitals are selected during the 400 rounds. This fact, and the high usage percentages,

emphasise the importance of using a rich feature pool and a large set of contextual meta-

features.
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a) b)

Figure 5.15: True positive fraction vs false positive fraction for the BOOST pipeline. a)

Comparison between TPF (green cirles) and FPF (red crosses) separated by hospitals and

ordered by number of GT lesions. b) Boxplot comparison between TPF (green) and FPF

(red) separated by hospital.

Detection

The BOOST pipeline is a supervised approach that relies solely on voxel features. There-

fore, there is no regionwise analysis of any sort, which in turn affects the results in terms

of detection. For instance, figure 5.15 presents a comparison between the regionwise FPF

and TPF for each case, grouped by hospital. Looking at the first plot, we observe similar

trends to those present in figure 5.8. On the one hand, there is a clear tendency for the

FPF to decrease as the number of GT lesions increases, mainly for Hospital Josep Trueta

and Clínica Girona. There is also a tendency to decrease for Hospital Vall d’Hebron, with

a smaller incline due to the lower number of lesions for this hospital’s cases. Moreover,

there is no clear tendency for the TPF according to the lesion load.

Looking at the box plot, there is also a clear difference between the boxes of the two

last hospitals and Vall d’Hebron, again mainly due to the number of GT lesions. On the

one hand, the TPF boxes for both Josep Trueta and Clínica Girona are arguably similar

(when including the outliers) with a mean and median of 59.42% and 63.50% for the first

hospital and 61.72% and 64.37% for the second, while Vall d’Hebron demonstrates a lower

performance with a mean and median value of 38.73% and 41.60% respectively. On the

other hand, we observe a high FPF for the three hospitals with means and medians of

85.72% and 94.78% for Vall d’Hebron; 72.69% and 64.27% for Josep Trueta; and 71.15%

72.66% for Clínica Girona respectively.

To complement these two measures, figure 5.16 illustrates the regionwise DSC for each
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a) b)

Figure 5.16: Regionwise DSC for the BOOST pipeline. a) DSC values (yellow squares)

separated by hospitals and ordered by number of GT lesions. b) Boxplot DSC values

separated by hospital.

patient and per hospital. As expected, there is a clear positive tendency in the DSC as

the number of GT lesions increases in the first plot. This is a direct consequence of the

decreasing tendency in the FPF. This also implies the elevated weight of the FP detections

for the regionwise DSC. Looking at the bigger picture, we observe a similar tendency in

the boxplots where the cases of Hospital Vall d’Hebron obtain the lowest results, with a

mean and median of 0.15 and 0.07 respectively, and the cases of Josep Trueta, with a

mean and median of 0.27, and Clínica Girona, with a mean and median of 0.32 and 0.33

respectively, both obtaining similar boxes, with fairly lower results for the first hospital,

and a higher variability (illustrated by a bigger box). Taking the DSC-Kappa relationship

into account, these results present a fair agreement for the two hospitals with the higher

number of lesions.

Segmentation

As stated in the detection analysis, this pipeline is based purely on segmentation. There-

fore, its strengths are highlighted in the segmentation analysis, even though the previous

analysis demonstrated a fair agreement between the experts and the automatic detection.

First we start with the comparison between the voxelwise TPF and FPF illustrated in

figure 5.17. As expected, there is a clear tendency to decrease for FPF as the lesion load

increases, while the TPF values do not present a clear tendency for any hospital. Once

again, this is due to the decreasing effect of small voxelwise errors as the total number of

lesion voxels increases. This concept is summarised by the box plots for each hospital. On



130 Chapter 5. Experimental results

a) b)

Figure 5.17: Voxelwise TPF vs FPF for the BOOST pipeline. a) Comparison between TPF

(green cirles) and FPF (red crosses) separated by hospitals and ordered by the total lesion

load. b) Boxplot comparison between TPF (green) and FPF (red) separated by hospital.

the one hand, we observe how the TPF boxes for Josep Trueta, with a mean and median of

53.87% and 53.84% respectively, and Clínica Girona, with a mean and median of 49.90%

and 51.92%, are similar (with a higher variability for the first hospital), while the box for

Vall d’Hebron presents lower values, with a mean and median of 21.21% and 20.72%. On

the other hand, the FPF boxes for Josep Trueta, with a mean and median of 47.70% and

40.79%, and Clínica Girona, with a mean and median of 48.89% and 49.15%, are similar

(with the Josep Trueta’s box, also presenting a higher variability) with lower values than

the Vall d’Hebron’s box, with a mean and median of 78.04% and 84.94%.

These behaviours are summarised with the complementary DSC plots from figure 5.18.

Once more, a tendency to increase in respect to the lesion load can be observed in the

first plot, closely related to the TPF trend. This phenomenon emphasises the decrease in

difficulty when the lesion load increases. Furthermore, a closer look at the box plot for

each hospital further reveals these assumptions. Yet again, the boxes for Josep Trueta,

with a mean and median of 0.50 and 0.56, and Clínica Girona, with a mean and median

of 0.49 and 0.52, present similar values (with a larger variability for the first hospital) that

are higher than those presented by the Vall d’Hebron’s box, with a mean and median of

0.19 and 0.17. According to the DSC-Kappa relationship, there is moderate agreement in

terms of segmentation between the expert annotations and the BOOST masks for the two

hospitals with the higher lesion loads.

Finally, a box plot analysis for the last two segmentation measures is presented in fig-

ure 5.19. Both box plots reinforce the ideas observed in the previous plots from another
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a) b)

Figure 5.18: Voxelwise DSC for the BOOST pipeline. a) DSC values (yellow squares) sep-

arated by hospitals and ordered by the total lesion load. b) Boxplot DSC values separated

by hospital.

perspective.

On the one hand, looking at the average surface distance for each hospital, we observe

low values and thin boxes for Josep Trueta, with a mean and median of 4.26 and 1.72

mm respectively, and Clínica Girona, with a mean and median of 3.49 and 2.29 mm,

respectively, and higher distances for Vall d’Hebron, with a mean and median of 11.47

and 8.65 mm respectively. According to the slice thickness of 3 mm, the surface difference

of the two hospitals with the higher lesion loads is close to the size of a voxel in the z

coordinate.

On the other hand, as stated in the detection analysis, there is only fair agreement in

terms of detection between the expert annotations and our BOOST pipeline. However,

looking at the segmentation of the TP detection, we observe how the values of the boxes

for the three hospitals imply a moderate agreement, where there is a close tie between

Josep Trueta’s box, with a mean and median of 0.51 and 0.50 respectively, and Clínica

Girona’s box, with a mean and median of 0.49 and 0.50; and, once more, Vall d’Hebron’s

box presents lower values, with a mean and median of 0.33.

5.6 Strategy comparison

In the previous sections, we presented the results for each pipeline separately in order to

analyse their accuracy, strengths and weaknesses independently. However, a further com-

parison is required to fully comprehend the strengths and weaknesses of both approaches
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a) b)

Figure 5.19: Average surface distance and average DSC for all lesions for the BOOST

pipeline. a) Box plot for the average surface distance separated by hospitals and b) box

plot for the average DSC for all TP lesions separated by hospital.

when choosing one over the other.

Furthermore, no baseline method has been used to validate any of these pipelines. As

stated in chapter 2 and section 5.1 of this same chapter, there is no baseline method for

MS lesion segmentation, even though we highlighted some promising approaches. One such

approach was presented by Souplet et al. [204] as part of the 2008 segmentation challenge,

and is described in detail in chapter 4 due to its similarity to our TISSUE-LOT pipeline.

This approach was implemented as part of the SepINRIA software tool3, allowing us to

provide a comparison with our two own pipelines.

Therefore, in this section we will present a comparison between the TISSUE-LOT

pipeline, the BOOST pipeline and Souplet et al.’s [204] strategy applied to our SALEM

database. This comparison will be presented quantitatively with the evaluation measures

presented in this chapter, and qualitatively with commented visual examples of the three

approaches.

5.6.1 Quantitative comparison

Following the structure of the previous sections and starting with the detection analysis

followed by the segmentation, figure 5.20 summarises the regionwise results for the three

approaches. As expected, the best results in terms of detection are obtained using the

TISSUE-LOT pipeline, which has a regionwise refinement step. While the TPF is lower

3SepINRIA software webpage, http://www-sop.inria.fr/asclepios/software/SepINRIA.

http://www-sop.inria.fr/asclepios/software/SepINRIA
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a) b)

Figure 5.20: Comparison in terms of detection: a) TPF (green) vs FPF (red) plot, and

b) DSC (yellow) plot. Each hospital’s box is outlined with a different color: Hospital Vall

d’Hebron in dark red, Hospital Josep Trueta in dark green and Clínica Girona in dark blue.

than the values obtained by the BOOST strategy, the FPF is also lower, causing a higher

overall DSC for each hospital, as illustrated by the second plot. This is due to the impact

of a large number of FPF on the DSC measure.

Looking at both images, it is also clear that Souplet et al.’s approach obtained the

worst results for each measure, with low TPF values and high FPF ones. This approach is

usually restrictive, causing low accuracy and a high number of FN. As a consequence, most

of the detected lesions are actually artifacts, which in turn causes a high FPF. This issue

is further accentuated when analysing the DSC measures. Part of this lower performance

might also be explained by the fact that Souplet et al.’s strategy was optimised for 3T

images.

Following with the segmentation results, figure 5.21 summarises the voxelwise measures

for the three strategies. While a better detection was expected for the TISSUE-LOT

pipeline, the plots from this figure present a higher accuracy for the BOOST pipeline in

terms of segmentation. As stated, this pipeline is trained to find lesion voxels from a rich

feature pool with no regionwise refinement. As a consequence, a higher TPF is obtained

for the hospitals with higher lesion loads and a lower FPF in terms of segmentation. In

turn, this is reflected in higher DSC values for all three hospitals for this approach.

A further analysis of these results also reveals that Souplet et al.’s approach obtains the

lowest TPF results, even though the DSC median, minimum, and maximum are similar

to those obtained by the TISSUE-LOT pipeline for Hospital Vall d’Hebron and Clínica

Girona. In the case of the first hospital, this similarity is closely related to the lower
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a) b)

Figure 5.21: Comparison in terms of segmentation: a) TPF (green) vs FPF (red) plot,

and b) DSC (yellow) plot. Each hospital’s box is outlined with a different color: Hospital

Vall d’Hebron in dark red, Hospital Josep Trueta in dark green and Clínica Girona in dark

blue.

lesion load, since all three methods obtained scores below 0.2 for the DSC. However, when

analysing the third hospital, there is a higher variability for the voxelwise DSC obtained

by the SepINRIA toolbox, illustrated by the wider box.

Finally, to complement the previous results, figure 5.22 illustrates the comparison of the

average surface distance and average DSC for all TP lesions. The first plot suggests a better

segmentation for all TP lesions when using Souplet et al.’s approach with the images from

Hospital Vall d’Hebron and Clínica Girona. These results demonstrate that, even though

the method is restrictive (excluding a large number of lesions as FN), the lesions detected

are accurately segmented. The second plot emphasises that idea since the average surface

distance is higher than 0 for FN and FP detections by definition. Therefore, this approach

obtains an elevated surface distance for the three hospitals. Furthermore, when looking at

both plots, Souplet et al.’s boxes imply a high variability for both measures, illustrated by

wide boxes.

Looking further at the difference between the two proposals described in chapter 4,

both plots reinforce the idea that the BOOST pipeline obtains the best results in terms

of segmentation. Not only do the boxes present a lower variability, but the DSC values

are higher, and the surface distance is lower. As stated in the analysis of figure 5.21, this

second pipeline is capable of segmenting the lesions better, even though the accuracy in

terms of detection is lower.
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a) b)

Figure 5.22: Comparison in terms of segmentation by hospital and method. a) Average

DSC for all TP lesions, and b) average surface distance plot. Each hospital’s box is outlined

with a different color: Hospital Vall d’Hebron in dark red, Hospital Josep Trueta in dark

green and Clínica Girona in dark blue.

5.6.2 Qualitative comparison

After the quantitative comparison described in the previous section, and a state-of-the-art

approach, figures 5.23, 5.24, and 5.25 illustrate the conclusions observed with a variety of

visual examples comprising different lesion loads. In order to reinforce the analysis in the

previous section, we will further comment these proposed examples.

One of the first ideas we introduced was the low detection accuracy obtained by Souplet

et al.’s approach due to its restrictive tendency. This is generally observed for all three

hospitals in the majority of the exposed examples. This approach has a lower number of

detected lesions whether correctly detected or not. For some cases, no lesion is detected,

as shown in figure 5.20 by the minimum values for this method.

Another general idea is the better detection from the TISSUE-LOT pipeline, which is

closely related to the FP reduction. As observed in most of the images, the BOOST

pipeline usually finds small spurrious lesions that highly increase the FPF in terms of

detection and have a small effect on terms of segmentation due to their size (see the

fourth row of figure 5.23, the first row of figure 5.24, or the last row of figure 5.25). As a

consequence, the TISSUE-LOT obtains better detection DSC values since, as stated, the

detected TPF for Souplet et al.’s approach is low.

On the other hand, the small FP lesions detected by the BOOST do not have much

impact on the overall segmentation (or the segmentation of TP, for that matter). Therefore,
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a) b) c) d)

Figure 5.23: Segmentation comparison for Hospital Vall d’Hebron: a) GT (green); b)

TISSUE-LOT pipeline (red); c) BOOST pipeline (cyan); and d) Souplet et al. [204] (yel-

low).
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a) b) c) d)

Figure 5.24: Segmentation comparison for Hospital Josep Trueta: a) GT (green); b)

TISSUE-LOT pipeline (red); c) BOOST pipeline (cyan); and d) Souplet et al. [204] (yel-

low).
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a) b) c) d)

Figure 5.25: Segmentation comparison for Clínica Girona: a) GT (green); b) TISSUE-LOT

pipeline (red); c) BOOST pipeline (cyan); and d) Souplet et al. [204] (yellow).
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better segmentation results are obtained by the BOOST pipeline when compared with the

other two approaches. The TISSUE-LOT has a tendency to oversegment the lesions (when

compared to the GT) that can easily be observed in the fourth row of figure 5.23, the second

and fifth row of figure 5.24, or the first, third and fourth row of figure 5.25; while SepINRIA

usually undersegments all lesions with prominent examples in the second and third row of

figure 5.23, the first and last row of figure 5.24, or the last row of figure 5.25.

However, it is always hard to choose one method over another even when looking at these

visual examples, since lesions missed by one approach might be detected by another, or

some lesions might be better defined by one method in a set of examples, but be incorrectly

segmented in another set.

5.7 Discussion

In this chapter we have presented the results for the proposals described in chapter 4, both

quantitatively and qualitatively in terms of detection and segmentation, and compared

these approaches to a state-of-the-art approach. To do so, we started by describing the

evaluation process and focused on the two key aspects of this process: the databases and

the evaluation measures.

In terms of databases, we started with a brief description of the MS Grand Challenge

2008 data. This database comprises 3T images obtained from two different hospitals. This

type of image presents some new issues not present in 1.5T images, while also correcting,

or reducing part of the issues related with lower magnetic fields (such as partial volumes).

Afterwards, we described our novel database for the SALEM project, which comprises 1.5T

images from 3 different hospitals obtained with different scanning machines. Therefore,

our proposals were tested only with our own database, even though some initial results

with the MICCAI database are presented in appendix A.

In terms of evaluation measures, we separated them in two groups: detection measures,

those that evaluate the number of lesions found and computed regionwise; and segmenta-

tion measures, those that evaluate the volume of the masks found and computed voxelwise.

For both groups, we compute similar metrics related to the TP, FP, and FN detections

or segmentations. Furthermore, we included two other measures in order to evaluate the

overall segmentation per lesion in terms of distance and overlap.

Following these introductory sections, we presented the results for each pipeline indepen-

dently. First, we analysed the results for the TISSUE-LOT pipeline with its strong focus
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on detection. As expected, detection results were fairly higher than segmentation results

for this pipeline due to its nature. Afterwards, we analysed the results for the BOOST

pipeline, which is purely voxelwise. Also, as expected, the results for segmentation were

fairly higher than the measures obtained in terms of detection. Both analysis were done

in a quantitative manner.

Finally, in order to better understand the strengths and weaknesses of each pipeline

and its contributions to the state-of-the-art, we presented a comparison with one of the

most promising methods reviewed in chapter 2, Souplet et al.’s approach [204], which is

similar to the TISSUE-LOT pipeline. After a thorough numerical analysis, the TISSUE-

LOT pipeline presented better detection results when compared to the other two methods,

while the BOOST pipeline obtained the best results in terms of segmentation. In both

cases, Souplet et al., implemented as part of the SepINRIA toolbox, scored results below

the other two methods. These quantitative results were also backed up in a qualitative

manner with visual examples from each hospital.



Chapter 6

Conclusions

I’ll leave when I’m good and ready.

Lucille Bluth, “Arrested Development (Season two)” (2004)

6.1 Summary of the thesis

The aim of this thesis has been the proposal of a new pipeline capable of classifying brain

tissues and detecting MS lesions in magnetic resonance imaging. Starting with an initial

study of the state-of-the-art of MS lesion segmentation, we realised the importance of using

prior knowledge. Medical images, specifically brain MRI, are usually corrupted with several

artifacts and often include additional tissues and organs with similar intensities present in

the region of interest. As a consequence, prior knowledge offers additional information that

aids the segmentation process. Through this analysis, we also uncovered the relevance of

atlas-based segmentation as a supervised strategy.

A further analysis into atlas-based brain MRI segmentation was also provided in order to

highlight its strengths and weaknesses, as well as its applicability to our case of study: MS

lesions. Starting with the basics, we defined an atlas as a set of images comprising at least

one template image and one labelled image that define a segmentation. This atlas, which

usually lies in its own space, must be warped to the case we want to segment through an

optimisation process called registration. After a thorough study of the state-of-the-art on

atlas-based segmentation strategies, we concluded that probabilistic atlases, consisting of

a template image and a probabilistic map for each tissue, in conjunction with a statistical

framework, are the most suitable option for random lesions (in terms of location, size and

shape), due to their capability of estimating outlier classes not present in the atlas.
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Therefore, we proposed a first pipeline, named TISSUE-LOT, to classify tissue and

segment lesions. This first strategy uses a modified EM algorithm to estimate pure tissue

classes (for CSF, GM, and WM), as well as a partial volume class containing CSF and

GM. This algorithm provides an initial segmentation in which lesions are not included,

thus a second step is needed to find them. This second step involves the thresholding of

the FLAIR image (which shows high contrast between tissues and lesions), followed by a

regionwise refinement of this thresholding. Consequently, this strategy heavily focuses on

detection.

In order to further introduce prior information, we presented a second pipeline, called

BOOST, focused only on the voxelwise segmentation of MS lesions. This fully supervised

approach involves a classification strategy with a rich feature pool comprising intensity

images, probabilistic maps from an atlas, a novel outlier map, and a rich set of contextual

meta-features. The outlier map is heavily influenced by TISSUE-LOT and is based on

the tissue estimation of this pipeline and the outlier properties of lesion voxels, while the

contextual meta-features provide additional spatial information by comparing the voxels

with randomly sampled regions around these voxels. This feature pool is then used to train

a gentleboost algorithm, an ensemble classifier, capable of selecting the most discriminating

features from the whole pool.

To evaluate these approaches, we used a novel database with 45 cases comprising 1.5T

imaging data from three different hospitals with a variable lesion load per case. These

images were manually annotated by experts in order to obtain GT segmentations that

were used to validate the automatic segmentations with a set of similarity metrics for

detection and segmentation. The results suggest that both approaches are complementary

in the sense that while the first pipeline obtains better results in terms of detection, the

second one presents better segmentation, presenting also a better segmentation of TP

detections. Both approaches also outperform one of the best state-of-the-art approaches

for our database. Moreover, the first approach also provides a tissue classification that

can be refined to segment partial volume voxels between GM and CSF, as well as used to

further refine results from the second pipeline.

6.1.1 Contributions

The goal of this thesis is to aid radiologists in day-to-day practise by assisting them in the

challenging task of detecting and segmenting lesions. Idealistically, our proposal should

accurately detect and segment all the lesions of a given patient. However, a more realistic
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expectation is to allow experts to process a batch of patients off-line in order to accurately

segment a majority of the lesions, reducing the expertsÕ interaction with the images to the

correction of some segmentations or the detection of a small number of missing lesions. By

reducing the interaction we are also reducing the inter- and intra-observer variability. From

this point of view, the main contributions of this thesis to both the scientific community

and the hospitals are:

• An extensive survey of MS lesion segmentation algorithms, which are classified ac-

cording to the use (or lack of) prior information into supervised and unsupervised

algorithms. Analysing these works, we prove the importance of using prior informa-

tion and spatial properties in order to accurately detect and segment lesions.

• An extensive survey and analysis of brain MRI atlas-based segmentation. We intro-

duce some of the basic concepts of atlas-based segmentation, including atlas creation,

registration, strategies, and applications; and we review the main methods presented.

Moreover, analysing the results, we conclude that using a probabilistic framework

with a probabilistic atlas is the best option to segment lesions.

• A novel database for the SALEM project with 1.5T imaging data for 45 cases with

different lesion loads from three different hospitals; Hospital Vall d’Hebron, Hospital

Josep Trueta, and Clínica Girona, acquired with three different scanning machines

from different manufacturers; Siemens, Philips, and General Electrics repectively.

These cases were manually annotated by experts to obtain GT segmentations.

• A new algorithm to classify tissue voxels and segment lesions according to this tissue

segmentation. This pipeline approach, named TISSUE-LOT, is exhaustively tested

using our SALEM database.

• A new algorithm to segment lesions using a rich feature pool including spatial in-

formation, an outlier map and an ensemble classifier. This pipeline approach, called

BOOST, is exhaustively tested using our SALEM database.

• An experimental qualitative and quantitative comparison between our two proposed

pipelines and a promising state-of-the-art approach in terms of both detection and

segmentation.

• An early prototype to detect and segment lesions to be tested in the hospitals.

This tool has been implemented in C++ and is currently available at Hospital Vall

d’Hebron as a set of console functions and scripts.
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6.2 Future work

The analysis of brain MRI images for MS patients is a complex topic involving several

aspects and multiple research lines. This notion is exemplified in our case, by the modular

design described in our two proposed pipelines. Several steps are involved in the image

enhancement process prior to the segmentation itself. Furthermore, most of the concepts

applied to MS lesion segmentation can be applied to other brain MRI imaging topics or

can be studied further. Besides, other interesting topics arise from the needs of the current

clinical practise for MS patients.

Hence, future directions are presented divided into two categories: those related to

increasing the reliability of our proposal, and future research lines departing from this

thesis.

6.2.1 Short-term proposal improvements

In this thesis, we presented two different approaches. The first included a tissue classifi-

cation step (with tissue Gaussian parameters estimation) that served as the initial process

to create an outlier map. The goal of this map was to highlight outliers on a multispectral

basis to reduce the effect of hyperintense artifacts in FLAIR images. This map was in

turn used as a feature in a classification approach that also produced a likelihood map

for lesions. In order to further interconnect both pipelines and to take advantage of their

strengths, one improvement to our proposals could be the combination of the outlier map

and the classification map when using only intensity images, probabilistic atlas maps and

contextual meta-features as part of the rich feature pool. Furthermore, the results of this

combination could be refined with tissue information in a similar manner to the TISSUE-

LOT refinement step.

Other improvements to the pipelines would be the study of other pre-processing algo-

rithms. For instance, the skull stripping could be improved for those rare cases were BET

is not capable of fully removing the eyes or other non-brain tissues. Moreover, a new algo-

rithm for inter-slice inhomogeneities, rarely tackled by current bias correction algorithms,

could be developed to aid the segmentation of lesions in the topmost slices. These lesions

usually present a lower intensity profile that might difficult the task of global intensity

methods.

Another possible closely related improvement could be the implementation of a novel

atlas database with multiple topological atlases. These atlases would be selected and
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combined for each new patient to create a new probabilistic atlas for each independent

case in order to better adapt to it. Moreover, a synthetic atlas, using the simulation

concepts presented in appendix A, could also be developed in order to better capture the

morphology of a new case.

Other future work we propose as a short-term goal would be the expansion of the current

SALEM database to further study the differences between scanning machines and the effect

of the lesion load during the segmentation. At present, we have a database with a low

number of cases per hospital that present a variable lesion load, which in turn hinders the

task of separating the effect of the scanner and the lesion load.

Finally, we would like to test the prototype provided at Hospital Vall d’Hebron with

new clinical data to evaluate its performance and usability in clinical practise, as well as

to optimise, refine, and extend its functionality. For instance, we would like to provide a

user-friendly GUI for doctors to interact with.

6.2.2 Future research lines

In the long term, there are several new research lines departing from this thesis that could

be studied by the group. One such proposal, closely ties into the research presented in

this thesis and can benefit from it. This other research line proposal involves the study

of lesions in temporal cases. In fact, the SALEM database contains two different control

points for each patient: a basal initial scan, and a follow-up taken between 6 to 12 months

later. The study of the evolution of MS lesions is usually performed by subtraction or the

analysis of the transformation between two images. Our segmentation methods could aid

this process by providing some initial lesion masks in both the basal and follow-up images.

In fact, atrophy markers based on MRI analysis are commonly used in clinical practise

although they suffer from the present variability under the presence of MS lesions.

Further departing from this thesis and related to the previous topic, there is the study of

atrophy in conjunction with lesions. In this thesis, we briefly address tissue segmentation

for a single scan. However, the study of the evaluation of these segmentations at different

time instants coupled with the lesion study could help to understand the relationship

between both phenomena in the MS disease.

In this thesis, we have defined MS as a disease that presents hyperintense WML dissem-

inated in time and space. Similar presentations can occur in patients having an infectious,

neoplastic, congenital, metabolic or vascular disease, or non-MS idiopathic inflammatory
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a) b) c)

Figure 6.1: Examples of lesions in other brain diseases with GT: a) FLAIR image with

a stroke lesion, b) FLAIR image with a lupus lesion, and c) FLAIR image with a tumor

(green) and edema (red).

demyelinating disease [153]. These patients can even present symptoms similar to those

in MS, with differences in their treament and prognosis. From the image point-of-view,

images of brains suffering these diseases will present the same properties as MS imaging

with hyperintense focal lesions distributed along the brain. Such images could be also

automatically segmented using the techniques presented in this thesis to aid radiologists.

On a separate note, the methods and concepts presented here could also be applied to

the study of other lesions with similar properties. For instance, as illustrated in figure 6.1,

lupus lesions appearing in WM are hyperintense and can appear near the ventricles; stroke

lesions can also appear as hyperintense lesions of variable sizes in T2-w images; and tumors

usually appear as large hyperintense lesions that deform the tissues surrounding them

causing edema. Moreover, for MS lesions, we could also try to differentiate between the

lesion subtypes presented in chapter 1 and develop new tools to segment them to help the

study of their properties. This could also aid the MS diagnosis in those patients with a

first clinical episode according to the McDonald’s criteria.

Finally, the development of new MRI techniques with higher contrast and reduced arti-

facts and new tissue attenuated sequence relying on inversion recovery, or the introduction

of functional MRI and diffusion tensor imaging (DTI), could be also studied to help uncover

some unsolved questions for MS.



Appendix A

EPFL’s internal report: MS

lesion segmentation in MRI using

statistical methods and spatial

information

A.1 Introduction

Accurate and robust brain tissue and lesion segmentation from MR images is a key issue

in many applications of medical image analysis and, particularly, in the study of multiple

sclerosis. Manual tracing by an expert on the three brain tissue types, white matter (WM),

gray matter (GM) and cerebrospinal fluid (CSF) as well as white matter lesions (WML),

in MR images is far too time consuming as the data involved in most studies is large.

Moreover, automated and reliable tissue classification is a demanding task as the intensity

representation of the data normally does not allow a clear delimitation of the different tissue

types present in a natural MRI. This is due to the partial volume (PV) effect (presence

of more than one brain tissue type in a voxel), image noise and intensity non-uniformities

caused by the inhomogeneities in the magnetic field of the MR scanner. Most approaches

dealing with this issue rely on statistical segmentation strategies [135, 121, 204, 61, 209].

In [37], we analysed the state of the art on multiple sclerosis segmentation. In this study,

we concluded that using a priori knowledge can improve the segmentation of brain tissues.

Furthermore, one of the most common strategies relying on prior knowledge consists of

registering a template (called atlas) with tissue priors to aid the segmentation.
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Consequently, in [37], we decided to compare two of the most promising atlas-based

segmentation techniques and propose a new lesion segmentation method. Those atlas-

based methods encode anatomical spatial priors as atlas probabilities. Note that this

information is in fact global spatial information. In order to also include local spatial

information to improve our segmentation results, we decided to study the use of Markov

random fields (MRF) during my research stay at the EPFL under the BE grant 2010 BE1

00828. This work was developed with the LTS5 group led by Dr. Jean-Philippe Thiran

under the supervision of Dr. Meritxell Bach Cuadra.

A.1.1 Goals

In this report, we investigate different automatic pipelines capable of classifying

brain tissues and detecting MS lesions in magnetic resonance imaging (MRI).

We also propose a MRF refinement in order to improve the accuracy of those pipelines.

The general goal of this research stay can be subdivided into the following objectives:

• Validate our previous work [37] with a more realistic fluid-attenuated inversion re-

covery (FLAIR) simulation and extend it to real data.

• Learn and understand the basics of MRF models.

• Improve the segmentation results using MRF by implementing a post-processing

algorithm based on spatial relationships between tissues and inner brain structures.

A.1.2 Structure

The rest of this report is organized as follows: In section A.2 we present a comparative

study, with both synthetic and real data, between two state of the art methods for MS

lesion segmentation proposed by Souplet [204] and de Boer [61]. Our new refinement

approach based on MRF theory is introduced in section A.3. Finally, we summarise the

conclusions of our work and their impact on this PhD thesis in section A.4.
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Figure A.1: Scheme of the previous FLAIR simulation pipeline. After the weighted sum,

the CSF was darkened to simulate fluid attenuation.

A.2 Study of MS segmentation approaches

A.2.1 Motivation

In [37], we studied two different atlas-based strategies for MS lesion segmentation and,

based on these, we proposed a new segmentation pipeline. These methods, with two seg-

mentation steps for tissue classification and lesion segmentation, were evaluated quanti-

tavely using synthetic data from the Brainweb and qualitatively by visual inspection using

our own real database.

Brainweb is a publicly available synthetic phantom of the brain. Two versions of this

phantom can be downloaded from the website: a healthy subject and the same subject

with registered WML. For each case, T1-w, T2-w and PD-w images can be simulated with

different bias fields, noise and slice thickness configurations. However, there is no option to

simulate FLAIR images, difficulting the task of testing segmentation methods based on this

imaging sequence. In our previous work [37], we proposed the simulation this image using

the other available ones in a weighted sum with similar contrast to real FLAIR images, as

illustrated in figure A.1. However, this method was far from realistic since it did not follow

any physical principle. Therefore, our first objective was to better simulate this sequence

in order to validate the methods with a more realistic synthetic case.

In [37], our methods were tested with a data set consisting of 6 cases with T1-w, T2-w,
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PD-w and FLAIR images provided by the Hospital Vall d’Hebron in Barcelona (Spain).

Those images were obtained with a SIEMENS scanner of 1.5T and the number of slices

ranged between 44 and 46. Since no ground truth for those images was available at the

time of that study, we conducted a qualitative evaluation. During this research study, we

also wanted to validate those methods with a larger data set with ground truth to obtain

a quantitative evaluation.

Finally, we propose new pipelines using the SPM8 [13] tissue segmentation method.

The main goal of using this new segmentation method is to obtain better skull stripping.

However, this new segmentation method also provides a tissue segmentation that we can

use as input to the already developed lesion segmentation methods.

A.2.2 FLAIR simulation

In order to have a realistic simulation, one should recreate the different steps involved in the

MRI scanning (from RF signal simulation, to the adquisition of the image in k-space to the

final reconstruction of the MRI volume) [127]. This task requires great knowledge of MR

physics and is difficult to implement. In order to simplify this simulation, another approach

consisting of simulating the process in image space using an equation to aproximate the

voxel value according to the tissue and aquisition parameters [183, 151, 215], can be used:

S = M0(1− 2e−TI/T1 + e−TR−TElast/T1)e−effTE/T2. (A.1)

We can define the FLAIR signal for each tissue according to its proton density (M0),

its T1 and T2 times and the following scanning parameters: inversion time (TI), recovery

time (TR) and the last (lastTE) and effective echo time (effTE). The signal S is differ-

ent for each tissue and is independent of its spatial position. To obtain this tissue signal,

we used the tissue parameters M0, T1 and T2 provided by the Brainweb site at http:

//mouldy.bic.mni.mcgill.ca/brainweb/tissue_mr_parameters.txt/ while the acqui-

sition parameters where defined with the following common FLAIR values for the human

brain: TI = 2800ms, TR = 14000ms, lastTE = 216ms and effTE = 108ms.

Once we obtain the tissue FLAIR signals, the next step is to map them in image space.

In order to map the signals to their positions, we used the fuzzy membership of each voxel

to a tissue type. These fuzzy membership maps are provided by the Brainweb site as

ground truth for the segmentation evaluation. Therefore, the final intensity value for each

voxel is defined as,

http://mouldy.bic.mni.mcgill.ca/brainweb/tissue_mr_parameters.txt/
http://mouldy.bic.mni.mcgill.ca/brainweb/tissue_mr_parameters.txt/
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(a) (b)

(c)

Figure A.2: FLAIR simulation with 0% noise.

I(x, y, z) = K
C∑
c=1

πc(x, y, z) · Sc, (A.2)

where (x, y, z) are the spatial coordinates of the voxel, C is the number of tissues (fat,

muscle, skin, CSF, GM, WM, lesions, ...), πc is the fuzzy membership for the tissue c, Sc
is the tissue signal and K is an scaling constant. A slice example of this simulation is

presented in figure A.2.

A.2.3 Data sets

In this section we summarise the data sets used for evaluation. First, we present the images

we used from the synthetic Brainweb phantom and then briefly describe the real data set.
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Brainweb

As mentioned earlier, the Brainweb is a publicly available synthetic phantom of the human

brain. The PD-w, T1-w and T2-w images are publicly available for downloading in the

website to test brain image analysis methods. Different noise and bias field levels can also

be applied to the images. For this study, we provide results with the 3 images mentioned

plus our new simulation for the FLAIR with different noise levels: 0%, 1%, 3%, 5% and

7%. All volumes have a size of 181×217×181 and spatial resolution 1mm×1mm×1mm.

Real data

In order to perform the evaluation with real data sets, we selected 16 training cases from

the MS challenge workshop of the MICCAI conference [208]. Those cases were acquired

at the University of North Carolina (UNC) and the Children’s Hospital of Boston (CHB)

using a 3T scanner. For all cases, the following high dimensional images were obtained:

a T1-w scan, a T2-w scan and a FLAIR image. All volumes have a size in voxels of

512× 512× 512 and spatial resolution of 0.5mm× 0.5mm× 0.5mm.

A.2.4 Methodology

In this section we briefly summarise the methods we compared.

Tissue classification with kNN

Following the idea presented by de Boer et al. [61], CSF, GM and WM are segmented using

an automatically trained kNN classifier, an extension of the work by Cocosco et al. [45].

Training samples for the kNN classifier are obtained from the subject himself by atlas-based

registration [182]. These atlases are then thresholded in order to get candidate training

samples with a predefined probability of belonging to a specific label. The threshold value

is empirically defined in order to include variability in the CSF class.

For all three classes, candidate training samples are randomly taken from the spatial

locations masked by the thresholded atlases. The features of the samples consist of the

intensity values of the PD-w and T1-w images at the sample locations. Afterwards, a

pruning step, based on a minimal spanning tree, is applied to this initial set of samples to

remove outliers.
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Finally, a kNN classifier based on a fast nearest neighbor lookup library1 performs the

final classification based on the pruned sample set. The parameters k and n were chosen

to ensure the minimum possible error probability of a generic classifier (achieved when the

classifier knows the true data distributions) [207, 65].

Tissue classification with EM

Similar to Souplet et al. [204], the algorithm presented in the proposal of Dugas-Phocion

et al. [72] is applied to the T1-w and T2-w images. This algorithm uses the principle of

the EM algorithm to maximise the log-likelihood between the MRI data and a Gaussian

model of four classes: WM, GM, CSF, and the GM/CSF partial volume class.

First, the probability of each voxel of belonging to one of the different classes is initialised

thanks to the a priori information of the atlas. Probabilities are taken directly from the

atlases for pure classes (CSF, GM, WM), however, partial volume classes have no priors.

To overcome this issue, a new atlas with a proportion of the CSF and GM atlases is created

for the partial volume class.

After initialisation, two steps are iterated:

• In the maximisation step, the parameters (mean µk and covariance matrix Sk) of each

class are computed from the voxel intensities and their probabilities of belonging to

the different classes defined. The partial volume class parameters are obtained as a

proportion of the pure tissue parameters.

• In the expectation step, the probability of each voxel of belonging to one of the

different classes is updated depending on the classes parameters, using the Gaussian

function and the atlas values as prior probabilities.

Finally, when the algorithm converges, a bidimensional Gaussian distribution is esti-

mated for each class including GM, WM, CSF and partial volumes as well as all the voxel

probabilities related to these distributions.

Tissue classification with SPM8

SPM is a Matlab toolbox containing different brain image analysis methods ranging from

bias correction, to registration or the segmentation of different brain imaging sequences

1This library can be downloaded from http://www.cs.umd.edu/~mount/ANN/

http://www.cs.umd.edu/~mount/ANN/


154 Appendix A. EPFL’s internal report

(PET, MRI, fMRI, etc.). The main segmentation method of this toolbox, presented by

Ashburner et al. [13], is a hybrid algorithm that combines segmentation, atlas registra-

tion and bias correction. At each iteration, the segmentation and registration steps are

interleaved in order to refine each other. Two variants of the algorithm are presented in

the toolbox. One is a single channel approach with an atlas composed of the three main

tissues (GM, WM and CSF) and the other is a multi-channel approach that uses 6 atlas:

3 for the main tissues, 2 for non-brain tissues and 1 for the background. We used the first

method due to some segmentation problems with the eyes when using the second method

combined with T2-w images.

Lesion segmentation 1 (LS1)

Figure A.3(a) illustrates the whole lesion segmentation method. After the tissue segmen-

tation using the kNN algorithm, the GM mask is applied to the FLAIR image to compute

a histogram. Using this histogram, the mean value (µ) is estimated from the peak centre

location and the standard deviation value (σ) is calculated using the full width at half

maximum. Afterwards, a threshold is defined as:

T = µ+ ασ, (A.3)

where the parameter α is defined empirically. Upon applying this threshold to the FLAIR

image, an initial lesion mask is obtained.

In order to reduce the number of false positives, for every lesion (considered as a con-

nected component), the following WM fraction is computed:

WMfraction =
|WMneighbours|

|CSFneighbours|+ |GMneighbours|
, (A.4)

using a 3D 18-neighbourhood relation. Afterwards, those lesions whose WMfraction is

under an empirical threshold β are reclassified as GM.

Lesion segmentation 2 (LS2)

Again, figure A.3(b) illustrates the whole lesion segmentation method. After the tissue

segmentation using the EM algorithm, the GM mask is applied to the FLAIR image to

compute the mean and standard deviation values and a threshold is computed following

equation A.3. Afterwards, the FLAIR image contrast is enhanced using morphological

operations. First, both eroded and dilated FLAIR images are obtainded. Then, a new
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Table A.1: Summary of the different pipelines studied.
Tissue Lesion

kNN-LS1 [61] kNN Lesion 1

EM-LS2 [204] EM Lesion 2

EM-LS3 [37] EM Lesion 3

kNN-LS3 [37] kNN Lesion 3

SPM-LS1 SPM Lesion 1

SPM-LS2 SPM Lesion 2

SPM-LS3 SPM Lesion 3

enhanced image is obtained comparing voxelwise the eroded and dilated images to the

original. The intensity value closer to the original FLAIR value is then assigned to the

new enhanced voxel. This new enhanced image is thresholded to obtain an initial lesion

mask.

In order to reduce false positives, this initial mask is further refined using the WM mask

with the cavities filled and the CSF and WM masks coming from the EM. Lesion voxels

should be on the “healthy WM”, represented by the filled WM mask, but they should not

be on the real WM or CSF.

Lesion segmentation 3 (LS3)

We propose a new strategy as a combination of the two previous ones as shown in fig-

ure A.3(c). First, µ and σ are estimated from the histogram and the threshold is defined

as in LS1. Afterwards, the FLAIR image contrast is enhanced using morphological opera-

tions as in LS2.

This new enhanced image is thresholded to obtain an initial lesion mask. Finally, similar

to LS2, we consider as lesions those voxels inside the filled union of the GM and WM masks

and discard the voxels inside the WM and CSF masks to obtain the final lesion mask.

Pipeline summary

In this study, we compare 7 different pipelines summarised in table A.1. Two of them are

the implementation of the original proposals of Souplet et al. [204] and de Boer et al. [61],

while the other pipelines are combinations of the tissue and lesion methods.
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A.2.5 Results

In this section, we present the results for the 4 pipelines studied in [37]. First, we summarise

the results obtained with the new FLAIR simulation for the Brainweb followed by the

results obtained with the challenge data base.

Evaluation measures

In order to evaluate the lesion detection and segmentation, we decided to use 3 of the

measures that were used in the challenge: the average surface distance, the true positive

rate and the false positive rate.

The average surface distance computes the average distances between each automatically

segmented lesion border voxel and the closest ground truth voxel in mm. This measure

can give us a sense of overlapping. In order to have a perfect overlap, a distance value of

0 should be obtained.

The last two measures compare the number of true positives and false positives to the

number of ground truth lesions and the number of segmented lesions respectively. Those

two measures are pure detection measures. The first gives us an idea of the underestimation

of the number of lesions while the second provides an idea of the overestimation. A value of

100 and 0, respectively, defines a perfect detection. Note also that a completely segmented

image produces a 100% true postive rate while an empty image produces a 0% false positive

rate.

Finally, we also present tissue results using the Dice similarity coefficient (DSC) [67],

DSC =
2|TA ∩ Tgt|
|TA|+ |Tgt|

, (A.5)

where TA is the obtained tissue mask we want to evaluate and Tgt is the ground truth mask

for the same tissue. This additional overlap measure can give us an idea of the accuracy

of the tissue segmentation methods which may help to explain the final lesion results by

introducing more information on the pipeline errors.

Synthetic

Figure A.4 summarises the results for the Brainweb phantom with the new FLAIR sim-

ulation. Looking closely at the true positive fraction, we can see how the new lesion

segmentation method obtains values similar to the LS1 method. If we look at the values
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when the images have no noise, we see low values for the original state-of-the-art methods,

which increase radically when the noise is augmented to 1%. Moreover, all the methods

are quite robust to any increase in the noise level, with a slight decrease on true positive

values.

However, if we look at the false positive fraction, we can observe slightly better results

with the kNN based methods, with the kNN-LS1 obtaining the lowest false positives. This

method relies on a neighbourhood strategy to reduce false positives instead of masks. More-

over, this strategy outperforms the three others in terms of the average surface distance,

suggesting a better segmentation of the detected lesions.

Looking at the overlap between the automatic tissue segmentation methods and the

ground truth (see figure A.5), we can clearly see how EM obtains better results for the three

main tissues. In order to introduce a fair evaluation, the PV class has been resegmented

into GM and CSF according to the distance between the voxel and the tissue masks as well

as the Mahalanobis distance between the intensity of the voxel and the tissue distributions.

The EM method obtains fairly lower values than the kNN when there is no noise in the

images. This kind of behaviour is due to the nature of the simulated images with high pikes

and small standard deviations for each tissue. Therefore, the EM estimates wider Gaussian

distributions. When noise is introduced, the higher variability of tissue intensities allows

the EM to better fit Gaussians into the image.

In conclusion, we have seen how the EM seems to be the best tissue segmentation strat-

egy, while the LS1 method optimises the TP/FP ratio and the segmentation boundaries.

Moreover, we have seen how the EM outperforms the kNN when some noise is introduced

into the image. Since real images present noise artifacts due to their adquisition, this

improvement in accuracy for the tissue segmentation is also expected when evaluating the

methods with real datasets.

Real data

In this section, we compare the 7 different pipelines using the true positive fraction, false

positive fraction and average surface distance measures.

First of all, figure A.6(a) contains the boxplot for the average surface distance for all the

methods. Looking at the boxplot, we can see how the SPM-LS1 pipeline obtains the lowest

average surface distance (its mean value being 6.1658±4.6800mm). Compared to the kNN-

LS1 pipeline, there is an improvement in this measure due to a better tissue segmentation.
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(a) Average surface distance

(b) False positive rate

(c) True positive rate

Figure A.4: The methods evaluated comprising the 4 original pipelines. (a) Average surface

distance boxplot, (b) false positive fraction, and (c) true positive fraction.
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Figure A.5: DSC values for the 3 main brain tissues: CSF, GM and WM when using the

EM and kNN tissue segmentation algorithms. PV voxels have been reclassified to CSF

and GM.

The kNN method usually misclassifies CSF as GM affecting the final threshold for the lesion

segmentation. Therefore, applying a better segmentation (for instance, the one provided

by the SPM) is expected to improve segmentation results. Note also how the new lesion

segmentation method obtains the worst results applied to the tree tissue segmentation

approaches even though there is not a significant difference between the three boxplots.

A similar effect can be observed when looking at the false positive fraction in fig-

ure A.6(b). The results of the LS1 lesion approach in terms of false positive are reduced

when a better tissue segmentation approach is used (SPM in contrast with kNN). In this

sense, SPM-L1 outperforms the results obtained using EM-LS2, going from a mean value

of 85.4063±20.0952% to 72.6828±24.4370%. However, the number of misclassified lesions

still remains high with the false positive fraction over the 70%. Similar to the distance mea-

sure, results for the LS3 lesion segmentation method are higher (in terms of false positives)

than the other methods being validated, pointing to a worse segmentation.

Finally, if we analyse the true positive fraction, we can see that using the SPM segmen-

tation the results are lower. In fact, the methods that detect the most true positive are

the original method from de Boer (kNN-LS1) and the EM-LS3. These best results can

be explained by an oversegmentation of the lesions, hence the high false positive values or

surface distances. In this sense, big blobs are considered as lesions and these blobs overlap

the lesions.
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(a) Average surface distance

(b) False positive rate

(c) True positive rate

Figure A.6: The evaluated methods comprising the 4 pipelines, plus the 3 lesion segmen-

tation approaches applied after segmenting the tissues with SPM8. (a) Average surface

distance boxplot, (b) false positive fraction, and (c) true positive fraction.
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(a) (b)

(c)

Figure A.7: Example of the (a) kNN tissue segmenation, (b) EM tissue segmentation and

(c) SPM8 tissue segmentation for CSF (brown), GM (dark orange), WM (orange) and PV

(yellow).

A.2.6 Conclusions

We have analysed 7 different pipelines, two of them being part of the state-of-the-art MS

lesion segmentation methods based on atlas. All those pipelines have a thresholding step

in common. The threshold is always computed from the previously segmented GM mask

applied to the FLAIR image, where lesions are clearly hyperintense in comparison with

the other tissues, and the other tissue masks are used on a post-processing step to perform

the false positive reduction step. As a consequence, obtaining a good tissue segmentation

becomes a crucial requisite. For all the pipelines, 3 tissue segmentation methods are used:

an EM method with a partial volume class, a kNN method trained using an atlas and the

SPM8 method.
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Figure A.8: Slice example of misclassified WML inside the GM. Tissues in the image are:

CSF (brown), GM (dark orange), WM (orange), PV (yellow) and WML (white).

In general, the EM and SPM methods produce similar results for the CSF and GM (see

figure A.7), while the kNN algorithm obtains worse results when segmenting the CSF,

specially the ventricles. In general, this is the case for all cases with tissue segmentation,

therefore, the best lesion segmentation results should be obtained when using either the

EM or the SPM tissue masks. As we have seen in the previous section, this is actually the

case.

We can also see that when using better tissue strategies, the best lesion segmentation

approach is LS1, presented by de Boer et al. [61]. The main difference between this strategy

and the others is the post-processing step based on the lesion neighbourhood. This suggests

that masking methods are expected to produce a higher number of false positives since no

spatial information is taken into account and no spatial coherence is actually preserved.

Another common issue among the cases analysed is the number of false positives lo-

cated inside GM or close to external CSF and the cortex (as shown in figure A.8). These

FP, which are detected due to a low FLAIR threshold, are usually kept during the post-

processing due to their proximity to WM or because they are inside the GM mask. The

low threshold values are obtained due to acquisition artifacts in the FLAIR images. These

artifacts present a high bias field around the top and bottom slices of the images that

usually corrupts the threshold computation. An example of these artifacts can be seen in

figure A.9.
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(a) (b)

(c)

Figure A.9: Example of a volume with a high bias field in the top and bottom slices.

A.3 Markov random fields

Markov random fields (MRF) have been widely used in image processing in order to in-

troduce neighbourhood and spatial constraints [138, 108]. Methods relying on MRF define

the image as a graph in which each node represents a voxel connected to its neighbouring

voxels. Each of these nodes belongs to a classe c ∈ 1, . . . ,K, where K is the number of

nodes. Following markovian properties, the probability of this class p(c) is independent of

the rest of the nodes given a neighbourhood set:

p(ci|cS−{i}) = p(ci|cℵi), (A.6)

where j ∈ ℵi ⇐⇒ i ∈ ℵj and S represents the collection of all the sites in the image.

According to Hammersley-Clifford’s theorem [27], an MRF is equivalent to a Gibbs
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distribution:

p(c) =
1

Z
e−U(c), (A.7)

where Z is a normalisation factor and U(c) is the energy function that encodes the spatial

contraints. This function is computed over the neighbours of each voxel and can be tuned

in order to penalise or prioritise certain neighbourhood configurations in order to introduce

a priori knowledge.

A.3.1 MRF methods in MS segmentation

Three different approaches for MS lesion segmentation modeling the image as an MRF have

been presented in the literature [135, 121, 209]. These approaches can be divided into two

large groups: those methods based on an iterative approach that estimates an statistical

intensity model of the image and benefits from the MRF, re-estimated at each step, to

obtain a smooth and spatially coherent segmentation [135, 121], and those methods that

model the MRF once, defining a final segmentation [209].

Both approaches have the MRF estimation step in common, which is usually defined as

an optimization where an energy term E is minimised. This energy term can be defined

as

E = Edata + λEsmooth, (A.8)

where Edata is an energy term that depends on the data but is completely independent

for each voxel, Esmooth is the smoothness term that takes into account the relationship

between neighboring voxels, and λ is a parameter to weight the degree of smoothness and

can be obtained from equation A.7. If no smoothness term is provided, the optimization

behaves like a typical segmentation algorithm, where a data model is already defined by

the data, while, if there is no data term, the algorithm would tend to homogenise the

segmentation, leaving a single region for the whole volume.

For the data term, a Gaussian mixture model (GMM) is usually asumed. For statistical

iterative algorithms (such as the expectation maximisation [135] or the adaptive mixture

method [121]), this model is estimated at each step and the new parameters are used to

reestimate the MRF, while for the other approaches, an intensity model is first learned

(based, for instance, on histograms [209]) and then the model is kept for the whole seg-

mentation.
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For the smoothness term, different neighboring configurations can be taken into account.

For instance, a global affinity matrix defining possible connections between neighboring

voxels (with a lower energy value) and impossible ones (with a higher penalizing value)

can be defined. Local neighboring approaches with different affinity matrices depending

on the region can also be applied in order to better encode a priori knowledge based on

structures or tissues.

With these two terms defined, the total energy term can be optimised using different al-

gorithms, for instance the iterated conditional modes (ICM) [135], the simulated annealing

algorithm [209], or estimated using the segmentation obtained at each step [121]. In order

to accomplish these goals, we decided to implement two MRF filtering strategies: a global

one based on graph cuts (GC) [212, 95] and a local one based on the iterated conditional

modes algorithm (ICM) [212].

A.3.2 Motivation

In the previous section, we have seen how the pipelines analysed present a high number of

false positives with mean values over 80%. Moreover, we have also seen how the best lesion

segmentation strategy relies on a post-processing step based on neighbourhood information.

Furthermore, some of the false positives are located outside the WM or in the vicinity of

highly unlikely tissues.

Alternatively, when using the EM tissue method, most of the WML are classified in a

first stage as PV. Some of these PV blobs are kept as PV during the lesion segmentation

step reducing the TP due to their contrast and surroundings. Usually, these regions are

close to the ventricles or completely surrounded by WM, suggesting a high probability of

actually being a WML.

One of the best options to improve the abovementioned results would be to implement a

MRF strategy encoding those previous considerations to reduce the number of false positive

and increase (when possible) the number of true positive.

A.3.3 Considerations

We have presented a generical MRF model optimization with two energy terms: the data

term and the smoothness term. Moreover, we have presented an initial segmentation of

the brain tissues and WML (see figure A.8) we want to segment. This segmentation can

include PV, and some of the WML objects are in fact FP belonging to either GM or CSF.
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In order to define our post-processing algorithm, some considerations must be taken into

account inside this MRF model. In this section, we present them.

• Ventricles: Inside the brain, we can differentiate between two kinds of CSF: external

and internal. Even though there are minor intensity differences between them, they

are spatially and geometrically different. While external CSF appears surrounding

the cortex and presents random sulci and gyri patterns, internal CSF appears inside

the WM forming the ventricular system. These ventricles have a general common

shape among subjects but present some anatomical deviations in individuals. More-

over, some WML appear next to these ventricles while having any lesion in contact

with external CSF is impossible since there is no neighboring WM region. In order

to better encode these differences, we decided to encode an anatomic atlas to dif-

ferentiate between the CSF class and the ventricle class to better outline our MRF

configuration, as shown in figure A.10. This atlas also includes the GM and WM

labels and could be extended to introduce other structures.

• Partial volume: We defined PV voxels as a mixture of GM and CSF, therefore,

these voxels should actually be the interface between these two tissues. As a result,

PV should never appear inside WM. Most of these PV regions surrounded by WM

are in fact lesions that share the intensity distribution with the PV class. With this

knowledge, these regions could be easily reclassified as WML instead of PV using an

MRF model, like the one presented here.

• Data term: In the previous subsections, we have seen how a data term is needed

when optimizing a MRF model in order to prevent a full homogenisation of the

initial segmentation. Including a real data term based on the intensities would cause

a reclassification of the whole image that would not take into account this initial

segmentation. However, with this post-processing step, we only want to reclassify an

initial segmentation, keeping the normal appearing brain tissues intact. In order to

encode these constraints, we define three possible data values: infinite, change and

zero.

A value of infinite defines an impossible change. For instance, if we have a voxel

labelled as CSF and we do not want it to change, the data cost of changing this

voxel to the tissue GM would be infinite, thus preventing its change during the

minimization. Since the value of infinite can not be represented with a computer, we

chose a high enough value as infinite.
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(a) (b)

(c)

Figure A.10: Anatomical atlas with the following labels: GM (orange), WM (yellow),

ventricular system (red) and external CSF (brown)

A value of zero is used to keep the same label. For all classes, the data cost of keeping

the label will therefore be 0. With this value and the previous one, we can preserve

the label of those voxels we do not want to change.

Finally, the value for change is slightly higher than zero. This value is closely related

to the λ value and the neighbourhood configuration. For example, if we have a PV

object, we might want to change its label to WML if it is surrounded by WM, but

if it is surrounded by GM, we do not want to modify it. Using this change value to

pass from PV to WML, we can prevent a change in the second case depending on

the smoothness cost of PV as a neighbor of GM.

The final data cost configuration can be expressed as a matrix, shown in table A.2,

where the rows represent the initial class of the voxel and the columns represent the
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BCK CSF VEN GM WM PV WML

BCK 0 ∞ ∞ ∞ ∞ ∞ ∞

CSF ∞ 0 ∞ ∞ ∞ ∞ ∞

VEN ∞ ∞ 0 ∞ ∞ ∞ ∞

GM ∞ ∞ ∞ 0 ∞ ∞ ∞

WM ∞ ∞ ∞ ∞ 0 ∞ ∞

PV ∞ ∞ ∞ ∞ ∞ 0 ch

WML ∞ ch ∞ ch ∞ ∞ 0

Table A.2: Data cost affinity matrix. Rows represent the class of the voxel for the initial

segmentation, and columns represent the new class. The classes are background (BCK), ex-

ternal fluid (CSF), the ventricular system (VEN), grey matter (GM), white matter (WM),

partial volume (PV) and lesions (WML). The value ch represents the change value.

BCK CSF VEN GM WM PV WML

BCK 0 0 1 1 1 1 1

CSF 0 0 1 1 1 0 1

VEN 1 1 0 1 1 1 0

GM 1 1 1 0 0 1 1

WM 1 1 1 0 0 1 0

PV 1 0 1 1 1 0 1

WML 1 1 0 1 0 1 0

Table A.3: Smoothness cost affinity matrix. The classes are background (BCK), external

fluid (CSF), the ventricular system (VEN), grey matter (GM), white matter (WM), partial

volume (PV) and lesions (WML).

cost of changing this voxel to a new class.

• Smoothness term: We model the smoothness term with a simple approach defined

by two values: zero and one. The value zero defines a possible configuration, for

instance, WML can be surrounded by WM. The value one defines a configuration we

do not allow, for instance WML should not be in contact with external CSF. The

different configuration values can be summarised by the affinity matrix shown in A.3.

Following this configuration, we want to reduce the number of FP lesions and increase

the number of TP, reclassifying some missclassified PV. In order to penalise the

unlikely configurations higher, the λ parameter must be tuned accoding to the change

data cost value, however, this affinity matrix should not be modified.
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All these considerations are applicable to any optimization algorithm, either global or

local. In the next sections, we will present two different algorithms used to refine our initial

lesion segmentation, both based on these assumptions. The main differences between these

algorithms is that one estimates a global energy minima while the other falls into a local

minimum. The idea of this comparison is to define the best solution to optimise our initial

segmentation.

A.3.4 Graph cuts (GC)

The first approach we present is a global optimization algorithm based on graph cuts. In

this approach, a graph is created with the voxels as intermediate nodes connected with

their neighbours and the classes as terminal nodes. Therefore, the segmentation is defined

by connecting each node to the terminal node corresponding to the final label. The links

between voxels represent the smoothness costs, while the links between the voxels and the

terminal nodes represent the data cost. The algorithm is called expansion-move and tries

to expand each class at each iteration making expansion moves. The algorithm quickly

converges to a local minimum (close to the global one) where no other expansion move can

be made.

Implementation

The code for this filter is implemented in C++. The main routines for the graph cuts op-

timisation are implemented as a stand-alone library. However, its functionality is wrapped

into the class BrainSegmentation, which is compatible with the ITK code. This class im-

plements a method to apply the MRF filtering to a labelled image with tissues and lesions.

The input parameters for this method are the labeled image, the λ value, the change value

and the maximum number of iterations.Two other methods to define the smoothness array

matrix and the data costs are also provided.

Generally, this algorithm takes only a few minutes to filter the labeled image. The

initialisation steps to define the data and smoothness costs take only a few seconds. How-

ever, the main drawback of this algorithm is the high amount of memory required for its

execution. Therefore, images of more than a hundred slices should be downsampled.
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(a) Average surface distance

(b) False positive rate

(c) True positive rate

Figure A.11: The methods evaluated comprising the 4 original pipelines after the MRF

filtering with GC optimisation. (a) Average surface distance boxplot, (b) false positive

fraction, and (c) true positive fraction.
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Results

Figure A.11 summarises the results obtained before and after the MRF filtering using

the GC optimisation algorithm. We can differentiate between the results applied to the

kNN-based pipelines and the EM-based ones since the behavior of the filtering is slightly

different.

As expected, the kNN-based pipelines have a decreased value for the detection measures

since there is no reclassification into WML. This points to a slight improvement in both

segmentation and detection due to the FP reduction as unlikely lesions are reclassified into

tissue, while sacrificing some of the previously segmented lesions. These errors are lesions

close to the cortex and are reclassified into GM.

On the other hand, the EM-based pipelines present an increase in the detection measure

values. This points to an increase of the number of lesions detected. These new lesions are

reclassified PV inside WM that were discarded during the lesion segmentation step. As a

drawback, some other PV regions close to the cortex are reclassified as lesions, increasing

the FP rate. Note that these reclassified regions are higher in number than the number of

previous FP in unlikely regions reclassified into tissue.

Finally, if we look at the distance measures, we can see how the new lesion segmentation

method obtains lower values while the other two methods present a slight increase. This

increase is due to extreme values in some images since the first and third quartils present

lower values that suggest that the overall average surface distance has decreased.

A.3.5 Interated conditional modes (ICM)

This second approach is a pure local optimization algorithm based on the iterated condi-

tional modes. It starts with the initial segmentation and, at each step, gives the labeling

with lower total cost to each voxel. This process is iterated until no further change is ap-

plied. This method is highly sensitive to the initial segmentation, however, this drawback

can be an advantage since we actually want to refine this initial segmentation. We are

looking, therefore, for a local minima based on our initial estimation.

Another major difference between this method and the GC is the possibility of defining

a different membership kernel. This kernel is defined as a sphere with radius r. This

difference allows us to take into account a higher number of neighbours in order to make

a decision.
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Implementation

The code for this filter is implemented in C++ and is based on ITK inside the class

BrainSegmentation as well. This class implements a method to apply the MRF filtering

to a labeled image with tissues and lesions. The input parameters for this method are the

labeled image, the λ value, the change value and the radius r.

Generally, the code takes only a few minutes to filter the labeled image, however, the time

needed for convergence highly depends on the number of voxels needing to be reclassified.

No initialisation is needed since the cost is recalculated at each step, and only for those

voxels whose neighbor has changed. In this sense, the first iterations require more time,

since a higher number of voxels are expected to change class, than the last ones, where

only a few costs are calculated.

Results

Figure A.12 summarises the results obtained before and after the MRF filtering using the

ICM optimisation algorithm. Here we can also differentiate between the results obtained

by the EM-based pipelines and the kNN-based ones in terms of FP and TP.

In a similar manner, the kNN-based pipelines present a decrease in the number of FP

while decreasing in a similar percentage the TP rate. On the other hand, the EM methods

obtain similar FP rates without a huge decrease in the number of TP. Moreover, the

EM+LS3 pipeline decreases the mean FP rate value after the MRF filtering with the ICM

optimisation.

Finally, all the pipelines present an improvement in lesion segmentation, reducing the

average surface distance with a higher increase obtained by the EM-based pipelines.

A.3.6 Discussion

We have presented two different post-processing algorithms based on MRF. Moreover, the

main difference between these two methods comes from the optimisation algorithm used

to estimate the hidden MRF. While the GC algorithm obtains a global energy result, the

ICM algorithm optimises the original segmentation locally and thus depends on the initial

segmentation estimate.

Figure A.13 offers a comparison in terms of evaluation measures between the two post-

processing strategies. The local nature of the ICM algorithm allows the optimisation to
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(a) Average surface distance

(b) False positive rate

(c) True positive rate

Figure A.12: The methods evaluated comprise the 4 original pipelines after the MRF

filtering with ICM optimisation. (a) Average surface distance boxplot, (b) False positive

fraction, (c) True positive fraction.
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(a) Average surface distance

(b) False positive rate

(c) True positive rate

Figure A.13: Comparison of the methods evaluated comprising the 4 original pipelines after

the MRF filtering with ICM and GC optimisation. (a) Average surface distance boxplot,

(b) false positive fraction, and (c) true positive fraction.
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reclassify a higher number of lesions, decreasing both the number of FP and TP for all the

pipelines. Moreover, the lowest average surface values are also achieved using this second

optimisation scheme. This can be explained by the need to reduce the energy and the

configuration of both the smoothness and data term globally.

In order to reclassify a lesion, we need to change all its voxels to another tissue. This

change has both a data cost value and a smoothness cost value. The new data cost is

determined by the number of voxels that define the lesion (Narea) and the ch value:

E′data = Narea · ch, (A.9)

while the old smoothness cost value depends on the neighboring voxels belonging to external

CSF or GM (ℵ{GM,CSF}):

Esmooth = λ · |ℵ{GM,CSF}|, (A.10)

and the new smoothness cost value depends on the neighboring WM or ventricular voxels

(ℵ{WM,V EN}):

E′smooth = λ · |ℵ{WM,V EN}|, (A.11)

where ℵ{CSF,GM} and ℵ{WM} depend on the number of voxels on the lesion’s perimeter

(Nborder).

In order for a lesion to be reclassified into CSF or GM, the following inequality must be

true:

E′data + E′smooth < Esmooth, (A.12)

since the old data cost is 0. In general, lesions in an unlikely spot (external CSF or cortical

GM) have an E′smooth close to 0 because the lesion is surrounded by either external CSF or

GM, therefore E′data < Esmooth. While E′data depends on ch and Narea exclusively, Esmooth
depends on λ and ℵ{GM,CSF}. Assuming the same values for ch and λ, the inequality

becomes: Narea <
∑Nborder

i ℵi{GM,CSF} , where ℵi{GM,CSF} are the neighboring voxels of

external CSF and GM for each lesion border voxel. Finally we can define:

Nborder∑
i

ℵi{GM,CSF} = ℵ{GM,CSF} ·Nborder, (A.13)
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where ℵ{GM,CSF} is the average number of external CSF and GM voxels for each lesion

border voxel. Therefore, the final inequality that must be true to reclassify a lesion region

into tissue is the following:

Narea < ℵ{GM,CSF} ·Nborder. (A.14)

Taking into account this final inequality, we can conclude that large lesions in an un-

likely spot with a small enough border may not be reclassified using the GC optimisation

algorithm, since the global energy would increase when reclassifying this FP region. This

is not the case for the ICM algorithm, as it would reclassify each voxel according to its

energy change at each step. Therefore, the new energy value for a voxel of a lesion in an

unikely spot should be lower if the voxel is reclassified into tissue.

If a high λ value is given to avoid this issue when using the GC algorithm, this value will

also affect lesions close to the cortex that are in fact WML. If the smoothness cost to keep

the lesion is higher than the data cost to change the lesion region into tissue, the number

of those lesions close to GM could be removed, decreasing the number of TP. Therefore,

the λ and ch values should be defined according to each data set to ensure the highest

accuracy.

Figure A.14 shows an example in which the global optimisation may not reclassify a

FP lesion. In this 2D example, we have 24 neighboring GM voxels, which, counted as

neighbours, amount to 36 voxels since some of these voxels are neighbours to more than

1 lesion voxel. On average, each border voxel has 1.5 GM neighboring voxels and the

smoothness cost, if we keep the lesion, is 36 ·λ, while this value decreases to 0 if we change

the whole lesion to GM. On the other hand, we have 44 lesion voxels with 20 of them in

the border, therefore, the global data cost, if we reclassify the lesion, would be 44 · ch and

0 if we keep it as lesion. If λ = ch, this lesion would stay as lesion, even though it clearly

is inside GM. Using an ICM strategy with the same parameters, the optimisation would

slowly erode the border of the lesion until it is finally reclassified as GM. However, we

could also have λ > ch in order to remove the lesion using the GC optimisation, but this

value increase may also affect other lesions close to the cortex.
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Figure A.14: Example of a 2D lesion inside GM. If λ = ch, this lesion will not be reclassified

into GM, even though it is inside it. However, if λ > ch, the lesion will be reclassified, but

other lesions close to the cortex might be reclassified as well.

A.4 Conclusions

A.4.1 Discussion

In this report, we presented and evaluated 7 different lesion segmentation pipelines based on

3 atlas-based tissue segmentation methods (EM, kNN and SPM) and 3 lesion segmentation

approaches based on thresholding a FLAIR image. Four of these pipelines were already

presented and tested in [37]. However, a quantitative evaluation was only provided for

the Brainweb data with a nonrealistic FLAIR simulation, therefore, we extended this

evaluation with a realistic FLAIR simulation and a quantitative analysis of real datasets

from the MICCAI Challenge. Moreover, we compared those results to three new pipelines

using the SPM tissue segmentation approach combined with the 3 lesion segmentation

methods developed.

Thanks to this validation, we discovered several issues in the lesion segmentation that

could be improved. These issues were a low number of TP due to some being misclassified

as PV when using the EM approach, and a high number of FP, as some were located inside

GM and/or external CSF. In order to improve these initial results, we presented two new
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post-processing algorithms based on an MRF optimisation approach with a global and

local optimisation algorithm. These filters refine the initial segmentation obtained with

the lesion segmentation pipelines taking into account the label information and some MRF

configurations defined in order to remove lesions in unlikely locations and reclassify PV

regions inside WM or close to the ventricular system. We have seen how both methods

present an improvement over the initial results with a slight reduction of the number of

FP and the average surface distance between the ground truth and the automatically

segmented lesions. However, the number of TP also presents a slight decrease due to some

lesions being close to GM.

A.4.2 Impact on this PhD thesis

This initial validation of the proposals presented in my master thesis [37] with both syn-

thetic and real data of 3T images proved essential to pinpoint weaknesses from our initial

approaches and point out the importance of spatial information. In this report, all spatial

information is encoded using a specific implementation of MRF. However, the MRF theory

basically states that the voxel’s probability of belonging to a certain distribution is only

determined by the directly neighbouring voxels in a given 3D connectivity.

In our first proposal, we presented a lighter implementation of this concept by defining

the prior probabilities according to a 3D connectivity and the probability maps of the

previous step. This prior probabilities are combined to atlas probabilities using a similarity

map as explained in chapter 4. In our second proposal, instead of using an MRF model, in

which only direct neighbours are taken into account, we encoded the contextual information

of randomly sampled regions inside a pre-defined 3D window around each voxel. Thus, we

proposed including spatial information in both approaches to aid the segmentation.

Finally, the whole TISSUE-LOT proposal was implemented taking the conclusions in

section A.2.6 into account. For instance, the tissue segmentation was improved in terms of

convergence and smoothness, and the lesion segmentation step was defined as an extension

of LS1, which obtained the best results in this report.
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