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Abstract—The fusion of several images of the same
scene into a single and larger composite is known as
photo-mosaicing. Unfortunately, the seams along image
boundaries are often noticeable, due to photometrical and
geometrical registration inaccuracies. Image blending is the
merging step in which those artifacts are minimized.

Processing bottlenecks and the lack of medium-specific
processing tools have restricted underwater photo-mosaics
to small areas despite the hundreds of thousands of
square meters that modern surveys can cover. Large
underwater photo-mosaics are increasingly in demand for
the characterization of the seafloor for scientific purposes.
Producing these mosaics is difficult due to the challenging
nature of the underwater environment and the image
acquisition conditions, including extreme depth, scattering
and light attenuation phenomena and difficulties in vehicle
navigation and positioning.

This paper proposes strategies and solutions to tackle
the problems of very large underwater optical surveys
(Giga-mosaics), presenting contributions in the image pre-
processing, enhancing and blending steps, resulting in
an improved visual quality in the final photo-mosaic.
A comprehensive review of the existing methods is also
presented and discussed. Our approach is validated by
a large optical survey of a deep-sea hydrothermal field,
leading to a high-quality composite in excess of 5 Gigapixel.

Index Terms—Mosaicing, Blending, High-resolution
Mapping, Underwater Optical Survey

I. INTRODUCTION

The underwater robots used in deep seafloor ex-
ploration, i.e. AUVs (Autonomous Underwater

Vehicles) or ROVs (Remotely Operated Vehicles),
are usually equipped with advanced sensor suites,
including Ultra-Short Baseline (USBL) systems, ac-
celerometers, inclinometers, acoustic imaging sen-
sors, and optical cameras, among others. Among
these, optical imaging provides short-range high-
resolution visual information of the ocean floor.

Archeologists, geologists and biologists can benefit
from these images as they provide the most precise
and accurate representation of the selected areas, en-
abling detailed analysis of the structures of interest.

Nevertheless, the underwater medium adds par-
ticular challenges to the image acquisition task.
When an underwater vehicle acquires images in
deep waters, light attenuation impacts visibility
range and color reproduction. Due to this attenu-
ation phenomenon, image acquisition needs to be
performed close to the seabed, considerably limiting
the maximum area covered by a single photograph.
Hence, optically mapping large seafloor areas can
only be achieved by building image mosaics from
a set of reduced-area pictures.

Over the last decade, the relevance of photo-
mosaicing has grown significantly. As a clear ex-
ample, numerous off-the-shelf still cameras now
include built-in algorithms to fuse several pictures
from a panoramic sequence into a single wide-angle
view. Furthermore, gigapixel photo-mosaics [1] of
the entire Earth are easily available through the
Internet, using a limited bandwidth connection. In
most cases, such large mosaics are created from
terrestrial, aerial or space related imagery. The com-
mon photo-mosaicing problems for this kind of im-
ages, comprehending the compensation of different
exposures and non-uniform illumination, are widely
treated in the literature.

Unfortunately, performing underwater image sur-
veys is a challenging task with a much higher
level of complexity than conventional terrestrial or
aerial image photo-mosaic generation. As stated
in [2], and due to the constrained image acquisition
conditions, both the navigation data and the images
acquired should be used to recover an accurate
estimate of the camera poses during the survey. This
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information fusion is often performed by means of
global alignment techniques [2], [3], [4], [5]. This
is a mandatory step before generating precise visual
maps from the seafloor. Usually, the short distance
between the camera and the seafloor implies the
presence of parallax effects (see Figure 1), which
considerably affects the 2D mosaicing approach
due to the violation of the planar assumption, i.e.
the assumption of a flat scene, which allows the
computation of 2D transformations between im-
ages. Furthermore, suspended particles causing the
scattering phenomenon [6] are commonly present.
Moving elements, such as fish and algae, are exam-
ples of other common issues in underwater photo-
mosaicing. Consequently, once the global alignment
problem has been solved, and an accurate vehi-
cle trajectory has been obtained, photo-mosaicing
still requires a final step. It is necessary to give
to the heterogeneously appearing image dataset a
continuous and uniform appearance in the form of
a single large image. This is achieved by image
blending techniques, and the processing procedure
proposed here. Apart from the visual appearance,
blending techniques are also important for proper
interpretation and scientific exploitation of seafloor
imagery (e.g. [7], [8]). The structures and objects
of interest may cover a wide range of scales, from
a few centimeters (macrofauna, rocks), and hence
within individual images, to several tens or hundreds
of meters (topographic scarps, fractures), therefore
spanning several frames. To properly analyze such
various features, and to understand the spatial rela-
tionships that may exist (e.g., faunal assemblages as-
sociated with geological features) it is preferable to
have a single, wide area photo-mosaic, where imag-
ing artifacts are minimized, and where identified
features of interest may be accurately represented
regardless of their size and imaging conditions.

The goal of this work is to create a complete
blending approach using state-of-the-art methods
capable of generating and blending large-scale op-
tical maps, such as that used for testing, obtained
from the Mid-Atlantic Ridge seabed using a tele-
operated robot. The developed blending technique
focuses on two main ideas. Firstly, the richness of
detail in the original images should not only be
preserved but also enhanced when possible. Sec-
ondly, the algorithms should be able to deal with
datasets of thousands of images covering large areas
of the seafloor (on the order of several hundreds

of thousands of square meters). Consequently, the
processing strategy needs to deal with underwater
imaging while being well-suited for large input
sequences.

There are various approaches to the problem of
large-scale underwater photo-mosaicing in the liter-
ature. In the context of 2D mosaicing, Pizarro and
Singh [9], [10] emphasized the global consistency of
the result, obtaining very good results when dealing
with large datasets (from hundreds to thousands
of images). Richmond and Rock [11], [12], [13],
instead, concentrated their efforts on reaching real-
time performance in the mosaicing construction.
The problem of obtaining a 3D reconstruction based
on the fusion of images and navigation data was
also addressed by Singh et al. [14], [15], [16].
Another 3D approach based on a stereo system
has been proposed to recover a 3D estimate of
the seabed morphology and to generate a navigable
three-dimensional model for large areas [17]. This
technique overcomes the well known problems of
parallax on 2D mosaicing, although the detail of
the 3D model is simplified to allow large sequence
processing and fluid visualization. Unfortunately,
the AUVs or ROVs performing the explorations are
not always equipped with a stereo system, or the
overlapping between consecutive images is not suf-
ficient to perform a 3D reconstruction. Furthermore,
the extraction of a mesh of triangles from the images
acquired to generate the 3D model may lead to a
loss in the detail of the information available from
the original images. This is because when a texture,
i.e. an image region, is applied to a triangle, even
if it has been retrieved from the most appropriate
view, it is typically stretched to fill the triangle’s
entire area. Consequently, the quality and sharpness
of the texture information is reduced. The blending
method, proposed in [17] and based on [18] (as
used in [9]) for visualization efficiency reasons, may
suffer from other known problems, such as ghosting
and double contouring. A monocular 3D approach
such as [19], [20] can be applied to perform Struc-
ture From Motion (SFM) when only information
from a single camera is available. In that case, the
small size of the overlapping area may also prevent
the application of these kind of techniques. Further-
more, the complexity of the model will seriously
constrain the size of the region to be mapped. Some
approaches in the literature, such as [21] and [22],
are able to deal with thousands of images, but with a
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high computational cost and without achieving a full
dense reconstruction. Concerning image blending
in underwater imaging, only [9], [16], [23] have
proposed methods to compensate the effects of
light absorption and non-uniform illumination in the
image preprocessing step.

Unfortunately, none of the techniques described
above is suitable for our purposes due to several
constraints. Our test dataset was acquired during
the CNRS/IFREMER MOMAR08-Leg1 cruise by
IFREMER’s Victor-6000 ROV [24]. This vehicle
is equipped with an OTUS 1-Mpixel still camera
using artificial strobe lighting. Images were acquired
at a height of about 8-10 m over the seafloor at
intervals of between 10 and 17 seconds. Under
these conditions, the reduced amount of overlap
between successive frames is insufficient for the
application of SFM techniques. The possibility of
applying any 3D approach is therefore quite limited
due to the lack of redundancy over time-consecutive
images (i.e. multiple views of the “seam” area of
the seafloor). The navigation information provided
by an IXSEAr Octans sensor (heave, pitch, roll
and heading) is used to estimate the initial topology
of the photo-mosaic. The mapping payload of the
Victor-6000 also features a RESON Seabat 7125
multi-beam echo-sounder with 512 beams. Never-
theless, this resolution, with respect to the field of
view of the optical camera and the size of the scene
elements, does not allow a 3D reconstruction at a
resolution approaching that of the optical imagery.

The area surveyed, which extends ≈800×700 m,
is located at a depth that ranges between 1600
and 1700 m. The area shows relatively moderate
relief, with important slopes associated with fault
scarps, in addition to three-dimensional structures,
up to few tens of meters in height, corresponding
to hydrothermal vents. Despite this topography, a
2D mosaicing approach that incorporates seam de-
tection (reducing the disturbing effects of parallax)
and blending presents itself as the most adequate
for high quality underwater mapping. This provides
a continuous and homogeneous view of large seabed
areas. The obtained view is geo-referenced and that
be readily exploited scientifically.

The main contributions of this paper are twofold.
Firstly, it provides a comprehensive review of the
current and most prominent state-of-the-art mosaic-
ing and blending techniques, in order to evaluate
their application in the underwater imaging context.

Fig. 1. Sequence corresponding to a straight trajectory of an AUV
depicting the parallax problems. It shows the side and camera views
of the robot’s trajectory. One side of the chest disappears from the
frame while the other arises due to the parallax effect.

Secondly, it proposes a new blending pipeline espe-
cially adapted to the underwater environment.

The rest of the paper is structured as follows. Sec-
tion II presents a complete description of previous
works in the field of image blending, pointing out
the evolution of those algorithms and the context in
which they were conceived. A classification criteria
is proposed in Section III, followed by a summary
table. A complete framework for underwater blend-
ing is presented in Section IV, along with results
and discussion in Section V. Finally, conclusions
derived from the results obtained and future work
are presented in Section VI.

II. REVIEW ON STATE-OF-THE-ART BLENDING
TECHNIQUES

Stitching two or more images together to create a
photo-mosaic that enables the interpretation of the
benthos by a scientist (biologist, geologist, archeol-
ogist, etc.) requires the use of a blending technique
to obtain a seamless mosaic (see Figure 2).

There are three main concepts guiding image
blending algorithms. Firstly, the effects of differ-
ent illumination or exposure times between images
should be minimized. Secondly, an adequate seam
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(a) (b)
Fig. 2. Photo-mosaic built from six color images of two megapixels. The mosaic shows noticeable seams in (a), where the images have
been only transformed and sequentially rendered on the final mosaic canvas, each one on top of the previous one. After applying a blending
algorithm, the artifacts (image edges) disappear in the resulting mosaic (b). Images courtesy of Dan Fornari (Woods-Hole Oceanographic
Institution).

should be found in order to reduce the visibil-
ity of micro-registration misalignments and mov-
ing objects. Lastly, a smooth transition through
the selected seam must be applied to reduce the
prominence of transitions between images.

In the early 70’s, D. Milgram [25] addressed the
problem of the seamless combination of two satellite
images. The method searches the seam pixel offer-
ing the smoothest transition in a row-wise manner,
and is intended to deal only with pairs of images
horizontally registered. An arbitrary surround range
is defined at each row around the seam pixel in order
to smooth the transition using a weighted average.
This algorithm established the basis for most of the
methods that arose in the following decades. The
author later proposed an improved approach, adding
a pixel selection criterion in order to deal with
shadows and moving objects [26]. A cost function
permitted controlling the origin and the final pixel
of the seam’s path.

In the context of low-scale (order of mega-pixels)
indoor photo-mosaicing, Peleg [27] introduced the

concept of Seam-Eliminating Function (SEF). The
SEF is based on a luminance smoothing function
(i.e. a weighting map), computed by using a compu-
tationally expensive iterative relaxation algorithm,
which is used to smooth the transition from an
arbitrary number of overlapping images, setting the
intensity differences along arbitrary seams at zero.

Burt and Adelson [18] introduced the concept
of Image spline in 1983. The images to be fused
are decomposed into a set of bandpass component
images, and a separate spline with an appropriate
transition width is applied to each band. The goal
is to fuse the features with the same scale at each
bandpass level. Finally, the splined bandpass com-
ponents are recombined. The method suppresses the
visibility of the seams and reduces the noticeability
of any misalignments when registration is imperfect.
However, it leads to double contouring and ghosting
effects when the misalignment is significant (see
Figure 3). In 1996, Hsu and Wu [28] extended
the idea of Burt and Adelson [18] by applying
the method in wavelet subspaces. The improvement
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in the results obtained by Hsu and Wu [28] is
negligible with respect to the method of Burt and
Adelson [18], while being computationally more
expensive.

The problem of non-static objects in the overlap-
ping regions was addressed by Davis [29] in 1998,
who found an optimal seam using Dijkstra’s algo-
rithm [30] through the photometric differences com-
puted between two registered images. The obtained
path tends to cut around a moving object, leaving
it either totally in or out of the final mosaic image.
In 2001 Uyttendaele et al. [31] proposed a method
to suppress the ghosting effect in mosaic images
due to moving objects, along with a block-based
procedure to adjust the exposure across multiple
images. The authors proposed a search for regions
of difference (RODs) on the overlapping areas. The
goal is to use information from only one image for
each ROD, keeping information from one of the
images, and ignore corresponding information in the
other images. The RODs are used to build a graph,
where the minimum weight vertex cover [32] must
be computed. However, this method is not entirely
robust, and situations can appear where a wrong
elimination of RODs causes gaps in the overall
mosaic.

In 2003, Pérez et al. [33] proposed a generic
interpolation machinery based on solving Poisson
equations for seamless editing and cloning of se-
lected regions, being the first important approach
in the gradient domain. Through suitably mixing
the gradient of a given image with that of another
one, it becomes possible to fuse image regions
(namely objects) convincingly. As an extension
of the technique presented by Bertalmio in [34],
Pérez et al. proposed modifying the problem of
image interpolation through the Poisson equation
by introducing further constraints in the form of a
guidance field. In the same context, Levin et al. [35]
proposed a method based on several cost functions
for the evaluation of the quality of the stitching.
The authors named GIST (Gradient-domain Image
STitching) the developed framework based on this
method, providing two main approaches to image
stitching. First, images are combined in the gradient
domain. Second, the mosaic image is inferred by
optimization over the image gradient. The drawback
of the methods working exclusively in the gradient
domain are the computational resources required
to deal with large datasets, such as the examples

provided in this paper.
In 2004 Agarwala et al. proposed a technique

which combined the two main classes of blending
algorithms [36]. Firstly, graph-cut optimization [37]
was used to find the optimal seam. Secondly,
gradient-domain fusion [33] was applied to reduce
or remove any remaining visible artifacts. The de-
veloped framework required user guidance to select
the image interest regions, thus being unsuitable
for the automatic generation of photo-mosaics. In
2007, Agarwala [38] presented a hierarchical ap-
proach to improve the efficiency of gradient-domain
compositing. The efficiency increase was achieved
by observing that the pattern of the differences
between a simple color composite and its associ-
ated gradient-domain composite can be predicted a
priori. These differences are solved by adaptively
subdividing the domain using a quadtree hierarchi-
cal structure [39]. Unfortunately, when the number
of overlapping images increases and the overlapping
regions become smaller, the performance of the
method decreases. Su et al. [40] proposed a method
based on the minimization of a blending energy
function with two variation terms. First, the image
value variation measures the difference between
corresponding pixel values of the images to be
combined and the photo-mosaic itself. Second, the
first derivative variations measure the difference
between the blended values of each respective first
derivative and the first derivative of the mosaic. The
method does not address the seam finding problem,
and its computational cost makes it unsuitable for
large image datasets.

Regarding computational and memory cost reduc-
tion of Dijkstra’s based optimal seam finding, Gra-
cias et al. [23] proposed a method using watersheds
and graph-cuts. The use of watershed segmentation
to find possible cuts over areas of low photometric
differences allowed their algorithm to reduce the
search to a smaller set of watershed segments, at the
cost of sacrificing a certain degree of precision in
the computed path. Furthermore, the use of graph-
cuts over image pairs guarantees a globally optimal
solution for each overlapping region.

Eden et al. [41] presented in 2006 a blending
approach including a two-step graph-cut procedure,
working on a global radiance space. Firstly, the
positions of moving objects in the scene are defined
(manually or automatically). Secondly, the entire
available dynamic range is used to render the photo-



IEEE JOURNAL OF OCEANIC ENGINEERING, OCTOBER 2012 6

1

2

1

2

(a)

1

2

1

2

(b)

1

2

1

2

(c)
Fig. 3. Sample photo-mosaic region with (a) and without (b) ghosting and double contouring in the transition region due to registration
inaccuracies. Seabed structures 1 and 2 are noticeably blurry in (a) while having a sharp appearance in (b). (c) shows two overlapping
images of a given photo-mosaic (I1 and I2) represented in the red (I1) and green (I2) channels. Consequently, perfectly registered regions
should appear in yellow, while regions showing misalignments, with a reddish or greenish appearance, are small and they appear as easily
noticeable visual artifacts in the first image of the mosaic. The image without ghosting and double contouring has been obtained using the
blending approach proposed in this study. Images courtesy of Dan Fornari (Woods-Hole Oceanographic Institution).
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mosaic. Therefore, a High Dynamic Range (HDR)
image can be obtained from the photo-mosaicing
process. The gradient blending step is performed as
in [36].

The problem of stitching images in real-time for
online photo-mosaicing was addressed by Zhao [42]
in 2006. There are three main advantages in the pro-
posed flexible blending technique: a) good results
and embedded implementation, b) comprehensive
treatment of geometry, time and user control and c)
exposure imbalance handling. Flexible blending has
its basis in the sequential implementation of image
blending features. Unfortunately, some drawbacks
prevent its application to large-scale underwater
mosaicing. Firstly, the selected strategy of the blend-
ing step [18] does not offer good enough results
when registration problems occur. Secondly, the
exposure correction mechanism selected may lead to
a global exposure degeneration. Lastly, the behavior
of the method when faced with large input image
sequences is unknown.

Few approaches in the literature have specif-
ically faced the problem of underwater imagery
mosaicing. Gu and Rzhanov [43], similarly to [36],
proposed a graph-cut technique to select the op-
timal seam between two images, and the appli-
cation around this boundary of a pure gradient
domain fusion. The method claims to overcome the
short comings of pure graph-cut techniques, which
show noticeable seams in the case of changing
illumination conditions, and gradient domain fusion,
which produce blurring in case of misalignment.
The authors do not define a criteria for selecting the
contributing image in the case of multiple images
overlapping in the same region. Thus, [43] is limited
to “panoramic” mosaics where only two images
overlap in the same area. Furthermore, a conven-
tional graph-cut approach, in the case of gigapixel
mosaics, may lead to non-optimal seams in the
presence of different exposures or illuminations.

III. CLASSIFICATION OF TECHNIQUES

The list of papers that conform the state-of-
the-art on image blending is long, and the main
requirements for conventional panorama image gen-
eration have been satisfyingly addressed by sev-
eral of them. Unfortunately, blending in underwater
photo-mosaicing is a specific application, which has
not been treated thoroughly in the literature. Con-
sequently, despite the numerous image mosaicing

methods, not all of which are adequate to deal with
large-scale underwater photo-mosaicing. In order to
highlight the properties, benefits and drawbacks of
the current methods, and with the aim of evaluating
their application to underwater mosaicing, a classi-
fication is proposed.

There are several criteria that determine the be-
havior and performance of a given blending algo-
rithm, including their capability of dealing with high
resolution underwater photo-mosaics. Table I pro-
vides a comprehensive comparison of the most rele-
vant blending techniques proposed in the literature.
The specially important categories for underwater
applications (mostly working with monochrome im-
ages) are exposure correction and elimination of
ghosting and double contouring, concerning im-
age quality and scalability in large-scale photo-
mosaicing.

A. Basic Principle
Two main groups of algorithms can be found in

the literature in the context of image blending [35]:
Transition Smoothing (TS) and optimal Seam Find-
ing (OS) techniques. Transition smoothing methods,
also known as feathering [31] or alpha blending
methods [46], attempt to minimize the visibility
of seams by smoothing the common overlapping
regions of the combined images. TS methods of-
ten suffer from Ghosting, a blurring of the finest
details (i.e. low frequency image components), and
Double Contouring, consisting in practice on a
partial duplication of certain scene structures (i.e.
high frequency image components), if registration
is not accurate enough or the scenario considerably
violates the planar scene assumption for 2D mosaic-
ing. Optimal seam finding methods place the seam
between images where photometric differences in
their joining boundaries are minimal [47], [29]. OS
methods are not able to deal with images with
different Exposures, as it is often the case in un-
derwater imagery due to 3D relief, oblique terrain,
variations in the altitude of the vehicle, etc. Finally,
Hybrid (TS/OS) methods combine the benefits of
both algorithm groups (e.g. [25], [36]).

B. Domain
The Domain in which the process is carried

out (Luminance / Radiance, Wavelet or Gradient)
strongly influences the properties of the blending.
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TABLE I
BLENDING TECHNIQUES: COMPARISON TABLE
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(1975) D. L. Milgram [25] TS / OS L Low GS No No Yes Yes (*) Indirect No Yes Local Low Yes
(1977) D. L. Milgram [26] TS / OS L Low GS No No Yes Yes (*) Indirect No Yes Local Low Yes
(1981) S. Peleg [27] TS L Yes GS No Yes No No No No No Global Low No
(1983) P. Burt & E. Adelson [18] TS L Low CW Yes No Yes No No No Yes Local Low No
(1996) C. T. Hsu & J. L. Wu [28] TS W Low CW Yes No Yes No No No Yes Local Low No
(1998) J. Davis [29] OS L Yes CW No Yes No No Yes No No Global Low Yes
(2001) M. Uyttendaele et al. [31] OS L Yes CW No Yes No Yes Yes No No Global Low Yes
(2003) P. Pérez et al. [33] TS G Low CW No No Yes No No No No Local Low No
(2004) A. Levin et al. [35] TS G Low CW No No Yes No No No Yes Local Low No
(2004) A. Agarwala et al. [36] TS / OS G Yes CW No Yes No No Yes No No Global Low Yes
(2004) M. Su et al. [40] TS L Low CW Yes No Yes No No No Yes Local Low No
(2006) A. Eden et al. [41] TS / OS R / G Yes CW No Yes No No Yes No Yes Global High Yes
(2006) W. Zhao [42] TS L Yes CW No No Yes Yes No Yes Yes Local Low No
(2006) F. Gu & Y. Rzhanov [43] TS / OS G Low CW No Yes No No Yes No Yes Local Low Yes
(2007) A. Agarwala [38] TS / OS G Yes CW No Yes No No Yes No No Local Low Yes
(2008) R. Szeliski et. al. [44] TS / OS G Yes CW No Yes No No Yes No No Local Low Yes
(2009) N. Gracias et al. [23] OS L Yes CW No Yes No No Yes No Yes Local Low Yes
(2009) A. Mills & G. Dudek [45] TS / OS L Yes CW No Yes No Yes Yes No Yes Local Low Yes
(2010) Johnson-Roberson et al. [17] TS L High CW Yes No Yes No No No Yes Local Low Yes
(2012) Proposed Approach TS / OS L / G Yes SC No Yes No Yes Yes No No Local High Yes

∗ TS: Transition Smoothing, OS: Optimal Seam, L: Luminance, W: Wavelet, G: Gradient, R: Radiance, GS: Gray Scale, CW: Color Wise, SC: Single Channel.

Gradient blending methods, widely used in the
latest publications [44], [48], [45], are able to
unify different Exposures seamlessly and can lead
implicitly to high dynamic range from a set of
low dynamic range images. However, they require
solving large sparse systems of equations to re-
cover the Luminance from the gradient vectors. In
contrast, Luminance based methods typically have
lower computational requirements.

C. Scalability

We define the Scalability of a method as the
ability to deal with more than two overlapping
images. This property might be constrained by
two main factors. The first is the nature of the
method itself, as in [25], [26] or [28], which cannot
work with more than two overlapping images. The
second is related to computational requirements:
non-optimized Gradient algorithms suffer from poor
computational scalability when the input dataset is
extremely large, as in the case of Giga-Mosaics.

D. Color and Dynamic Range

The acquired Color changes significantly as
a function of the robot’s altitude due to the

wavelength-dependent spectral absorption of the
media. Mosaic blending techniques generally use a
Channel Wise approach, where three color channels
are processed independently and later reunified into
a single color image. Those methods have no control
over perceptual color attributes. Several approaches
in the literature address the color balancing prob-
lem in the image photo-mosaicing pipeline, based
on exposure compensation in single [31], [49] or
multiple channels [50], [51] and on color transfer
techniques [52], [53]. Unfortunately, when dealing
with extremely large datasets, keeping the consis-
tency of the image’s global appearance is a difficult
task when using methods available in the literature.

The Dynamic Range of the image and the quan-
tization of the data provided by the camera sensor
strongly influence the accuracy of the final scene
representation. Any High Dynamic Range blending
method will require a Tone Mapping algorithm, in
order to display the High Dynamic Range mosaic
image onto a Low Dynamic Range device, like
conventional screens or printers.

E. Multiresolution
The main advantage of the Multiresolution ap-

proach (Burt and Adelson [18]) is the significant
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reduction of the noticeability of Double Contours
due to registration inaccuracies. An important short-
coming is that the method requires keeping several
representations of the same image in memory. The
price of the seamless appearance comes at the
loss of high frequency details. The multiresolution
approach is applied by Su et al. [40] to the wavelet
domain.

F. Local / Global and Real-Time Operation
Global methods require knowing all the final mo-

saic information beforehand, while Local methods
can work on small parts of the final photo-mosaic,
joining them together upon completion. Obviously,
Global methods often require high computational
resources. Local methods may not be able to solve
some problems such as exposure compensation dur-
ing a pair-wise sequential processing.

Methods able to work in Real-Time [42] are
optimized towards a high performance for large
sequences. The results obtained are not as accurate
as those from off-line approaches, but are acceptable
when on-line feedback is required. Real-time tech-
niques are typically based on the Sequential Pro-
cessing of the input data. Methods like [25] or [28]
can process images pair-wise and add the result to
a final mosaic canvas. Nevertheless, this strategy
is not appropriate for long sequences where the
drift accumulated due to the sequential registration
and changes in the exposure times may result in
inconsistent overlapping regions.

G. Relevant Visual Performance Criteria
Different Exposures between images are espe-

cially common in underwater imaging, mainly due
to the difficulty of the AUV or ROV in keeping a
perfectly constant altitude during the survey. This
fluctuation in altitude also causes changes in the
scene’s illumination conditions, because the artifi-
cial light sources are part of the vehicle. Conse-
quently, the camera requires a constant readjustment
of the automatic exposure. The Exposure Correc-
tion might be performed actively, by preprocessing
the image sequence, but may also be corrected
by means of a Gradient domain techniques, given
that this domain is not sensitive to time expo-
sure changes. Unfortunately, wrong automatic ex-
posure adjustments may lead to loss of informa-
tion on overexposed regions, which cannot be cor-
rected. Ghosting and Double Contouring are mainly

due to geometrical registration inaccuracies. When
two overlapping images are not properly aligned,
non-coincident features are smoothed, and thereby
Ghosted, when fused using a transition smooth-
ing method, while strong contours appear twice in
the blended photo-mosaic. Underwater, the forward
scattering phenomenon is responsible for loss of
contrast [54] and, thereby, ghosting appears when
merging images from significantly different depths
(see Figure 4). Moving Objects often appear in
underwater imaging, e.g. fish, algae, crustacea and
other life forms, as well as floating objects. Most
Optimal Seam Finding algorithms are able to deal
with Moving Objects, keeping a single representa-
tion of each object in the final map. The Parallax
Robustness determines the ability of a given blend-
ing algorithm to deal with a sequence where the 2D
assumptions were violated, i.e. when the relief of
the scene is not negligible compared to the distance
from the camera to the scene. Underwater scenarios
are characterized by frequent seabed depth-changes,
as well as the direction of shadows produced by
the artificial lighting systems of the AUV or ROV.
Optimal Seam Finding techniques are typically the
most indicated methods to deal with this problem.
The Parallax Robustness is also strongly related to
tolerance to moving objects, since methods able to
deal with moving objects are often able to handle
parallax issues.

IV. PROPOSED FAMEWORK

A photo-mosaicing pipeline has been conceived
to address the most relevant problems particular to
underwater imaging. Nevertheless, the application
field of the presented approach can be extended
to the generation of conventional panoramas of
terrestrial or aerial images. Figure 5 shows the
sequence of steps that are performed in our approach
and applied to the construction of a high resolution
blended photo-mosaic from the deep-seafloor.

A. Input Sequence Preprocessing

Apart from exposure variations, which are a
common issue in terrestrial images, the rest of
the problems are not directly addressed by con-
ventional panorama generation software. To deal
with inherent underwater imaging problems (non-
uniform illumination, light attenuation, scattering,
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Fig. 4. Registration of two images acquired at significantly different
altitudes. The image acquired at the higher altitude shows strong light
attenuation and scattering. These effects cause a noticeably different
appearance between the two images.

exposure variations, etc.), we perform image pre-
processing, which in our experience is a key step,
strongly impacting the quality of the final photo-
mosaic rendering.

1) Inhomogeneous Lighting Compensation: The
lighting inhomogeneity problem in deep water is due
to the lack of natural global (or ambient) lighting,
and to the necessity of using artificial light sources
with limited power. The illumination systems are
rigidly attached to the AUVs or ROVs, and typically
concentrate the light rays in the area on which
the camera is focused. The acquired image borders
suffer from darkening, due to light attenuation,
principally induced by light absorption of the wa-
ter. The effect is similar to vignetting, although
the phenomenon is not produced by the camera
lens but by the medium itself. All images from a
given sequence are affected to some degree by this
issue. The illumination distribution from artificial
light sources changes with the distance between the
camera and the seafloor. Colors are also affected
due to light absorption, resulting in depth-dependent
color profiles in the images acquired, i.e. different
numerical representations corresponding to the same
real scene colors.

Regions of
Intersection

Pixel Level Graph Cut
Parallel

Processing

Image Registration
with Global Alignment

Gradient Blending
over Seam Strips

Luminance Recovery
from Gradient Fields

Tone Mapping

Input Images Sequence

Image Quality
Enhancement

Geometrical
Image Transformations

Image
Contribution

Selection
Pixel Level

1 & 2 Closest Maps
st nd

Gradient
Domain

Blending

Tile Level
Postprocessing

Sequence
Preprocessing

Selection of
Contributing Images

Seabed to Camera
Distance Estimation

Vignetting Correction

Gigamosaic
Unification

Tile Level
Blending

Fig. 5. Full processing pipeline of the proposed underwater photo-
mosaicing approach. Some of the processing steps can be executed
using parallel computing techniques to increase the performance of
the algorithm.
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Imaging conditions hinder the application of a
unique compensation function on all the acquired
images in absence of precise information on the
placement and nature of the light sources, the dis-
tance between the camera and the seabed, and the
3D structure of the scene. These circumstances re-
sult in the loss of a global terrain perception, which
is a cognitive sensation factor highly dependent on
lighting consistency.

A feasible correction of lighting inhomogeneity
and vignetting-like artifacts in a single step consists
of the application of a 2D “inverse illumination
distribution” to the original input images [55], [56],
[57], [58]. The main aim of this operation is to en-
hance the luminance of the darkened image borders
in order to obtain uniform illumination throughout
the image. If a high sensitivity camera with a
high pixel depth (> 8bpp) is available, not only
the luminance but also the detail richness can be
enhanced in the region affected by light absorption.

The illumination pattern describing the “inverse
illumination distribution” function can be estimated
from a subset of pictures showing low texture and
reduced 3D structure (i.e., flat, sedimented terrain).
As this function changes with the distance from the
light source to the seabed, a three-step approach is
proposed (Figure 6) to correct the lighting artifacts.
It is based on two main ideas: (1) the application
of a depth dependent inverse illumination distribu-
tion, and (2) the automatic selection of images to
compute this pattern in a given depth-range based
on the Total Variation (TV ) metrics [59] described
in the next section.

Quasi-altitude Estimation
Underwater image acquisition platforms usually

record not only image sequences but also other
synchronized data like surface GPS positioning,
acoustic positioning, heading and altitude, among
others. Unfortunately, image altitude is not always
available for every data set. Consequently, as a first
step, the images of a given sequence should be
classified by altitude in order to apply a different
lighting correction function to each one, assuming
that precise information on the distance from the
camera to the seafloor is not available. In order
to solve this issue, a quasi-altitude estimation is
proposed instead.

Given a sequence of images and their correspond-
ing registration parameters in the photo-mosaic

Average of
Selected Images

Gaussian
Smoothing

Depth Image Subset (n)d

Selected Images (n / 2)

Fig. 6. Lighting Pattern Compensation procedure. The images of
a sequence are classified into depth subsets, and a different lighting
pattern compensation function is computed for each one. The figure
shows a given set of n images from which the n/2 images having
the lower Total Variation (TV ) value have been selected. Next, the
images are averaged and the result normalized and smoothed using
a Gaussian filter with an adaptively selected σ.

frame, it is possible to determine which ones were
acquired closer to the seabed and which ones farther,
by computing the size of a footprint or a scale in
the image once it is registered in the 2D photo-
mosaic coordinate system. Specifically, it is possible
to consider only the diameter of the transformed
pictures (i.e. the size of the longest diagonal) since
this scale and the altitude are highly correlated
when the focal length is assumed constant. Once
an image list has been built and sorted according to
their diagonal length, images can be classified into
subsets of similar altitudes.

Image Selection
For each image subset, a distinct compensation
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function for the light distribution should be com-
puted from images with low texture content and
a homogeneous appearance. Low textured images
are best suited for this estimation due to their low
average gradient length. An adequate ranking metric
for the selection of these images is the (TV ).

TV =
1

W ·H

W−1∑
x=1

H−1∑
y=1

∥g(x, y)∥ (1)

Equation 1 shows the computation of the normal-
ized TV for a given image, where W and H are the
width and height sizes and ∥g∥ denotes the L1 or L2

norm of the g gradient vector. The gradient vector
components for the last row and column in a given
image are set to 0.

Our approach uses L2 norm, i.e. Euclidean met-
rics, to evaluate the homogeneity of the images.
Once the TV measure has been computed for all the
images of a given altitude subset, an image subset
of low TV is used to estimate the light distribution.
The aim of this measure is to identify images
containing structures rich in detail. The presence
of high frequency noise, mainly due to scattering
on macroscopical particles in suspension of scat-
tering (see Figure 7), may skew the image quality
evaluation. The TV magnitude of the image may
be increased inappropriately leading to scenarios in
which the dominant part of the metrics comes from
high frequency noise. Nevertheless, the unwanted
effects of the high frequency components can be
avoided by building lower resolution images from
the originals with N ×N super-pixels. This simple
approach significantly reduces the effects of the high
frequency components in both the image and the
TV measure. In our experiments, 8 × 8 linearly
averaged super-pixels have been used. Thereby, the
original images of 1024 × 1024 pixels have been
reduced to 128 × 128 pixels. The images obtained
preserve the most prominent seabed structures, but
strongly reduce the effects of the scattering phe-
nomena, allowing the usage of the TV as an image
quality evaluation metric. For each depth-range, the
images with a TV value below the median have
been used to compute the illumination correction
function. To obtain this function, the selected im-
ages are averaged and the result is smoothed by
a low-pass Gaussian filter to reduce the remaining
high frequency components, as explained next.

Gaussian Filtering
In order to compensate for the light attenuation

problems and obtain an image with a homogeneous
illumination lH , the acquired luminance values are
divided by a given lG compensation mask as shown
in Equation 2.

lH(x, y) =
l(x, y)

lG(x, y)
(2)

where l is the image luminance value and lG is
the illumination pattern.

lC(x, y) =
1

N

N∑
k=1

lk(x, y) (3)

The lighting compensation pattern lC before the
Gaussian smoothing is obtained using Equation 3,
which computes the average value for every pixel
position given a stack of N images. Finally, the
obtained compensation mask lC is smoothed with
a low-pass Gaussian filter to obtain the illumination
distribution lG function. This distribution is then
used for the lighting inhomogeneity compensation,
as per Equation 4, where ⟨⟩ denotes Gaussian
smoothing.

lG(x, y) = ⟨lC⟩ (4)

The value for σ, used in the Gaussian convolu-
tion, is selected adaptively for each altitude subset.
Starting from the average image lC in Equation 3, a
set of increasing values σ1, σ2, ..., σk is sequentially
applied, until the resultant smoothed TV reaches
a value under a threshold TV (lG(σ)) < ε. In our
experiments we used values in the d

256
, d
128

, ..., d
32

range, where d is the shortest dimension of a given
image. With this threshold condition, the appropri-
ate smoothness and uniformity of the blurred image
are ensured.

2) Gradient based Image Enhancement: As the
altitude of the robot increases, new problems ap-
pear. One of them is backward scattering (see
Figure 7a), which is an additive noise in the form
of “marine snow” patterns due to light reflection
from suspended particles. Another is forward scat-
tering produced by the local light inter-reflections
from the particles (see Figure 7b), including water
molecules, which causes the loss of contrast and
sharpness in the images. When artificial light is
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(a) (b) (c)
Fig. 7. (a) Example of backward scattering due to the reflection of rays from the light source on particles in suspension, hindering the
identification of the seafloor texture. (b) Example of forward scattering caused by the local inter-reflection of the light suspended particles,
hiding the terrain behind them. (c) Effects produced by light absorption of the water resulting in an evident loss of luminance in the regions
farthest from the focus of the artificial lighting.

shed over particles in suspension, part of the light is
reflected back due to backward scattering and part
is diffused in the medium, contributing to image
blurriness. This altitude-dependent blurring due to
forward scattering is a most troublesome source
of image quality degradation, and is particularly
disruptive when registering images affected by this
phenomenon at different levels. Finally, another
problem is light absorption (see Figure 7c), which
leads to an exponential luminance loss, resulting in
increasing image noise after a luminance correction.

The strategy to enhance the high frequency details
affected by the phenomena described above is a
simple and global approach, selecting the highest
quality image in a given surrounding region from
the whole set (as is explained in the Image Quality
Estimation section), and using it as a contrast or
gradient reference. The aim is to obtain a visually
consistent area by providing all images with a simi-
lar appearance to the reference one. To avoid unpre-
dictable visual effects, the non-global approaches of
homomorphic filtering [60], CLAHE [61] (Figure 8)
and histogram specification [52] are not used, due to
the following reasons. On one hand, homomorphic
filtering may lead to an excessively homogeneous
appearance in the filtered image, and to a loss of
global consistency in the appearance of the photo-
mosaic. The suppression of low frequencies per-
formed by this kind of filter may provide some ad-
vantages in the visibility of local details, but in giga-
mosaicing, depending on the zoom factor, every

spatial frequency can be important to recognize and
understand the nature and morphological attributes
of the seabed structures. On the other hand, the
histogram specification is highly dependent on the
reference image, therefore the modified image may
often lose its realistic appearance. Thus a simple but
robust local contrast stretching has been applied to
equalize a given sequence of images.

Image Quality Estimation
There is not a single and objective criterion to

identify the image with the highest visual quality
from a given set because the concept of “qual-
ity” involves different cognitive aspects. However,
phenomena that affect image detail richness and
sharpness, like scattering and light absorbtion, are
known to grow with the distance from the camera
to the seabed.

This simple and fast approach may lead to poor
results when the selected image presents an over-
exposed region due to being acquired too close to
the seabed under strong illumination, for example.
A more robust selection of a reference image is to
use the TV to rank image quality as well. Thus,
the image with highest TV may be selected as the
reference image while ensuring that over-exposed
regions will not be included in this selection. Ac-
cording to our experimental validation, the image
with the highest TV coincides, in most of cases,
with the closest one taken to the seabed, and with
the second or the third closest images in the few
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(a) (b)
Fig. 8. (a) Image lacking contrast on its left side. (b) Image processed with a Contrast Limited Adaptive Histogram Equalization (CLAHE)
algorithm, showing enhanced details in the originally lower-contrast regions. The appearance of the processed image is less realistic than
the original due to an aggressive level of local filtering.

remaining cases.

Global Contrast Stretching
The TV value of the selected reference image

is used to compute the stretching factors that will
be applied for a global contrast (or gamma am-
plification) to all the other images. This stretching
factor should be below a given threshold Ts to avoid
overamplification of areas of poor contrast, e.g.
textureless sediment-covered regions. Ts depends on
the Signal to Noise Ratio (SNR) in the image, which
can vary highly depending on water quality, lighting
intensity, and/or the camera sensor. An experimen-
tally selected value of Ts = 5 has been used in the
experiments performed. Despite the application of
these gradient corrections, the merging of images
from highly different depth categories will produce
noticeable seams due to their distinct blurring levels.
This problem is, in itself, a challenging field of
research in underwater imaging.

The stretching factor TV reference

TV (k)
is applied to

enhance the x and y gradient components of the
k-th image.

B. Image Registration with Global Alignment
While image registration is not directly related to

the blending procedure, and therefore is not at the

core of the work presented here, the quality of image
registration significantly affects the final quality of
the rendered photo-mosaic.

Even when navigation data (such as USBL posi-
tioning, heading, depth, etc.) are available, pair-wise
image registration is still required to ensure a precise
camera motion estimation. Pair-wise registration has
been performed in our experiments using a feature-
based approach, mainly involving the well known
image feature detectors and descriptors of SIFT [62]
and SURF [63]. When building a 2D photo-mosaic
from a set of images acquired by a camera close
to the seabed, the planar assumption of the scene
can be violated due to the microbathymetry of the
seafloor. The 3D geometry of the scene, in addition
to the short camera distance, results in parallax.
This problem increases the difficulty of estimating
the 2D planar transformation between consecutive
images, often leading to misregistrations.

A global alignment strategy [2], [3] is required
to reduce the inaccuracies in a simple sequential
pairwise registration. The strength of the global
alignment arises from closing-loops, because they
allow us to improve the camera trajectory estimate
significantly when re-visiting an already mapped
area. In absence of loop-closings, and considering
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input sequences of thousands of images, the drift
accumulated by the pairwise transformations leads
to significantly inconsistent (misaligned) photo-
mosaics.

C. Image Contribution Selection
The parallax effect influences both the image

registration and image blending procedures. On
one hand, image panorama software often fails to
register sequences with strong parallax since they
only assume camera rotation. On the other hand, and
even using the best possible registration, the double
contouring problem will appear when merging two
or more images, if the vehicle (and the camera)
translates and the scene is not perfectly planar.

The solution to avoiding ghosting artifacts is the
use of information from a single image for each
pixel in the final photo-mosaic whenever possible.
Blending is performed in a narrow region around
the optimally computed seams, and consequently,
information on more than one image is fused only in
a small fraction of the final photo-mosaic. Ghosting
may occur in these regions, but is significantly
constrained to specific areas, and is dependent on
the width of the transition region.

1) Image Discarding: First, the frames of the
original images are mapped into the global photo-
mosaic frame using the image registration parame-
ters in order to know their shape and coverage area
in the final photo-mosaic coordinate system. The
altitude estimation is computed, assuming that depth
information is not available in the navigation data.
It is possible to discard low quality images covering
a region in the scene if higher quality images
are available for this same region. The discarding
procedure is performed using logical operations on
the polygons describing the images, which is an
efficient and low resource usage approach.

Each image is defined as a quadrilateral described
by four vertices corresponding to the four corners
of the image once registered in the photo-mosaic
frame. Additionally, the polygons are sorted de-
creasingly according to their corresponding image
TV value. At each step of the iterative process, a
new image trapezoid of the sorted list is added to
the final photo-mosaic polygon using simple binary
operators. If the area covered by the new trapezoid
has already been fully covered by the photo-mosaic
polygon (i.e. the quadrilateral does not intersect the

photo-mosaic polygon and lies inside this one), the
image is discarded, because this same region has
already been covered by higher quality images. Oth-
erwise, the photo-mosaic polygon is updated and the
image is accepted. With this strategy, information on
lower quality images will not be used in the final
photo-mosaic image. A consequence of this image
selection is a speeding-up of the later steps in the
process.

2) Pixel-Level First and Second Closest Maps:
The proposed blending methodology determines the
first and second closest maps at pixel level. The
first closest map contains, for each pixel coordinate
in the photo-mosaic, the index of the image whose
center is the closest (see Figure 9). The second clos-
est map does the same, but with the second closest
image indices. Similarly to [23], the overlaping of
these two maps will use a graph-cut algorithm to
compute the seam-strips for blending. Two image
indices are selected for every seam pixel. Therefore,
every pixel outside the seams (most of the photo-
mosaic) is associated to a single image.

The Euclidean distance between pixel IM(x, y)
in the photo-mosaic frame and the center of a given
n-th image In(x, y) is weighted by a factor wn(s),
as shown in Equation 5:

dnM(x, y) = wn(s) ·
√
(xM − xM)2 + (ym − yn)2

(5)
where the scalar factor wn(s) is a size-ratio

between the n-th image and the image having the
smallest area once registered. For time efficiency
reasons, the ratio is not computed based on the area
of the warped images, but on the length of their di-
ameters, as explained in the Quasi-depth estimation
section, to obtain a rough and fast approximation,
as shown in Equation 6:

wn(s) = smin/sn (6)

where smin is the diameter of the smallest image
for a given set and sn is the diameter of a given
n-th image.

This weighting prioritizes pixels from images
acquired at low altitude, close to the seabed, and
consequently less affected by the imagery artifacts
described above. This weighting also maximizes the
contribution of “higher-quality” images to the final
photo-mosaic image. Therefore, in cases like that
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(a) (b) (c)
Fig. 9. (a) First closest map and (b) second closest map corresponding to the registered images finally blended into the (c) photo-mosaic.
Each pixel’s blue level in the closest maps represents the index of the image having the closest and second closest image centers. The
distance measure gives more priority to pixels belonging to images which have been acquired at a lower altitude, consequently showing a
higher level of detail richness.

shown in Figure 4, only a small percentage of the
pixels from the smaller overlapping image are lost
while computing the smooth transition, while the
most significant percentage of the original image is
preserved.

3) Regions of Intersection: The overlap between
the first and second closest maps determines the
regions in which the pixel level graph-cut should
be performed. Therefore, for each overlapping patch
the texture from the two best-quality images is
available, and the graph-cut is used to find the opti-
mal boundary seam, determining the contribution of
each one in the final photo-mosaic. Each region of
intersection ROIi,j between the two images i and j,
where a given i is the closest image, j is the second
closest image, and Ri,j denotes the photo-mosaic
region where i and j coincide simultaneously, is
defined as ROIi,j = Ri,j ∪Rj,i.

D. Gradient Domain Blending

1) Pixel-Level Graph-Cut: The proposed blend-
ing strategy uses an optimal seam finding algorithm
to compute the best boundaries of the overlapping
image areas. A pixel level graph-cut is performed on
the regions of intersection determined by the first
and second closest maps. In contrast to [23], the
graph-cut is performed at the pixel level in order to
guarantee the maximum accuracy of the cut, given
that the main aim of the algorithm is reaching a
high image quality. The algorithm searches for the
boundary that minimizes the cost of the transition
from one side to the other of the border line for
every pair of pixels. The function has three weighted
terms controlling the behavior of the cut:

C = µ1 · f(I1, I2) + µ2 · s(g1, g2) + µ3 · L (7)

The first term, µ1·f(I1, I2), measures the intensity
differences between overlapping pixels. The second
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(a) (b) (c)
Fig. 10. Example of a pixel level graph-cut performed between two overlapping images acquired at different altitudes, and consequently
evidencing differences in appearance. (a, top) Result of the graph-cut performed on the images without enhancement, (b, top) depicts, in
white, the narrow strip (20 pixels on each side of the cut) where the gradient domain blending is performed and (c, top) shows the blended
image pair. (a, bottom) is the result of the graph-cut performed on the images after being enhanced using the proposed neighboring based
enhancement approach, (b, bottom) depicts, in white, the narrow strip where the gradient domain is performed and (c, bottom) shows
the blended image pair. Notice that the results of the pixel-level graph-cuts are different before and after the application of the image
enhancements.

term, µ2 · s(g1, g2), measures the gradient vector
differences along the boundary B seam. Finally, the
third term, µ3 ·L, measures the length L of the seam.
The three weighting factors µ1, µ2 and µ3 control
the behavior of the cut. The gradient term, which is
not used in this way in the literature [23], allows
us to deal with differently exposed overlapping
regions. Here an intensity-based graph-cut considers
the differences between neighboring pixels, being
large even if the registration is accurate, and thereby
avoids those regions where the cut is performed. In-
stead, if the difference between the gradient vectors
along the seam path is used, the optimal seam is
found independently of the different image expo-
sures. In the case of misregistration of any moving
elements in the scene, the term µ2 · s(g1, g2) avoids
bisecting those elements by having the seam line
by-passing them. This is due to the fact that even
a large L value in the by-pass has a lower cost
than crossing a double contour, with large gradients,
of a given structure. The gradients are also less
sensitive to other illumination issues, such as those
caused by artificial lighting and non-uniform light-

ing. Furthermore, working in the gradient domain
compensates the exposures when recovering the
luminance images from the gradient vectors. Despite
the benefits of the gradient term, the intensity term is
kept in order to favor low photometric differences
when registration is highly accurate. Therefore, a
weighted addition between both intensity and gra-
dient domain terms is proposed.

The effects of parallax and registration inac-
curacies are minimized, since the graph-cut tends
to place the seam in textureless regions where
morphological differences are low. For the same
reason, cuts over moving objects tend to be avoided,
thus benefiting the visual consistency of the blended
results.

Performing a graph-cut, especially at a pixel level,
can be a computationally expensive operation when
the size of the region to process is significantly
large. The regions in which a graph-cut is applied
are determined by the intersection between the
first and second closest maps. This division of the
mosaic into smaller regions allows using only one
binary graph-cut per region [23]. Compared with
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other approaches using multi-label graph-cuts, this
approach has the benefit of being parallelizable,
taking advantage of recent multi-core processors,
to overcome one of the main bottlenecks in the
processing pipeline. Furthermore, it is well suited
for large-area underwater mosaics where all over-
lapping regions typically contain only two images
at most. In this case, multi-label graph-cuts do not
provide any advantage.

2) Gradient Blending over Seam Strips: Once an
optimal seam has been found, a smooth transition
between neighboring regions needs to be performed.
Even for sequences in which the images have
been preprocessed to solve non-uniform illumina-
tion problems, exposure artifacts and contrast level
equalization, the graph-cut result may lead to an
image with noticeable seams. Therefore, smooth-
ing the transition between the image patches is
required. The image fusion around the computed
seams should be performed in a limited region, be-
ing both wide enough to ensure a smooth transition
and narrow enough to reduce the noticeability of
ghosting and double contouring.

A new transition smoothing approach is proposed
in this paper. The applied method is a weighted
average around the seams in the gradient domain,
as shown in Equation 8, where g1x, g1y , g2x and
g2y are the x and y gradient fields for the two
involved images, ĝx and ĝy are the x and y gradient
fields after the blending and µ is the smoothing
transition function. Specifically, a 3rd order Hermite
function is applied. The advantage of performing
the weighted average in the gradient domain is
the automatic compensation of different exposures
between neighboring images when the luminance
image is integrated from the gradients as a final step.

ĝx(x, y) =µ · g1x(x, y) + (1− µ) · g2x(x, y)
ĝy(x, y) =µ · g1y(x, y) + (1− µ) · g2y(x, y)

(8)

Figure 12 shows the different results obtained by
some gradient domain blending approaches, stress-
ing the benefits of the proposed approach.

E. Luminance Recovery from Gradient Fields
After independently processing each overlapping

strip region around the seams, the resulting patches
need to be unified into a single larger image. Each

processed patch should be updated in the final
photo-mosaic image, while information belonging
to regions without an overlap should be recovered
from the corresponding original images.

Once the final gradient domain photo-mosaic
has been composed, after the “strip-blending”, an
inconsistent gradient field is obtained. In order to
recover the luminance values from the gradient
fields ĝx and ĝy, the well-known Poisson equation
∇2I = G̃ should be solved [64]. ∇2 is the Laplacian
operator ∇2 = δ2I

δx2 + δ2I
δy2

and G̃ is the divergence
of the vector field G, defined as G̃ = δGx

δx
+ δGy

δy
.

Solving the differential equation requires specifying
the boundary conditions. As frequently assumed in
the literature, Neumann boundary conditions are
defined as ∇I · n = 0, i.e. the derivative in the
direction n normal to the boundary is zero. The
differential equation is solved using a multigrid
Poisson solver [65].

The solution obtained from the gradient solver is
defined up to a free additive term for the recovered
intensity value. Consequently, a mapping algorithm,
such as Minimum Information Loss [66], should be
applied to determine this factor. The main goal of
the mapping algorithm is to appropriately manipu-
late the dynamic range of the computed image in
order to make it fit the limited range of a display
device while keeping the maximum amount of detail
information.

F. Giga-mosaic Unification

The described photo-mosaicing pipeline is cur-
rently implemented in MatlabTM, using MEX files
and parallel computing when possible. This al-
lows efficiently blending of photo-mosaics up to
60 Mpixels in a standard personal computer with
4 GB of RAM in less than 5 minutes. Nevertheless,
this mosaic size (i.e. <0.1 Gpixels) is small in the
gigapixel scale in which this work is interested, and
a solution should be used to reach the desired 5-15
Gpixels required to process the currently available
data sets.

The amount of RAM may become a limitation
when dealing with gigapixel images, especially if
the images have more than 8 bpp (e.g., 16 bpp
gray scale images or 24...48 bpp color images).
The strategy proposed to reduce the computer re-
quirements consists of decomposing the problem
into sub-problems (i.e. rectangular tiles), in order
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Fig. 11. Tiling scheme for the Giga-photo-mosaic blending. Each
tile is processed as an independent photo-mosaic and blended with the
previously processed neighboring ones in a given global-strip (i.e., a
row of blended tiles), using a weighted average in the luminance
domain. Next, each two neighboring rows are blended using the
same approach. The Giga-photo-mosaic is the result of joining all
the global-strips.

to solve them sequentially and finally unify them
into the mosaic image.

The price of this decomposition is the need of a
second level blending of the tiles. This is similar
to “strip-blending” (presented in Section IV-D2)
applied in the optimal seams, but is performed in the
intensity domain for computational reasons. When
compared with gradient domain operations, inten-
sity blending is inexpensive and can deal with large
amounts of data. Given a tile blended in the gradient
domain, it cannot be aligned with a neighboring
one without applying a blending method for several
reasons. Every tile has a different free factor after
the luminance recovery using the Poisson solver,
which is multiplicative when working with log I
values, and should be equalized throughout all the
tiles. But even after multiplying the pixel intensities
of every tile with the corresponding constant factor,
the tiles will not match perfectly. The nature of the

Poisson solver leads to a result in which the gradient
inconsistencies in the seam regions between images
penetrates the whole tile, leading to gradual and
subtle but perceptible luminance shifts. These are
the reasons why a tile-overlap intensity blending
has to be performed on the tile overlapping region.
This blending does not have to face issues such
as misregistration or moving objects, in which the
gradient blending shows its benefits, because the
tiles are perfectly aligned. Consequently, this kind
of blending will compensate the gradient differences
of overlapping tiles coming from different Poisson
solutions, hiding the small luminance discrepancies
between neighboring tiles. The decomposition dif-
fers necessarily from the theoretically exact solu-
tion, but the differences are not perceptible.

Although the tile-level pipeline described above
is straightforward, its technical implementation de-
serves further clarification owing to the need to
manage available computational resources with such
large problems (i.e. gigapixel photo-mosaics).

The rectangular “canvas” of the full photo-mosaic
is divided into a regular grid of overlapping tiles.
The size of the tiles depends on the available RAM.
For time efficiency reasons, the space required to
store the final photo-mosaic image and a single
global-strip (i.e., a row of tiles) are allocated in
memory, avoiding an excessive amount of slow hard
drive sequential accesses.

A weighted average smoothing in the intensity
domain is used to join neighboring tiles in a given
rectangular overlapping region. In our experiments,
the size of the overlapping regions varied between
15% - 25% of the tile size, depending on the initial
spatial image arrangement. Once a tile has been
processed, it is stored in the current global-strip,
performing a blending with the previously processed
tile (when available). When an entire global-strip
has been processed, it is stored in the hard drive
to save RAM space and the same procedure is
repeated on the next strip. The strategy used to
blend two neighboring tiles is also used to blend
two neighboring global-strips. The proposed blend-
ing strategy avoids the problem of simultaneously
fusing more than two images of a given region using
the intensity domain blending. In this way, it is not
necessary to compute complex transition functions
on areas with multiple overlaps. Figure 11 shows the
giga-mosaic unification strategy described above.
Moreover, the proposed approach can effectively be



IEEE JOURNAL OF OCEANIC ENGINEERING, OCTOBER 2012 20

applied to color images, as illustrated in Figure 2. In
this case, each channel is processed independently.
When recovering the intensities from the gradient
domain, the gain of every channel in the final
composite color image should take into account the
original correlations among red (R), green (G) and
blue (B) components for a set of sampled points
in different images in the sequence. However, it
should be noted that, depending on the sampling
(especially for images taken at different altitudes)
and the different absorption characteristics of the
medium for R, G and B, this simple technique may
result in color shifting. Therefore, further work is
required for accurate color blending in underwater
imagery.

V. RESULTS AND DISCUSSION

The datasets presented below were collected by
the Victor-6000 ROV [24] during the MOMAR08-
Leg1 cruise (IFREMER/CNRS, France) at the Mid-
Atlantic Ridge. A 3-day survey of the Lucky Strike
hydrothermal field was performed with a black
and white, high sensibility camera system (OTUS)
installed in the geophysical mapping payload (Mod-
ule Route). The payload also included 4 Flashes
(1200 joules), a RESON Seabat 7125 multi-beam
echo sounder and a SIMRAD EK60 echo sounder
altimeter. The onboard navigation system also in-
cluded an RDI Doppler Velocity Log (DVL), an
iXSEA OCTANS fiber-optic gyrocompass and a
Paroscientific depth sensor.

The robot was teleoperated from the N/O
“Pourquoi pas?” research vessel, and was pro-
grammed to follow lawn-mower trajectories at a
constant altitude of 6 meters over the seafloor. The
area surveyed was located at a depth of ∼1,700
m, and positioning estimates were obtained by
means of a POSIDONIA ultra-short baseline system
(USBL).

A rough photo-mosaic was built using the navi-
gation data as a first estimate of the camera position
for all the images in the sequence. From this initial
estimation, a pair-wise feature detection and match-
ing processing was performed in order to improve
the quality of the sequential pair-wise registration.
Finally, a global alignment algorithm [2], [67] was
applied to the whole set of features detected to
maximize the global consistency of the registration.

The resulting globally aligned photo-mosaic is
the input data of the presented blending approach,

which allows the processing of the whole data set
on a 16-core computer with 128 GB of RAM in less
than two days. Nevertheless, this implementation
also allows the processing of regions of the photo-
mosaic of arbitrary size on smaller computers with
less memory and processing power by adjusting the
tile sizes.

Figure 13 shows an example comparing the re-
sults of the approach proposed in this paper to that
of Szeliski [68], implemented in the Microsoft ICE
(MICE) software, which also applies a graph-cut
technique to determine the optimal seams around
which a gradient blending is performed. The ab-
sence of an adaptive image enhancement step leads
to differences in appearance that are noticeable
between neighboring images acquired at signifi-
cantly different depths. Furthermore, the proposed
approach results in enhanced sharpness due to the
usage of a very narrow region of transition around
the optimal seams. It is important to mention that
Szeliski’s method was not able to register some of
our test sequences, and therefore it has not always
been possible to perform a direct comparison.

Again comparing the results of the MICE soft-
ware with those provided by the proposed approach,
Figure 14 illustrates the difference in appearance of
a given region in the photo-mosaic where different
criteria to determine the contributing images have
been used. Beyond the automatic image contrast
enhancement, our approach selects the image with
the greatest richness of detail for each region in
the photo-mosaic, while discarding the poorer ones.
This method results in a sharper mosaic image.

Figure 15 illustrates the advantages of our ap-
proach, based on graph-cuts using a combination of
both gradient and luminance domain information,
over the simpler approach of using only the intensity
domain. Furthermore, these examples demonstrate
the benefits that the proposed 2D approach may
offer even in the presence of strong 3D on the scene.
Nevertheless, when the 3D of the scene is significant
and the information required to reconstruct it is
avaiable, the best approach is to recover the terrain
structure using SFM [19], [20], and to perform an
orthogonal projection of the triangle mesh obtained.

The photo-mosaic built from the complete dataset
presented in Figure 16 covers an area of roughly
0.6 square km with a resolution of 10 mm per
pixel. This includes 21,262 images, with a seafloor
coverage of ≈56%. The processing time required to
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(a) (b) (c)
Fig. 12. Detail of a given overlapping region blended with three different gradient approaches. (a) shows the result of setting the gradient
values around the optimal seam boundary at zero [53], in order to enforce continuity through the join. (b) shows the result of a weighted
average gradient blending performed on all the available overlapping pixels [33]. (c) shows the result of the proposed approach, which only
performs a gradient blending on a narrow region around the optimal computed seam. The transition is sufficiently smooth to provide a
sensation of consistency in the image while avoiding ghosting and double contours in the overlapping areas.

(a) (b)
Fig. 13. (a) Detail of an underwater photo-mosaic region generated with Szeliski’s method [68] (direct result of Microsoft ICE software)
without automatic image enhancement, and (b) the result obtained by our approach with adaptive contrast enhancement. The global appearance
of the image is uniform and the central part of the photo-mosaic is perceptually more informative after the contrast improvement.
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(a) (b)
Fig. 14. (a) Detail of an underwater photo-mosaic region using Szeliski’s method and (b) the result obtained by our approach with
contributing image selection based on a quality rank estimation. The proposed approach leads to an image richer in details and with higher
contrast.

blend the photo-mosaic was 36 hours, taking into
account that the sparseness of the image distribution
allows speeding the process up by skipping the non-
populated areas. The visualization of the photo-
mosaic image, with a size of 78,651 × 62,722
pixels (i.e. ∼5 Gpixels), was performed using our
mosaicViewer [69] software. This application gener-
ates a multi-resolution pyramid of the whole photo-
mosaic and uses dynamic caching techniques to
speed up the visualization at different zoom levels,
thus avoiding loading the complete mosaic to mem-
ory. Furthermore, this software allows displaying
the original images of the data set on top of the
blended photo-mosaic. It is thus possible for the
user to access global and consistent visualization
of the whole data set (through the blended image)
simultaneously, while inspecting the original image
information from selected interest regions.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we present a new approach for
large-scale underwater image blending. The pre-
sented pipeline extends the typical photo-mosaicing
techniques to the more complex and challenging
underwater medium. We can now build Giga-photo-

mosaics of large areas (in the km2 range), allowing
us to image large seafloor expanses for scientific ex-
plorations (e.g., geology, biology, ecology), applied
purposes (e.g., civil engineering), and environmental
monitoring (with repeated surveys).

Deep-ocean underwater imaging suffers from spe-
cific problems that require the application of par-
ticular solutions. The contributions of this paper
concern all the photo-mosaicing steps (image pre-
processing, enhancing and blending) that can signif-
icantly improve the final image quality and visual
consistency.

Firstly, in the image preprocessing step, a depth
dependent illumination compensation function is
computed and applied to the original images in
order to solve the non-uniform illumination appear-
ance due to light attenuation.

Additionally, if precise depth information is not
available, an altitude estimation based on the size
of the image projection (once registered) has been
exploited in different steps of the pipeline.

Concerning image enhancement, the image con-
trast variability due to different acquisition altitudes
has been compensated using an adaptive contrast
enhancement based on an image quality reference
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(a) (b)
Fig. 15. Comparison of our approach with common state-of-the-art methods in terms of graph-cut performance. (a-top and bottom) Details of
an underwater mosaic region blended using an intensity based graph-cut algorithm and (b-top and bottom) the result obtained by the proposed
gradient based graph-cut strategy. (a-top) The shadow in the top left corner region has been interpreted differently by both approaches, leading,
in the case of our graph-cut (b-top), to an unshadowed valley. The highlighted regions in image (a-bottom) present object doubling that has
been suppressed in image (b-bottom). The graph-cut shows a different behavior in both cases, leading to a noticeable difference in the image
contribution selection.

selected through a TV criteria. This criteria has
also been applied to give a higher priority to the
information coming from the higher quality images
when building the first and second closest maps
which allow us to perform the graph-cut on the
overlapping regions. Consequently, the contribution
from sharper and informative images is higher than
from contrastless or poorly detailed ones.

In the blending step, the proposed graph-cut strat-
egy operates in the image gradient domain over the
overlapping regions, in contrast with several state-
of-the-art methods [70], [23], [71] working on the
intensity domain image differences. This approach
allows finding an adequate seam even if the over-
lapping images have been acquired with different
exposures. For a given image region acquired with

two different exposures, even after the non-uniform
illumination compensation, an intensity domain ap-
proach will find photometric differences between
pixels which do not correspond to real scene struc-
ture misalignments. A gradient domain method is
unaffected by this problem since gradient values
are not exposure dependent, assuming that exposure
differences are purely modeled as shifts.

The smooth transition around the optimally se-
lected seams is performed in a narrow strip, ensur-
ing the maximum possible sharpness and avoiding
double contouring in that region. This smoothing
is performed also in the gradient domain, as it
also compensates the possible different exposures
between images. Finally, a blending strategy for
very large-scale photo-mosaics, i.e. Giga-photo-
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100 m

10 m 1 m

Fig. 16. Three levels of zoom for a given region of the giga-mosaic. The first zoom level shows the global appearance of the whole
photo-mosaic image. The second zoom level shows a selected region depicting the local consistency appearance obtained by the proposed
blending approach. Finally, the third zoom level shows an small seamless region at the maximum resolution of 10 mm per pixel. The
bounding box of this photo-mosaic is 78,651 by 62,722 pixels (total ∼5 GPixels), and the covered area corresponds to 493,315 m2.
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mosaics, has been developed and tested on real
data, generating images in excess of 5 GPixel, and
having, as its only limitation, the maximum size of
the tile that can be processed in a given amount of
RAM.

Regarding future work, there are still several open
problems that will require the development of new
techniques. On one hand, it is worth noting that the
illumination in underwater imagery provides strong
visual clues for human perception of the seafloor
relief. This effect becomes obvious when visualizing
the whole photo-mosaic image, where it becomes
more difficult to perceive the real relief of the
underwater terrain. This problem can be addressed
using an image based computer graphics solution,
if a DEM (Digital Elevation Model) is available.
The global lighting can be synthetically applied to
the photo-mosaic image taking into account a rough
estimate of the 3D structure of the scene. This
solution is independent of the 3D recovery using
SFM techniques, because the aim is not only to
determine the terrain relief but also to be able to
synthetically apply a global illumination. On the
other hand, the parallax is one of the most difficult
issues to solve when building seamless 2D photo-
mosaics. The only way to address the blending on
a strong 3D seabed consists of recovering its 3D
structure using, for instance, SFM techniques. This
is not possible for sparse low-overlapping image
sets, thus making the blending of a 3D structure
extremely challenging.

Furthermore, the different levels of sharpness
for neighboring images acquired at very different
altitudes are a problem, which can be partially
addressed using costly image processing techniques.
Image sharpening algorithms can be applied to
enhance the visual quality of the poorer images,
obviously up to a given level. This image enhance-
ment, like the contrast enhancement proposed in
this work, would be performed in an adaptive way,
depending on the neighboring images context.

Finally, despite the fact that the available image
sequences are in gray scale, dealing with colors
is another open issue, due to the properties of
the underwater medium, especially concerning light
spectral absorption. Generating a blended color
photo-mosaic with a realistic global appearance is
a challenge for the near future.
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