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Abstract

This paper presents a methodology to determine the parameters used in the sim-
ulation of delamination in composite materials using decohesion finite elements. A
closed-form expression is developed to define the stiffness of the cohesive layer. A
novel procedure that allows the use of coarser meshes of decohesion elements in
large-scale computations is proposed. The procedure ensures that the energy dissi-
pated by the fracture process is correctly computed. It is shown that coarse-meshed
models defined using the approach proposed here yield the same results as the
models with finer meshes normally used in the simulation of fracture processes.

1 Introduction

Delamination, or interfacial cracking between composite layers, is one of the
most common types of damage in laminated fibre-reinforced composites due
to their relatively weak interlaminar strengths. Delamination may arise un-
der various circumstances, such as low velocity impacts, or bearing loads in
structural joints. The delamination failure mode is particularly important for
the structural integrity of composite structures because it is difficult to detect
during inspection.

The simulation of delamination using the finite element method (FEM) is
normally performed using the Virtual Crack Closure Technique (VCCT) [1],
or decohesion finite elements [2]-[3].



The VCCT is based on the assumption that the energy released during de-
lamination propagation equals the work required to close the crack back to its
original position. Based on this assumption, the single-mode components of
the energy release rate are computed from the nodal forces and nodal relative
displacements [1]. Delamination growth is predicted when a combination of
the components of the energy release rate is equal to a critical value.

There are some difficulties when using the VCCT in the simulation of pro-
gressive delamination. The calculation of fracture parameters requires nodal
variable and topological information from the nodes ahead and behind the
crack front. Such calculations are tedious to perform and may require remesh-
ing for crack propagation.

The use of decohesion finite elements can overcome some of the above difficul-
ties. Decohesion finite elements can predict both the onset and non-self-similar
propagation of delamination. However, the simulation of progressive delam-
ination using decohesion elements poses numerical difficulties related with
the proper definition of the stiffness of the cohesive layer, the requirement
of extremely refined meshes, and the convergence difficulties associated with
problems involving softening constitutive models.

This work addresses the proper definition of interface stiffness and proposes a
novel procedure to allow the use of coarse meshes in the simulation of delam-
ination.

A brief description of the kinematics and constitutive model of a previously
proposed decohesion element [2]-[3] is presented. A closed-form expression is
developed, replacing the empirical definitions of the stiffness of the cohesive
layer that are normally used. A solution to use coarse meshes in the simulation
of delamination is proposed. It is demonstrated that the proposed solution can
yield results as accurate as the ones obtained using very refined meshes.

2 Cohesive zone model approach

The Cohesive Zone Model (CZM) approach [4]-[6] is one of the most commonly
used tools to investigate interfacial fracture. The CZM approach assumes that
a cohesive damage zone, or softening plasticity, develops near the crack tip.

The CZM links the microstructural failure mechanism to the continuum fields
governing bulk deformations. Thus, a CZM is characterized by the properties
of the bulk material, the crack initiation condition, and the crack evolution
function.



Cohesive damage zone models relate traction to displacement jumps at an in-
terface where a crack may occur. Damage initiation is related to the interfacial
strength, i.e., the maximum traction on the traction-displacement jump rela-
tion. When the area under the traction-displacement jump relation is equal to
the fracture toughness, the traction is reduced to zero, and new crack surfaces
are formed.

2.1 Kinematics and constitutive relation of cohesive zone models

The cohesive zone model used here was previously proposed by the authors
[2]-[3]. A brief description of the model, with special focus on the kinematics
and constitutive damage model, is presented.

Consider a domain ) containing a material discontinuity, I'y, which divides
the domain €2 into two parts, 2+ and €2-, as shown in Figure 1.

Fig. 1. Body Q) crossed by a material discontinuity I'q in the undeformed configu-
ration.

Prescribed tractions, t;, are imposed on the boundary I'r, whereas prescribed
displacements are imposed on the boundary I',. The stress field inside the
domain, 0;;, is related to the external loading and the closing tractions 7'j+, T

J
in the material discontinuity through the equilibrium equations:

Oij5 = 0in Q (1)
0Ny = tz on FF (2)
Uijnj =7 =—7 = oyn; on Iy (3)

The displacement jump across the interface of the material discontinuity re-
quired in the constitutive model, [u;], can be obtained as a function of the



displacement of the points located on the top and bottom side of the interface,
u; and u; respectively:

[ud] = wi —uy (4)
where u} are the displacements with respect to the fixed Cartesian coordinate
system. A co-rotational formulation is used in order to express the compo-
nents of the displacement jumps with respect to the deformed interface. The
coordinates Z; of the deformed interface can be written as [7]:

1
xz—Xz+2(ui+ul-) (5)
where X, are the coordinates of the undeformed interface.

The components of the displacement jump tensor in the local coordinate sys-
tem on the deformed interface, A,,, are expressed in terms of the displacement
field in global coordinates:

where 0,,,; is the rotation tensor.

The constitutive operator of the interface, Dj;, relates the element tractions,
7;, to the displacement jumps, A;:

Tj = DﬂAz (7)

A requirement of the constitutive relations of cohesive zone models is that the
energy dissipated in the process of fracture needs to be computed accurately.

Under single-mode loading, controlled energy dissipation is achieved assur-
ing that the area under the traction-displacement jump relation equals the
corresponding fracture toughness, as illustrated in Figure 2.

Under mixed-mode loading, a criterion established in terms of an interaction
between components of the energy release rate needs to be used.

There are several types of constitutive operators presented in the literature,
depending on the constitutive equations used for the simulation of the de-
lamination: Tvergaard and Hutchinson [8] used a trapezoidal law, Cui and
Wisnom [9] proposed a perfectly plastic rule, Needleman used a polynomial
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Fig. 2. Constitutive equations under Mode I and Mode II loading.

law, [10], and later an exponential law [11]. In this paper, a bilinear constitu-
tive equation is used.

The constitutive damage model used here, formulated in the context of Dam-
age Mechanics (DM), was previously proposed by the authors [2],[3]. All the
details of the constitutive model are presented in reference [2] and [3] and will
not be repeated here.

The constitutive model prevents interpenetration of the faces of the crack
during closing, and a Fracture Mechanics-based criterion is used to predict
crack propagation. The formulation of the damage model is summarized in
Table 1, where 1) and ° are the free energy per unit surface of the damaged
and undamaged interface, respectively. d;; is the Kronecker delta, and d is
a scalar damage variable. The parameter \ is the norm of the displacement
jump tensor (also called equivalent displacement jump norm), and it is used to
compare different stages of the displacement jump state so that it is possible to
define such concepts as ‘loading’, ‘unloading’” and ‘reloading’. The equivalent
displacement jump is a non-negative and continuous function, defined as:

A= \/<A3>2 + (Ashear)2 (8>

where () is the MacAuley bracket defined as (z) = 1(z+ |z]). Az is the
displacement jump in mode I, i.e., normal to midplane, and Agjeqr is the
Euclidean norm of the displacement jump in mode II and in mode III:

Ashear = <A1)2 + <A2)2 (9)



Table 1. Definition of the constitutive model.

Free Energy ¥ (A, d) = (1—d)y° (A;) — dy° (83 (—A3))

Constitutive equation Ti {fg = (1—d)&;; KA; —dd;;Kds; (—As3)

7

Displacement jump norm )\ = <A3>2 + (Ashem«)2

Q

Damage criterion F(X,rt):=G(\)=G(r') <0 vVt >0
_ arpean)
G(A) = A(AF-A0)
Evolution law d= /),apéi"r) = /18%(;) =

Load/unload conditions >0 ; F (M, r") <0 ; pF (X,r") =0

rt = max{ro,maxS )\5} 0<s<t

The evolution of damage is defined by G(-), a suitable monotonic scalar func-
tion, ranging from 0 to 1. ji is a damage consistency parameter used to define
loading-unloading conditions according to the Kuhn-Tucker relations. 7t is the
damage threshold for the current time, t, and r° denotes the initial damage
threshold.

AY is the onset displacement jump, and it is equal to the initial damage thresh-
old 7°. The initial damage threshold is obtained from the formulation of the
initial damage surface or initial damage criterion. A/ is the final displacement
jump, and it is obtained from the formulation of the propagation surface or
propagation criterion [2]-[3].

The formulation proposed allows an explicit integration of the constitutive
model. The algorithm is implemented as shown in Table 2.



Table 2. Algorithm of the constitutive model.

Initial data for time t+1
Material properties: Gjc,Grrio,Grrie, B, 1, Tsoheaw 73?

Current values: Az, Agpear, d

. . A 2
1. Mixed-mode ratios: (= Mﬁ i B= 1+2572—2B
0
2. Pure mode onset displacement jump: AZQ = % i = 3, shear

3. Mixed-mode onset displacement jump: A?= \/(Ag)2 + [(Aghear)Q — (Ag)ﬂ [B]"

4. Mixed-mode final displacement jump: Af = ﬁ [Gre + (Gr1e — Gre) [B]"]

5. Displacement jump norm: /\:\/(Ag)2 + (Ashear)Q
6. Update internal variables: ph=  AIAT ot = max {rt, )\}

T AT di[AT-AT]

g Al(rri-a)
T rttL(AF—A0)

7. Compute tractions: Ti = DijjAj = &-jK [1 —d <1 + 53j%>} A;

8. Compute tangent stiffness tensor:

{Dij _K [1 + ngﬁiﬂ [1 + 63, <’ﬁj>} @iﬁ%&%} gt <A< AT

Dtan —
v
Dij ,Tt>)\OI'Af<)\

Further detail regarding the damage model used here can be found in refer-
ences [2]-[3].



2.2 (Cohesive zone model and FEM

In a finite element model using the CZM approach, the complete material
description is separated into fracture properties captured by the constitutive
model of the cohesive surface and the properties of the bulk material, captured
by the continuum regions.

There are two conditions to obtain a successful FEM simulation using CZM
[12]: (a) The cohesive contribution to the global compliance should be small
enough to avoid the introduction of a fictitious compliance to the model, and
(b) the element size needs to be less than the cohesive zone length.

(a) Stiffness of the cohesive zone model

Different guidelines have been proposed for selecting the stiffness of the inter-
face. Daudeville et al. [13] calculated the stiffness in terms of the thickness and
the elastic modulus of the interface. The interface thickness between plies is
a very small resin-rich region; therefore, the interface stiffness obtained from
the Daudeville equations is very high. Zou et al. [14], based on their own expe-
rience, proposed a value for the interface stiffness between 10* and 107 times
the value of the interfacial strength per unit length. Camanho and Dévila [15]
obtained accurate predictions using a value of 10°N/mm?.

The effective elastic properties of the composite depend on the properties of
both the cohesive surfaces and the bulk constitutive relations. Although the
compliance of the cohesive surfaces can contribute to the global deformation,
its only purpose is to simulate fracture. Moreover, the elastic properties of the
cohesive surfaces are mesh-dependent because the surface relations exhibit an
inherent length scale that is absent in homogeneous deformations [16].

If the cohesive contribution to the compliance is not small enough compared
to that of the volumetric constitutive relation, a stiff connection between two
neighboring layers before delamination initiation is not assured. The effect of
compliance of the interface on the bulk properties of a laminate is illustrated
in the one-dimensional model shown in Figure 3. The traction continuity con-
dition requires:

O':Egé":KA (10)

where o is the traction on the surface, ¢ is the thickness of an adjacent sub-

laminate, ¢ = % is the transverse strain, K is the interface stiffness that

relates the resulting tractions at the interface with the opening displacement
A, and FEj is the through-the-thickness Young’s modulus of the material. For

a transversely isotropic material E3 = Fj.



The effective strain of the composite is:

(11)

Fig. 3. Influence of the cohesive surface on the deformation.

Since the traction continuity condition requires that o = F.geqq, the equivalent
Young’s modulus E.g can be written as a function of the Young’s modulus of
the material, the mesh size, and the interface stiffness. Using equations (10)
and (11), the effective Young’s modulus can be written as:

Eeﬁ=E3< L ) (12)

1+ 2

The effective elastic properties of the composite will not be affected by the
cohesive surface whenever the inequality F3 < Kt is being accomplished, i.e:

K= (13)

where « is a parameter much larger than 1 (a > 1). However, large values of
the interface stiffness may cause numerical problems,; such as spurious oscilla-
tions of the tractions [17]. Thus, the interface stiffness should be large enough
to provide a reasonable stiffness but small enough to avoid numerical problems
such as spurious oscillations of the tractions in an element.

The ratio between the value of the Young modulus obtained with equation
(12) and the Young modulus of the material, as a function of the parameter



« is shown in Figure 4. For values of a greater than 50, the loss of stiffness
due to the presence of the interface is less than 2% (see Fig. 4).
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Fig. 4. Ratio between the equivalent elastic modulus and the Young’s modulus of the
material, as a function of the parameter c.

The use of equation (13) is preferable to guidelines presented in previous work
[13]-[15] because it results from mechanical considerations, and it provides a
sufficient stiffness (a times the stiffness of the material) while avoiding spurious
oscillations caused by an excessively stiff interface. The values of the interface
stiffness obtained with equation (13) and those used by other authors for
a carbon/epox composite are shown in Table 3. The material’s transverse
modulus is 11kN/mm?, its nominal interfacial strength is 7° = 45N /mm?, and
a = 50 is selected.

Table 3. Interface stiffness K proposed by different authors (N/mm?).

t(mm) 0.125 1 2 3 5
Equation (13) 4.43x10%  5.5x10° 2.75x10° 1.83x10° 1.1x10°
Zou et al. [14] 4.5x10° <K< 4.5x108

Camanho and Dévila [15] 109 109 109 109 10°

Equation (13) gives a range of the interface stiffness between 10° and 5x10°N /mm
for a sub-laminate thickness between 0.125mm and 5mm. These values are

10

3



close to the interface stiffness proposed by Camanho and D&avila and the val-
ues obtained with Zou’s guidelines (between 4.5x10° and 4.5x10%N /mm?).

(b) Length of the cohesive zone

Under single-mode loading, interface damage initiates at a point where the
traction reaches the maximum nominal interfacial strength, 7°. For mixed-
mode loading, interface damage onset is predicted by a criterion established
in terms of the normal and shear tractions. According to Fracture Mechanics,
cracks propagate when the energy release rate reaches a critical value G..
The CZM approach prescribes the interfacial normal and shear tractions that
resist separation and relative sliding at an interface. The tractions, integrated
to complete separation, yield the fracture energy release rate, GG.. The length
of the cohesive zone [, is defined as the distance from the crack tip to the
point where the maximum cohesive traction is attained (see Figure 5).

A
Sublaminate 1 \

2t anmannnNNNN
Sublaminate 2 / ; ’
y

Max. traction 1 Crack tip

cz

A

Fig. 5. Length of the cohesive zone.

Different models have been proposed in the literature to estimate the length
of the cohesive zone. Irwin [18] estimated the size of the plastic zone ahead
of a crack in a ductile solid by considering the crack tip zone within which
the von Mises equivalent stress exceeds the tensile yield stress. Dugdale [4]
estimated the size of the yield zone ahead of a mode I crack in a thin plate
of an elastic-perfectly plastic solid by idealizing the plastic region as a narrow
strip extending ahead of the crack tip that is loaded by the yield traction.
Barenblatt [5] provided an analogue for ideally brittle materials of the Dugdale
plastic yield zone analysis. Hui [19] estimated the length of the cohesive zone
for soft elastic solids, and Falk [12] and Rice [20] estimated the length of the
cohesive zone as a function of the crack growth velocity. The expressions that
result from these models for the case of plane stress are presented in Table 4.
It is assumed that the relation between the critical stress intensity factor K.
and the critical energy release rate G, can be expressed as K? = G .E.

All the models described above to predict the cohesive zone length [.. have
the form:

11



(14)

where F is the Young modulus of the material, GG, is the fracture energy
release rate, 70 is the maximum interfacial strength, and M is a parameter that
depends on each model. The most commonly used models in the literature are
Hillerborg’s model [6] and Rice’s model [20]. In these models, the parameter
M is either close or exactly equal to unity. A summary of the different models
commonly used in the literature, and the equivalent parameter M for plane
stress are shown in Table 4. In this paper, Hillerborg’s model is used.

For the case of orthotropic materials with transverse isotropy, the value of the
Young’s modulus in equation (14) is the transverse modulus of the material,
Es.

Table 4. Length of the cohesive zone and equivalent value of the parameter M.

I M
Hui [19] 5312(352 0.21
Irwin [18] %E(gc)z 0.31
Dugdale [4], Barenblatt [5] £E (TGOC)Q 0.4
Rice [20], Falk [12] %gﬁ&f%Q 0.88
Hillerborg [6] E (TC;C)Q 1

In order to obtain accurate results using CZM, the tractions in the cohesive
zone must be represented adequately by the finite element spatial discretiza-
tion. The number of elements in the cohesive zone is obtained with the equa-
tion:

lCZ
N, == (15)

where [, is the mesh size in the direction of crack propagation.

When the cohesive zone is discretized by too few elements, the fracture energy
is not represented accurately and the model does not capture the continuum
field of a cohesive crack. Therefore, a minimum number of elements, N, is
needed in the cohesive zone to get successful FEM results.

However, the minimum number of elements needed in the cohesive zone is
not well established: Moés and Belytschko [21], based on the work of Carpin-
teri and Cornetti [22], suggest using more than 10 elements. However, Falk

12



et al. [12] used between 2 and 5 elements in their simulations. In the para-
metric study by Dévila and Camanho [23], the minimum element length for
predicting the delamination in a double cantilever beam (DCB) specimen was
Imm, which leads, using equation (14), to a length of the cohesive zone of
3.28mm. Therefore, 3 elements in the cohesive zone were sufficient to predict
the propagation of delamination in Mode I.

2.8  Guidelines for the selection of the parameters of the interface with coarser
mesh

One of the drawbacks in the use of cohesive zone models is that very fine
meshes are needed to assure a reasonable number of elements in the cohesive
zone. The length of the cohesive zone given by equation (14) is proportional
to the fracture energy release rate (G.) and to the inverse of the square of
the interfacial strength 7°. For typical graphite-epoxy or glass-epoxy com-
posite materials, the length of the cohesive zone is smaller than one or two
millimeters. Therefore, according to equation (15), the mesh size required in
order to have more than two elements in the cohesive zone should be smaller
than half a millimeter. The computational requirements needed to analyze
a large structure with these mesh sizes may render most practical problems
intractable.

Alfano and Crisfield [24] observed that variations of the maximum interfa-
cial strength do not have a strong influence in the predicted results, but that
lowering the interfacial strength can improve the convergence rate of the so-
lution. The result of using a lower interfacial strength is that the length of
the cohesive zone and the number of elements in the cohesive zone increase.
Therefore, the representation of the softening response ahead of a crack tip is
more accurate with a lower interface strength.

It is possible to develop a strategy to adapt the length of the cohesive zone
to a given mesh size. The procedure consists of determining the value 7° of
the interfacial strength required for a desired number of elements (N?) in the
cohesive zone. From equations (14) and (15), the required interface strength

1S:
_ EG,
= \ vor, (16)

Finally, the interfacial strength is chosen as:

T =min{r°,7°} (17)

The effect of a reduction of the interfacial strength is to enlarge the cohesive

13



zone, and thus, the model is better suited to capture the softening behaviour
ahead of the crack tip. Moreover, if equation (13) is used to compute the
interface stiffness, the interface stiffness will be large enough to assure a stiff
connection between the two neighboring layers and small enough to avoid
spurious oscillations. The drawback associated with reducing the interfacial
strength is that the stress distribution in the regions near the crack tip may
not be accurate [24].

3 Simulation of the double cantilever beam specimen

The influence of mesh size, interface stiffness, and interface strength were in-
vestigated by analyzing the Mode I test of a double cantilever beam (DCB).
The DCB specimen was fabricated with a unidirectional T300/977-2 carbon-
fiber-reinforced epoxy laminate. The specimen is 150-mm-long, 20.0 mm-wide,
with two 1.98-mm-thick arms, and an initial crack length of 55mm. The ma-
terial properties are shown in Table 5 [25].

Table 5. Mechanical and interface material properties of T300/977-2.

Ey Eo = FE33 G =G Gas
150.0GPa 11.0GPa  6.0GPa 3.7GPa
Vig = V13 Va3 Gre 7'3?

0.25 0.45 0.352N/mm 60MPa

The FEM model was composed of two layers of four-noded 2D plane strain
elements connected together with four-node decohesion elements. The decohe-
sion elements were implemented using a user-written subroutine in the finite

element code ABAQUS [26].

Three sets of simulations were performed. First, a DCB test was simulated
with different levels of mesh refinement using the material properties shown
in Table 5 and interfacial stiffness of K=10°N/mm?®. Then, equations (15)
and (13) were used to calculate an adjusted interfacial strength and interface
stiffness. Finally, a set of simulations with a constant mesh size using different
interface stiffnesses in order to investigate the influence of the stiffness on the
calculated results.

Several analyses were carried out for mesh sizes ranging between 0.125mm
and bmm. The load-displacement curves obtained for different element sizes
using the nominal interfacial strength are shown in Figure 6.

14



The results indicate that a mesh size of [, < 0.5mm is necessary to obtain
converged solutions. The predictions made with coarser meshes significantly
overpredict the experimental results.

The length [., of the cohesive zone for the material given in Table 5 is close
to lmm. For a mesh size greater than 0.5mm, fewer than two elements would
span the cohesive zone, which is not sufficient for an accurate representation
[22]-[23]. For a mesh size smaller than 0.5mm, more than two elements would
span the cohesive zone. For a mesh size of 0.25mm, four elements would span
the cohesive zone.

—>—1e=0.125
200 : |
—=—1e=0.5 VDDQ
——le=1 DiD‘DiD’Q/D \D
—o—le=2.5 DID‘D?D ‘DVDQD\
150 —e—le=3 Nl ]
—o—le=4 3l
. .3 |
3 Experimental h TIT
. o~’7.\ —e
] 100+ Togey.. o]
o “Hesg00 40
-l T ¢ o %4;:00 :5 g >
Mﬁ e - + +7¢7+7+7 © @C& —C
o ¢—+f+‘i;7* e S
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O ' | | | | | ' : . T T T T T T 1
| : 4 T : 10 12 14 16

Displacement (mm)

Fig. 6. Load-displacement curves obtained for a DCB test with different mesh sizes.

3.1 Effect of interface strength

To verify the effect of interface strength on the computed results, simula-
tions were performed by specifying the desired number of elements within the
cohesive zone to be Ny = 5 and reducing the interface strength according
to equation (17). The load-displacement curves obtained for several levels of
mesh refinement are shown in Figure 7. Accurate results are obtained for mesh
sizes smaller than 2.5mm.

A comparison of the load-displacement curves for the DCB specimen calcu-
lated using the nominal interface strength and the strength obtained from

15
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Fig. 7. Load-displacement curves obtained for a DCB test with different mesh sizes
and keeping constant the number of elements (5) in the cohesive zone.
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Fig. 8. Mazimum load obtained in a DCB test for two cases: a) with constant inter-
facial strength, b) with interfacial strength calculated according to Eq. (17).
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equation (17) is shown in Figure 8. The maximum load obtained by keep-
ing the maximum interfacial strength constant increases with the mesh size,
so the results obtained are mesh dependent, especially for mesh sizes greater
than 2mm. However, the loads predicted by modifying the interfacial strength
according to equation (17) are nearly constant for element sizes smaller than
3mm. In addition, the global deformation and the crack tip position are also
nearly independent for mesh refinement, as illustrated in Figure 9.
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Fig. 9. Crack tip for different element size.
3.2 FEffect of interface stiffness

The DCB test was simulated with a mesh size of 2.5mm for various values
of the interface stiffness in order to investigate the influence of the stiffness
on the predicted failure load. The results of the simulations are presented in
Figure 10.

The load-displacement response curves obtained from simulations using an
interface stiffness greater than 10*N/mm? are virtually identical. However,
smaller values of the interface stiffness have a strong influence on the load-
displacement curves, since a stiff connection between the two neighboring lay-
ers is not assured. Moreover, the number of iterations needed for the solution
when using an interface stiffness smaller than 10*N/mm? is greater than the
number of iterations needed for range of the interface stiffness between 10°
and 10'°N/mm?3. For values of the interface stiffness significantly greater than
10'N/mm?, the number of iterations needed for the solution increases (see
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Figure 11). The stiffness that results from equation (13) is 5.55x10°N /mm?,
which is ideal for good convergence of the solution procedure.
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Fig. 10. Influence of the value of the interface stiffness on the load-displacement
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Fig. 11. Influence of the value of the interface stiffness on the number of iterations.
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4 Concluding remarks

An engineering solution for the simulation of delamination using coarse meshes
was presented. Two new guidelines for the selection of the parameters for the
constitutive equation used for the simulation of delamination were presented.

First, a new equation for the selection of the interface stiffness parameter K
was derived. The new equation is preferable to previous guidelines because
it results from mechanical considerations rather than from experience. The
approach provides an adequate stiffness to ensure a sufficiently stiff connec-
tion between two neighboring layers, while avoiding the possibility of spurious
oscillations in the solution caused by overly stiff connections.

Finally, an expression to adjust the maximum interfacial strength used in the
computations with coarse meshes was presented. It was shown that a minimum
number of elements within the cohesive zone is necessary for accurate simula-
tions. By reducing the maximum interfacial strength, the cohesive zone length
is enlarged and more elements span the cohesive zone. The results obtained
by reducing the maximum interfacial strength show that accurate results can
be obtained with a mesh ten times coarser than by using the nominal inter-
face strength. The drawback in using a reduced interfacial strength value is
that the stress concentrations in the bulk material near the crack tip are less
accurate.
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