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Variational principles for nonlinear dynamical systems

Viceng Méndez
Grup de Fsica, Departament de Qieies Ambientals, Facultat de Qieies,
Universitat de Girona, C/. Albareda 3-5, 1701 Girona, Catalonia, Spain

(Received 26 February 1997; accepted for publication 8 Septembej 1997

A variational method for Hamiltonian systems is analyzed. Two different varia-
tional characterization for the frequency of nonlinear oscillations is also supplied
for non-Hamiltonian systems. @998 American Institute of Physics.
[S0022-248808)02702-9

I. INTRODUCTION

The dynamical study of nonlinear oscillatory systems is often reduced to numerical calculus
or to some approximated analytical techniques. Most of them are based in perturbation fethods
as for instance the Poincareindsted method, the averagifiigrylov—Bogoliuvov—Mitropolsky
method, the Shohat expansion, or the multiscale method, to mention a few. They provide approxi-
mate solutions as well as the relationship between the frequency of the nonlinear oscillations and
a small parametgphysically identified for the system, as the amplitude of the oscillatidther
approximate techniques consist in the qualitative analysis on the phase space by linearizing the
differential equation around the fixed points. Periodic or exponential behavior of the system may
be predicted after studying the stability of the fixed points.

Many different physical systems reduce to one-dimensional nonlinear ODE of second order,
which may be studied by using the approximate techniques mentioned Zbdweimportant
property of them is that the frequency depends explicitly on the amplitude of the oscillations. As
we have mentioned, the perturbative techniques yield to an approximate solution in power series
of the amplitude only.

Recently, Benguria and Depassi&D for shor)* have made use of a variational principle in
order to solve the bifurcation problem for second-order nonlinear Hamiltonian systems. They also
apply the principle to obtain simple approximate closed formulas for the frequency of large-
amplitude oscillations.

In this work we extend this method to other situations. Basically, the method consists in
transforming the differential equatiom+u=N(u), which may be written in the phase space
variables p,u), with p=—u’ (where the prime means differentiation with respect to the variable
7=2wt/) in an integral equation multiplying the differential equation by an auxiliary function
g(u), and integrating. The variational method provide a lower bound for an integral functional.
From the Euler—Lagrange equations for the functional, one may calculate the auxiliary function
g(u) at a first approximation by taking(u) from the linear caseN=0).

First of all, we generalize this transformation for Hamiltonian systems. We multiply the
differential equation by"g and apply the variational method. From this generalization we obtain
the first interesting result: the variational characterization depends strongly on the expotent
this sense, we obtain a better fit o= —1 than forn=0 (the BD’s casg

However, as the systems are Hamiltonian, it is possible to find a relationship betvaeh
u in the nonlinear situation. Using it, instead of its linear approach, one can find a new relationship
for g being the variational result for the frequency, always equal to the exact solution. This is
shown in three specific and physically interesting cases.

Second, as non-Hamiltonian systems are very often found in practice and arise in many
physical systems, we introduce in this work a special analysis for them. Following the same ideas
employed for Hamiltonian systems, one obtains an explicit dependence of the variational charac-
terization onp(u). For non-Hamiltonian systems it is not possible to obtain a relationship between
p andu, at least exactly. In consequence, we adopt two ways to proceed. From one hand, we
apply twice the variational method and find two coupled Euler—Lagrange equations, one of them
corresponding to the same functional that appears in Hamiltonian systems and the other one to the
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new one that containg(u). The consequent variational characterization does not depend now on
p(u). This method also apply for large amplitude. On the other hand, we find for a class of
non-Hamiltonian systems in which the above method does not hold, a perturbative solution to
p(u) for small nonlinearities. As a special example we treat the Van der Pol oscillator.

II. VARIATIONAL PRINCIPLES FOR HAMILTONIAN SYSTEMS

In this section we generalize the BD’s method and we show, by using the Duffing oscillator
as an example, the generality of the principle. Starting from a nonlinear Hamiltonian dynamical
system of the form

U+u=N(u), with u(0)=a, u(0)=0, 1)
this becomes
u”+xu=N(u,\), )

where the prime symbol stands for the differentiation respect to the angular variaBlet/ =, o
being the angular frequency of the nonlinear systgnand\ = (7/2w)?. We restrict our study to
ue(0,a), wherea is the initial amplitude of movement, sa( 7=1)=0. Defining the variable
p=—u’'>0 we reduce the order @), and it is written as

dp
pEJr)\u:N(u,)\). 3

Multiplying (3) by p"g(u), whereg(u) is an auxiliary function to be determined such that
g(0)=0, and integrating, we obtain

a a
)\f up”g(u)dUZJ
0 0

Notice that forn=0 we recover the Benguria and Depassier case. We consider now, for g fixed
andn> —2, the functional

1 + !
P"N(UN)g(U)+ ——= p %g (U))du 4

(—n"
n+2

(_1)n+1

Jqlv]= n+2

a 1
f (v")"*2g’ (v)dv = f (v")"*3g’ (v)dr, (5
0 0

defined forv such that it satisfies(0)=a, v(1)=0, andv’<0 in 7e(0,1). Definingg(v,v’)
=(—1)""Y(v")""3g"(v)/(n+2), the Euler—Lagrange equations fyrmay be integrated once to
obtaing—uv’ d¢/dv’ =const, provided thah does not depend explicitly on From the Euler—
Lagrange equation we obtain

(D)™ 4G )3’ (T )=K>0, ©)

wherev is the value ofv such that for a fixed, J¢=0 has a unique minimum. The auxiliary
functiong may be obtained by integratin@). So, onceg is determined, we get

~, K(a)
Jglv]=Jg[v ]—m, (7)

whereK (a) is determined through the boundary conditionanSo, we have frong4), (5), and

(@),

] K
>f0N(u,)\)g(u)du+m
M rupgwdy ®
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This constitutes the result of our first variational principle applied to nonlinear Hamiltonian os-
cillators. Notice the strong dependence of the variational principle on the exponertich we
will show later in a specific example. For valuesolbwer than— 2 this variational principle does
not apply and for the other values the upper bound for the frequency depends expliaitly on
If we taken=0 in (8), we recover the Benguria and Depassier situatinere(8) reduces
to

fSN(u,)\)g(u)dqu5

2
M Jugwan ®
and(6) is (u')%g’(u)=—K. Takingn=—1, (8) becomes
NI
AP , (10
(2 U90)
% p(u)

and the Euler—Lagrange equation reducesutgig’ (u) =K.
Following Ref. 5, we can also derive, from another variational principle, a new restriction on
the characteristic parameters of the system. Takia® in (4), we may define the function

P(p)=\f(u)g+ 3 p?g’(u),

whereN(\,u)=\f(u). This function has, for each value aof a minimum atp,,;,=0, provided
thatg’ (u)>0. So ¢ (pPmin) =Af(U)g<y(p), and finally

faug(u)duzfaf(u)g(u)du. (11
0 0

This constitutes the second variational principle for Hamiltonian systems. Let us now apply both
principles on the Duffing oscillator and the nonlinear pendulum.

A. The Duffing oscillator

It is known that the exact solution for the Duffing oscillafor,

U+u+éu=0, with u(t=0)=a, u(t=0)=0, (12
is given by
u(t,d)=a cn(tyl+sa’k), (13)

where cn is the Jacobi elliptic function ahkd= 6a?/2(1+ sa?). The exact expression for the
frequency is then

™

1
Wey= > V1+ da A
?")

whereF (k) is called the complete elliptic integral of the first order. TakimgO0 in (8) we recover

the BD situatiorf, which yields
[ 3
(.l)n=0$ l+ Z 5a2 (15)
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Let us show in this example and in the following one the dependence of the frequency on the
value ofn taken in(8). First, we analyze the linear case, for the Duffing oscillator, and compare
the results obtained far=0 and forn=—1. In this case(10) leads to

¢ (16)
>
= ug(u) du’
% p(u)
K andg(u) must be calculated from
(u")?g'(u)=K. 17

In the linear caseN=0), corresponding to the linear oscillator, one ha&)t=X\(a?—u?).
Replacing this in(17), we obtain

: (18

as the expression for the auxiliary function. Solvifly) with u(0)=a, u(1)=0, one obtains
K =am?/2. On the other hand, defining=u/a, one has, from(18),

faug(u)OI a J'll 1+x| xdx aw
——du=— n—y1,  —=—.
o P(u Wlo TN 1=x) 1% X\

Finally, from (16) we find A= (/2)2, which is the same result obtained by BFor the
nonlinear case N#0), we find a different result, as we show in turn. The main difference
between the cases= —1 andn=0 is that, to solve the latter, one does not need the relationship
betweenp and u, while for n=—1 this is necessary. For the Duffing oscillator, we find, by
making use of the Hamiltonian as a constant of motion, that

5a?
1+ —
2

V(1—=x?)(sX+1), (19)

p=\/\a?

wheres= 6a®/(2+ 6a?). From (10) and defining the following integrals:

1 1+x X dx

|1(8)=f In ,
0 \1=X/ {(1-x?)(sx¢+1)
1 [14X x3 dx

Il(s)=f In )
0 11=X/ J(1-x?)(sx¢+1)

we obtain
>(772 sa? 1
Ml M 2 Tty (20

The integralsl; andl, may be calculated, after some integrations by parts, in terms of the
complete elliptic integral of the second kind, and we find finally for the frequency that

s S
2" Vs+1

In Fig. 1 we represent the exact valwg, given by(14), the BD solutionw,,—¢ given by(15)
in solid lines, and the new approaah,- _; given by (21) in dashed lines. As one can see, the

. (21)

2 ——
wn=,l$; 1+5a E
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FIG. 1. The frequency of the Duffing oscillator obtained by the BD methogl.,, solid lineg, the new variational
method(w,-_,, dashed lingsversus the numerical exact soluti¢a,,, solid line.

latter is a slightly better result than the BD solution. So, we have shown the dependence of the
frequency on the value ai. Applying now the second variational methétl) to the Duffing
equation, and taking the BD method we find the following restriction:

—4
S5 <=6.

3a

For 6>0 the second variational method does not add any additional information, béxttor
this may be understodds a bound foi, that is, 5<4/3a°. For <0 we have that

3 2
(.l)n=0$ l_Z 5a .

The frequency has real value #4/3a?, which coincides with the result obtained by using
the second variational method.

B. The nonlinear pendulum

We study with some detail another very known nonlinear dynamical system namely the
nonlinear pendulum. First of all we show that the —1 case may lead us to the exact solution.
Later, we apply the BD approach to this solution. As it is widely known, the equation for the
nonlinear pendulum is given by
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U+|gsin(u)=0, with u(t=0)=a, u(t=0)=0. (22)
Defining againr=2wt/7 and

2
2, @3

)\_11'
|2

and taking into account the condition$t=0)=a andu(t= 7/2w) =0, (22) is written as

u”+N\ sin(u)=0, with u(r=0)=a, u'(r=1)=0.

1
ve3 \@ﬁ @9
F(E,SIH(E )

Let us now to apply the@= —1 approach. The variational method leads to

The exact solutichis given by

K
W (25)
sin(u du
fO p(U) r( )
with
(u)’g’' =K. (26)
As (22) may be integrated once, we get
p(u)=y2\[cogu)—coga)]. (27)
So, omitting overall multiplicative constants we identify
S 1
g'(u)= cogu)—coga)’
and integrating, we find for the auxiliary function
i u
1 sm(a)tar(z +1-—coqa)
g(u)= sina) In _ J (28
sin(a)ta > —1+cogqa)
The value ofK is found to be
k=2F2 Z sinf 2 (29)
- 2 !SI 2 )

from (26). Calculating the integral i125), we obtain

a 2
f giu; sin(u)du="7= F( 2" r(;

after some integrations by parts. Finally, frd28), (25), and(29), one gets
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<7T\F 1
@n=-1=73 IF T _(a||’
2%M2

which coincides within the exact result. If we had made some approximations, as, for instance,
take forg(u) or p(u) the same value as for the linear oscillator, the final result had not been equal
to the exact one. We show this now flo=0. Equation(8) writes in the BD case,

(w)z 4 (auN(u,n)du
A= (30)

— +_ —_,
2 ma® Jo 1—uZa?

where we takeN(u,\) =\ (u—sin(u)). Calculating the integral i§30) and from the definition of

\, one obtains
g 2
@n-0<\7T V3 Ji(a), (31

whereJ;(a) is the Bessel function of the first kind. Becaukda) alternates the sign, we must
restrict the solution given bB1) to those values dad such thatl;(a) is positive. For small values

of a this condition require@=<3. Precisely this condition may be recovered from the second
variational principle. Taking (u) =u—sin(u) and(28) we find from(11) J;(a)=0. In Fig. 2 we
plot the exact solution and the variational solution for the BD’s method.

C. Systems of the form U+ au"=0

We consider now kinds of dynamical systems, which, in their linear approximatier() do
not reduce to linear oscillators. These systems may also be treated as the previous ones. First we
apply the variational methods and we compare the solution with the exact one. We make, for
mathematical simplicity the analysis by using the particular €ase3. It is known that this
system describes periodic oscillatioch¥he system may be integrated once by using the same
initial conditions as in previous examples. Hence, we get, after using the independent variable

al
p(u)= /- va'-u*, (32

and this one may be integrated once again to get

T 1
wEX:E a\/; F77—]_ (33)
2’2
Applying the first variational metho@L0) (with n=—1) one obtains
K
A= ————— 34
! u®g(u) 59
g du
p(u)
where (1")?g’ =K. So, the auxiliary functiomy(u) is given by
_ 1I at+u N u 35
g(u)—z n p— arcta 2 (35

andK by
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FIG. 2. The frequency of the nonlinear pendulum obtained by the BD méthod,, dashed lines versus the numerical
exact solution(we,, solid line).

K(a)zaFZ(f, i).
2°v2

The integral involved in34) is given by

a u3g(u) 2 (1 x3dx a® T 1
J du=a? —J — -~ _Fl= —].
o Pp(u) ak Jo 1—x4 Jan \2'v2

Using the previous calculations, we may wri{@) in terms of the frequency by

1I 1+xJr )
Enm arctarix)

T 1
wn- 1< 5 aja —,
. T 1
2’

- 2
where the equality gives the exact res(@8). On the other hand, we may also apply the BD’s
method to this case. Taking i2) N=X(u—u®) andn=0 is (8) we find K=(w/2)%a® and the
auxiliary function is given by
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U)= ———. 36
g(u) T (36)
We finally find for the frequency
a
wn=0$§ \3 . (37)

Calculating numericallyw,_ _ (= we,) We find we,=0.847\a and w,_,=<0.866\/a. We
may observe the good agreement between the exact and the BD’s solutions.

IIl. DYNAMICAL SYSTEMS DEPENDING ON THE FIRST DERIVATIVE

We extend here the variational principles found in the first section to nonlinear dynamical
systems that contains explicitly the tenmand powers of it. Some of them are Hamiltonian
systems, that is, they have a first integral, and others are dissipative, such as the Van der Pol's
equation. We focus our attention to systems of the form

u+ef(u)u"+u=0. (38

This equation may be written as

d
p d—E+)\u+e)\(2‘”)’2f(u)p”=O. (39

By using the change of variables= 2wt/ 7 and the definition of\, we may arrive to

K
(=DM IEVRIE f(ug(wptdut 3

A= faug(wdu ' R

with (u’)®g’(u)=—K. Notice that in the variational method given b40) we must know the
explicit expression op(u) and this is only possible if the system admits a first integration. In
general, one must use a new approact4. In this sense, we derive two new ways to proceed;
one of them consists in applying the variational method on the functional of the numer&d@ of
but this method only holds if (u)>0 for anyue(0,a), the other one consists in making a
perturbative expansion on the phase space in order to find an approximate soluidn)fot et
us illustrate the first way.

From (40) we define the functional

a 1
JS[v]:(—l)“”JO f(v)g(v)p" dv= fo f(v)g(v)(v")"** d7, (41)

wherev is such that satisfies(0)=a, v(1)=0, andv’'<0 in 7(0,1). Defining ¢(v,v’)
=f(v)g(v)(v')""!, we get from the Euler—Lagrange equations,

nf(@)g(v )@ " r=K* (42

where?v is the value ofv such that for a fixedy, J¢=0 has a unique minimum. Notice that
f(v )=0 is required for any  (0,a), and this is not possible for the Van der Pol’s equation. So,
onceg is determined from¥ ')3g’ (v) = —K, we get

K*(a)

n ’

J[v]=dg[v 1= (43

andK*(a) may be calculated fron42). Thus, from(40), we get the variational restriction
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FIG. 3. The frequency of a non-Hamiltonian oscillator given(4®) obtained by the variational methde,,,, dashed
lines), versus the numerical exact solutim,,, solid line.

*
ex(2—n)/2 K_+ E
n 2

[ug(wdu 44

Taking the auxiliary functiorg given in the linear case=0 [Eq. (36)], Eq. (44) becomes

2 *
™ 4e K
)\?(E +?)\(27n)/2?. (45)

Let us to apply this variational method to the specific case
U+eu?u+u=0, with u(t=0)=a, u(t=0)=0. (46)
In this casef(u)=u? andn=1. From(42) we obtainK* = 72a%/32, and from(45),

—b+\b*+4
2

<
Wyar=

_ a’e
, with b= T . (47)

In Fig. 3 we plot the exact numerical solution for the frequency versus its variational solution
(47). We develop now the second variational method for the specific situation in Whki€hfor
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someue (a,0). Starting from(40) the problem is to find an expression fpfu). As a first
approximation, we may take the expression flogiven by the linear case. In this approach we
obtain

2 4e(—1)"  ra
D(g) *%A fo u(a®-u?)"" V2 (u)du. (48)

A better approach may be obtained by the perturbative solution in the phase space. Solving
perturbatively(39) for small €, we get

p(u)=pPo(U,\)+epy(U,\) +O(€?),
where
o(U,N) =\ (a’~u?),
(5—n)/2
P1(U,N)= \/—f (

So, the variational method yields

a’—z7%)%f(z)d

(77)2 4e auf(u)(p0+6p1)n
A= - —F——du (49

=\ 5] —— —
2 ma 0 az_uz

Both approaches are applied as an illustration to the Van der Pol oscillator.
Takingn=1 andf(u)=u?—1 in (38), we recover the well-known differential for the Van der
Pol oscillator,

U+ e(u?—1)u+u=0, (50
with the initial conditionsu(t=0)=a, u(t=0)=0. It is known that50) presents a limit cycle for
a=2. Thus, we study the periodic behavior, and the frequency, in particul@sOphear of the

limit cycle given bya=2. In the first approximatiofassumingg and p are given by the linear
case,e=0), given by(48) we find for the frequency

[ 2
o

Using the second approximation, that sgiven up to first order ire, we obtain

pau) ==X 5 (4-1?),

/ 2¢ €2
= 1—?4‘2. (52

We may solve numerically the Van der Pol's equation for differeahd obtainw.,. We plot in
Fig. 4 the exact numerical solution and te solution for the frequency.

and finally

IV. CONCLUSIONS

A variational principle applied to Hamiltonian systems has been developed by Benguria and
Depassief. In this paper we extend their method along the following new lines:

(i) The initial transformation, for Hamiltonian systems, which transforms the differential
equation in an integral equation, is generalized by introducing an exponéthie final variational
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FIG. 4. The frequency of the Van der Pol oscillator obtained by the variational méthnddashed lines versus the
numerical exact solutiofwe,, solid line).

restriction that relates the frequency with the amplitude, depends strongly ®he variational
method proposed by BD only holds for>—2. A second variational method is also applied to
Hamiltonian systems and it supplies new constraints between the characteristic parameters in-
volved in the system. We have specified the results to some selected systems as the Duffing
oscillator, the nonlinear pendulum, and systems of the fosmyu"= 0. Better fits those obtained

by the method of BD, to the exact solution for the frequency have been discovered.

(i) The variational principle is also applied to systems with an explicit dependence on the first
time derivative. Some of them are Hamiltonian, and they may be exactly characterized. Others are
non-Hamiltonian and we may proceed in two different ways. First, we have proposed a new
variational method that is applied to two different functionals in order to avoid the explicit
dependence op(u). This method does not hold for systems witi0 for someu e (0,a). So, we
develop an approximate variational method for them. The results are not as good as those obtained
for Hamiltonian systems, but they may be understood as upper bounds on the frequency. This
approximation consists in finding a perturbative solution goand the results fit very well for
weak nonlinearities.
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