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We report experimental and numerical results showing how certainN-dimensional dynamical
systems are able to exhibit complex time evolutions based on the nonlinear combination ofN-1
oscillation modes. The experiments have been done with a family of thermo-optical systems of
effective dynamical dimension varying from 1 to 6. The corresponding mathematical model is an
N-dimensional vector field based on a scalar-valued nonlinear function of a single variable that is a
linear combination of all the dynamic variables. We show how the complex evolutions appear
associated with the occurrence of successive Hopf bifurcations in a saddle-node pair of fixed points
up to exhaust their instability capabilities inN dimensions. For this reason the observed
phenomenon is denoted as the full instability behavior of the dynamical system. The process
through which the attractor responsible for the observed time evolution is formed may be rather
complex and difficult to characterize. Nevertheless, the well-organized structure of the time signals
suggests some generic mechanism of nonlinear mode mixing that we associate with the cluster of
invariant sets emerging from the pair of fixed points and with the influence of the neighboring
saddle sets on the flow nearby the attractor. The generation of invariant tori is likely during the full
instability development and the global process may be considered as a generalized Landau scenario
for the emergence of irregular and complex behavior through the nonlinear superposition of
oscillatory motions. ©2000 American Institute of Physics.@S1054-1500~00!01004-1#
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Oscillatory phenomena are ubiquitous in natural and so-
cial systems and their investigation is currently done
within the context of nonlinear dynamics. The oscillations
in a given system may appear associated either with in
trinsically sustained mechanisms or with externally
modulated inputs. Processes with different time scales of
ten coexist and in certain cases the interrelation of oscil-
lations produces complex evolutions in which, however
cyclic repetitions are usually apparent. For instance, in
biology, a direct example of this behavior is found in the
bursting response of small neural networks in the stoma-
togastric nervous system of crustacea,1 while a more in-
volved example could be the wake–sleep cycle of a brain.
Leaving apart the case of external modulations, we find it
interesting to understand how a nonlinear system can
produce different characteristic frequencies and how it
can mix the corresponding oscillations to yield complex
time evolutions. Although the problem looks basic and
simple its answer is pending. The paradigm of chaos is
not useful here and among the known mechanisms o
nonlinear dynamics only the Landau scenario can be in-
voked. The present work is a contribution to the enlight-
enment of this problem. We report experimental and nu-
merical results showing the emergence of complexity
7601054-1500/2000/10(4)/760/11/$17.00
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through the nonlinear superposition of oscillatory mo-
tions in a dynamical system. The phenomenon develop
in a generalized Landau scenario where the oscillations
appear in association with the Hopf bifurcations of a set
of fixed points and the complexity arises from „i… the
number of different characteristic frequencies, and „ii …
the variety of forms through which the nonlinear mecha-
nisms combine the oscillation modes. The phenomenon i
relevant because it illustrates how the nonlinear mode
mixing works in nonlinear dynamics and it would prob-
ably be involved in any system exhibiting various self-
sustained oscillations simultaneously.

I. INTRODUCTION

Complexity may emerge through a variety of ways
nonlinear dynamics although it is mostly associated with
irregularity of chaos. The peculiar properties of the chao
states2 are compatible with a low number of degrees of fre
dom, while additional levels of complex dynamics can
introduced in high-dimensional systems by properly au
menting the structure of the nonlinear part of the vector fie
For instance, the effective participation of more dynami
variables within the nonlinear feedback may enhance the
© 2000 American Institute of Physics

euse of AIP content is subject to the terms at: http://chaos.aip.org/about/rights_and_permissions



ts
n
n

e
t
c

r-
ac
th

e
it
e
a
u-
il

ci

d

to
re
m
le

tin
ic

o-
ld
th

ei
e

ea
n

h
c

ng
it
b
le
nn
an
e

l
ab

d
ty
f

ia
in

al
e
s

n-

os-

tori
rca-
n
n
ing
un-
ex-
the
ic
heli-
ng
de-
on

he
x

e
hav-
in a
ll
e
we
di-

e
th-
re-

pto-

oth

a
o-
ed

ase-

ex

s-
o-

ture
er

eter
oto-

ser

ed

761Chaos, Vol. 10, No. 4, 2000 N-dimensional dynamical systems

D

stability capabilities of the fixed points and other limit se
This article considers a situation of this type and prese
experimental and numerical results showing the emerge
of complex time dynamics independently of chaos.

The problem we are dealing with is how a large numb
of characteristic frequencies can successively appear in
system response and how the corresponding oscillations
mix to yield complex time evolutions. The theory of bifu
cations shows that the exclusive way for introducing char
teristic frequencies into the time dynamics is through
variety of Hopf-type two-dimensional instabilities,2 i.e., the
Poincare´-Andronov–Hopf bifurcation of a fixed point, th
Naimark–Sacker or secondary Hopf bifurcation of a lim
cycle, and the successive bifurcations originating high
order invariant tori. This relates our problem to the Land
proposal3 for tentatively explaining the emergence of turb
lence through an indefinite sequence of oscillatory instab
ties that, in light of the bifurcation theory, is usually asso
ated with a sequence of torus bifurcations.4 The Landau
sequence is not considered a route to chaos because it
not produce sensitivity to initial conditions5 and this is in
strong contrast with the already existing strange attrac
when triply periodic flows on three-dimensional tori a
perturbed.6 On the other hand, the lack of dissipative syste
exhibiting such large sequences of torus bifurcations has
the Landau scenario as a hypothetical way for incorpora
additional degrees of freedom into the oscillatory dynam
of high-dimensional systems.

This work shows that the combination of oscillatory m
tions in a nonlinear dynamical system can effectively yie
complex time evolutions evoking the Landau idea about
emergence of irregularity. This behavior has been found
systems able to exploit all the instability capabilities of th
fixed points through Hopf bifurcations. In relation to th
Landau scenario, our problem is simpler because it d
with systems of finite dimension, but it is enriched by co
sidering~i! more than one fixed point and~ii ! the occurrence
of successive Hopf bifurcations on each fixed point. T
former is relevant because the nonlinear mechanisms
mix the oscillatory dynamics emerging from neighbori
points, while the latter implies a variety of coexisting lim
cycles and the possibility of different sequences of torus
furcations. Nevertheless, as it will be shown, the comp
time evolutions observed under these circumstances ca
be explained by means of the torus bifurcations alone
more general and more robust mechanisms of nonlin
mode mixing must be invoked.

More concretely, we deal withN-dimensional dynamica
systems possessing a nonlinear function of a single vari
that, in its turn, is a linear combination of theN dynamical
variables. The fixed points of these systems appear aligne
phase space in an alternate sequence of saddle-node
The saddle separatrices determine the attraction basins o
nodes and the basic dynamical phenomena will be assoc
with an attractor arising from one of the nodes and grow
under the influence of the nearest saddle point. InN dimen-
sions, a saddle-node pair of fixed points can sustain a tot
N-1 Hopf bifurcations, occurring on either one or the oth
point,7 and affecting differently oriented planes of the pha
ownloaded 30 Apr 2013 to 84.88.138.106. This article is copyrighted as indicated in the abstract. R
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space. The points initially have stable manifolds of dime
sion N-1 andN, respectively, and after theN-1 bifurcations
one of them has become fully unstable while the other p
sesses only one stable dimension.N-1 limit cycles have suc-
cessively emerged from the points and some invariant
could have been created through secondary Hopf bifu
tions of the cycles.8 The cluster of limit sets contains a
attractor at least9 and a variety of saddles with the commo
feature of having a branch of their unstable manifold end
toward the attractor. The secondary processes occurring
der such circumstances may be rather complex, but the
perimental and numerical results show that they produce
nonlinear mixing of oscillation modes with relatively gener
features. In essence, the attractor incorporates localized
cal motions related to the influence of the neighbori
saddles and, in this way, the observed time dynamics
scribes an irregular succession of oscillatory trains based
theN-1 characteristic frequencies initially generated from t
pair of fixed points. We call the exhibition of such comple
time waveforms the full instability behavior of th
N-dimensional system and a detailed analysis of such be
ior within a more general context has been presented
separate paper.10 Our aim here is to demonstrate the fu
instability behavior with a family of physical devices whos
effective dynamical dimension may easily be varied and
describe experimental results for successively increasing
mensions up toN56. The interpretation is sustained with th
linear stability analysis and numerical simulations of a ma
ematical model reproducing correctly the experimental
sults.

II. NONLINEAR SYSTEM

The nonlinear systems are based on the so-called o
thermal bistability with localized absorption~BOITAL !11

and they have been described in detail elsewhere from b
the experimental12 and mathematical13,14 points of view. A
BOITAL device consists of a Fabry-Pe´rot cavity in which
the input mirror is partially absorbing and the spacer is
multilayer of transparent materials with alternatively opp
site thermo-optic effects. Concretely, in this work we us
layers of glass, sunflower oil, silicone~F600, Bayer AG!,
optical adhesive~NOA61, Norland!, and optical gel~0608,
Cargille! with thicknesses ranging frommm to mm. Thermal
expansion works in the case of glass as a positive ph
shifting effect (1025 K21) while the rest of the materials
produce negative shifting effects due to refractive ind
changes~22 to 2531024 K21!. The cavity mirrors were a
high reflection ~.0.98! dielectric multilayer and a 7 nm
nickel-chrome film having reflections of about 0.2 and tran
mission of about 0.4. The device was placed on a therm
electric plate to define better the environment tempera
and was irradiated for the metal mirror side with a las
beam of 514.5 nm wavelength focused to a 0.3 mm diam
spot. The reflected light was detected by means of a ph
diode and a signal proportional to the reflected power,PR ,
was digitized and stored in a computer. The incident la
power,PE , was used as the control parameter.

The time dynamics in BOITAL devices is associat
euse of AIP content is subject to the terms at: http://chaos.aip.org/about/rights_and_permissions
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with the heat propagation from the absorbing mirror throu
the cavity spacer, while the light provides an instantane
nonlinear feedback to the heat source. The light wave t
the spacer temperature by means of its phase shift in a ca
round-trip and transfers such information to the absorb
mirror by means of interference effects. The temperature
tribution remains practically unchanged during the lig
round-trip and determines therefore the interference stat
that time. On the other hand, the light interference depe
nonlinearly on the phase shift through the Airy function
the cavity and it constitutes the exclusive nonlinearity of
system. In addition, the multilayer of alternatively oppos
thermo-optic materials can originate oscillatory instabilit
because~i! the temperature variations produce competit
contributions to the light phase shift and,~ii ! such contribu-
tions are time delayed according to the relative position
the layers with respect to the absorbing mirror. With a pro
choice of materials and thicknesses, the various spacing
ers behave as effective degrees of freedom and the numb
layers determines the dynamical dimension of the system

Some materials, like the adhesives and gels, exhibit
nificant and opposite phase-shifting effects due to both
pansion and refraction, and usually these effects have re
different time constants. Under proper circumstances
single layer of one of such materials can introduce two
fective degrees of freedom into the system dynamics
higher dimensionalities may be experimentally achieved
this way. This behavior has been known since the first o
cal bistability experiments on self-sustained oscillations
semiconductors15 and more recently for the case of an optic
adhesive.16 On the other hand, the phase-shifting coefficie
of these materials exhibit a significant temperature dep
dence that can be used for a fine adjustment of the sp
structure by means of the environment temperature reg
tion.

The physical description of a BOITAL system is bas
on the homogeneous heat equation subject to the proper
tinuity and boundary conditions, of which the one describ
the localized heat source by light absorption is nonlocal
nonlinear.13 The linear stability analysis of the stationary s
lution points out clearly an effective dynamical dimensi
equal to the number of spacing layers and it has been sh
that the partial differential equation may be reduced to
following dimensionless low-order model:14

dc j

dt
52(

i 51

N

bji ~c i2aiA~c!mE!, j 51,2, . . . ,N, ~1a!

with

c5c01(
1

N

c j , ~1b!

wherec is the round-trip phase shift andc0 is its value in
the absence of laser heating.N is the number of layers an
each variablec j denotes the variation due to temperatu
changes of the phase shift associated with thej th layer.c j is
proportional to the space-averaged temperature across
layer and to the thermo-optic coefficient of the correspo
ing material. The parametersbji andai depend on the cavity
ownloaded 30 Apr 2013 to 84.88.138.106. This article is copyrighted as indicated in the abstract. R
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spacer properties and thermal boundary conditions,14 andmE

is the incident light intensity normalized in such a way th
(ai51. The ratesbji describe the thermal coupling betwee
layers and the associated diffusion times, whileaj character-
izes the effective contribution of thej th layer to the phase
shift variations.A(c) describes the light interference withi
the absorbing film and it is a positive-defined almo
sinusoidal function depending only on the mirr
parameters.13 It may be written in the following closed form

A~c!5
m1 cosc2m2

cosc2m3
, ~2!

very convenient for the numerical simulations, and the
sults reported in the paper correspond tom151.06, m2

51.25, andm351.86. The reflected light intensity is give
by R(c)mE , with the interferometer reflectionR(c).1
2A(c). Thec(t) evolution will typically present variations
larger than 2p and supplementary foldings appear then in t
reflected power signal. Such foldings simply describe
phase shift overcoming the maximum or minimum reflecti
values and lack of dynamical significance~see, e.g., Fig. 2!.

It is useful to know that the system~1! admits to being
linearly transformed to a canonical form as follows:14

ẋ152(
j 51

N

cjxj1A~c!mE ,

~3a!
ẋ j5xj 21 , j 52, . . . ,N,

with

c5c01(
j 51

N

djxj , ~3b!

where the coefficientscq anddq are functions of thebji and
ai and, in particular,dN5cN . For cavity spacers of alterna
tively opposite thermo-optic materials, the corresponding
of dj values present alternatively opposite signs. The n
variables lack of direct physical interpretation, but the si
plicity of the canonical form facilitates the analysis and t
comparison with other models. In addition, we have show10

that the linear stability analysis of~3! can be used to desig
N-dimensional systems, i.e., to determine theircj anddj val-
ues, in which the fixed points of a saddle-node pair exp
enceN21 Hopf bifurcations with preselected values for th
oscillation frequency and control parameter. The numer
simulations reported in this paper correspond to systems
signed with this method.

The steady-state solution of Eqs.~1! or ~3! as a function
of mE is determined byA(c) and consists of successiv
S-shaped branches. BOITAL devices with different spa
structures but equal mirrors have the same steady-s
branching diagram describingc vs mE . The properties of the
cavity spacer determine the power scale factor of the bi
cation diagram through the normalization factor included
mE and, most importantly, the possibility of oscillatory inst
bilities on the steady-state branches.13,14
euse of AIP content is subject to the terms at: http://chaos.aip.org/about/rights_and_permissions
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III. DYNAMICAL PHENOMENA FOR SUCCESSIVELY
INCREASING DIMENSION

The BOITAL family enables us to analyze systems
successively increasing dimension for the gradual und
standing of complex time evolutions. With this aim we beg
by briefly describing known results forN51, 2, and 3, and
then present experimental results forN54 and 6, and nu-
merical simulations forN56 and 10.

Figure 1 shows the response of a BOITAL cavity spac
with a single material.11 It represents the reflected ligh
power when the incident power is slowly varied with succ
sive back and forth sweepings. The device exhibits switch
jumps and the consequent hysteresis cycles associated
pairs of saddle-node bifurcations. The saddle solution in
tween two stable branches plays in this case the simple
of a separatrix in a one-dimensional phase space.

The presence of a second material with opposite ther
optic effect within the cavity results in proper dynamic
phenomena of two-dimensional phase spaces.17 The bifurca-
tion diagram is also formed by successive hysteresis cy
but, in addition, it contains oscillatory states that appear
disappear by means of a Hopf bifurcation occurring t
times on each node branch. Near the Hopf bifurcation
frequency is the same in all the branches but the oscillat
may suffer the influence of a neighboring saddle point wh
the limit cycle grows. As shown in the example of Fig. 2, t
oscillation period strongly increases until the orbit mak
tangency to the saddle and vanishes in a homoclinic bifu
tion, after which the system evolves toward the oscillato
state emerging from the node point located at the other
of the saddle separatrix.

Figure 3 shows the three basic kinds of thre
dimensional dynamics observed in the response of BOIT
cavities.12,18 The stable limit cycle born in the Hopf bifurca
tion of a node point passes near a saddle limit set that
may be either a saddle focus with inward spiraling@Fig. 3~a!#
or a saddle limit cycle generated by a Hopf bifurcation
that point@Fig. 3~b!#. In this way, the time evolution of the
attractor incorporates the faster oscillation frequency ass

FIG. 1. Reflected light power as a function of the incident power fo
BOITAL cavity spaced with 200mm of sunflower oil.
ownloaded 30 Apr 2013 to 84.88.138.106. This article is copyrighted as indicated in the abstract. R
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ated with the saddle limit set, and the nearer the attra
passes to the saddle the larger the number of fast oscillati
In the third kind of dynamics@Fig. 3~c!#, the stable limit
cycle bends by reinjecting toward the inner point from whi
it originated and which now is a saddle focus with outwa
spiraling. The reinjection bending is related to a distant a
large saddle limit cycle and the fast reinjection peak deno
the characteristic time of that cycle. When the incident pow
is increased, the attractor grows and the approach to the
ternal saddle cycle produces a higher number of succes

FIG. 2. Time evolution of the reflected power for different incident powe
observed in a two-layer device spaced with 140 and 75mm of glass and
sunflower oil, respectively. The vertical scale in arbitrary units is the sa
for all the recordings. The lower signal is a transient indicating the occ
rence of a homoclinic bifurcation in between 35.5 and 35.6 mW. The in
ferometric foldings in the reflected power signals denote phase shift va
tions larger than 2p and have no dynamical significance.

FIG. 3. Time evolutions and reconstructed attractors showing the b
kinds of three-dimensional dynamics observed in BOITAL cavities.~a! and
~b! correspond to a two-layer device spaced with 140 and 540mm of glass
and optical adhesive, respectively, but at different environment tempera
@25 °C for ~a! and 18 °C for~b!#. The adhesive plays a twofold role respo
sible for the three-dimensional behavior of the two-layer device.~c! Corre-
sponds to a three-layer device spaced with 140mm, 35 mm, and 1 mm of
glass, sunflower oil, and glass, respectively.
euse of AIP content is subject to the terms at: http://chaos.aip.org/about/rights_and_permissions
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peaks before each outward spiraling. Thus underlying
dynamics there are homoclinic connections associated
saddle limit sets arising from the original saddle and no
fixed points and having two- and one-dimensional sta
manifolds, respectively. Under clear dominance of the fi
kind of homoclinicity, the system evolution describ
Shil’nikov-type attractors,12 while the other kind of homocli-
nicity produces Ro¨ssler-type folded bands.18 In the parameter
space, the variety of dynamics appears organized around
homoclinic cycle connecting the two kinds of saddle lim
sets.

Figure 4 presents numerical results illustrating how
nonlinear mixing works in a Shil’nikov-type attractor forN
53. The initial node point has produced the stable cycle
now is a saddle focus with outgoing spiraling, while the in
tial saddle point has generated a saddle limit cycle by
coming fully unstable. One of the branches of the unsta
manifold of the saddle limit cycle approaches the attract
cycle in a well-defined place. The spiral motion associa
with the stable manifold of the saddle cycle affects the fl
around the unstable manifold and works like a corkscrew
the stable limit cycle when it grows under the control para
eter variation. The helical motion of the attractor evolves
time according to the oscillations of the saddle periodic o
and mode mixing then occurs. The stable periodic orbit
corporates additional helical turns through a continuous
formation and, during the process, it can be involved
period-doubling and cyclic saddle-node bifurcations.19 In

FIG. 4. Phase space representation of numerical results illustrating the
linear mixing of the oscillation modes associated with the Hopf bifurcati
of a saddle-node pair of fixed points forN53. The calculations correspon
to the dimensionless physical parametersgj51,0.8,1, h j51,26.9,15.37,
kj5D j51,0.1,1,hF5hB50.5, j 51,2,3, whose definition and relation to th
coefficients of Eqs.~1! are given in Ref. 14. The almost conical gray surfa
describes one side of the unstable manifold of the saddle limit cycle.
stable cycle has emerged from the node point formE513.10 and has grown
without suffering any bifurcation up tomE513.36, but it has incorporated
number of helical turns around the saddle unstable manifold.
ownloaded 30 Apr 2013 to 84.88.138.106. This article is copyrighted as indicated in the abstract. R
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this way, a complex attractor can develop together with
large number of nonstable periodic orbits and all of the
will grow by transforming under the corkscrew effect up
being destroyed at the homoclinic bifurcation.

Figure 5 illustrates an experimental example of full i
stability behavior forN54. The sequence of time evolution
for different incident light powers was obtained with a fou
layer device of $glass-silicone-glass-sunflower oil% with
thicknesses of 140, 35, 400, and 305mm, respectively. The
fast oscillations shown forPE587 mW appeared through
supercritical Hopf bifurcation of a stable fixed point. Th
slow frequency modulation of the fast oscillations also a
peared supercritically and it denotes the creation of a tw
torus through a secondary Hopf bifurcation of the fa
frequency limit cycle. The stable torus grows with the inp
power by approaching the external saddle focus and
Shil’nikov-type dynamics is generated. The spiraling foc
introduces oscillations at the intermediate frequency and,
before homoclinicity, the signal becomes aperiodic by sho
ing a different number of such oscillations at the success
passages near the saddle. The process ends with the att
destruction in the homoclinic bifurcation and the system th
shifts to an oscillating state at the other side of the sad
separatrix, as evidenced by the transient signal for 17
mW.

Figure 6 corresponds to a very similar device as in
case of Fig. 5 but with a thinner layer of silicone, 30 inste
of 35 mm. This system generates the same oscillation
quencies but with the slower and faster oscillations appe
ing in the reverse order. For higher incident powers n

n-
s

e

FIG. 5. Time evolutions observed in the reflected power of a four-la
BOITAL device for different incident light powers. The signals show ho
the two-frequency oscillation associated with an invariant torus is influen
by the attracting spiral of an external saddle focus.
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shown in Fig. 6, the evolution incorporates the intermedi
frequency of the external saddle focus and signals alm
equal to those of Fig. 5 are obtained.

By considering the parameter space, it seems clear
the devices of Figs. 5 and 6 correspond to different side
a codimension-two bifurcation of type (6 iva ,6 ivb), in
which the curves of two Hopf bifurcations of the same fix
point cross one another. The theory of universal unfoldin2

shows that secondary Hopf bifurcations of the limit cyc
can also emerge from this eigenvalue degeneracy and th
first approximation, the two-frequency evolutions over t
torus are based on the Hopf frequencies of the fixed po
The presence of an invariant torus is clear in the case of
5 but not so in the case of Fig. 6, where the fast oscillati
emerge from nothing in two well-defined places of the slo
frequency limit cycle. Very similar time evolutions were n
merically obtained from models~1! or ~3! and the continuous
following of the low-frequency limit cycle indicates that th
localized packets of fast oscillations emerge without any
cal bifurcation. Thus a mechanism other than the torus bi
cation must be invoked in order to explain this kind of mo
mixing, and Fig. 7 presents numerical results illustrating
We are dealing with a four-dimensional phase space wh
an initially stable fixed point has done two successive H
bifurcations, and the saddle limit cycle created at the sec
bifurcation is now near to becoming stable by doing a s
critical torus bifurcation.20 In this situation, i.e., when the
torus bifurcation will occur on the saddle limit cycle rath
than on the stable one, the stable cycle exhibits a local
structure of helical motion in which the time dynami
evolves according the oscillations of the saddle limit cyc
In the case of Fig. 7 neither the stable orbit nor the sad
orbit have experienced any local bifurcation21 and the helical
motion ~with the associated time dynamics! has appeared a
a gradual deformation of the stable orbit during the con

FIG. 6. Evolutions obtained with a four-layer device slightly different
that of Fig. 5. In this case the slow and fast oscillations appear in rev
order and the creation of an invariant torus does not seem likely. Inter
diate frequency oscillations will appear also for higher incident powers
ownloaded 30 Apr 2013 to 84.88.138.106. This article is copyrighted as indicated in the abstract. R
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parameter increase. The origin of this kind of mode mixi
must be related to the influence of the flow dynamics of
saddle orbit toward a well-defined place of the stable orbi
is worth remarking that a second structure of helical tu
always appears on the stable orbit~in the zone denoted by a
in Fig. 7! when the control parameter is increased, and
two structures usually connect together for higher con
parameter values. This double structure can be appreciat
the experimental results of Fig. 6 and it constitutes a gen
feature also observed for higher dimensions~see the evolu-
tion for 66.3 mW in Fig. 8!. On the other hand, in the case
Fig. 7, there is no influence of the external saddle fixed po
because it is very far from its Hopf bifurcation. Neverthele
in situations of full instability behavior, the attractor can e
hibit the superposition of differently oriented helical stru
tures associated with both the external and internal sa
limit sets. The time dynamics of the variablec typically
exhibits the influence of the internal saddle sets in the t

se
e-

FIG. 7. Numerical results forN54 illustrating the nonlinear mode mixing
of the two oscillation modes emerging in successive Hopf bifurcations of
same fixed point, for a situation in which the torus bifurcation will happ
on the saddle orbit created at the second bifurcation. The black and w
thick lines describe the stable and saddle periodic orbits, respectively,
the white cross denotes the fixed point. The unstable manifold of the sa
orbit is represented by means of a number of trajectories~Ref. 24! depicted
in a thin black line.~a!, ~b!, and~c! are projections in the planes defined b
different pairs of variables.~d! presents the time evolution of the tw
periodic orbits. The unstable manifold is three-dimensional, while
stable manifold~not drawn! is two-dimensional and does not work like
separatrix. The numbers indicate certain places on the stable orbit
same for the various representations. The label a denotes where a s
helical structure will appear by increasing the control parameter.
calculations were done with model~3! for cq550,438.98,480.71,358.22
dq5217.601,66.044,2204.46,358.22,q from 1 to 4, andmE510. The
Hopf bifurcations of the initially stable fixed point occurred formE58.2
with angular frequency of 1.41, andmE59.1 with frequency of 25, respec
tively, and the torus bifurcation of the saddle orbit will occur formE

510.3 with the secondary frequency equal to 1.38.
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FIG. 8. Experimental time evolutions showing the nonlinear combination
five oscillation modes in the reflection of a BOITAL device with a five-lay
spacer. The system exhibits six-dimensional dynamics because one o
layers introduces two degrees of freedom into the nonlinear feedback.
vertical and horizontal scales are common for all the signals, except fo
time expanded details. The numbers in italics denote the different oscilla
modes ordered from low to high frequency.
ownloaded 30 Apr 2013 to 84.88.138.106. This article is copyrighted as indicated in the abstract. R
lateral sides of the lowest-frequency undulations, while
external saddle sets affect the top and the bottom.

Figure 8 presents really complex time evolutions that
interpret as corresponding to a six-dimensional dynam
The recordings were obtained with a five-layer device
$glass-silicone-glass-gel-glass% with thicknesses of 140, 35
400, 180, and 3000mm, respectively. The system was able
exhibit five oscillation modes supposedly because the
layer introduced a double degree of freedom through
thermal expansion and thermo-optical effects. The five ch
acteristic times determined when the oscillations app
nearly sinusoidal are 310, 23, 2.2, 0.35, and 0.07 s.
corresponding oscillation frequencies are denoted byv j ,
with j from 1 to 5, and they are indicated in the figure b
means of the numberj. Notice that, in certain cases, th
emergence of fast oscillations in the middle of a slower u
dulation may enlarge the corresponding characteristic tim

The signals for successive input light powers point o
how the waveform structures appear. In the case of Fig
the oscillations begin with a supercritical Hopf bifurcation
v1 on the node point, but soon incorporate two addition
frequencies,v3 andv5 , in the two lateral structures appea
ing on eachv1 undulation ~see detail for 66.3 mW!. The
relation of the new frequencies with the node point cannot
verified in the experiment, but the analysis of the mathem
cal model shows that they emerge in successive Hopf bi
cations of this point by means of the corresponding sad
limit cycles. The numerical simulations indicate that evo
tions like that for 66.3 mW appear without the occurrence
torus bifurcations on the stable cycle. The three-freque
waveform may be interpreted as thev1 stable limit cycle
influenced by the out structures of either the pair of sad
periodic orbits or, more probably, a (v3 ,v5) saddle torus
derived from one of these cycles. In other words, we conj
ture a situation similar to that of Fig. 7, but forN56, where
a saddle two-torus has appeared in the center of the st
limit cycle and where the two-frequency motion of th
saddle torus is transferred to certain places of the attracto
defined by the approach of the unstable manifold. In a
case, the oscillations atv1 , v3 , andv5 seem clearly asso
ciated with the node point and limit sets derived from it. T
approach of the three-frequency attractor to the saddle p
manifests first through thev2 oscillations appearing at th
top of thev1 oscillations~105.8 mW!. At higher powers the
v2 oscillation mixes with the (v3 ,v5) structure while some
v4 oscillations also appear~134.8 mW!. The uniform ampli-
tude of thev1 , v3 , andv5 oscillations indicates the occur
rence of the corresponding Hopf bifurcations, while the co
vergence of thev2 and v4 oscillations suggests that th
saddle is even an attractive bifocus with a one-dimensio
unstable manifold. The 146.6 mW signal indicates that
saddle point has already made the Hopf bifurcation atv2 .
This is clearly denoted by the sporadic passages near
bifocus point with convergence atv4 and divergence atv2

~see detail for 146.6 mW!. In addition, the large number o
v2 oscillations with uniform amplitude suggests the prese
of the saddle limit cycle and the relative proximity of i
homoclinic connection. Homoclinic chaos may then be e
pected to occur in accordance with Shil’nikov’s theorem22
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and, in fact, the waveform structure for 146.6 mW is not
repetitive as for lower light powers. Nevertheless, chao
not the relevant thing in the signals of Fig. 8. What is
markable is the degree of complexity and the robustnes
these waveform structures and the presence of self-simila
features with respect to the time scale.

Figure 9 shows a numerical simulation obtained fro
system~3! for N56 and other parameters given in the ca
tion. Thecq anddq values have been determined by impo
ing the occurrence of three Hopf bifurcations on the no
point atmE552.4, 58.2, and 58.3, with angular frequenc
equal to 0.02, 125, and 2.98, respectively, and two H
bifurcations on the saddle point atmE564.7 and 104.6, with
frequencies 0.25 and 24.9, respectively. The time evolu
of Fig. 9 represents the reflected power formE576 and its
structure is really similar to that of the 134.8-mW signal
Fig. 8. The dimensionless characteristic times contained
the numerical evolution are 721, 25, 2.6, 0.26, and 0.05,
the corresponding angular frequencies arev j50.009, 0.25,
2.4, 24, and 125,j 51, . . . ,5,which must be compared t
the Hopf frequencies. The numerical simulations confi
that the attractor evolves around an unstable fixed point
has effectively performed three successive Hopf bifurcati
at the imposedmE values and with the preselected oscillati
frequencies. The three Hopf frequencies of the node are s
lar to thev1 , v5 , andv3 of the numerical evolution, respec
tively. v5 is precisely equal to the Hopf frequency and t
slower values ofv1 andv3 can be attributed to the presen
of intermediate faster oscillations. On the other hand,
attractor visits the neighborhood of a saddle point that
performed one Hopf bifurcation and is even far from t
second bifurcation. These Hopf frequencies are very sim
to the v2 and v4 of the time evolution. Thus the five fre
quencies contained in the numerical signal are clearly rela

FIG. 9. Five-frequency oscillations numerically obtained from Eqs.~3!
for N56; cq54.33,7680,76 400,156 000,11 500,250 anddq54.33,
2766,4280,210 400,276,216.7, withq from 1 to 6,c050, andmE576.
ownloaded 30 Apr 2013 to 84.88.138.106. This article is copyrighted as indicated in the abstract. R
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to the Hopf instabilities of the saddle-node pair of fixe
points.

A wider perspective may be achieved by analyzing
full instability behavior of higher-dimensional systems an
with this aim, we present a numerical example forN510 in
Fig. 10. The dynamical system has been designed by im
ing five Hopf bifurcations on the node point and four bifu
cations on the saddle point. FormE5120, the node point is
fully unstable, while the saddle point has done only one
furcation and is near to doing the other three bifurcatio
The time evolution shows the nonlinear mixing of nine o
cillation modes. The odd label modes are associated with

FIG. 10. Numerical evolution forN510 obtained from Eqs.~3! by impos-
ing five Hopf bifurcations on the node point with angular frequencies 0.0
0.2, 12, 350, and 6000, and four bifurcations on the saddle point with
quencies 0.02, 1.8, 70, and 1500. The waveform evolution shows the
linear combination of nine oscillation modes whose frequencies are sim
to the Hopf values.
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Hopf bifurcations of the node point and the even labels c
respond to the saddle point. Self-similarity is clearly seen
the successive zooms of Fig. 10 and it is worth noticing t
the oscillations associated with either the node or the sa
maintain their roles along the similarity scale.

Experiments and numerical simulations with differe
multilayer structures indicate that the full instability behav
of the BOITAL systems manifests most generically w
time evolutions like those of Figs. 8–10, where the osci
tion frequencies associated with either the node or the sa
fixed points clearly play different roles. Nevertheless, qu
tatively different complex waveforms can also be observ
for reduced parameter ranges. For instance, Fig. 11 show
example obtained with a five-layer device similar to that
Fig. 8 but with a thinner layer of gel, 160 instead of 180mm.
The signal contains five characteristic times of 550, 3.8, 0
0.25, and 0.1 s, respectively, and the nonlinear mixing p
duces a rather irregular waveform where the roles of
different oscillation modes do not appear so clearly defin
The numerical studies suggest the association of the
served nongeneric behaviors with the proximity of particu
eigenvalue degeneracies sustaining codimension-two b
cations. For instance, the evolutions of Fig. 11 may be
lated with a degeneracy of type (0,6 iv) because signals o
this type are numerically obtained when one of the Ho

FIG. 11. Experimental example of a time evolution illustrating a s
dimensional dynamics with a waveform structure based on five oscilla
modes that looks very different to the signals of Figs. 8–10.
ownloaded 30 Apr 2013 to 84.88.138.106. This article is copyrighted as indicated in the abstract. R
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bifurcations of a fixed point is approached toward the turn
point of a saddle-node bifurcation.

IV. DISCUSSION AND CONCLUSIONS

First of all let us remark that the BOITAL systems e
hibit the full instability behavior with two peculiar features
~i! the various oscillation frequencies are rather different
asmuch as they appear roughly scaled for successive o
of magnitude, and~ii ! when ordered according to their va
ues, the different frequencies appear alternatively associ
with either the node or the saddle point and the lowest
quency always corresponds to the node. These peculiar
occur because~a! the characteristic times of a given syste
are associated with the heat diffusion from the localiz
source to the various layers of the cavity spacer, and~b! the
dynamical variables participate in the nonlinear feedba
through a linear combination of them. For instance, num
cal simulations with the same model but for nonphysi
parameter values yielding more similar oscillation freque
cies indicate significant changes in the observed full insta
ity behaviors, and it is then important to stress that our d
cussion here is based on situations like those of the BOIT
systems.

The irregular succession of undulations of different fr
quencies forming the full instability waveforms usually r
peat with regularity and even periodically. This fact indicat
that the high degree of instability represents a way tow
creating irregular and complex evolutions independent
chaos. In fact, chaos was rarely found during our numer
simulations and the higher the number of oscillation mod
the more pronounced the absence of chaos. This is re
surprising because, according to our interpretation, the de
opment of the fully unstable behavior underlies a variety
saddle connections and chaos would then be reasonably
pected.

The waveform structures of the full instability behavi
are very robust in the sense that they change slowly with
control parameter. In other words, the full instability beha
ior is a coarse phenomenon occurring continuously in
parameter space regions where several Hopf bifurcation
the fixed points appear relatively close. This makes ano
distinction with respect to chaos, and it explains why
method exclusively based on the linear stability analysis
the fixed points can be enough for designing fully unsta
N-dimensional systems.10

The nonlinear mechanisms responsible for the full ins
bility waveforms introduce irregularity by affecting both th
relative phases and amplitudes of the oscillation modes
complex manner. At the same time, however, the simila
features typically found in the time evolutions indicate
intrinsic organization of the mode mixing mechanism arou
the saddle-node pair of fixed points. The nonlinear mo
mixing may be considered as a global process affecting
flow of the phase space region where the complex struc
of interrelated invariant sets will be created. The proces
triggered by the Hopf bifurcations of the fixed points, but
is organized by the global structure of invariant manifolds
the different saddle limit sets, which underlie a variety

n
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possible homoclinic and heteroclinic connections. The m
mixing happens through a continuous deformation of
flow in particular zones of the attractor and, although it m
be accompanied by complex bifurcational sequences, o
the bifurcations yielding invariant tori participate directly
the mode mixing. Other bifurcations involving periodic o
bits, like the period-doubling, cyclic saddle-node, and hom
clinic bifurcations, do not contain intrinsic mechanisms f
the definition of a new characteristic frequency and they c
not induce mode mixing.

The occurrence of torus bifurcations seems likely in
fully unstable systems because these systems appear i
parameter space relatively close to the loci of eigenva
degeneracies of the type (6 iv1 ,6 iv2 , . . . ,6 ivq), in
which q Hopf bifurcations happen simultaneously on t
same fixed point, and because it is reasonable to suspec
a variety of torus bifurcations can emerge from each one
such degeneracies,23 The Landau sequence of consecuti
bifurcations yielding a stable high-dimensional torus is
principle possible, but we suspect that the corresponding
rameter space domain is rather restricted and probably
close to the corresponding high-order degeneracy. It se
more likely the occurrence of different low-dimensional to
created from the different limit cycles emerged from t
fixed point. On the other hand, a given limit cycle can p
haps generate successive two-tori with different second
frequencies, like a fixed point can produce successive l
cycles, and the same might happen with the low-order tor
seems not possible, however, that different limit cycles g
erate simultaneously sequences of torus bifurcations with
same set of frequencies. For instance, forN54, the universal
unfoldings of (6 iv1 ,6 iv2) show that only one of the two
limit cycles emerging from a node point can do the seco
ary bifurcation at the frequency of the other cycle but not
two cycles at once.2

The important point for the full instability behavior i
that the limit cycle that does not do the torus bifurcation c
also incorporate an oscillatory component at the other
quency through the mixing mechanism discussed above.
the other important point is that not only one fixed point b
a set of them, related by saddle-node bifurcations, can
ticipate together in the generation and mixing of oscillati
modes. These elements constitute the generalized La
scenario where the full instability behavior develops.

The full instability behavior has been investigated in p
ticular classes of dynamical systems and it is then neces
to ask how general the phenomenon is. According to
interpretation, we find reason to suspect that the occurre
of the several Hopf bifurcations in a small enough parame
domain will be generically associated with the developm
of nonlinear mechanisms of mode mixing. Nevertheless,
complexity of the process and the time dynamics featu
will probably change with the actual properties of the no
linear vector field. Particularly relevant may be the values
the oscillation frequencies, as well as the order of occurre
of the bifurcations on the fixed points. On the other hand,
high degree of instability behavior of vector fields possess
multidimensional arrays of fixed points, instead of a sim
saddle-node pair, will probably produce rather different
ownloaded 30 Apr 2013 to 84.88.138.106. This article is copyrighted as indicated in the abstract. R
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sponses. Such complex structures of fixed points can o
for vector fields based on several linearly independent n
linear functions, such as, for instance, the case of a se
coupled nonlinear oscillators.

Another question is which classes of systems are co
patible with the full unstable behavior and how can th
parameters be adjusted to achieve that behavior. In princ
the situations of full instability could be identified by mea
of the linear stability analysis of the steady-state soluti
Nevertheless, in general, it is not easy to establish the co
sponding conditions for a given multiparameter family
N-dimensional systems and this probably explains why
full instability behavior has not already been observed. W
have shown10 that this analysis is feasible for systems bas
on vector fields whose nonlinear part is a scalar-valued n
linear function of a single variable that, in its turn, is a line
combination of theN dynamic variables, i.e., systems in th
form ~3! with an arbitrary nonlinear functionA(c). In this
case, the linear stability analysis allows us to design the s
tem in order to obtainN21 Hopf bifurcations on a saddle
node pair of fixed points with preselected values for the f
quency and control parameter.

From the phenomenological point of view it is wort
noting that we have found the full instability behavior in th
BOITAL devices because they enable us to have a sim
and effective criterion for properly choosing the set of p
rameters. In practice, we select the multilayer properties
trying to see if the alternatively opposite effects of the va
ous layers tend to mutually compensate. In other words,
attempt to achieve a relative equilibrium among the comp
tive participation of the various degrees of freedom into
nonlinear mechanisms. The rule is useful for both the exp
ment and the physical model based on the heat equation
allows us to derive proper sets of coefficients for the redu
N-order model of Eqs.~1!.

A high degree of Hopf instability behavior requires
large number of variables participating into the nonline
feedback by driving competitive effects of different chara
teristic times. These intrinsic features of the BOITAL d
vices may be present in other real-world systems, speci
those with a profusion of self-oscillatory processes. The
cillatory behavior is perhaps the most typical response of
evolutionary systems found in biology, economy, ecolog
and sociology. Such oscillations have probably appeare
the course of the system development driven by the inte
tion with the environment. Extending such a view, we c
imagine adaptive systems developing toward exhibit
high-instability states, and this would be in reality the case
such states would be useful for the existence of the syste
the middle of its surroundings.
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