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Abstract

Consensus is gathering that antimicrobial peptides that exert their antibacterial action at the membrane level must reach a
local concentration threshold to become active. Studies of peptide interaction with model membranes do identify such
disruptive thresholds but demonstrations of the possible correlation of these with the in vivo onset of activity have only
recently been proposed. In addition, such thresholds observed in model membranes occur at local peptide concentrations
close to full membrane coverage. In this work we fully develop an interaction model of antimicrobial peptides with
biological membranes; by exploring the consequences of the underlying partition formalism we arrive at a relationship that
provides antibacterial activity prediction from two biophysical parameters: the affinity of the peptide to the membrane and
the critical bound peptide to lipid ratio. A straightforward and robust method to implement this relationship, with potential
application to high-throughput screening approaches, is presented and tested. In addition, disruptive thresholds in model
membranes and the onset of antibacterial peptide activity are shown to occur over the same range of locally bound peptide
concentrations (10 to 100 mM), which conciliates the two types of observations.
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Introduction

Antimicrobial peptides (AMPs) constitute a broadly defined

class of short, cationic peptides produced by virtually all

organisms. Since their discovery microbiological methodologies

have been employed to characterize their antibacterial action

[1,2]. In turn, the relative simplicity in sequence and secondary

structure of AMPs, together with mechanisms that depend largely

on membrane interaction [3], made biophysical methodologies the

tools of choice to describe the molecular level action of AMPs. A

gap, however, separates the two distinct approaches: information

from biological studies is seldom correlated to the findings on

peptide behavior at the molecular level.

Threshold behavior is a point where the two fields come

together. On one hand, the activity of an AMP is commonly

expressed as the threshold concentration upon which bacterial

growth is inhibited (the MIC, or minimum inhibitory concentra-

tion). On the other, biophysical studies with model phospholipid

membranes often identify concentration thresholds upon which

the peptide behavior becomes disruptive [4–10]–tipically through

pore formation or membrane lysis. This is an expected point of

convergence between biological activity and molecular-level

behavior given that the bacterial membrane has long been

identified as the primary target for most AMPs; indeed,

connections between in vivo MICs and thresholds in model

membranes have been recently proposed [9,11]. In this work we

describe a simple physical-chemical framework that models this

correlation. We then fully explore its predictive power, with good

predictions for the activities of the AMPs Omiganan and BP100.

Analysis

Model background
Our analysis is centered on the comparison of local membrane

concentrations at the threshold events of the MIC and of

molecular-level membrane disruption. It therefore requires that

those concentrations be known or somehow estimated.

In studies with model membranes bound concentrations can

usually be directly extracted from published data when expressed

as the peptide-to-lipid ratio (P : L) at which the threshold occurs

(see the Supporting Information for involved approximations in

this approach). Threshold AMP P : L values commonly fall in the

1:10 to 1:100 range [5,9], corresponding to a 13 to 130 mM range

of membrane-bound peptide concentrations.

Calculating the in vivo amount of peptide molecules bound to

the bacterial membrane at the MIC is, however, not as

straightforward. To obtain an estimate for this value we assumed

that the distribution of the peptide between the medium and the

bacterial membrane obeys a simple Nernst equilibrium [12].

Under this approach, commonly used to describe binding to

model membranes [3,13,14] and in which these are considered an

immiscible lipidic phase, the partition constant Kp is defined as a

concentration ratio:

Kp~
½P�L
½P�W

ð1Þ

where ½P�L and ½P�W are the peptide concentration in the lipidic

and aqueous phases, respectively–the Supporting Information
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(Text S1) details some simplifications implicit in this definition, as

well as the conversion from other types of binding constants [14].

From Equation 1, the fraction of peptide molecules in the lipidic

phase (XL) can be obtained as

XL~
KpcL½L�

1zKpcL½L�
ð2Þ

where ½L� is the total lipid concentration and cL the molar volume

of the lipid phase. Finally, the local peptide concentration in a

membrane at a lipid concentration ½L� is given by

½P�L~
XL½P�total

cL½L�
ð3Þ

where ½P�total is the peptide concentration over the global volume.

Calculation of the bound peptide concentration requires that a

Kp for the interaction with bacterial membranes is known. We

assumed that an AMP interacts with such membranes and their

model counterparts with similar affinity and, so, that binding or

partition constants determined for the latter are acceptable

approximations; a typical [9] AMP-membrane Kp of 5|104 was

used. Equations 2 and 3 also require knowledge of the amount of

membrane lipid available for peptide binding under MIC assay

conditions (thus termed ½L�MIC assay). This value was estimated

assuming a bacterium dry mass of 489 fg [15], 8.2% of which are

phospholipids [16] (data for E. coli); admitting a maximum

bacterial titre of 106 cfu=mL [17] this yields an ½L�MIC assay of

40 ng=mL, or 58 nM if all the phospholipids are approximated to

have the molecular weight of dipalmitoylphosphatidylethanola-

mine (691:96 gmol{1). This value is in good agreement with, and

corroborates, published results from distinct calculations based on

bacterial surface area [18,19] (25 and 66 nM, respectively).

Lastly, a ½P� total of 2 mM was assumed–a typical MIC value

for an AMP–together with a cL value of 0:76 M{1, corresponding

to the density of a fluid bilayer [20].

With the above parameters only 0:22% of the total peptide is

predicted, by Equation 2, to bind bacterial membranes in a MIC

assay. This very low fraction indicates that almost all peptide

remains in the aqueous phase but it does not mean that the local

concentration in the membrane is low: indeed, Equation 3,

indicates a bound concentration of 100 mM. This value–about 13

phospholipids per bound peptide–falls in the range of the bound

threshold concentrations in model membranes mentioned earlier,

supporting the parallel between those and the MIC. The high

obtained concentration also supports the proposed [9] view that,

rather than being unphysiological, such high bound AMP

concentrations are expectable events in vivo (indeed, even higher

local concentrations in bacteria have been measured [21],

although the lack of physiological ionic strength in that experiment

is likely to have exacerbated the degree of binding).

Activity prediction
The usefulness of our model was extended, in a more

quantitative sense, to predict antimicrobial activities from known

threshold occurrences in model membranes: Equations 2 and 3

were combined to define P : L as a function of ½P�total, Kp and ½L�:

P : L~
1

½P�totalKpcL

z
½L�
½P�total

� �{1

: ð4Þ

Under the conditions where activity is triggered in vivo ½P� total is

the MIC, P : L is the disruption threshold in the membrane (here

termed P : L�) and ½L� is of the magnitude of ½L�MIC assay:

P : L�~(
1

MIC:KpcL

z
½L�MIC assay

MIC
){1&MIC:KpcL: ð5Þ

The approximation in the expression is possible because the

nanomolar values of ½L�MIC assay are two to three orders of

magnitude smaller than the typical micromolar MICs [1],

and, given average values for AMP partition constants [9],

½L�MIC assay=MIC becomes negligible for the result. Finally, we

arrive at the relationship between the MIC of an AMP and its

disruptive behavior (P : L�) on a model membrane:

MIC~
P : L�

KpcL

: ð6Þ

At this point it should be noted that the disruption threshold

P : L� need not refer exclusively to membrane lysis or poration. If

a peptide requires a given membrane concentration to translocate

into the cell–even if it does so without leaking it, and subsequently

only attacks inner targets–then that will still be a valid P : L� to

use in Equation 6.

Equation 6 can be applied on its own to AMP threshold (P : L�)
and affinity (Kp) data; however, a linear relationship has been

described between the global peptide and lipid concentrations in a

system when threshold events occur in a membrane [7,22]. An

important feature of this relationship is that its intercept is

equivalent to the MIC estimate defined in Equation 6:

½P��~ P : L�

KpcL

zP : L�:½L��~MICzP : L�:½L�� ð7Þ

where threshold-point conditions are indicated by an asterisk.

Using Equation 7 MIC values can be estimated from a single

experiment consisting in the determination of peptide vs. lipid

threshold curves with model membranes. No explicit calculation of

Kp or P : L� values is required–although these can be recovered if

needed [7,22]. Furthermore, because the MIC estimate only

depends on the intercept of the curve, the prediction is robust to

the actual lipid concentrations as long as relative dilutions between

data points are kept. This avoids the need for accurate lipid

quantification and introduces the possibility of using liposomes

that have not been made unilamellar [23,24] (by processes such as

freeze-thaw, extrusion, or sonication), obviating a time- and

resource-consuming step associated to the use of model mem-

branes.

Extension to hemolysis
The model was extended to predict AMP activity against red

blood cells (the minimum hemolytic concentration, or MHC), which

is a common measure for cytotoxicity. The only difference relative to

the MIC prediction approach was the use of ½L�MIC assay instead of

½L�MIC assay. An ½L�MIC assay of 89 mM can be estimated from the

concentration of erythrocytes in the human blood (5|106cells=ml

[25]), their average surface area (150 mm2 [26]), the area per

phospholipid headgroup (0:7 nm2 [27]), and a commonly blood

dilution used in MHC determination of 5% v/v [28,29].

Robustness of the in vivo binding model
In the calculations above an in vivo scenario was severely

simplified in several aspects. It is thus important to assess the

Prediction of Antimicrobial Peptide Activity

PLoS ONE | www.plosone.org 2 December 2011 | Volume 6 | Issue 12 | e28549



extent to which approximations affect the obtained practical and

theoretical conclusions.
Estimation of ½L�MIC assay. The estimation of ½L�MIC assay from

a bacterium’s weight is prone to error and implicitly assumes an

average value. Likewise, the geometric estimates approximate the

bacterium shape as a sphere or a simple rod, which may not be

entirely accurate; the same stands for the number of leaflets–which

may double if a Gram-negative outer membrane is added–and for

the area per phospholipid–which will surely vary under physiological

conditions. However, the precise value of ½L�MIC assay is unimportant

because the term containing ½L�MIC assay in Equation 5 is negligible

when ½L�MIC assay%MIC, and, since (MIC:Kp
:cL){1 is in the order

of 1|101, even an ½L�MIC assay equal to the MIC will only add

around 10% error to the result. As such, any errors in the

approximation of ½L�MIC assay will only be of significance if they

impose a correction larger than the two to three orders of magnitude

by which typical MICs are greater than the estimated nanomolar

lipidic concentrations.
Presence of other system components. This model does

not explicitly take into account possible interactions of the peptide

with other system components besides the cell membrane.

However, for such interactions to influence the bound

concentrations–namely by significantly reducing the unbound

amount of peptide–they would have to be extremely strong or the

interacting components would have to be in a very high

concentration. One other cellular constituent present in enough

quantity to potentially sequester a significant amount of peptide is

the anionic Gram-positive peptidoglycan wall. Even so, this

structure has at most only 20 times the volume of the membrane

[30] and, despite not being the subject of many studies, a

proportionally lower affinity towards it was reported for the

peptide omiganan [7], meaning that the presence of peptidoglycan

is roughly equivalent to having a second membrane for the peptide

to interact with. This is well within the allowable error margin

discussed above and it also means that the presence of an outer

membrane in Gram-negative bacteria will not significantly

influence the binding model.

Likewise, bacterial DNA and RNA molecules, being markedly

anionic, could bind a significant portion of the peptide and render

the above conclusions invalid (irrespectively of the physiological

relevance of such interactions [31]). This, however, should have

little impact on the results: there is a total of about 3|107

nucleotide-associated anionic charges per bacterium, taking into

account average amounts of DNA, mRNA and tRNA in an E. coli

cell [32,33]. Under MIC assay conditions that number of anionic

charges would bind 8 nM of a 6+ charged peptide, assuming a

one-to-one charge interaction. This is 0.4% of a 2 mM MIC–low

enough not to significantly affect the estimations.

However, while cellular components seem to be unable to

prevent high peptide accumulation in the membrane, the same

might not be true for bulk phase constituents [18,19], which are

often present in milimolar concentrations: one can expect high

ionic strengths to reduce the degree of peptide interaction with the

membrane by neutralizing the effective charge of both the peptide

and the membrane surface, especially if the involved counterions

are not easily displaced. This effect should be compensated for by

using physiological ionic strengths when measuring partition

constants.

Experimental determinaton of P : L�

Critical P : L ratios were measured by adding the AMP BP100

(H-KKLFKKILKYL-NH2; synthesized as described elsewhere

[34]) to suspensions of multilamellar vesicles of a 1:2 proportion of

POPC and POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocho-

line and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-1-glycerol,

from Avanti Polar Lipids, Inc.) prepared as described elsewhere

[10]. Optical densities of the vesicle suspension were taken for

several lipid-peptide concentration pairs using an MTX Labsys-

tems, Inc. Multiskan EX plate reader and BD Falcon UV-

transparent 96-well plates. Many of the used parameters were

found through the BioNumbers database [35].

Phospholipid mixtures containing 30% POPG, or 25% POPG

and 5% cardiolipin, have been growing in acceptance as accurate

models of the bacterial cell membrane [36]. In this work 67%

POPG were used because threshold events of BP100 were more

clearly observable at higher proportions of anionic lipids. On the

other hand, this proportion might actually better approximate the

charge density of the Gram-negative outer membrane [37]. See

the Supporting Information for an analysis of the possible impact

of using this model system on the conclusions of this work.

Results and Discussion

The predictive model was tested using Equation 6 with the

published parameters and activities of the peptides omiganan

[7,38] and BP100 [10,28,34]. Good agreement between predicted

and observed activities was obtained for both, as summarized in

Table 1.

Equation 7 was then tested with published threshold data for the

same peptides, also with good approximations of the actual MICs

(Figure 1). This simple approach was further tested using threshold

points of BP100 interaction with multilamellar vesicles, deter-

mined from the optical density of the system. This prediction

(Figure 2) is in good agreement with that from Figure 1 and the

observed MICs, the method being indeed robust to the use of

multilamellar vesicles.

Equations 6 and 7 may also be used to estimate other relevant

limits, such as the minimum hemolytic concentration (MHC) of a

peptide. The concentration of erythrocyte membrane phospho-

lipid in an MHC assay (½L�MIC assay) was estimated to be of almost

Table 1. Estimated and observed activities for the AMPs BP100 and omiganan against Gram-negative bacteria.

Peptide Membrane interaction parametersa
MIC estimate (mM) Observed MICb (mM)

Kp=103 P : L�

BP100 [10,34] 30.8–84.1 1 : 8.4 1.9–5.1 2.5–5.0c

Omiganan [7,38] 5.2–43.5 1 : 37.0 0.8–6.8 9.0d

aInteraction parameters for 1:2 POPC:POPG systems, obtained by fluorescence spectroscopy techniques.
bOnly the value/range for the most susceptible strain is indicated.
cRange corresponds to complete growth inhibition of either Pseudomonas syringae or Erwinia amylovora.
dValue corresponds to the MIC90 against Escherichia coli.
doi:10.1371/journal.pone.0028549.t001
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90 mM; this value is of the same order of magnitude as typical

MHC values of hemolytic peptides [29,39], which is a borderline

situation regarding the validity of Equation 5. The method is then

more likely to estimate a lower bound of an MHC than a central

value. Application of Equation 7 to published threshold data on

the interaction of the AMP melittin with different erythrocyte

membrane models [22,40] predicts MHC values from 220.02 to

15:3 mM. Notwithstanding the high ½L�MIC assay and the wide

prediction interval, the values do overlap with the observed

MHC50 range [29,41], between 0:9 and 2:5 mM.

The successful application of the method to BP100 and

omiganan forebodes a good predictive power, in spite of all the

simplifications and approximations in the model. Hopefully, along

with an increasing awareness of the relevance of partition and

threshold events to the activity of AMPs, more datasets will

become available against which our method can be applied and

validated.

Finally, more than a theoretical exercise in bridging biology

with physical-chemistry, the presented methodology provides a

basis for fast, cost-effective alternatives for screening libraries of

peptide drug leads before actual biological testing. The predictive

relationships can also be coupled with drug design algorithms,

further improving the process. This work demonstrates that it is

possible to use a purely physical-chemical reasoning to understand,

model, and predict the mechanisms of complex biological

interactions such as AMP-mediated bacterial death, with applica-

tions that, in this case, may ultimately lead to a faster, more

efficient antibiotic drug development.

Limitations to the application of the model
It must be remarked that although our model performed well

with omiganan and BP100 it is too simple to precisely predict the

activity of all AMPs against all types of bacteria. The use of the

partition constant implies the assumption of equilibrium in

membrane binding; this might never be attained in practical

timescales for cases where bacteria present effective barriers to free

diffusion towards the membrane (e. g., a very thick or cation-

containing peptidoglycan layer [42]). The model can, nonetheless,

account for differences in the activity of a peptide against distinct

strains so long these result from differences in membrane

composition, as those generally entail a change in Kp or P : L�.
Another limitation to the applicability of the model stems from

the working hypothesis that peptide action depends on a critical

membrane-bound concentration threshold: peptides like the

apidaecins [43] that exert their action independently of some sort

of cooperativity in the membrane are not contemplated. Still,

membrane disruption by either lysis or poration is not a

requirement of the model; the activity of peptides that target

intracellular components can still be modelled as long as

translocation into the cytoplasm is a threshold-dependent step.

Multiple disruptive thresholds are often observed with model

membranes, which may complicate analysis if identification of the

relevant threshold is not possible. Such is the case in Figure 2 and

in one of the data sources used for predicting the MHC of melittin

Figure 1. Application of the MIC prediction method to AMP-
membrane threshold data. Published threshold data [7,10] on the
interaction of the AMPs BP100 (circles) and omiganan (triangles) with
POPC:POPG 1:2 unilamellar vesicles were fit with Equation 7, yielding
intercepts of 1:8+0:5 mM and 6:8+0:3 mM , respectively. The lowest
MIC values measured against Gram-negative bacteria are indicated for
omiganan [38] (diagonal hatching) and BP100 [34] (horizontal hatching)
next to the ½P� threshold axis; the intercepts, predictive of the MIC, lie
within few mM of these values.
doi:10.1371/journal.pone.0028549.g001

Figure 2. Application of the MIC prediction method to thresholds
in BP100 interaction with multilamellar vesicles. a) Optical density
of a suspension of multilamellar vesicles (60 mM POPC:POPG 1:2) at
different concentrations of added BP100. Arrows indicate critical
threshold points. b) Plot and linear fit, according to Equation 7, of critical
points in panel a) and in similar curves obtained with different lipid
concentrations; empty and full symbols denote the first and second
critical points, respectively, of each curve. The intercept of the line fitted to
the second critical points (which correspond to the P : L� determined
elsewhere [10]) estimates a MIC of 2:1+0:9 mM . The value is both close to
the estimate in Figure 1 and to the observed MIC range of BP100 [34],
indicated next to the ½BP100� threshold axis (hatched box).
doi:10.1371/journal.pone.0028549.g002
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[22]. Lacking further information on the relationship between

these disruptive points and the in vivo activity of the peptides, we

opted to combine predictions from the different thresholds into a

single range (as long as the predicted MIC/MHC was a positive

value). This, of course, resulted in a broadened prediction interval

and it is a possible reason why the MHC prediction spans almost

three orders of magnitude.

Finally, predictions may be sensitive to the precise constitution

of the membrane model. As stated earlier, this may justify different

bacterial susceptibilities to a given AMP, but it also stresses the

importance of using accurate models. An analysis of the

dependence of MIC predictions on membrane anionic density

has been included in the Supporting Information regarding the

relatively high anionic content of the bacterial membrane model

used in this work. Likewise, the lack of precision in the MHC

prediction may also result from the data having been collected in

three different zwitterionic erythrocyte membrane models [22,40],

two of which in the gel phase [22]. Indeed, when modelling the

essentially zwitterionic erythrocyte membrane, where the domi-

nance of electrostatic interactions is absent, one can expect peptide

partition to be quite sensitive to the particular constituents used.

Supporting Information

Text S1 Extended discussions on the 1) Analysis of pub-
lished data under the proposed model, 2) Influence of the
anionic charge of the membrane models on the conclusions

of this work, 3) Approximations in the partition model, and

4) Conversion from other constants, obtained under

different partition/binding formalisms.

(PDF)
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