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Full instability behavior of N-dimensional dynamical systems with a one-directional nonlinear
vector field
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We show how certainN-dimensional dynamical systems are able to exploit the full instability capabilities of
their fixed points to do Hopf bifurcations and how such a behavior produces complex time evolutions based on
the nonlinear combination of the oscillation modes that emerged from these bifurcations. For really different
oscillation frequencies, the evolutions describe robust wave form structures, usually periodic, in which self-
similarity with respect to both the time scale and system dimension is clearly appreciated. For closer frequen-
cies, the evolution signals usually appear irregular but are still based on the repetition of complex wave form
structures. The study is developed by considering vector fields with a scalar-valued nonlinear function of a
single variable that is a linear combination of theN dynamical variables. In this case, the linear stability
analysis can be used to designN-dimensional systems in which the fixed points of a saddle-node pair experi-
ence up toN21 Hopf bifurcations with preselected oscillation frequencies. The secondary processes occurring
in the phase region where the variety of limit cycles appear may be rather complex and difficult to characterize,
but they produce the nonlinear mixing of oscillation modes with relatively generic features.

PACS number~s!: 05.45.2a, 42.65.Pc
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I. INTRODUCTION

Complexity in nonlinear dynamics appears typically as
ciated with the irregularity of chaos. A dissipative syste
evolving in a chaotic state describes a recurrent motion ba
on a few basic trajectories that, appearing somewhat dif
ent at each turn, follow a definite sequence without appa
regular order and very sensitive to small changes of b
variables and parameters@1,2#. Usually, however, the basi
trajectories are of simple structure and involve a very l
number of characteristic frequencies.

A different picture was contained in the physical mech
nism tentatively proposed by Landau to explain the initiat
of turbulence in fluids@3#. The process is based on a s
quence of oscillatory instabilities that, starting from the s
tionary laminar flow, would produce quasiperiodic evol
tions of complex structure due to the large number
different characteristic frequencies. The role of the non
earities in this analysis is just to stabilize the oscillatory m
tion that emerges, from each instability, while the success
oscillation modes combine in a direct manner and with a
trary relative phases. In light of the bifurcation theory
dynamical systems, the Landau sequence may be interp
as the Hopf bifurcation of a fixed point followed by secon
ary bifurcations generating invariant tori of successiv
higher dimension. This sequence of bifurcations is not c
sidered a route to chaos because small perturbations of t
periodic flows on three-dimensional tori can already yie
strange attractors@4#, but it remains a way to incorporat
additional degrees of freedom in the oscillation dynamics
high-dimensional systems.

In this work we show the emergence of complex dynam
cal behavior through the nonlinear oscillatory superposit
of different characteristic frequencies generated by Hopf
furcations. In relation to the Landau scenario, our problem
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simpler because it deals with systems of finite dimens
based on vector fields with a uniformly directed nonline
part, i.e., N-dimensional vector fields containing a sing
scalar-valued nonlinear function. Nevertheless, while
Landau scenario develops from a single node point an
single sequence of torus bifurcations, we consider more t
one fixed point because the nonlinear mechanisms can
the oscillatory dynamics emerged from neighboring poin
And, on the other hand, we investigate situations where
fixed points experience successive Hopf bifurcations an
variety of limit cycles emerge in phase space. Finally,
relation to the Landau proposal, a dynamical system can
exhibit arbitrary phase relationships between different os
lation modes, but the superposition takes place nonline
and the mode mixing processes may be responsible for ra
complex wave forms in the time dynamics.

For vector fields with a one-directional nonlinear part, t
fixed points appear aligned in an alternate sequence
saddle-node type and, typically, the observed dynamic
associated with an attractor arising from one of the nodes
growing under the influence of the nearest saddle point.
will show how certainN-dimensional systems of this typ
are able to exploit all the instability capabilities of a sadd
node pair of fixed points by experiencing a total ofN21
Hopf bifurcations on them@5#. The points initially have
stable manifolds of dimensionN21 andN, respectively, and
after theN21 Hopf bifurcations one of them has becom
fully unstable while the other possesses only one stable
mension. A variety of limit cycles have emerged from t
points and some invariant tori could also have been crea
through secondary Hopf bifurcations of the cycles. The m
jority of such limit sets are saddles, and a few number
attractors@6# live in the middle of the intertwinement o
saddle outstructures. The time evolution associated with
of the attractors can manifest the influence of neighbor
saddles and, under such circumstances, the most prom
333 ©2000 The American Physical Society
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N-dimensional feature to be observed is the appearanc
N21 oscillation modes nonlinearly combined in the tim
dynamics. This is what we call the full instability behavior
the N-dimensional dynamical system, and Fig. 1 presen
numerical example of such a behavior forN56. In this case,
the various Hopf bifurcations have generated really differ
oscillation frequencies and the time signal shows a w
form structure with clear distinction of theN21 modes. This
figure is commented on in Sec. V, together with other n
merical simulations, and we now want only to remark
both the complexity and robustness of the wave form str
ture. In this case, the signal is periodic, and it is theref
evident that the wave form complexity is independent
chaos.

The first step for investigating the full instability behavi
is to dispose of systems able to exhaust the stable dimens
of their fixed points through successive Hopf bifurcation
The participation of all the dynamical variables within th
nonlinearities clearly seems necessary, but the influenc
the nonlinear functional structure is difficult to predict. Wi
this purpose in mind, we have developed a method of lin
stability analysis for studying the bifurcation possibilities
a set ofN-dimensional fixed points in as general a way
possible. The analysis is not performed in the param
space, where it may in fact be impossible, but we cons
the space defined by the coefficients of the character
equation. Every point of that space can be associated
the corresponding set ofN eigenvalues, and the linear stab
ity analysis of a given system can be performed by locat
its fixed points in the same space. The simplest and m
manageable situation corresponds to systems whose
points appear located on a straight line and move on that

FIG. 1. Time evolution illustrating the full instability behavio
of a six-dimensional system in which a saddle-node pair of fix
points have experienced two and three Hopf bifurcations, res
tively. Notice the presence of oscillations at five characteristic
quencies,vq , which, ordered from low to high, are identified in th
signal by the numberq. The nonlinear function is the Gaussia
given by Eq. ~A1!, and the other parameters aremc516, vHq

50.1, 0.7, 4, 35, 250,pHq520.7, 3, 21, 3.2, 22.2, and c1

560052.4vH5.
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under variation of a proper parameter. This happens for s
tems based on a scalar-valued nonlinear function of a sin
variable when that variable is a linear combination of t
dynamic variables and when the control parameter is a s
factor on the nonlinear function. In this case it is possible
design the dynamical systems in order to obtain the occ
rence ofN21 Hopf bifurcations on a saddle-node pair
fixed points, with a prefixed set of values for the oscillati
frequencies and within a prefixed range of the control para
eter. The numerical examples reported in the paper co
spond to this situation.

In addition to the Hopf bifurcations of the fixed point
the full instability behavior requires mode mixing mech
nisms yielding the complex wave forms. In the case of no
linear functions of a single variable that is a linear combin
tion of the N dynamical variables, the mode mixing seem
strongly related to the Hopf bifurcations and, if the fixe
points have done or are near to doing theN21 Hopf bifur-
cations, the system then exhibits a signal of the type sho
in Fig. 1. The secondary processes may be rather com
and dependent on the circumstances, but they do not in
duce additional characteristic frequencies, and the nonlin
mode mixing produces time evolutions with qualitatively g
neric features.

It is worth emphasizing that this work has been motiva
by a family of physical systems, the so-called BOITAL d
vices@7#, whose effective dynamical dimension can be eas
varied and who are able to exhibit the full instability beha
ior in a natural way. Experimental results obtained w
BOITAL devices of up toN56 will be reported elsewhere
@8#, and some of the numerical examples reported here
based on the mathematical model developed for describ
such devices@9,10#.

II. N-DIMENSIONAL SYSTEMS WITH A
ONE-DIRECTIONAL NONLINEAR VECTOR FIELD

We consider systems based onN-dimensional vector
fields whose nonlinear part has a uniform direction across
full phase space and that may be written as

ż5Az1b f~z;m!, ~1!

where z(t) represents the vector state,f (z,m) is a scalar-
valued function nonlinear onz, m describes the set of param
eters involved in the nonlinear function,A is a constantN
3N matrix, andb is a constant vector defining the directio
of the nonlinear component of the field. A variety of we
known low-dimensional dynamical systems are based o
single scalar-valued nonlinear function: the Duffing@11# and
van der Pol@12# oscillators, the Lotka-Volterra model@13#,
the Rössler model@14#, and the Chua circuit and oscillato
@15#.

The equilibria of the system~1! appear in phase spac
located on a straight line determined byA andb. It suggests
a coordinate transformation so that the line of fixed points
one of the new axes. Particularly useful is the transformat
of system~1! into the canonical form based on the compa
ion matrix @16# as follows:

d
c-
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ẋ152(
j 51

N

cjxj1 f ~x1 , . . . ,xN ;m!,

~2!

ẋ j5xj 21 , j 52, . . . ,N,

which, with the definitionxN5y, can be written in the clas
sical form

y(N)1c1y(N21)1•••1cN21y(1)1cNy

5 f ~y(N21), . . . ,y(1),y;m!, ~3!

where the superscripts denote the order of differentia
with respect to time. Notice that in this representation
nonlinear part of the vector field is directed along thex1 or
y(N21) coordinate while the equilibrium points appear l
cated on thexN or y axis.

We now introduce an explicit control parameter by a
suming that the nonlinear function includes a scale facto
follows:

f ~x1 , . . . ,xN ;m!5mcg~x1 , . . . ,xN ;m!, ~4!

with mc supposed to be independent of thecj coefficients.
Although such a kind of parameter cannot be available i
given application, it is really useful for analytic purpos
because it simply modifies the relative weight of the nonl
ear and linear components of the vector field without alter
their structure. This property will allow us to consider th
linear stability of the steady state bifurcation diagram a
function of mc without particular specifications about th
nonlinear function, other than the assumption that it is c
tinuous and differentiable.

On the other hand, the full instability behavior probab
requires the nonlinear participation of all the dynamic va
ables and the simplest situation is that in which the nonlin
function affects a linear combination of theN variables. Thus
we consider nonlinear functions of a single variable as
lows:

f ~x1 , . . . ,xN ;m!5 f ~c;m!, ~5a!

where

c5(
1

N

djxj . ~5b!

Notice that the coefficientsdj can be transported to the linea
part of the vector field by defining thedjxj as a new set of
variables. The roles of the linear and nonlinear parts of
vector field appear well differentiated with this kind of fun
tion. In addition, it permits one to adjust the relative parti
pation of the several variables to the feedback loop indep
dently of the nonlinear function itself. The Lotka-Volterr
model@13#, the Duffing@11# and van der Pol@12# oscillators,
the Chua circuit@15#, and the BOITAL devices@7# are sys-
tems with a nonlinear function of a single variable in t
form ~5b!.
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III. STEADY-STATE SOLUTION

The steady-state solution of Eqs.~2! and~4! is determined
by

x̄ j50, j 51, . . . ,N21, ~6!

cNx̄N5mcG~ x̄N ;m!, ~7!

where the overline denotes steady state values
G(xN ;m)5g(xj ÞN50,xN ;m). Thus the number of fixed
points and their positions on thexN axis depend only on the
nonlinearities exclusively involvingxN . For a linear combi-
nation of variables like that in Eq.~5b!, the functionsg and
G are equivalent and Eq.~7! may be written as follows:

c̄5dNx̄N5
mcdN

cN
g~ c̄ !. ~8!

This condition may be graphically analyzed, as shown in F
2 for the nonlinear functions used in the numerical simu
tions. These functions are described in Appendix A, and h
we illustrate generic features of the steady-state solution
evant for the method of linear stability analysis. In the le
hand column of Fig. 2, each functiong(c) is represented
together with the straight lineg(c)5(cN /mcdN)c. The in-
tersections of this line with the nonlinear function determi

the solutionsc̄ for the considered value ofmc , and by
changing the line slope one obtains the steady state bifu
tion diagram as a function ofmc ~middle column of Fig. 2!.
For a bounded nonlinear function, a single solution exists
mc50, and additional solutions appear with increasingmc
every time the straight line becomes tangent to the nonlin
function. For a continuous function, the branching diagr
as a function ofmc appears continuously connected witho
isolas.

We will see in Sec. IV that the ratio between the slopes
the nonlinear function and the straight line at their inters
tion is useful for characterizing the linear stability of th
steady-state solution. The ratio of slopes is defined as
value

p~ c̄ !5
dN

cN
mcF ]g

]c G
c̄

5
c̄

g~ c̄ !
F ]g

]cG
c̄

, ~9!

and the right-hand column of Fig. 2 presents the distribut
of p values upon the branching diagrams. The branches
resented by the solid~dashed! line correspond top,1 (p
.1) and the zero eigenvalue bifurcations occur at thep
51 connections.

If the control parameter is rescaled tomcdN /cN @17#, then
it results that all of the systems based on a given nonlin
function g(c), but having arbitrary dimensionN and arbi-
trary values for thecj anddj coefficients, are associated wit
the same steady state branching diagram describingc̄ versus
mcdN /cN . In addition, the distribution ofp values upon this
branching diagram is the same for all of these systems. T
is a particularly useful situation for analyzing systems
gradually increasing dimension.
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FIG. 2. Nonlinear functions used in the numerical simulations, accompanied by the corresponding steady-state branching diag
p-value distributions. The straight line represented over each nonlinear function is given by Eq.~8! and their intersections determine th
steady-state solutions for a givenmc value.
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IV. LINEAR STABILITY ANALYSIS

The Jacobian matrix of Eq.~2! is in the companion form,
and the characteristic equation has then the coefficients
rectly given by the Jacobian elements. The coefficients a
ciated with a given fixed point are

kj~ x̄!5cj2F ] f

]xj
G

x̄

, j 51, . . . ,N. ~10!

The simplicity of these relations allows us to develop
unconventional representation of the linear stability analy
Instead of the parameter space, we consider the interme
space defined by the coefficientskj . Every point of this
space may be associated with the corresponding set oN
eigenvalues determined by the characteristic equation.
is a universal representation describing the full variety
linearizedN-dimensional fixed points, in which the nonhy
perbolic points and eigenvalue degeneracies are easily
cated. On the other hand, for systems in the canonical f
i-
o-

s.
ate

is
f

lo-
m

~2!, Eqs.~10! identify the position of the fixed points in th
kj space and in this way we can know their stability. T
variation of a parameter moves the fixed points on cert
curves and their intersections with the loci of nonhyperbo
points denote the steady-state bifurcations. In particular,
nonlinear functions with a control parameter likemc in Eq.
~4!, the continuity of the steady-state solution connects
motions of the several fixed points in a single curve, and t
permits one to associate themc-parameter family of system
with that curve in thekj space.

The method is really useful for systems with a nonline
function of a single variable in the form~5b! because in this
case Eqs.~10! may be written as

kj~ c̄ !5cj2mcF ]g

]cG
c̄

dj5cj2p
cN

dN
dj , j 51, . . . ,N,

~11!

with p given by Eq. ~9!. Thus the fixed points of a
mc-parameter family of systems move on the straight l
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passing for the point of coordinates (cj ) with a director vec-
tor determined by the set of coefficientsdj . For dN andcN
Þ0, thep value of a fixed point determines its position o
the line and therefore determines its linear stability behav
On the other hand, Eq.~10! for j 5N,

kN~ c̄ !5cN~12p!, ~12!

gives a useful relation between thekN coordinates andp
values of the fixed points. Recall that the steady state s
tion as a function ofmc always appears organized
branches with eitherp,1 or p.1 and with the branch con
nections atp51 ~see Fig. 2!. Equation~12! locates the two
kinds of branches on opposite sides of the subspacekN50.

The linear stability of the steady-state solution may
easily characterized by usingp instead ofmc for relating the
branching bifurcation diagram with the straight line of themc
family of systems in thekj space. The most significantp
values are those of the intersections between the line and
surfaces of nonhyperbolic points. The intersection with
kN50 subspace corresponds top51 and describes the zer
eigenvalue bifurcations. The intersections with the locus
thel656 iv nonhyperbolic points denote the occurrence
Hopf bifurcations and the corresponding set ofp values may
be used to locate these bifurcations on the branching
gram.

In summary, the systems with a one-directional nonlin
field of a single variable in the form~5b! and a control pa-
rameter like that in Eq.~4! have two peculiar features:

~i! The nonlinear functiong(c) determines both the
steady-state branching diagram describingc̄ as a function of
mc and the distribution ofp values upon that diagram, inde
pendently ofN, cj , anddj .

~ii ! The coefficientscj anddj determine the straight line
of Eqs. ~11! in the N-dimensionalkj space. The position o
this line with respect to the surfaces of nonhyperbolic poi
delimits the linear stability behavior of themc family of sys-
tems, independently ofg(c). The fixed points appear to b
located on the straight line according to their actualp values
and can therefore be moved on that line by varyingmc or
g(c).

A. Loci of nonhyperbolic points in the kj space

The points of thekj space can be classified according
the number of eigenvalues with positive real parts, and
meansN11 classes of points having from 0 toN unstable
dimensions. Since the eigenvalues vary continuously,
space appears organized inN11 different regions delimited
by the loci of nonhyperbolic points. The nonhyperbo
points are of the types$0m%, $6 iv1 , . . . ,6 ivm%, or $0n,
6 iv1 , . . . ,6 ivm2n%, where 0m denotesm real eigenvalues
equal to 0 and6 iv j denotes a complex conjugated pair wi
zero real part and arbitrary imaginary part. The locus of n
hyperbolic points of a given type is a surface of dimens
N2m, where the codimensionm is the number of indepen
dent eigenvalues with zero real part in the nonhyperb
point.

The surfaces emerge from the codimension-N point at the
origin of thekj space, and their intersection with any hype
sphere enclosing that point produces qualitatively equiva
r.
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structures. This self-similar property works in accordan
with the invariance of the characteristic equation to time r
caling. The surface of a given type of nonhyperbolic poin
will be denoted like the points, and it may be seen that

~i! $0m% is the linear subspace of dimensionN2m defined
by

kN5kN215•••5kN2m1150. ~13!

In particular,$0N% is the origin and$0% is the subspace o
dimensionN21 defined bykN50. The rest of the eigenval
ues for the points of$0m% are determined by the characteri
tic equation of orderN2m. Thus the spatial structure within
$0m% is identical to that of the problem of dimensionN2m
but with the addition ofm zero eigenvalues.

~ii ! $6 iv% has dimensionN21 and is parametrically de
termined as a function ofv by either

k1~ iv!N221k3~ iv!N241•••1kN23~ iv!21kN2150,
~14a!

~ iv!N1k2~ iv!N221•••1kN22~ iv!21kN50

if N is even, or

k1~ iv!N211k3~ iv!N231•••1kN22~ iv!21kN50,
~14b!

~ iv!N211k2~ iv!N231•••1kN23~ iv!21kN2150

if N is odd.
The partition of thekj space is done by$0% and $6 iv%,

the two surfaces of dimension (N21), and by their intercon-
nection in $02% and $0,6 iv%. $0% introduces two half
spaces,kN.0 andkN,0, containing regions where the num
ber of unstable eigenvalues is even or odd, respectively.
surface$6 iv% emerges withv50 from $02% and is divided
by $0,6 iv% in N21 qualitatively different zones where
separates pairs of regions with a different number of unsta
dimensions, i.e., 0u2, 1u3, 2u4, etc. In addition, forN>4,
$6 iv% intersects with itself and yields$6 iv1 ,6 iv2 , . . . %
degeneracies.

Figure 3 shows the nonhyperbolic surfaces in thekj space
for N52 andN53. The caseN52 corresponds to the wel
known two-dimensional linear system and the same str
ture, with an additional zero eigenvalue, is found in the pla
k350 of the caseN53. In its turn, the caseN53 also
describes the eigenvalue structure of the subspace$0% for
N54 if a zero eigenvalue is added everywhere.

A more accessible view of the structure of nonhyperbo
surfaces is obtained by considering planes of section of
kj space like those shown in Figs. 4 and 5 forN53 andN
54, respectively. The sections are drawn projected on
planekN21kN and the numbers denote the unstable dim
sions in the different regions. The value ofv on the surface
$6 iv% in the plane of section is also shown. In Fig. 4, bo
sections cut the$0,0% degeneracy, but only the second pla
contains the$0,6 iv% degeneracy. The appearance of bo
degeneracies implies the presence of the full variety of
gions forN53. In fact, it may be shown that for an arbitrar
dimensionN, a plane can intersect up toN21 times with
both the$0% and$6 iv% surfaces simultaneously, one time
the $0,0% subspace and the rest in the$0,6 iv% surface. The
full variety of fixed points and theN21 different
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zones of$6 iv% appear in the plane of section if and only
N21 punctual intersections of$0% with $6 iv% also appear.
This is what happens in the two cases forN54 of Fig. 5,
where the second case contains, in addition, the$6 iv1 ,
6 iv2% degeneracy.

For simplicity, the planes of section represented in Figs
and 5 have been chosen to intersect the surface$6 iv% in a
continuous way but, for an arbitrary orientation of the pla
the intersection with that surface will probably present div
gences. In any case, it is worth remarking that the surfac
a given class of nonhyperbolic points is unique and conti
ous in thekj space.

B. Eigenvectors for a Jacobian matrix in the companion form

Unlike what happens with the eigenvalues, the organ
tion of eigenvectors in thekj space is not universal becau
they depend on the actual Jacobian matrix. Nevertheless
companion form matrices have the peculiar property that
eigenvectors depend only on the associated eigenvalu
follows:

ul5~lN21,lN22, . . . ,l,1!, ~15!

so that the full family of systems in form~2! have the same
structure of eigenvectors in thekj space. Notice that the
eigenspace associated with an eigenvalue is always
dimensional independently of its multiplicity.

FIG. 3. Loci of nonhyperbolic points in thekj space forN52
and 3, respectively. Notice the partition inN11 regions with a
different number of unstable dimensions.
4
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-
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-
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e
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The eigenvector of the zero eigenvalue is directed alo
the xN axis everywhere in the subspace$0%. The two-
dimensional eigenspace ofl656 iv depends on thev
value and is determined by the real vectors

u11u2

2
5~ . . . ,2v6,0,v4,0,2v2,0,1!,

u12u2

2
5~ . . . ,v5,0,2v3,0,v,0!. ~16!

FIG. 4. Surfaces of nonhyperbolic points in two different plan
of section of thekj space forN53. Both planes are parallel tok3

and cut the other axes with eitherk1 andk2,0 or .0 in case~a! or
~b!, respectively. The representations are done projected on
planekN21kN and the numerical labels denote the number of u
stable dimensions in the different regions. The value ofv on the
surface$6 iv% in the plane of section is also shown.

FIG. 5. The same as in Fig. 4 but forN54.
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The value ofv is equal to zero at the degeneracy$02% and
increases indefinitely when moving away along the surfa
Therefore the orientation of the two-dimensional eigensp
changes accordingly.

C. Fixed points of nonlinear systems in thekj space

In the presence of nonlinearities, the transverse cross
of the surfaces$0% and $6 iv% are usually associated wit
the saddle-node and Hopf bifurcations, respectively, beca
the corresponding conditions are generically fulfilled. In
saddle-node bifurcation, a pair of fixed points approach
subspacekN50 from opposite sides, become the same n
hyperbolic point and then disappear~or the opposite pro-
cess!. The saddle-node name is used for convenience b
must be realized that the surface$0% appears divided inN
parts where the bifurcation involves different kinds of fix
points that are usually a pair of saddles. On the other ha
the crossing of$0% can also be associated with either t
transcritical or the pitchfork bifurcation, provided the prop
conditions are fulfilled, and a different set of fixed points a
involved in each case.

In the crossing of$6 iv%, a limit cycle would probably
emerge around the fixed point. Outside of the center s
space, the limit cycle will maintain the same stability pro
erties as the fixed point. This means that a supercritical H
bifurcation occurring between the regions with zero and t
unstable dimensions will produce a stable limit cycle, an
subcritical bifurcation between the regions withN and (N
22) unstable dimensions will yield an unstable cycle, but
any other case a kind of saddle cycle will be created. T
limit cycles will appear properly oriented in phase space
cording to the corresponding center subspaces that, in
case of systems in the canonical form~2!, depend on the
oscillation frequency as expressed by Eqs.~16!.

Let us illustrate the method by considering the situat
schematically depicted in Fig. 6 for five-dimensional syste
in the form~2!, ~4!, and~5!. The straight line corresponds t
a given set ofcj anddj parameters and, in this example,
crosses all the regions containing points with a differ
number of unstable dimensions. The crossing w
$0% indicates that anyl50 bifurcation will involve fixed
points with zero and one unstable dimensions. The cross
with $6 iv% indicate that the fixed points with zero~one!
unstable dimensions can suffer successive Hopf bifurcat
up to four ~five! unstable dimensions and, therefore, it d
notes the possibility of achieving the full instability behavio
The nonlinear functiong(c) determines the number of fixe
points and their positions on the line as a function ofmc .
The full instability will be achieved if fixed points of the tw
types, i.e., withp,1 andp.1, move enough along the line
This may be easily known by comparing the distribution op
values on the steady-state branching diagram with the va
pH1 , . . . ,pH4 of the possible Hopf bifurcations, as indicate
by arrows in Fig. 6.

For systems in the form~2! and~4! but with a more gen-
eral nonlinear function than Eq.~5!, the fixed points of amc
family will move on a single curve, but now this curve is n
straight and can cross the nonhyperbolic surfaces in an a
trary manner. A more complex motion of fixed points c
occur by varying parameters other thanmc. In any case,
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however, the full instability of the fixed points will be
achieved if they reach the regions of highest instability
crossing the surface$6 iv% properly.

D. Conditions for the full instability

The situations of full instability can, in principle, be iden
tified by means of the linear stability analysis of the stea
state solution. Nevertheless, in general, it is not easy to
tablish the corresponding conditions for a given system,
this probably explains why such a behavior has not alre
been observed. The analysis seems really attainable for
tems in the form~2!, ~4!, and~5! because, in this case, it ca
be divided into two independent problems: one concern
the position and orientation of the straight line with resp
to the surface$6 iv%, and another dealing with the capabil
ties of the nonlinear function in producing a steady-st
branching diagram with a distribution ofp values covering
the pH values of the Hopf bifurcations. The latter is eas
solved by adjustingg(c) properly, but the former is more
involved.

From Eqs.~14!, it may be seen that the maximum numb
of intersections between the straight line and$6 iv% is equal
to N21. The full instability behavior can be achieved
these intersections occur with theN21 qualitatively differ-
ent zones of$6 iv%, otherwise two of the intersections wi
correspond to the same Hopf bifurcation but in a contr
direction, and the line will not cross theN11 regions of the
kj space. This condition cannot be established in a form
way, and the problem must be indirectly considered, as
cussed in Appendix B. Particularly useful is a method
designing the dynamical system, i.e., for determining the
efficientscj anddj , in order to achieve theN21 Hopf bi-
furcations with preselected frequencies andpH values.

FIG. 6. Schematic example of the method for characterizing
linear stability of five-dimensional systems in thekj space. The
straight line describes where the fixed points of themc families of
systems in the form~2!, ~4!, and ~5! may be for a given set of
coefficientscj anddj but for an arbitrary functiong(c). The right-
hand vertical scale describes thep value of the fixed points and
offers a convenient connection with the steady-state branching
gram. The intersections with the surfaces of nonhyperbolic po
indicate the possible steady-state bifurcations.
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V. TIME EVOLUTIONS SHOWING
THE FULL INSTABILITY BEHAVIOR

We will now illustrate some features of the full instabilit
behavior when observed in the time evolution of systems
the form~2!, ~4!, and~5! for a variety of nonlinear functions
g(c), dynamical dimensionsN, and sets of coefficientscj

anddj . In each case, the system parameterscj anddj have
been defined by preselecting thevH and pH values of the
N21 Hopf bifurcations and the value ofc1, as described in
Appendix B. The employed nonlinear functions and cor
sponding steady-state branching diagrams as a functio
mc , as well as the distribution ofp values, are presented i
Appendix A.

The illustration is done by means of Fig. 1 and the figu
of this section. The captions indicate the corresponding n
linear function and the values ofc1 , vHq , and pHq . The
evolution signals always describe the variablec as a func-
tion of time for fixed values ofmc and in general contain a
variety of oscillation modes at angular frequenciesvq ,
which, ordered from lower to higher, are identified on t
signals by means of the labelq.

We first consider the example of Fig. 1 corresponding t
six-dimensional system with a Gaussian nonlinear functi
Eq. ~A1!. The diagrams of Fig. 2~a! show that formc516 the
system has three fixed points withc̄51.6, 6.6, 12.1 andp
50.02, 3.4,24.3, respectively. The first point remains f
from the observed dynamics. The two later points have
peared atmc59.5 through a saddle-node bifurcation produ
ing a stable node and a saddle with one unstable dimens
At mc516, the node has already become fully unstable a
doing successive Hopf bifurcations with frequenciesvH1 ,
vH3, andvH5 at the values ofmc making itsp value equal to
pH1 , pH3, andpH5, respectively. The first bifurcation, in thi
case atvH1, has produced the stable limit cycle from whic
the attractor sustaining the time evolution of Fig. 1 is d
rived. On its turn, the saddle point has also made the
Hopf bifurcations, atvH2 andvH4, and formc516 has only
one stable dimension. There is a clear relation between
five characteristic times appearing in the evolution signal
the Hopf frequenciesvHq of the two fixed points. The char
acteristic times associated with the node point, especi
that of v1, appear larger than the corresponding Hopf f
quencies due to the presence of intermediate oscillation
the saddle frequencies. After a transient of a few tens ofv1
oscillations, during which the wave form structure prese
very small changes, the signal looks periodic by repea
the complex sequence of oscillations within the per
2p/v1. The Lyapunov exponents~in bits per unit time! have
been calculated@18# and found equal to20.002, 20.015,
20.225, 24.16, 217.31, 218.13.

Figure 7 presents a series of time evolutions for differ
mc values to show how the different oscillation modes a
pear on the wave form signal. The evolutions correspond
six-dimensional system with the positive-defined sinusoi
function given by Eq.~A2! and characterized in Fig. 2~b!.
The steady-state diagram contains successiveS-shaped
branches and the reported evolutions are associated w
pair of fixed points of a high-order branch. Thep values of
the fixed points are given in the caption, and their comp
n
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son with thepHq indicates the occurrence of the Hopf bifu
cations.

The oscillations begin with a supercritical bifurcation
frequencyvH1 occurring on the node point just belowmc
561.79, but formc562.0085 a minute component of fa
oscillations appears from nothing in a certain place of
slow undulations~see the signal formc562.009). The fast
frequency is precisely equal tovH5, and the continuous fol-

FIG. 7. Sequence of time evolutions for successivemc values
showing how the wave form structures of the full instability beha
ior emerge. The nonlinear function is given by Eq.~A2! and the
parameters arevHq50.02, 0.2, 2, 20, 125,pHq5212, 33,218, 40,

217, andc152vH5. From the top to the bottom, thec̄ and p

values of the involved fixed points are~a! c̄542.34,p5212.002;

~b! and ~c! c̄542.35, p5212.19; ~d! c̄545.4, p516.3; c̄

542.7, p5219.0; ~e! c̄544.9, p532.2; c̄543.1, p5233.1.
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lowing of the stable orbit indicates that the appearance
such oscillations is not related to any local bifurcation. Wh
the control parameter is increased, the localized structur
fast oscillations loses repetitivity and the orbit continuati
breaks down atmc562.0097. After this point the system
evolves toward a bigger attractor that in fact coexists w
the previous orbit for a range of the control parameter beg
ning at mc561.95 ~see the signal formc562). The big at-
tractor also contains a localized structure but with two ch
acteristic frequencies:v5 equal tovH5 and v3 somewhat
slower thanvH3. The Hopf bifurcations atvH5 and vH3
occur on the node point formc567.56 and 68.76, respec
tively. The two bifurcations occur close enough so that
occurrence of a (v3 ,v5) torus is likely. This suggest that th
three-frequency wave form observed formc562 may be ten-
tatively interpreted as thev1 stable orbit influenced by the
flow associated with the invariant manifolds of a (v3 ,v5)
saddle torus. The possibility of an orbit on a stable th
torus cannot be excluded, but there is no evidence for it

The signal formc570 shows the (v3 ,v5) structure di-
vided in two parts and denotes the approach of the attra
to the external saddle point by means of the oscillations
frequencyv2'vH2. For this signal we calculate the follow
ing Lyapunov exponents:20.0002, 20.055, 20.422,
28.37, 233.9, 2201. The influence of the saddle point
even more evident in the signal formc590 where, in addi-
tion to the large number ofv2 oscillations, a new frequenc
v'vH4 appears mixed with the (v3 ,v5) structure. The ei-
genvalues of the saddle point are20.00186 i0.199, 0.0046,
21.446 i20.01, and2719, so that it is near to thevH2 bi-
furcation ~at mc591.35) but relatively far from thevH4 bi-
furcation ~at mc5103.84).

The saddle eigenvalues reported above fulfill the con
tions of the Shil’nikov theorem for homoclinic chaos@19#
and the large number ofv2 oscillations indicates the prox
imity to homoclinicity. However, the evolution is periodi
and we have verified that it remains periodic for differe
values ofmc up to 96.07, for which the signal contains 50v2
oscillations of almost uniform amplitude denoting the pre
ence of the saddle cycle created at thevH2 bifurcation. At
mc596.08, the homoclinic connection has destroyed the
tractor and the system has jumped to the oscillating s
associated with a higher branch. With respect to
Shil’nikov theorem, it may be that either the complex d
namics will concentrate in an extremely narrow neighb
hood of the homoclinic loop or that certain conditions co
cerning the saddle connection geometry are not fulfilled@19#.

We have tried the continuous following of the saddle
bits created at the successive Hopf bifurcations of the fi
points. Notice from Fig. 2~b! that a givenpHq value is found
two times on the same steady state branch and the con
ation of each orbit has been initiated from the Hopf bifurc
tions at the two branch sides. The bifurcations have alw
been found to be supercritical. The orbit that emerged fr
the vH5 bifurcation shows a nearly sinusoidal evolution b
the frequency decreases, stabilizing near half ofvH5. This is
a remarkable feature because the faster oscillations appe
on other obits have a frequency precisely equal tovH5. One
of the orbit multipliers grows very strongly and the contin
ation becomes rather slow so that it has been followed
limited ranges near the Hopf points only. The orbitvH3 has
f
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not been detected. The orbitvH4 has been continuously fol
lowed up to its disappearance in the reverse Hopf bifurca
at mc5177.98, always showing a nearly sinusoidal evoluti
of frequency almost equal tovH4. The continuation of the
orbit vH2 is more delicate because the evolution incorpora
high-frequency oscillations atvH5 andvH4, as illustrated in
Fig. 8. The orbit multipliers do not denote the occurrence
local bifurcations. These results show how the mode mix
also affects the saddle orbits.

The full instability behavior based on rather differe
oscillation frequencies usually exhibits robust wave fo
structures that repeat identically if a long enough transi
is discarded. Nevertheless, chaotic evolutions may a
be found by increasing the control parameter enough.
instance, Fig. 9 presents an example of chaotic evolu
obtained from the same system as Fig. 7 for a higher va
of mc . For this case we calculate the following spectru
of Lyapunov exponents: 0.0268,20.001 84, 20.0498,
22.269, 26.031, 21072. The aperiodic evolution arise
from the irregular repetition of the complex wave form stru
ture, and it is worth remarking that the wave form comple
ity cannot be attributed to chaos. In other words, the fi
tuning ofmc leads to periodic states in which the wave for
complexity remains.

Figure 10 illustrates self-similarity features of the full in
stability evolutions at two different levels, one with respe
to the time scale and another with respect to the system
mension. Self-similarity is also apparent in the wave for
of Figs. 1 and 7. Notice that the oscillations associated w
either the node or the saddle points maintain their roles al
the similarity scale. The reported results contain a redu
number of similarity levels but there is no reason for a lim
in the system dimension, and it will therefore be interest
to investigate the self-similarity of the full instability behav
ior with respect to both the time and frequency domains
high N values.

The various signals of Fig. 10 correspond to the sa

FIG. 8. Time evolution of the saddle orbits created at thevH2

bifurcations occurring on the saddle point formc591.35 and
186.78, respectively.
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FIG. 9. Chaotic evolution obtained for the same case as in Fig. 7 but for a higher value of the control parameter.
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nonlinear function and samemc value so that the systems o
different dimension have the same set of fixed points w
identical c̄ andp values. The evolutions are always asso
ated with the same pair of saddle-node fixed points. No
the uniquec scale and the three zoom levels of the tim
scale employed in the representations. The first zoom le
of case~c! corresponds to the second level of the oth
cases. The parameters of the various systems have bee
termined by imposing a common set of thevH andpH val-
ues and a similar degree of vector field divergence. For
stance, by taking out either the two faster or the two slow
frequencies of system~a! with N58, we have either system
~b! or system~c!, both withN56. Similarly, the system~d!
with N55 has the same Hopf bifurcations as system~b!
except for that at the higher frequency. In this way we obt
systems of different dimension in which the linear stabil
behavior of a saddle-node pair of fixed points is partia
identical. Another significant property is the vector field d
vergence, and we have chosen relatively similar values oc1
with respect to the higher frequency for the different syste
of Fig. 10.

Figure 11 corresponds to a six-dimensional system wit
nonlinear function sustaining a symmetric pitchfork bifurc
tion and has the same values forvHq , pHq , andc1 as in Fig.
1. The nonlinear function is given by Eq.~A3! and charac-
terized in Fig. 2~c!. The pitchfork produces two stable nod
and a saddle with one unstable dimension and, for the ra
of mc values considered in Fig. 11, the system presents
trio of fixed points only. These points experience Hopf
furcations atmc52 (vH1), 2.35 (vH3), 3 (vH2), and 3.2
(vH4 andvH5), approximately. The first bifurcation, atvH1,
occurs on both nodes and creates a pair of coexisting at
tors located symmetrically with respect to the phase sp
h
-
e

el
s
de-

-
r

n

s

a
-

ge
e

-

c-
ce

origin. The time evolution formc52.25 describes one o
these attractors and it already contains oscillations atv2 , v3,
andv4. The signal formc52.5 describes a two-lobed attrac
tor resulting from the gluing together of the two previo
attractors through two simultaneous homoclinic connecti
of the saddle point. The node points have already made
second Hopf bifurcation atvH3, and now the signal include
oscillations at the five frequencies. Formc53.5 the node
points have experienced the third bifurcation atv5, while the
intermediate saddle has made the bifurcations atv2 andv4.
The time evolution now shows a rich wave form structu
pointing out the full instability behavior of the system arou
a node-saddle-node trio of fixed points. Notice that the e
lution is also based on five oscillation frequencies, i.e.,N
21 frequencies, because the two node points suffer the H
bifurcations with the samevH andpH values.

Figure 12 illustrates the influence of the vector field d
vergence on the full instability behavior and, in essence
shows how the dissipation discriminates the oscillation f
quencies associated with either the node or the saddle p
and how it regulates their participation in the observed ti
dynamics. Notice the absence ofv2 and v4 for c150 and
c1560, and the small vestige ofv5 for c153.6vH5. The
represented evolutions correspond to different s
dimensional systems that have in common the same non
ear function~the same as in Fig. 11!, the samemc value, and
the same set ofpHq andvHq for the five Hopf bifurcations,
but different values of the coefficientc1. Since one of the
oscillation frequencies is clearly higher than the others,
vector field divergence may be characterized by Eq.~B3! and
directly associated withc1.

Thus the evolution signals of Fig. 12 corresponds to s
tems of successively increasing dissipation, from the con
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vative casec150 to the strongly dissipative ofc153.6vH5.
All of the systems have the same steady-state branching
gram as a function ofmc and the same distribution ofp
values over that diagram, and the fixed points withp5pHq
are nonhyperbolic with eigenvalues6 ivHq . In thekj space,
the straight line describing the fixed points moves withc1
but, for c1Þ0, maintains its qualitative relation with the su
faces$0% and$6 iv%; i.e., the line crosses the same instab
ity regions and produces qualitatively equivalent branch
diagrams. This means that tall the dissipative systems e
rience the Hopf bifurcations as in the case of Fig. 11.
particular, the represented evolutions correspond tomc53
for which the pair of node points have already done the

FIG. 10. Time evolutions from different systems illustratin
self-similarity with respect to both the time scale and the sys
dimension. The nonlinear function is the same as in Fig. 7,mc

5120, and other parameters are~a! N58, vHq50.0209, 0.251,
2.86, 18.9, 126, 700, 5000,pHq5212, 33, 218, 45, 218, 45,
218, c152.15vH7; ~b! N56, vHq50.0209, 0.251, 2.86, 18.9
126, pHq5212, 33,218, 45,218, c151.98vH5; ~c! N56, vHq

52.86, 18.9, 126, 700, 5000,pHq5218, 45, 218, 45, 218, c1

52.15vH5; ~d! N55, vHq50.0209, 0.251, 2.86, 18.9,pHq5212,
33, 218, 45,c150.69vH4.
ia-

-
g
e-

i-

furcations atvH1 and vH3 and the saddle has done the b
furcation atvH2.

The conservative case behaves differently. In the lim
c150, the straight line does not cross the surface$6 iv% but
penetrates within it and within regions of high-order dege
eracies. This means that the fixed points remain highly n
hyperbolic for long ranges of themc parameter and the Hop
bifurcations do not occur. Concretely, the ‘‘node points’’ a
three-dimensional toroidal centers and the ‘‘saddle point’
a two-dimensional toroidal center with additional on
dimensional stable and unstable manifolds of equal eigen
ues. There are no attractors and every set of initial conditi
leads to a particular trajectory. In the example of Fig. 12,
trajectory evolves around one of the lateral points, but t
jectories around the three fixed points are also possible
any case, the evolution contains only three oscillation f
quencies and they are always of the order ofvH1 , vH3, and
vH5.

The numerical results presented up until now corresp
to systems exhibiting the full instability behavior on the ba
of really different frequencies, i.e., about an order of mag

FIG. 11. Time evolutions for successivemc values illustrating
the full instability behavior around a node-saddle-node trio of fix
points generated in a symmetric pitchfork bifurcation. The nonl
ear function isg(c)5sinc, and other parameters are the same a
Fig. 1
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tude between consecutive frequencies, and Fig. 13 illustr
how the dynamics become more irregular when the osc
tion frequencies become closer. The evolution of Fig. 13~a!
must be compared with that of Fig. 7 formc590, because
the unique differences between both situations are the H
frequenciesvHq , now sequenced with a factor of three, a
the coefficientc1, which maintains the same relationc1 /vH5
in order to achieve a similar level of dissipation. Similar
the signal of Fig. 13~b! has to be compared with that of Fig
12 with c1 /vH551.2. The signals of Fig. 13 describe th
evolution after a time length 50 times longer than the rep
sented interval in order to avoid transitory effects. T
Lyapunov spectrum calculated for case~a! is 0.000 848,

FIG. 12. Influence of the level of dissipation on the full inst
bility evolutions. The signals correspond to the same system a
Fig. 11, except for the coefficientc1 that is varied from 0 to 3.6vH5,
andmc53. The trajectory forc150 corresponds to the initial con
ditions xN51024 andxj ÞN50. Notice the different time scales fo
the various signals.
es
-

pf

-

0.000 414,20.0159, 20.0989, 20.143, 28.20, and for
case~b! is 0.0271,20.0005, 20.0330, 20.326, 20.729,
221.88. Thus signal~b! is clearly chaotic while~a! may be
associated with a quasiperiodic orbit.

Finally, it is worth mentioning that the thresholdspHq can
be employed to regulate the relative position of the Ho
bifurcations and the proximity of the system to particu
eigenvalue degeneracies. The analysis of their influence
the observed dynamics would provide a large perspec
about the full instability behavior.

VI. DISCUSSION

The linear stability analysis can indicate the occurrence
successive Hopf bifurcations on the fixed points when
parameter is varied and the nonlinearity of the system w
usually guarantee the generation of successive limit cyc
One of the cycles will probably be initially stable while th
rest will be saddle cycles of different types. Of course
variety of secondary processes of both local and global
ture can occur to any of these periodic orbits and a la
variety of observable behaviors may then be expected. N
ertheless, the numerical simulations for systems in the fo
~2!, ~4!, and ~5!, with different nonlinear functions and fo
different dimensions, confirm the essential role of the stea
state bifurcations in determining the time dynamics obser
in the full instability regimes. Although the sequence of pr
cesses yielding the underlying attractor may be rather c
plex and dependent on the circumstances, it seems that s
generic mechanisms are responsible for the mode mix
observed in the time dynamics, at least in the case of a n
linear function of a single variable in the form~5b!.

A. Secondary bifurcations and mixing mechanisms

The basic mechanism of nonlinear mixing is simply t
attractor intertwinement around the unstable manifold o
neighboring saddle limit set. In this way, the time dynam
of the attractor incorporates oscillations at the saddle
quencies without requiring any bifurcation@20#. This hap-
pens, for instance, in the Shil’nikov-type attractors form
when a stable limit cycle approaches an external saddle fo
or limit cycle. More generally, we conjecture that th
mechanism can work with the variety of saddle sets emer
from the saddle-node pair of fixed points, because all of th
have a branch of the unstable manifold ending toward
attractor. The approach to well defined places of the attra
would explain the characteristic wave forms formed by
succession of packets of different frequencies. The in
twinement can affect the saddle orbits also and, in fact,
nonlinear mode mixing of the full instability behavior ma
be considered like a global process affecting the flow of
extended region of the phase space where the invariant
will form accordingly. It must be stressed, however, that
have not determined the unstable manifolds in the numer
simulations forN.3, and this will be necessary for verify
ing the proposed mixing mechanism.

A deeper combination of oscillation modes can occ
through the Naimark-Sacker bifurcation, usually called t
torus or secondary Hopf bifurcation. In this case, the inva
ant torus sustains true multifrequency oscillations and co
plex dynamics associated with resonances and torus br

in



s

r

PRE 62 345FULL INSTABILITY BEHAVIOR OF N-DIMENSIONAL . . .
FIG. 13. Irregular time evolu-
tions in six-dimensional system
exhibiting full instability on the
basis of a set of relatively simila
oscillation frequencies. In both
casesvH(q11)53vHq , q from 1
to 4, in ~a! vH150.02, c1

52vH5, and the nonlinear func-
tion and thepHq are the same as in
Fig. 7; in ~b! vH150.1, c1

51.2vH5, and the nonlinear func-
tion and thepHq are the same as in
Figs. 10 and 11.
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down problems are intrinsically possible. Each fixed point
the saddle-node pair may yield tori with multimode oscil
tions related to the Hopf frequencies of that point and,
principle, the number of such bifurcations determines
dimension of the highest-order torus. In the parameter sp
the q-torus bifurcation emerges from the degenera
$6v1, . . . ,6 ivq% of the fixed point eigenvalues. In particu
lar, the two-torus bifurcation emerges from$6 iv1 ,6 iv2%
and the corresponding universal unfoldings have been in
tigated in detail@1,21#. It has been shown that, in certa
cases, this four-dimensional degeneracy can produce an
ditional three-torus bifurcation with the third frequency n
directly related to the fixed point bifurcations. Similarly, th
three-dimensional degeneracy$0,6 iv% can produce a two-
torus bifurcation where the second frequency seems a
independent of the fixed points@1#. These tori cannot be
associated with a specific fixed point and a generalizatio
higher-order eigenvalue degeneracies suggests the poss
of tori with dimensions up toN21, i.e., the highest order in
N dimensions. Nevertheless, when numerically obser
@22,23#, these tori appear very fragile and in extremely n
row regions of the parameter space.

In conclusion, we find reason to suspect that the full
stability behavior will happen in parameter space regio
with a relative abundance of torus bifurcations yielding m
tifrequency oscillations based on the Hopf bifurcations
one of the fixed points. The node-point family of cycles a
tori contains at least one attractor@24#, while the rest of this
family and the saddle-point family are saddles. With t
variation of a control parameter, the attractor grows a
transforms while the neighboring saddle sets move th
stable and unstable manifolds in a process that underli
variety of possible homoclinic and heteroclinic connectio
The time dynamics of the attractor incorporates the osc
tory motions of the various saddles in a degree that is v
sensitive to how near the corresponding homoclinicities a
Of course, complex and dense sequences of bifurcat
yielding to homoclinic chaos can also occur during the m
ing process@19#. However, the period-doubling and cycl
f
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saddle-node bifurcations are not able to introduce indep
dent characteristic frequencies and are therefore not esse
for explaining the full instability behavior, at least in a fir
approximation. What is more relevant is the possibility
attractor destruction after a homoclinic connection.

B. Basic set of fixed points

We want to remark here why we consider a saddle-n
pair of fixed points. Of course, there are nonlinear syste
possessing only one fixed point and the full instability in th
case corresponds toN/2 Hopf bifurcations on this point, ifN
is even, or to (N21)/2 if N is odd. However, the coexistenc
of steady states is one of the most significant features
nonlinear dynamics and it is then convenient to consider
possibility for a more general overview. What basic set
fixed points has to be considered depends essentially on
directional structure of the nonlinear part of the vector fie
i.e., on the number of linearly independent components
uniform direction in which the nonlinear vector field can b
decomposed.

For one-directional nonlinear vector fields, the fixe
points appear in phase space aligned on a straight line an
an alternate sequence of saddle-node type. The saddle
ratrices determine the attraction basins of the nodes and
basic dynamical phenomena will be associated with an
tractor arising form one of the nodes and growing in t
presence of the nearest saddle. Of course there are
mechanisms for producing attractors associated with a la
number of fixed points. On the one hand, it is possible t
the attractor will grow under the influence of two neighbo
ing saddle points located at the opposite sides. On the o
hand, attractors developed separately at the two sides
saddle separatrix can become glued together through suc
sive homoclinic bifurcations destroying the previous attra
tors and creating the hybrid ones. This kind of gluing is w
known from the systems with a symmetric pitchfork bifurc
tion, in which the homoclinic connections happen simul



ts
e
e
ys
e
se
s
or
r

ld
he
ly
, t
n

d
e
rs
rg
at
fe

o-
le
fo

x-
e
pf

th
d
in
pe
r

vo
s
ed
-
th
is

o
es
th

on
y
h
ep
olu
th
fo
-
th

ou-
the
be
vo-
ns
he

ti-
t is
ing
oc-
a-

op-
g.
rac-
ge
act
cies
be

n-
ys-
to

mi-
oci-

oc-
m.
erre-

m
il-
.e.,
d

er
elf-
ls
si-

o-
te a
ems
al

ld
rge

c-
of

ty
ary
y-

ting

ull
e-
; in
ds
m.

346 PRE 62J. RIUSet al.
neously at the two saddle sides@25#, but it can also occur in
more general situations@26#. For systems whose fixed poin
appear on a straight line in thekj space, the various nod
(kN.0) and saddle (kN,0) points will generate the sam
oscillation frequencies and the time evolutions will alwa
be based on theN21 oscillation modes, independent of th
number of underlying fixed points. In a more general ca
the oscillation frequencies generated from different node
saddles can be different and the time evolutions will inc
porate additional modes by an increase in the numbe
fixed points.

The situation becomes more complex for vector fie
with a multidirectional nonlinear part like that defined by t
superposition ofn nonlinear vector fields based on linear
independent scalar functions and directions. In this case
fixed points may extend in phase space distributed withi
subspace of dimensionn, related ones with others throughn
differently orientedl50 bifurcations. The basic set of fixe
points may include up to 2n points, one of which is a stabl
node and the rest are saddles defining one of the corne
its attraction basin. This set of points can sustain a la
number of Hopf instabilities but it is not evident to wh
extent the corresponding oscillatory motions can mani
together in the time dynamics.

VII. CONCLUDING REMARKS

We have verified that the combination of oscillatory m
tions in a nonlinear dynamical system can yield comp
time evolutions in a way that evokes the Landau proposal
tentatively explaining the origin of turbulence@3#. This be-
havior has been found inN-dimensional systems able to e
ploit the instability capabilities of their fixed points to a larg
extent. The oscillations emerge in association with Ho
type bifurcations and the complexity arises from~i! the num-
ber of different oscillation modes, and~ii ! the variety of
forms through which the nonlinear mechanisms combine
oscillation modes. The second point marks the essential
ference with the Landau scenario; i.e., the mode mix
mechanisms of nonlinear dynamics are richer than the su
position of oscillatory instabilities by successive torus bifu
cations and they can introduce irregularity in the time e
lution by affecting both the relative phases and amplitude
a complex manner. In addition, a set of coexisting fix
points can generate more than theN/2 characteristic frequen
cies of a sequence of torus bifurcations. In other words,
nonlinear dynamical systems can have enough mechan
for developing the Landau intuition about the emergence
irregularity through oscillatory superpositions. Another qu
tion is whether this irregular evolution may be related to
origin of turbulence in fluids.

On the other hand, the irregular succession of undulati
of different characteristic times forming the full instabilit
wave forms can repeat regularly and even periodically. T
fact indicates that the high degree of instability behavior r
resents a way toward creating irregular and complex ev
tions independent of chaos. The complexity degree of
full instability signals can be emphasized by considering,
instance, the case of Fig. 10~a! and realizing that if the char
acteristic time of the fast oscillations would be one day,
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longest time defining the period would be about one th
sand years, after which time the system would repeat
same irregular sequence of daily undulations again. It will
interesting to investigate the properties of the irregular e
lutions of the fully unstable systems for higher dimensio
and to compare them with the well-known properties of t
chaotic dynamics.

In this paper, the full instability behavior has ben inves
gated in particular classes of dynamical systems and i
important to ask how general the phenomenon is. Accord
to our interpretation, we find reason to suspect that the
currence of the various Hopf bifurcations in a restricted p
rameter domain will always be associated with the devel
ment of nonlinear mechanisms of mode mixin
Nevertheless, the complexity of the process and the cha
teristic features of the time dynamics will probably chan
with the structure of the nonlinearities. For instance, the f
that the oscillation modes appear with the same frequen
as the Hopf bifurcations of the fixed points may perhaps
peculiar for nonlinear functions in the form~5!.

Another significant question is to what extent the full i
stability behavior may be relevant for the study of real s
tems to which the concept of dynamical system is trying
be applied. The presence of oscillatory behaviors of dyna
cal nature is indeed evident in biology, economics, and s
ology. In certain cases, for instance, in living systems@27#, a
variety of oscillatory processes with different time scales
cur at different levels or in different parts of a given syste
Some of these processes develop autonomously, but int
lations and oscillatory mixing can also occur@28#. The de-
scription of such a mixing at the level of a dynamical syste
would probably involve the nonlinear combination of osc
lations associated with a set of neighboring fixed points, i
a system exploiting the instability capabilities of its fixe
points to a certain extent.

By following the Landau proposal we must also consid
the turbulence phenomena. With respect to this, the s
similarity properties observed in the full instability signa
may be particularly suggerent. Such properties are intrin
cally related to the organization of the mode mixing pr
cesses around the structure of fixed points and constitu
robust feature. On the other hand, the dynamical syst
typically obtained by reduction of the partial differenti
equations associated with turbulent problems@29# always
present~i! a multidirectional nonlinear part of the vector fie
with the number of independent nonlinear functions as la
as the order of the system, and~ii ! the participation of a large
number of dynamic variables within every nonlinear fun
tion. This means the occurrence of complex structures
fixed points and possibilities for exploiting the instabili
capabilities of these points, two different and complement
ways through which complex behavior may emerge in d
namical systems and whose interrelation we find interes
to investigate.

Finally, as a matter of fact, we want to recall that the f
instability behavior has been observed in the BOITAL d
vices @8# and that these devices are really simple objects
essence, they areN-layer sandwiches of glasses and liqui
placed between two mirrors and irradiated by a light bea
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APPENDIX A: NONLINEAR FUNCTIONS
USED IN THE NUMERICAL SIMULATIONS

We have used the following nonlinear functions of
single variable:

g~c!5m11expF2
~c2m2!2

m3
G ~A1!

with m150.1 andm25m3510, to obtain the results of Fig
1;

g~c!5
m11m2 cosc

m31cosc
~A2!

with m1521.25, m251.06, andm3521.86, to obtain the
results of Figs. 7–10 and 13~a!; and

g~c!5sinc, ~A3!

to obtain the results of Figs. 11, 12, and 13~b!. These non-
linear functions are represented in Figs. 2~a!, 2~b!, and 2~c!,
respectively, together with the corresponding steady-s
branching diagrams and distribution ofp values. The dia-
grams describing bothc̄ andp as a function of (dN /cN)mc
are independent ofN and the coefficientscj and dj . If cN
5dN the diagrams will then be determined exclusively
the nonlinear function.

The Gaussian function, Eq.~A1!, produces aS-shaped
branching diagram with a single hysteresis cycle and wit
limited range ofp values. The periodic function of Eq.~A2!
is a positive-defined sinusoidal function describing the lig
interferences in the low-finesse, high-contrast cavities of
BOITAL devices@9#. The periodicity of the nonlinear func
tion produces successiveS-shaped steady-state branches w
successively broader distribution ofp values. This means
that the required values ofp are always available by going t
higher branches. The sinusoidal function of Eq.~A3! has the
peculiarity that fulfills the conditions for a pitchfork bifurca
tion and its periodicity leads to additional saddle-no
branches in the steady-state diagram. With this function
system is invariant under the sign inversion of the full set
variables.

APPENDIX B: SYSTEMS IN THE FORM „2…, „4…,
AND „5… FOR THE FULL INSTABILITY BEHAVIOR

By introducing Eq.~11! in Eqs.~14! we can obtain thepH
andvH values of the straight line intersections with$6 iv%
for a given set of coefficientscj anddj , but the achievemen
of full instability situations is rather difficult in this way. It is
also possible to work in the opposite way by previously~and
properly! selecting thepH andvH values of theN21 Hopf
bifurcations and determining the corresponding set of par
e

te

a

t
e

e
f

-

eterscj anddj . This gives two decoupled sets ofN21 equa-
tions, involving coefficients with even and odd labels, r
spectively. The total number of unknowns is 2N and,
therefore, two additional conditions are required. We usua
takedN5cN and choose a value forc1. The former condition
is not a restriction because it can always be done with
proper rescaling@17# and has the advantage of making t
steady-state branching diagram depending on theg(c) only.
The later condition responds to the fact that, having cons
ereddN5cN the system of equations with odd label coef
cients hasN unknowns and one of them must be predet
mined. We takec1 but any other odd label coefficients wi
be equivalent because the system of equations is scale in
ant with respect to the unknowns. Thus the selected va
for vH and pH determine the odd label coefficients with
free common scale factor that is defined by the presele
value of one of them. This scale factor is relevant becaus
affects the vector field divergence. In effect, the divergen
of the canonical system~2! with a nonlinear function in the
forms ~4! and ~5! is given by

div F52c11p~c!
cN

dN
d152k1~c!, ~B1!

wherep andk1 are defined as in Eqs.~9! and ~11!, respec-
tively, but for any point of the phase space. In particular,
systems having one of the frequenciesvH clearly higher than
the rest, it may be seen that

c1'pHF

cN

dN
d1 , ~B2!

were pHF corresponds to the fast frequencyvHF , and the
effective dissipation along a given trajectory may be th
characterized by

^div F&
vHF

'2
c1

vHF
S 12

^p&
pHF

D , ~B3!

where the brackets denote the average over the trajec
Thus for a given nonlinear functiong(c), the election ofc1
allows us to adjust the dissipation degree of themc family of
systems that in thekj space intersects the surface$6 iv%
with the preselected set of valuesvH andpH .

The selection of thevH and pH values must be done
properly. A useful guideline for obtaining systems with th
full instability behavior is to choose the ordered sequence
frequenciesvH alternatively associated with eitherpH,0 or
pH.1, i.e., with either the node or the saddle point. T
conditionpH,0 instead ofpH,1 facilitates that the point of
coordinates (cj ) havingp50 will appear in the region with
zero unstable dimensions and that the zero eigenvalue b
cations will involve fixed points with zero and one unstab
dimensions. On the other hand, the selection of thepH values
allows us to achieve particular situations. For instance
straight line crossing the degeneracy$6 iv1 , . . . ,6 ivq%
may be obtained by imposingq Hopf bifurcations at the
samep value.
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