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Fronts with continuous waiting-time distributions: Theory and application to virus infections
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We generalize to arbitrary waiting-time distributions some results which were previously derived for discrete
distributions. We show that for any two waiting-time distributions with the same mean delay time, that with
higher dispersion will lead to a faster front. Experimental data on the speed of virus infections in a plaque are
correctly explained by the theoretical predictions using a Gaussian delay-time distribution, which is more
realistic for this system than the Dirac delta distribution considered previously [J. Fort and V. Méndez, Phys.

Rev. Lett. 89, 178101 (2002)].
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I. INTRODUCTION

The speed of reaction-diffusion fronts is a very important
problem in many areas of physics, such as flame propaga-
tion, solidification, superconductors, and biophysics (for
some recent reviews, see [1,2]). On the other hand, time-
delayed transport is observed in many different situations
[3,4]. For instance, time-delayed diffusion-reaction fronts are
observed in many systems (specially, biophysical ones) be-
cause the individuals (or particles) which diffuse and repro-
duce (or react) have a non-negligible waiting time between
successive jumps [1,2,5-11]. In the first applications of this
topic, the approximation was made that all individuals have
exactly the same waiting time, i.e., that the waiting-time dis-
tribution is a Dirac delta [5,6,8]. But of course, a Dirac delta
is a very specific, highly idealized description, and should
not be expected to be valid in general. For example, for the
Neolithic transition population fronts, the available data were
recorded as a discrete distribution of several possible values
of the waiting time (and not a single one). For this reason, in
Ref. [7] we extended the time-delayed theory of the
Neolithic transition [5] to the case of several possible, dis-
crete waiting times. In Ref. [7], we showed that there is an

effective waiting time T, and that this is a very important
parameter to compute and understand front speeds. However,
in other systems a discrete distribution of delays (assumed in
Ref. [7]) will not be realistic. As we shall show in the present
paper, this happens for virus infection fronts: The waiting
time distribution is not a sum of Dirac deltas (discrete distri-
bution), but a Gaussian one (i.e., a continuous distribution).
Therefore in order to deal correctly with virus infection
fronts, it is necessary to extend the approach in Ref. [7] to
continuous waiting-time distributions. Indeed, this is the
main experimental motivation for the present work. But as
explained above, from a theoretical perspective it is also im-
portant to build a framework which makes it possible to

compute the effective waiting time T and front speed ¢, and
is applicable to all waiting time distributions (and not only to
discrete ones, which was the case considered in Ref. [7]).
This problem is tackled in Sec. II and is applied to virus
infections in Sec. III. Finally, Sec. IV is devoted to conclud-
ing remarks.
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II. THEORY

For the sake of clarity, we will refer to bacteriophages in
this section. This will make it easier to apply our results and
compare to experimental data in the next section. Bacte-
riophages are viruses that infect bacteria. Some time after
infection, the bacteria burst and release new virus progeny.
However, the framework presented in this section is appli-
cable to any kind of individuals or particles performing a
random walk with a distribution of waiting times and under-
going biological reproduction/replication or chemical reac-
tions. For example, in addition to bacteriophages, the same
model can be applied to vesicular stomatitis viruses (VSV),
which replicate on mammalian or insect cells (not on bacte-
ria). In VSV, the cells do not burst, but there is again a
waiting time distribution due to the difference in release
times of viruses from the infected cells.

In the bacteriophage plaque experiments, viruses diffuse
and reproduce in a two-dimensional medium. Virus diffusion
takes place in “jumps” from cell to cell. Once a virus V
reaches a cell (i.e., a bacterium B), it is adsorbed and infects
it (this is represented by the reaction V+B—1I). The virus
then reproduces inside the infected bacterium /. Some “wait-
ing” time after the arrival of the virus, the infected bacterium
I bursts and a number Y of new viruses (progeny) leave it
(reaction I— YV, where Y is called the yield). Bacteria are
immobilized and, therefore, do not diffuse (see [8] and ref-
erences therein). Let V(x,y,r) stand for the virus number
density per unit area in position (x,y) at time z. Assume that
initially (r=0) we have V(x,y,)=V,8(x)d(y), i.e., that ini-
tially a concentration V|, of viruses is inoculated at a point
which is taken as the origin (this is indeed how the experi-
ments considered in Sec. III are performed in the laboratory).
Let ¢(Ax,Ay) stand for the probability that a virus moves
with coordinate lengths —Ax, —Ay when performing a jump
for a cell to another one. Let ¢(7) stand for the probability
that from the time a virus reaches a cell, a waiting time T
elapses until its progeny leave the cell. Let F(x,y,7) stand for
the number of new viruses that appear per unit time and area,
due to the adsorption and replication reactions above (i.e.,
V+B—I1—YV)[8]. If ds Py(x,y,t) stands for the number of
viruses per unit area that reach an area ds centered at (x,y) at
time ¢, we have [7]
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X(x+Ax,y + Ay, = T)o(T) p(Ax,Ay)
+Vy8x=0)8(y=0)8(t=0) + F(x,y,t). (1)
The density V(x,y,t) of viruses per unit area centered at

x(x,y) at time ¢ is clearly given by the viruses that have
arrived at (x,y) at some earlier time and still not left, namely

[7]
p(x,y,t) = j dt' P(x,y,t"YW(t—-1), (2)
0

where W(r—1t") is the probability that any particle rests for at
least a time interval r—¢' before performing the next jump,
obviously [7]
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It is straightforward to repeat the steps leading to Eq. (11)
in Ref. [7] and see that here the same general equation holds,
ie., [12]

1-4(s)

s

[Vo+ F(kykys)],

(4)

where V(kx,ky,s) and I:“(kx,ky,s) are the Fourier-Laplace
transforms of V(x,y,t) and F(x,y,f), ¢(s) is the Laplace

v(kx’ ky’s)[l - (,ZJ(S) a’(kx’ky)] =

transform of ¢(7), and &(kx,k\,) is the Fourier transform of
&(Ax,Ay). We now proceed as follows.

(i) As in Ref. [7], we assume that the space kernel is
isotropic, ie., d(—Ax,Ay)=d(Ax,Ay)=p(Ax,—Ay)
=@(Ay,Ax), which using the normalization of probability
[JZ.dAx[” dAy ¢(Ax,Ay)=1] leads to

Bk, k) Ef dAx f dAye A (A, Ay)

o 0 R R Az Az
=f dAxf dAy[l—ik-A—kaTx—kiTy

2
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where 0(&3) stands for terms of third and higher powers of
Ax and Ay. This approximation will be valid assuming that
the dispersal kernel ¢(Ax,Ay) is appreciably different from
zero only for sufficiently small jumps (Ax=0, Ay=0). Oth-
erwise, the second-order or “diffusion” approximation above
would break down (leading to what is called long-range dis-
persal in ecology [13-15]).

(ii) In Ref. [7] we assumed that the waiting time probabil-
ity distribution was discrete, i.e., a sum of Dirac deltas:
@(T)=3N p;8(T-T;) (with p; the probability that the waiting
time is 7;). That assumption was motivated by the available

+ 0(&3)] H(Ax,Ay)=1-
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experimental data of ¢(7) in the application considered there
(namely, the Neolithic transition). Here, we could be tempted
to use a Gaussian distribution (which is motivated by the
experiments that we will consider in Sec. III). However, we
will now show that we can derive very interesting results
without assuming any specific distribution. Instead, and
analogously to Eq. (5), we simply assume that the waiting-
time probability distribution ¢(7) is appreciably different
from zero only for sufficiently small values of the waiting
time 7, so that we can use again a second-order Taylor ex-
pansion as follows:

o o0 T2
o(s) = f dTe™To(T) = f dT[l —sT+ 523
0 0

2
+ o(ﬂ)} o(T) =1 - (T + %<T2> +0(T). (6)

Combining the three previous equations up to second or-
der, we obtain that

Ts - . P
?(SV— Vo) +sV=Vo==D(K; + k))V + F(k,.k,.5)

T A
+ EF(k)pky?s)? (7)
where we have defined
B dTo(T)T?
~ (T?) 0
T=22T)- T 2| dTe(T-——. (8)
0 f dTe(T)T
0

T can be called the effective delay time. It was first intro-
duced in Ref. [7], but for a very special and simple distribu-
tion function ¢(7) (namely, a sum of Dirac deltas). We now

see that T is a very important parameter in general. The

meaning of the effective delay T can be understood by re-
writing Eq. (8) as

T=(T)1-¢), )
where
(T-(1)* (1% —=(1)*
(> (1

is the dispersion of the waiting-time distribution. Thus for
any two waiting-time distributions with the same mean delay
time (7T), that with higher dispersion & will have a lower

(10)

&=

effective delay time T and, therefore, a faster front. In other
words, some viruses jump sooner (due to the higher disper-
sion) and make the infection front move faster. Conceptually,
this effect is somehow similar to long-range dispersal in
ecology [13-15]. There, a few seeds dispersing large dis-
tances can lead to a much faster front. Here, a few viruses
dispersing sooner can also lead to a faster front.
Antitransformation of Eq. (7) yields a hyperbolic
reaction-diffusion (HRD) equation, namely
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Equations (7) and (11) are analogous to Egs. (19) and (20)
in Ref. [7], but have been here derived for an arbitrary dis-
tribution function ¢(7). It is very interesting that reaction-
diffusion systems follow an HRD equation, not only for the
particular distribution of waiting times considered in Ref. [7]
(a sum of Dirac deltas), but for any general waiting-time
distribution ¢(7), as shown above.

Just to summarize: originally [5], the validity of an HRD
equation up to second order in waiting-time random walks
was shown under the assumption of a single possible value
T, for the waiting time, i.e., for @(T)=&T-T;) (with the
result that 7= T,, using the notation in the present paper).
Later on [7], an HRD equation was derived for a discrete set
of waiting times, i.e., for go(T):Eﬁilpié‘(T— T;). Now, an
HRD equation has been derived for any possible waiting
time distribution ¢(7) [with the effective delay T appearing
in the HRD Eq. (11) given by Eq. (8)].

III. APPLICATION TO VIRUS INFECTION FRONTS
A. General model

As discussed in Ref. [8], for virus infections the diffusion
coefficient D must be replaced by an effective one, D, to
take into account the presence of bacteria (which hinder vi-
rus diffusion) as

Deyyp=—"D, (12)

where f=B,/B .y is the concentration of bacteria relative to
its maximum possible value (B, is the initial bacteria con-
centration far from the inoculation origin, and it depends on
the initial nutrient concentration) [8]. The parameter x takes
proper care of the bacterial shape [8]. Also, the evolution
equations for the uninfected bacteria number density

B(x,y,t) and infected bacteria density I(x,y,t) are [8]
oB
= —_k VB, 13
=k (13)

al I
— =k VB=kyd| 1-—], (14)
at max

where k; is the rate constant of the virus adsorption reaction
[V+B—1], k, the rate constant of the infected bacteria lysis
reaction [/— YV], and I, the saturation density of infected
cells. Finally, the reactive term for viruses is [8]

[7]
[I] max

Therefore using the HRD Eq. (11) we have a system of
three simultaneous partial differential equations,

F(x,y,t)=—k1[V][B]+Yk2[1]<1 - ) (15)

PHYSICAL REVIEW E 73, 021907 (2006)

T T
Vit SVu=DegyV, = ki) VB+—(VB),

I T I
+ Y\ (1 —— |+ || 1 -— ,
Imax 2 Imax t

B,=—k, VB,

1
It=k1VB—k2](1—_), (16)
which generalize those considered in Ref. [8]. In Eq. (16),
instead of the mean waiting time (used in Ref. [8]), now the

effective delay T appears, and it must be computed using Eq.
(8). This takes care of the whole waiting-time distribution
function (which was not done in Ref. [8]). The solution ob-
tained by linearization in the front frame z=r—ct— o,
(V,B,D)=(ey,ep,e;)=80exp[-N\z]=(0,B,,0), is obtained
by requiring the determinant of the matrix corresponding to
the linearized form of Egs. (16) to vanish. This solution will
be the same as that in Ref. [8] with the mean waiting time

replaced by the effective one T, namely [see Eq. (8) in [8]]

0= (— 1 +Zc_‘2)5)\3+ {— 1+ (1 +Z(K1+ 1))52])\2
2 2
(T _
+|:K1c(1—E(Y—l)>+c])\—Kl(Y—1), (17)

where k| =k By/k, and T= Tkz are dimensionless param-
eters. This equation can be solved numerically in order to
find out the dimensionless front speed c= c/\"Defka such
that c=miny~o[c(\)], where ¢(\) is given by characteristic
equation (17). But before applying this equation we must

estimate T from Eq. (8), derived in the previous section. In
order to do so, we first have to determine the waiting-time
distribution function. This was not done in Ref. [8] because
in that very simple model, all viruses were assumed to have
exactly the same waiting time, i.e., we approximated the
waiting-time distribution to a Dirac delta centered at the
mean waiting time of the viruses.

B. Bacteriophage T7 infecting E. Coli

In order to analyze the waiting-time distribution for a real
system, in Fig. 1 we reproduce the so-called one-step growth
of the virus T7 infecting E. Coli bacteria (see also Fig. 1 in
Ref. [8] and its caption). This experiment refers to an homo-
geneous medium of cells infected at #=0. If all viruses took
exactly the same time to kill a cell and reproduce, Fig. 1
would be a step function, and the waiting time distribution
would be a Dirac delta. Instead, the gradual rise in the virus
concentration in Fig. 1 indicates that it takes a different time
for each virus to kill the cell it has infected and reproduce.
This interpretation of one-step curves is well-known in virol-
ogy [16]. For the case in Fig. 1, we see that the range of
waiting times (i.e., the rise in the curve) is between 14 and
23 min, approximately. Instead, Ref. [8] assumed that the
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FIG. 1. Virus concentration [in Formation-of-
Plaque Units (FPU) per ml] vs time in a homo-
geneous medium of cells infected at #=0. The fit
to the main plot is a logistic (see main Fig. 1 in
Ref. [8]). Here we use it again because its time
derivative (inset, full curve) makes it possible to
note that a Gaussian (dotted curve) is a good de-
scription to the waiting-time distribution of the
T7 bacteriophage.
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waiting time of all viruses is exactly equal to the mean value
in Fig. 1 (i.e., 18.4 min). Intuitively, it is clear that there is no
reason to expect that this approximation will lead to realistic
predictions (the width of the rise in Fig. 1 is about 7 min,
i.e., almost 40% of the mean value of 18.4 min, and is there-
fore not negligible). It is also interesting to use the simple,
single waiting-time framework in Ref. [8] to justify that the
distribution of waiting times should not be neglected
a priori. Figure 2 presents an example of the predictions of
the single waiting-time model in Ref. [8], but using the lower
value implied by Fig. 1, i.e., T=14 min (dotted curve) in
addition to the mean value 7=18.4 min [full curve in Fig. 2,
already plotted in Ref. [8], Fig. 3(b)]. Differences in the front
speed ¢ in Fig. 2 are always higher than 13% (and even
higher than 65% for sufficiently small values of f). Therefore
viruses that kill an infected cell sooner than average (T
=14 min) tend to make the infection front move substantially
faster than would be expected from the single, mean waiting-
time model in Ref. [8] (T=18.4 min). But on the other hand,
computing the time derivative of the main Fig. 1 (inset in
Fig. 1) we note that very few viruses kill the cell in only
14 min. Therefore in order to make trustable, quantitative
predictions we need to take into account the detailed shape
of the waiting time distribution. We will then be able to
predict the virus front speed using the general model pre-
sented in Sec. II.

As mentioned above, the experimental data in Fig. 1 were
obtained for a homogeneous medium of cells infected at ¢
=0. Then, since each virus disappears and gives rise to a
progeny of Y viruses after a time T with probability ¢(7),
obviously the concentration of viruses will in that experi-
ment evolve according to [17]

V= V,:0+J[dT<,o(T)(Y—1)V:0, (18)
0

so that the waiting-time probability distribution can be ob-
tained from the curve in Fig. 1 as

1 dv

VoY —1)dt’ (19)

o(T) =
The inset in Fig. 1 shows the time derivative of the main Fig.
1 (full curve), and a Gaussian fitted by least-squares (dotted
curve). It is seen that a Gaussian is a very good description
of the waiting-time distribution of these viruses (in contrast,
the approximation in Ref. [8] considered a vanishing distri-
bution for all values of T except 18.4 min, i.e., a Dirac delta
distribution). Therefore here we will use a Gaussian waiting-

time distribution,
T- 2
A exp[— (%) } if7T=0,

0 if T<O0,

o(T) = (20)

so that the normalization constant [i.e., the value of A such
that [JdT¢(T)=1] and the mean squared waiting time (7°)
are, respectively,

2

A= , (21)
B\"7_r<1 +Erf{@J)
B

s 2
<T2)=f dTo(T)T? = % +(T)?
0

B (D :

B n?
' V’;1+Erf ) exp[_ B? ] 22

where Erf[z]= (2/\m) [ exp[-#*]dt is the error function.
The former results become much simpler if we consider
the special case that all viruses have a waiting time substan-
tially different from zero. In other words, if we consider the
case in which the time between the arrival of a virus and the
departure of its progeny is not negligible for any of the vi-
ruses (below we shall see that this is indeed realistic). Intu-
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FIG. 2. This figure presents
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the limitations of the single
waiting-time model in Ref. [8].
Both curves are based on that
model, but the dotted one uses the
1 lower value of the range of wait-
4 ing times implied by Fig. 1, i.e.,
J T=14 min, whereas the full curve
uses the mean value 7=18.4 min.
Differences between both curves
are substantial, showing the need
to build models that take care of
the shape of the waiting time dis-
tribution. This is done in the

itively, we may express this condition by means of the math-
ematical inequality

2
@(T=0)=A eXp[— (%) } < @max = @(T=(T)) =A,

(23)

exp{— <%>2} <1. (24)

In this special case, the Gaussian function in Eq. (20) is
approximately zero for 7<<0, and we may approximate the
normalization condition as follows:

o o 2
1=f dT(p(T):J dTAexp[—(¥) } (25)

0 —0

or

which yields

1
A=——=, (26)
BV

and Eq. (22) becomes the very simple expression

£ 2
<T2>zf dTAexp[—<T_T<T>) ]:%2+<T>2, (27)

which below we shall see that is realistic and very useful.
The Gaussian curve fitted to Eq. (20) is shown as a dotted
curve in the inset in Fig. 1. It has the parameter values (7T)
=18.38 min and B=1.634 min. Using these values into Eq.
(22) yields {(7?)=339.1 min®. The same result can be found
from the approximation (27) [because for these values exp
X[-({T)/B)*]~ 107>, so that the condition (24) holds].
Then, using Eq. (8) we can estimate the effective waiting
time, T=18.31 min, which is very similar to the value of the
mean waiting time (7)=18.38 min obtained above (from Fig.
1, inset). Using the rest of the parameter values for our sys-

T present paper.

tem from Ref. [8], we obtain, solving Eq. (17) numerically,
the virus front speed predictions shown in Fig. 3 (curves),
which agree well with the experimental data (symbols). For
this system, the predictions are very similar to those from the
single-delayed model [Fig. 3(a) in Ref. [8], lower curves],
and we have checked that the same happens for B,
=10% m1™! [Fig. 3(b) in Ref. [8]]. This happens because we

have obtained that 7= (T) for this system. However, the ar-
guments above Eq. (18) and Fig. 2 show clearly that it was
necessary to perform this analysis. We can now conclude that
physical models can explain the virus front experiments,
contrary to the widespread misbelief that they are driven by
unknown biological factors (see [8] and references therein).
The simplest model is that in Ref. [8], where a single waiting
time was assumed. Here, we have seen that taking into ac-
count the shape of the waiting time distribution yields similar
results. Before leaving this example, let us stress again that
the former section contains a general framework that can be
used for any diffusive system with a distribution of waiting
times [18].

C. Influence of the waiting-time distribution on the front
speed

Up to now we have applied our new theoretical results to
the experimental data in Ref. [8]. This analysis was neces-
sary in order to have trustable predictions because a Gauss-
ian distribution is realistic in this case (Fig. 1, inset). We

have found that 7=(T) for the experimental data in Ref. [8]
and, therefore, that the predictions of the new model here are
similar to those of the simpler model in Ref. [8]. That sim-
pler model assumed the same waiting time for all viruses
(i.e., a Dirac delta distribution), whereas here we have con-
sidered a Gaussian distribution (Fig. 1, inset). As mentioned,
for the experimental data in Ref. [8] the predictions of both
models (the Dirac-delta model and the Gaussian one) are
similar. But for other experiments, they may be substantially
different. Although we are not aware of virus front speed
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FIG. 3. Predictions of the
model in the present paper
(curves) vs experimental data
(symbols) for the front speeds of
N T7 viruses infecting E. Coli
bacteria.
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measurements for such a case, it is interesting to analyze
how much would the Gaussian distribution (20) have to
change from a Dirac delta so that the front speed would be
altered substantially. This is the question we tackle in this
section.

Provided that the condition (24) holds, Eq. (27) shows

that the effective and mean waiting times (T and (T), respec-

tively) are related to the width B of the Gaussian distribution
(20) as
2

)~ =, o8)

so that the dispersion of the waiting-time distribution (10)
can be written as

B2
szw.

From this and Eq. (9), we can estimate the relative difference

(29)

between the effective delay T and the mean delay (T) as

(TY-T B2
=g= .
(1) X1y
As we shall now see, this equation is very useful to predict
whether the results of the Gaussian and the Dirac-delta dis-
tributions will be substantially different or not. In passing, let
us just recall that, as it is clear from the previous equation,

(30)

the effective delay T is always smaller than the mean delay
(T), and the physical meaning of this mathematical inequal-
ity is that the viruses (or particles) with low values of waiting
time T (the left part of the Gaussian distribution) tend to
drive the front faster than if only viruses with the mean delay
(T) were considered (Dirac distribution).

From Eq. (30) we can predict the difference between the

effective delay T and the mean delay (7). Let us consider
three important examples.

(i) The case in Ref. [8] (a Dirac delta waiting-time distri-
bution) is recovered here as a special case, namely that of a
Gaussian distribution with vanishing width (B=0), which

from Eq. (30) yields T=(T), so that only in this limiting, very
special case does the HRD equation (11) derived in this pa-

per reduce to that in Ref. [8].
(ii) For the case in the previous section ((T)=18.38 min

and B=1.634 min), Eq. (30) yields a difference between T
and (T) of only 0.4%. This is the reason for the similar pre-
dictions (see the former section) from the Dirac-delta model
in Ref. [8] (for which (T) appeared in the HRD equation) and

the Gaussian model here [for which T appears in the HRD
Eq. (11)].

(iii) Finally we can answer the question asked at the be-
ginning of this section: How much does a Gaussian distribu-
tion have to differ from a Dirac delta to yield substantially
different front speeds? The answer is given by the new Eq.
(30). For instance, consider a hypothetical Gaussian waiting-
time distribution with B=(T)/2. First of all, we easily
check that the condition (24) holds approximately [20]. Thus
we can use Eq. (30). In this way we obtain that the difference

between 7 and (T) is of 25% (thus B=13 min and T
=13.79 min, if we use the same typical value (7T)
=18.38 min as above). A difference of 25% between the rel-

evant delay times in both models (namely, T and (7)) can be
expected to yield substantially different front speeds. Indeed,
we shall now give the results from both models for the typi-
cal values [8] f=02, k;=1.88X10" ml/min, B,
=10% ml™!, and the same other values of the parameters as
above. First, the Dirac-delta model in Ref. [8] (i.e., the HRD
equation with delay (7)=18.38 min) yields a front speed of
¢=0.255 mm/h [from Fig. 2(a) in Ref. [8]]. In contrast, the
Gaussian model in this paper [i.e., the HRD equation (11)

with delay T=13.79 min] yields ¢=0.296 mm/h. The differ-

ence between both predictions for the front speed is thus
16%, which shows that in general the Dirac-delta model in

021907-6



FRONTS WITH CONTINUOUS WAITING-TIME...

Ref. [8] can be an oversimplified description that can lead to
substantial errors. Note, once again, that the Gaussian model
leads to a faster front because some viruses leave the infected
cell sooner [note also that in example (ii) above, the Gauss-
ian distribution had a much lower width B, leading to a sub-
stantially weaker effect]. For some other typical values of f,
Bax etc., the difference between both models increases but,
as mentioned, there are no experimental data of front speeds
available, so there is no point to present additional hypotheti-
cal results at this stage. Indeed, the previous example an-
swers very clearly the relevant physical question, i.e., how
the distribution has to depart from a Dirac delta to yield
substantially different predictions. The important point is that
Eq. (30), first derived in the present paper, provides a simple
way to predict to what extent the predictions of the Dirac-
delta and the Gaussian models will differ. This equation
shows that the predictions from both models will differ more
the higher the Gaussian width B and/or the lower the mean
waiting time (T), as was to be expected intuitively, because
in both cases more viruses (or particles) will obviously jump
sooner.

IV. CONCLUDING REMARKS

The main conclusion of the present paper are

(i) We have generalized the approach of Ref. [7]. There,
we considered the very special, simple case of a sum of
Dirac deltas (i.e., a discrete distribution of waiting times).
Here, we have considered an arbitrary distribution (Sec. II).
We have shown that, up to second order, the evolution equa-
tion of the diffusing particles is Eq. (11), with the effective

waiting time T given by Eq. (8). These results are valid for
an arbitrary distribution @(7) of waiting times. Previous
work on multidelayed fronts considered general evolution
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equations [9,19] and applied them to specific distributions of
waiting times: a gamma distribution [9], a non-Markovian
distribution leading to anomalous diffusion [11], a sum of
Dirac deltas [7], etc. As mentioned above, here we have con-
sidered an arbitrary distribution ¢(7) and derived the HRD
equation (11) and the expression (8) for the effective waiting

time 7, and we have used them to compute the speed of
fronts. It is nice that a substantially complicated biological
system (as compared to single-delayed ones) can be de-
scribed by means of our very simple mathematical model
[Egs. (11) and (8)].

(ii) To illustrate our results, we have also considered a
relevant special case, namely that of a Gaussian distribution
of waiting times (Sec. III). It is realistic for virus infection
fronts (Fig. 1, inset) and leads to good agreement to experi-
mental data (Fig. 3). We have also analyzed the influence of
the shape of this waiting-time distribution on the front speed,
and derived the new Eq. (30), which allows one to predict
the importance of this effect.

(iii) Finally, it may be worth mentioning that previous
work on multidelayed fronts considered a system with a
single evolution equation. Here we have considered a system
described by a system of three deferential equations (one for
each field, namely V, B, and I), and showed how the front
speed may be computed including the effect of a delay (or
waiting-time) distribution in the diffusing species (V in the
present paper).
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