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ABSTRACT

Identification of clouds from satellite images is now a routine task. Observation of clouds from the ground,
however, is still needed to acquire a complete description of cloud conditions. Among the standard meteorological
variables, solar radiation is the most affected by cloud cover. In this note, a method for using global and diffuse
solar radiation data to classify sky conditions into several classes is suggested. A classical maximum-likelihood
method is applied for clustering data. The method is applied to a series of four years of solar radiation data and
human cloud observations at a site in Catalonia, Spain. With these data, the accuracy of the solar radiation
method as compared with human observations is 45% when nine classes of sky conditions are to be distinguished,
and it grows significantly to almost 60% when samples are classified in only five different classes. Most errors
are explained by limitations in the database; therefore, further work is under way with a more suitable database.

1. Introduction

In recent years, the interest for a correct and objective
classification of clouds has significantly increased. On
one hand, the importance of cloud processes in major
weather events and the main role that clouds play on
the earth’s climate are the main driving forces for the
current great interest on clouds. In particular, cloud ab-
sorption has been identified as a source of uncertainty
for predicting climate and climate change (Cess et al.
1995; Pilewskie and Valero 1995; Li et al. 1995). On
the other hand, clouds largely affect solar radiation
availability for energetic purposes. Although clouds tra-
ditionally have been observed from the earth’s surface,
in the last decades satellite detection has taken over this
task. However, series of ground-based cloud observa-
tions are much longer than those from satellite, yet the
latter cover the whole earth and the former only a num-
ber of stations. Observation of clouds from the ground
is still needed to acquire a complete description of cloud
conditions, despite the broad use of satellite imagery
for cloud recognition and classification (Peura et al.
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1996). The U.S. Atmospheric Radiation Measurement
Program, for example, is working on the development
of ground-based cloud observation systems (at the time
writing, details about these efforts could be seen at
http://www.arm.gov/docs/instruments.html).

In this research note, we suggest a method for au-
tomatic recognition of sky condition based on ground
measurements of broadband global and diffuse solar ra-
diation. Few previous works dealing with similar re-
search have been found so far. For example, Long
(1996) and Long and Ackerman (2000) used measure-
ments of the downwelling global and diffuse shortwave
radiation to identify periods of clear skies. On the other
hand, Duchon and O’Malley (1999) use both the mean
and the standard deviation of global irradiance in 21-
min windows to categorize seven cloud types. In a pre-
vious paper, O’Malley and Duchon (1996) explored the
use of their technique to generate a description of long-
term mean cloud conditions from time series of mea-
sured surface irradiance.

2. Effects of clouds on solar radiation

Solar radiation at a given site is probably the mete-
orological variable that is most affected by cloud cover.
Therefore, measurements of solar radiation should be
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FIG. 1. Global (solid line) and diffuse (dashed line) solar irradiance at Girona, Spain, for three different days in 1997 (one record of
radiation every 5 min). Cloud type and amount from visual observation are also shown when available. On day 351, diffuse radiation is
hardly visible because it matches global radiation almost exactly.

useful to derive sky and cloud characteristics. The effect
of clouds on solar radiation is illustrated in Fig. 1, in
which both global and diffuse radiation measured during
some days that presented different sky conditions are
shown. In the same figure, the sky condition as seen by
a human observer is indicated when this observation
was available. From Fig. 1, it is obvious that different
sky conditions result in different global and diffuse ra-
diation patterns. For example, cloudless skies give rel-
atively high global and relatively low diffuse radiation,
and the two of them vary smoothly (day 101). At the
other extreme, thick overcast sky results in diffuse and
global radiation being about equal, and the two of them
have low values (day 351). When the sky shows scat-
tered cumulus, global radiation is usually high, and dif-
fuse radiation tends to be higher than in cloudless skies.
This fact, however, depends on the amount of clouds
and their exact position with respect to the sun. For
example, at noon of day 196, clouds occult the sun,
leading to a temporary decrease of global radiation and
increase of diffuse radiation. In scattered cloudy skies,
both global and diffuse radiation show usually some
fast variability.

By analyzing a series of different cases, we can derive
some hints about what characteristics of solar radiation
measurements we need to consider if classification of
sky conditions is intended. First, we must consider rel-
ative values of both global and diffuse radiation. The
former can be normalized with respect to extraterrestrial
radiation; the latter can be normalized with respect to
global radiation. Second, we should also consider var-
iations of the two radiation measurements in a given
time window, because we have seen that different sky
conditions result in different variation patterns.

3. Methodology for cloud classification

The main goal of this work is to propose a meth-
odology for automatic recognition of sky conditions
from solar radiation (pyranometric) observations and to
explore its feasibility. We will define ahead of time a

reduced number of classes that summarize all possible
sky conditions. Therefore, in terms of classification, this
work must be included in the frame of the so-called
supervised classification techniques (Richards 1993).
All these techniques need some numerical parameters
(features) to be used for discrimination. Classes used in
this study, definition and selection of features, and the
particular classification technique are described below.

a. Sky-condition classes

In a first moment, and after some preliminary analysis
and tests not shown here, nine classes described in Table
1 have been defined on the basis of the fraction of sky
covered by low-level clouds and the total cloud cover.
Labels for every class indicate approximately the av-
erage oktas of low-level clouds and total cloud cover.

In a second test, and as a consequence of results ob-
tained with the nine-classes case, we have restricted the
discrimination for only five different classes: class 1,
nearly cloudless sky conditions (less than 3 oktas of
cloud cover); class 2, partly cloudy (3 or 4 oktas); class
3, mostly cloudy sky (5 or 6 oktas); class 4, overcast
skies with few (less than 5 oktas) low-level clouds; and
class 5, overcast skies with mostly low-level clouds (5
oktas or more).

b. Features

The next step for classification purposes is to define
some numerical features to be used as discrimination
parameters. In our case, the following potentially in-
teresting features, based on the measurements we have
(i.e., global and diffuse irradiances), are proposed.

1) Clearness index kt is the mean of the ratio between
measured global irradiance and extraterrestrial glob-
al irradiance over a horizontal surface at a specific
site, day, and time.

2) Diffuse fraction f d is the mean of the ratio between
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TABLE 1. Sky-condition classes used in the classification (nine-classes test).

Class label

Average low-
level clouds

(oktas)

Average total
cloud cover

(oktas) Description No. of records

0–0
0–3
0–6
2–2
2–5
2–8
5–5
5–8
7–8

0
0
0
1.8
2.0
1.7
4.8
4.7
7.5

0
2.3
5.7
1.8
4.5
7.0
4.8
7.0
7.8

Cloudless sky
Some medium- or high-level clouds
Covered by medium- or high-level clouds
Scattered low-level clouds
Partly cloudy skies with variety of clouds
Overcast, medium- or high-level clouds and scattered low-level clouds
Partly cloudy by low-level clouds
Overcast, low-level and some medium- or high-level clouds
Fog or overcast by low-level clouds

651
239

55
490
789

89
147
495

39

measured diffuse irradiance and measured global ir-
radiance.

3) Normalized clearness index ktn is a clearness index
in which intrinsic daily evolution due to changes in
optical air mass has been somewhat removed (Gon-
zález and Calbó 1999). This index ideally would
become constant for a clear, cloudless day, although
it still presents some seasonal dependence.

4) For variability of global radiation, we have defined
five different parameters associated with variations
of global radiation in a given time lapse. Some of
these parameters already have been defined and used
for other purposes by González and Calbó (1997,
1999). The first parameter y1 is related to the standard
deviation of ktn. The second parameter y 2 is related
to total absolute variation of ktn. Parameter y 3 cor-
responds to the maximum range of values of ktn.
Parameter y 4 regards the total length of the ktn-ver-
sus-time curve; it is the difference between the length
of the actual curve and the length of a horizontal
curve (i.e., what should be expected for a clear,
cloudless sky):

2 2N21 i11 ik 2 k 1tn tny 5 ln 1 2 1 , (1)O4 1 2 1 2[ ]! k N 2 1i51 tn

where N is the number of samples within the used
time lapse and the superindex i indicates each sam-
ple. For an ideal, clear, cloudless day, ktn is constant
with time, and this parameter tends to 2`. The more
global irradiance (and, correspondingly, ktn) varies
in a given period, the higher this parameter is. Pa-
rameter y 5 is related to the fractal dimension of this
curve. All these parameters are normalized and un-
dergo a logarithmic transformation to avoid a range
of values extending to several orders of magnitude.
Although they provide different levels of informa-
tion about the variability of radiation in 1 h, they
are in fact strongly correlated.

5) Variability of diffuse fraction is represented by pa-
rameters y d1 to y d5, defined as the previous ones but
using f d instead of ktn.

In this study, we have used hourly intervals. The hy-
pothesis here is that although the exact aspect of the

sky will change for sure in 1 h, the sky-condition class
is much more constant. Other authors have used other
time intervals, such as 21 min (Duchon and O’Malley
1999). We have chosen 1 h from a balance between the
necessities of avoiding large variations in the sky con-
dition and of computing irradiance variability. Because
we use 5-min sampling, shorter time windows for com-
putation of variability probably would have led to poor
estimation of variability. We must recognize, however,
that a faster sampling (say 1 min) and shorter averaging
window (15–30 min) would be more adequate for sky-
condition classification. The limitation of the current
database will be addressed in further studies by using
other public databases or by improving our measure-
ment routine.

Once we have defined a series of features, we need
to devise the optimum set of features for classification
purposes. Selection of the optimum set is approached
here through two simpler criteria: 1) divergence Dijk

between two cloud classes i and j when feature k is used
(Ebert 1987) and 2) linear correlation between features.
Four features ( f d, ktn, y d2, and y 4) have been selected
that maximize divergence and minimize correlation.

c. Classification technique

The methodology used for classification is the max-
imum-likelihood method assuming Gaussian probability
distributions, in the same way that was used by Ebert
(1987) or Garand (1988) to recognize cloud types au-
tomatically from satellite images. This methodology is
explained with more detail in several books, such as
Richards (1993) or Duda and Hart (1973).

In this methodology, the decision rule is

x ∈ v if g (x) . g (x) for all j ± i, (2)i i j

where x is the vector of features corresponding to the
sample to be classified, vi means the sky-condition
class, and gi(x) are known as discriminant functions.
These functions are derived from the probability theory.
Assuming a Gaussian distribution of samples within a
class and after some transformation, discriminant func-
tions can be written as
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1
g (x) 5 lnp(v ) 2 ln|S |ii i 2

1
T 212 (x 2 m ) S (x 2 m ), (3)ii i2

where p(vi) is called a priori probability, which is the
probability that class v i occurs in the studied site and
climate; mi and Si are the vector of mean values and
the covariance matrix of the samples in class v i. Thus,
this classifier is defined through the vector of the means,
the covariance matrix, and the a priori probability for
each class. Therefore, the next step is to calculate such
values from a set of already classified data (the so-called
training set). The classifier subsequently may be applied
to the same set of data or to an independent set (eval-
uation set).

4. Data

Data used in this study were taken at Girona, in Cat-
alonia, Spain (in the northeast of the Iberian Peninsula).
Two kinds of routinely recorded data were used for this
study. On one hand, global and diffuse radiation are
continuously sampled every second and integrated and
recorded in 5-min intervals in a station placed at the
University of Girona (418589N, 28499E; 100 m altitude).
A long series of solar radiation data is available at this
site, although only four years (1994–97) are used here.
Measurements were made by two Kipp & Zonen, Inc.,
CM11 pyranometers; one of them was equipped with a
shadowband to measure diffuse radiation. These instru-
ments were recalibrated in May of 1995 to assure quality
of data. The configuration of the station is exactly the
same as the main stations used to develop the atlas of
solar radiation in Catalonia (Santabárbara et al. 1996).
Diffuse measurements were corrected for shadowband
blocked view; given the unknowns of radiance distri-
bution, however, this correction adds uncertainty to dif-
fuse values. Because diffuse radiation is the only value
used in this study that is not highly influenced by what
happens in the very small portion of the sky wherein
the solar disk resides, diffuse measurement accuracy is
essential for the success of this methodology. Therefore,
a shading disk would be by far a preferable way to
measure diffuse radiation for our purposes.

On the other hand, visual observations of cloudiness
(cloud type and cloud cover) are performed three times
per day (at 0700, 1300, and 1800 UTC, which at our
site is approximately the same as local solar time), ac-
cording to the World Meteorological Office standards.
The visual observations are performed at the Girona
Airport, some 10 km southwest from the radiation sta-
tion. Major cloud types are distinguished, and cloud
cover is quantified by oktas of overcast sky, so 0 means
clear sky and 8 means totally overcast sky. Two values
of cloud cover are recorded: one corresponding to low-
level clouds and another for total cloud cover. The dis-

tance between the two observation sites is one of the
main issues of this dataset. However, there is no relevant
topography between the two sites, and both are located
at the same altitude and distance from the coastline.
Therefore, we assumed that sky conditions and clouds
at the same time are similar at these two sites. When
the two databases are combined and some records are
filtered out because missing radiation measurements, a
set of some 3000 samples remained. In this work, we
will use this database both for training and assessing
the performance of the classifier.

To check the hypothesis of cloud-class persistence in
1-h intervals, we performed a series of sky observations
every 30 min during several days randomly selected
within the period of May–June 2000. Details of these
observations are not given here, but the main results of
this analysis follow. We classified the observations
among the five classes defined in the five-classes test.
Then, we counted as ‘‘persistent’’ every set of three
consecutive observations pertaining to the same class.
We obtained 66% of persistent cases. This figure sub-
sequently was corrected to estimate the value that we
would have obtained if the frequency of observations
in each class had been the long-term average frequency.
In particular, during days selected for this analysis, the
nearly cloudless situation was unusually infrequent
(11% instead of the long-term average of 40%). With
this correction, we estimate that the sky conditions class,
as defined by us, is persistent in at least 76% of hourly
intervals. We also must consider that many nonpersis-
tent cases are produced by only 1 okta of difference;
therefore, if we had included the uncertainty of the vi-
sual observation, the number of persistent cases would
have been higher.

5. Results and discussion

a. Training the classifier

Figure 2 shows how the defined sky-condition classes
(for the nine-classes test) are related to the four features
used for classification. Means and standard deviations of
each feature for each class are plotted. In the upper plot,
we can see how cloud classes spread over the f d–ktn

space. The first apparent conclusion is that these two
features are correlated. In general, the higher the cloud
cover is, the lower the parameter ktn and the higher the
parameter f d are. In the middle plot, sky-condition clas-
ses are distributed in the y 4–ktn space. Here, the most
apparent fact is the very low clearness-index variability
that shows clear-sky conditions (0–0). For y 4, most
cloudy and overcast conditions show high values. In the
lower plot, the y d2–ktn space is shown. Sky-condition
classes with high cloud cover are more separated in this
space, owing to different values of y d2. It is obvious in
all plots that the discrimination between classes 2–2 and
0–3 will be difficult, since they have approximately the
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FIG. 2. Selected sky-condition classes positioned on plots of several
features vs ktn. For each class, dots correspond to mean value. Bars
correspond to 61 standard deviation of features and are drawn to
show approximately the width of distributions.

same characteristics. The same is true for classes 2–5
and 0–6.

In addition to m i and Si, the other values we need
for the classifier to be defined are the a priori proba-
bilities p(vi). These probabilities are assumed to be pro-
portional to the number of records present in each sky-
condition class (see Table 1 for the nine-classes test),
that is, related to the specific climate for the site at which
the classifier will be applied.

b. Assessing the classifier

To assess performance of the classifier, we can ana-
lyze the so-called confusion matrix. This is a matrix of
predicted, that is, classified by the above methodology,
versus human-observed cloud classes. Thus, the con-
fusion matrix gives the number of samples that are cor-
rectly or wrongly classified. In the nine-classes test, only
three classes are satisfactorily classified: 0–0 (78% of
all samples in this class), 2–5 (56%), and 5–8 (72%).
Three other classes do not get any sample after the
automatic classification (0–6, 2–8, and 5–5). The other
three classes lie somewhere in between these two ex-
tremes. Classes that are best classified are fortunately
also the most populated; the worst are generally the least
populated.

Most of 56 samples of class 0–6 are classified as 2–
5. This fact was somewhat expected, given that these
two classes are very close to each other as far as features
are concerned (see Fig. 2) and class 2–5 has higher a
priori probability. These two classes correspond to sim-
ilar sky conditions: partially covered with few or no
low-level clouds. On the other hand, the 89 samples in
class 2–8 are classified either in class 2–5 or in class
5–8. Samples from class 2–8 with less cloud cover go
to class 2–5; samples with larger cloud cover go to 5–
8. Although the center of class 2–8 is away from the
other two classes, distribution of samples in this class
is far from Gaussian, which is reflected by large standard
deviations for all features in this class. A similar ex-
planation may be true for samples in class 5–5, which
are also classified as either 2–5 or 5–8.

A classification accuracy index A can be defined as
the total number of correctly classified samples divided
by the total number of samples in the dataset. The ac-
curacy index for the nine-classes test is 46%. This num-
ber may seem to show poor performance, yet it is sig-
nificant, because a random classification with the as-
sumed a priori probabilities would have resulted in A
5 18%. We have performed an equivalent classification
by using only the two features related to global radiation
(ktn and y 4), because global radiation is much more usu-
ally measured at meteorological stations. The corre-
sponding accuracy was similar (A 5 44%), and again
only the most populated classes (0–0, 2–5, and 5–8) got
a number of correctly classified samples. These results
are very similar to those presented by Duchon and
O’Malley (1999), who showed an accuracy of 45%
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TABLE 2. Confusion matrix of predicted vs observed cloud classes, corresponding to classification in five groups.

Human observed

Predicted by solar radiation method

Nearly cloudless Partly cloudy Mostly cloudy
Overcast

(high clouds)
Overcast

(low clouds) Total

Nearly cloudless
Partly cloudy
Mostly cloudy
Overcast (high clouds)
Overcast (low clouds)
Total

993
249

78
6
3

1329

87
112

67
4
2

272

109
248
371

84
48

860

5
10
30
26
13
84

11
17
83

119
219
449

1205
636
629
239
285

2994

when trying to distinguish among seven cloud types by
using pyranometric data (global radiation only) and a
simpler method of classification. These authors, how-
ever, tried to match only cloudiness within the quadrant
of the sky in which the sun was placed.

As stated above, a second test was carried out with
the goal of identifying five sky conditions. The five
defined classes had more similar p(vi) among them than
the nine classes used previously. The expected accuracy
index of a random classification using these five classes
and a priori probabilities is 26%. The confusion matrix
corresponding to the automatic classification between
these five classes is shown in Table 2. The overall ac-
curacy index is A 5 58%, which is clearly better than
before. Samples in classes 1 and 5 are very well iden-
tified (83% and 77%, respectively). Most samples in
class 3 are correctly classified, too (59%); classes 2 and
4 show poorer indexes. Most samples in class 4 are
classified within class 5, which is plausible because both
classes correspond to overcast sky. Samples in class 2
are often classified as pertaining to either class 1 or class
3. This confusion comes partially from the use of 1-h
averages of 5-min integrations and also from the defi-
nition of class 2 itself. Indeed, under partly cloudy skies
(so, sky conditions belonging to class 2) it may happen
that clouds do not occult the sun for most of the av-
eraging interval. In such a case, values of features used
in this study may sometimes be similar to values of
features corresponding to nearly cloudless skies (i.e.,
belonging to class 1). On the other hand, and again under
partly cloudy skies, it may happen that clouds occult
the sun for most of the time, giving, as a result, feature
values similar to those obtained with mostly cloudy
skies (class 3). To check the importance of considering
a priori (climatic) probabilities, we have repeated the
same classification using equal probabilities for all five
classes. The obtained accuracy index was 55%, thus
indicating that the knowledge of the climate doesn’t
make a big difference.

Several factors can explain the relatively low accu-
racies obtained in this work, most of them being related
to the available dataset. First, cloud observations and
radiation data are taken at different sites. Although the
two sites are not so far away, it may happen sometimes
that the sky conditions are different. Second, a great
fraction of the samples in the dataset correspond to early

in the morning or late in the evening, when the solar
zenith angle reaches high values. Under these condi-
tions, the probability that solar beam is affected by few
clouds on the horizon is increased. Third, the sampling
interval (5 min) and the averaging time (1 h) are both
longer than are recommended to account for fast vari-
ations of solar radiation due to clouds.

6. Conclusions

We have shown in this short note a methodology for
cloud recognition and sky-condition classification based
on ground-based measurements of broadband solar ra-
diation. Although the performance of the method ap-
plied to our available data may seem a little poor, we
must consider that measurements of only two variables
were used. Indeed, the classifier is based on some fea-
tures defined from global and diffuse solar radiation
measurements. Two of the discriminant features concern
the variability of both global and diffuse radiation within
one hour. These variability parameters have helped in
distinguishing some cloud classes, although the main
feature for discriminating purposes is the diffuse frac-
tion f d. This result agrees with the fact that diffuse
radiation brings information from the whole sky dome,
whereas global radiation is very biased through the sec-
tor of the sky nearest to the sun.

Results presented in this paper are encouraging, and
therefore this kind of analysis is worthy of further ef-
forts. Several aspects that can lead to improved results
are summarized next. For the database, human cloud
observations and solar radiation measurements should
be simultaneous both in time and space. In addition, a
larger number of observations of cloud cover every day
would be convenient. Moreover, a shorter (e.g., 1 min)
recording interval of radiation measurements would en-
hance the evaluation of fast variations caused by clouds.
Last, even though the strong correlation between global
and diffuse irradiance averages, deviations from a per-
fect correlation for a particular sample carry important
information. Because this work shows that diffuse ra-
diation is more adequate as discriminant factor than
global radiation, a better measurement of the former
(i.e., using a shading disk instead of a shading band)
should improve performance of the method. Databases
that present these desired characteristics will be used
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soon by our research team to investigate the effect of
solving most of the shortcomings found in the database
used in the current work. Still referring to data, the
uncertainty associated to the subjective side of human
cloud observations should be somewhat quantified too,
or at least taken into account.

For the methodology itself, we could try to define
other features that eventually would provide good dis-
criminating skills. Because the information (solar ra-
diation pyranometric data) is limited, it has to be ex-
ploited at maximum through the use of adequate fea-
tures. In particular, features based on differences be-
tween actual measurements and modeled clear-sky
radiation can be considered, as suggested by Long et
al. (1999). In addition, the classification methodology
may also be changed or improved. For example, there
are other classical approaches (minimum distance, par-
allelepiped classification) or more modern methods
(neural networks) that are potentially efficient. On the
other hand, for the results to be more robust, different
datasets for training and assessing the classification will
be used.
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