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Resum d’aquesta tesi

Aquest treball està destinat a introduir el nou mètode de les màquines
d’aprenentatge, els predictors de conformació, per l’avaluació de la con-
taminació de l’aire. Per l’àrea d’estudis, que és la Regió Metropolitana
de Barcelona (RMB), s’han desenvolupat uns models per la predicció con-
forme. Aquests models estan basats en l’especificació que es diu la màquina
de confiança de la regressió cresta (RRCM) [1, 2]. La regressió cresta és una
generalització del tradicional mètode dels mı́nims quadrats proposada pel
A. E. Hoerl [3]. Aquesta tècnica té l’objectiu de fer front als problemes
mal definits. Els predictors de conformació que s’han desenvolupat per les
finalitats d’aquest estudi són uns models de regressió (cresta), que ofereixen
prediccions vàlides, com faria qualsevol predictor de conformació. En lloc
de les prediccions puntuals, un predictor de conformació genera un conjunt
de predicció, que pot adoptar formes diferents - des d’un punt fins a tota
la recta real. No obstant això, en la pràctica és gairebé sempre un interval.
És naturalment desitjable que aquests conjunts serien tan petits com sigui
possible, és a dir, que l’eficiència de la predicció seria òptima.

L’algorisme subjacent dels predictors de conformació derivats i discu-
tits al llarg d’aquesta tesi és kriging ordinari [4]. És un dels mètodes de
la familia kriging anomenada de l’enginyer sud-africà D.G. Krige. Kriging
implica l’interpolació espacial que s’utilitza per estimar el valor d’un fac-
tor en un lloc no observat sobre la base dels valors d’aquest factor en els
llocs observats. L’avantatge d’aquest mètode de regressió és que proporciona
l’estimació del valor del factor juntament amb l’estimació de la variància de
l’error.

L’especificació del kriging ordinari permet considerar la dependència es-
pacial entre els llocs d’observació amb l’ús dels funcions de variograma i de
covariància [5]. El predictor de conformació basat en el kriging ordinari pot
capturar la distribució i la dependència espacials mitjançant una tècnica que
es diu “el truc del nucli” (“kernel trick”). Aquesta tècnica, introdüıda pel V.
Vapnik i els altres, està dirigida a tractar els problemes d’alta dimensió i
s’ha utilitzat per primera vegada per a les màquines de vectors suport [1,
6]. En aquesta investigació, el nucli s’introdueix a un model de predicció de
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conformació de forma anàloga com una funció de covariància s’introdueix a
un model de kriging ordinari.

Des de la pràctica geoestad́ıstica se sap que el kriging té alguns incon-
venients. La reclamació més greu sobre l’ús de kriging per a l’avaluació de
la contaminació de l’aire és que proporciona les superf́ıcies d’estimació molt
suavitzades. Això passa perquè els models de kriging normalment fan la
interpolació de la contaminació de l’aire sobre la base de dades de les xarxes
de monitorització que solen ser escasses [7]. És per això que les variàncies
de kriging, o les variàncies d’error, tendeixen a ser grans. Els models de
predicció de conformació que es deriven en aquesta tesi no resolen el prob-
lema de l’excés de suavitzat. No obstant això, els intervals de predicció que
proporcionen són vàlids, és a dir, el valor real d’un factor cau dins d’aquests
intervals amb una probabilitat especialment donada. La grandària dels in-
tervals de predicció, o amb altres paraules, l’eficiència de la predicció, pot
ser alterada amb una selecció apropiada del nucli i amb un ajust adequat
del paràmetre cresta.

En aquesta tesi, els models de kriging ordinari i els corresponents models
de predicció de conformació s’han derivat per investigar les concentracions
de contaminació de l’aire a la Regió Metropolitana de Barcelona. S’han es-
tudiat dos compostos qúımics : el diòxid de nitrogen i les part́ıcules. Les
concentracions d’aquests contaminants tenien la forma de mitjanes anuales.
La ĺınia de temps de l’estudi s’estén des de 1998 fins a 2009 per al NO2, i
de 2001 a 2009 per a les PM10. En total, les dades han estat disponibles per
49 estacions de mesurament a tota la RMB. No obstant, la quantitat total
dels valors mancants al conjunt de dades arribava gairebé a la meitat de tot
el conjunt. Aquesta és la raó perquè les prediccions s’han fet de manera
tòpica, és a dir, per a cada ubicació de l’estació i l’any i contaminant, on
havien els valors mancants. Aquesta manera de predicció permet comparar
les concentracions previstes als observats per altres anys, i la predicció pot
ser estesa en una reixeta, si cal. La validació creuada, tant pels models de
predicció de kriging com pels predictors de conformació, ha sigut realitzada
per a cada any i contaminant. Diverses funcions han sigut utilitzades com a
nuclis i/o funcions de covariància pels models pertinents: exponencial, gaus-
siana i polinomi.

Quant als resultats, dos enfocaments han donat resultats acceptables i
comparables, amb una diferència important en el medi que consisteix en el
fet que els resultats obtinguts pels predictors de conformació són sempre
vàlids. Respecte a aquesta qualitat dels predictors de conformació, podria
resultar beneficiós desenvolupar els models d’aquest tipus a la base dels al-
tres algorismes estad́ıstics de l’avaluació de contaminació de l’aire, com per
exemple la regressió de l’ús del sòl.
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Els resultats dels enfocaments de modelització proposats en aquest tre-
ball justifiquen el desenvolupament ulterior i l’aplicació d’aquests mètodes
a les dades de contaminació de l’aire. Per tant dels contaminants consid-
erats en aquest treball, l’obtenció precisa dels paràmetres de la distribució
espacial és dif́ıcil i gairebé impossible a causa de la petita grandària dels
conjunts de punts d’observació vàlids disponibles per a cada any. Malgrat
això, sense previ anàlisi exhaustiva de la distribució de les dades, RRCM ha
proporcionat conjunts eficaços de predicció. 35.32 µg/m3 és l’ample òptim
d’interval de predicció per al NO2, i per al PM10 aquest valor és igual a
34.59 µg/m3. Aquests valors són mitjanes anuals. Una vegada que la forma
de distribució de dades i els paràmetres de covariància poden ser estimats
correctament, els models guanyaran força en eficiència.

Paraules clau: predictors de conformació, kriging ordinari, regressió
cresta, contaminació de l’aire, Barcelona.



Summary of the present
dissertation

The present dissertation is aimed to introduce the newly developed machine
learning method, conformal predictors, for air pollution assessment. For
the given area of study, that is Barcelona Metropolitan Region (BMR), sev-
eral model for conformal prediction have been developed. These models have
been based on the specification that is called ridge regression confidence ma-
chine (RRCM) [1, 2]. Ridge regression is a generalization of the traditional
least squares method proposed by A. E. Hoerl [3] and aimed to deal with
ill-posed problems. A conformal predictor that has been developed for the
purposes of the present study is a (ridge) regression model, which provides
valid predictions, as any conformal predictor would do. Instead of point
predictions, a conformal predictor outputs a prediction set, which can take
different forms - from a point to the whole real line. However, in practice
it is almost always an interval. It is naturally desired that these sets would
be as small as possible, i.e. that the efficiency of prediction would be optimal.

The underlying algorithm for the conformal predictors derived and dis-
cussed throughout this dissertation is ordinary kriging [4]. It is one of the so-
called kriging methods named after the South African engineer D.G. Krige.
Kriging methods imply spatial interpolation which is used to estimate the
value of a factor at an unobserved spot on the basis of the values of this fac-
tor at the observed locations. The benefit of this regression method is that
it provides an estimate of the value of the factor together with an estimate
of the error variance.

The ordinary kriging specification of kriging allows to consider spatial
dependence between observation locations with the use of variogram and
covariance functions [5]. In the kriging-based conformal predictor, spatial
distribution and dependence can be captured with the use of kernel trick.
This technique, introduced by V. Vapnik and others, is aimed to deal with
high-dimensional problems, and it has been first used for support vector ma-
chines [1, 6]. In this research, a kernel is introduced to a conformal predictor

vii
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model as an analogue of a covariance function in an ordinary kriging model.

In geostatistical practice, kriging is known to have some drawbacks. The
most serious claim towards the use of kriging for air pollution assessment is
that it provides over smoothed estimation surfaces. This happens because
kriging models make their interpolation on the basis of air pollution mon-
itoring data network which are usually sparse [7]. That is why the kriging
variances, or the error variances, tend to be large. The conformal predictor
models derived in this dissertation do not solve the problem of over smooth-
ing. Nevertheless, the prediction interval they provide are valid, i.e. the real
value of a factor falls within these interval with an ad hoc given probabil-
ity. The size of the prediction intervals, i.e. the efficiency of the prediction
can be altered with a proper kernel fit and with a choice of a ridge parameter.

In this dissertation, ordinary kriging and corresponding conformal pre-
dictor models have been derived to investigate air pollution concentrations
at the Barcelona Metropolitan Region. Two substances have been taken up,
and those are: nitrogen dioxide and particulate matter. The concentrations
of these contaminants have been provided in a form of annual averages. The
timeline of the study spreads from 1998 to 2009 for NO2, and from 2001 to
2009 for PM10. In total, the data has been available for 49 measurement
stations across the BMR. Nevertheless, the overall amount of missing values
in the data has made up almost a half of the whole set. This is why the pre-
dictions have been made topically, i.e. for each station location and year and
pollutant where the data was missing. This manner of prediction allows to
compare the predicted concentrations to the observed ones for other years,
and the prediction can be extended on a grid if needed. Cross-validation,
both for kriging and conformal prediction models, has been performed for
each year and pollutant. Several functions have been taken up as kernels
and/or covariance functions in the relevant models: exponential, Gaussian
and polynomial.

As far as results are concerned, on the bottom line, both approaches
have provided decent and comparable results, with a major difference that
consists of the fact that conformal prediction results are always valid. Re-
garding this quality of conformal predictors, it could be beneficial to derive
models of such kind on top of other successfully applied air pollution assess-
ment algorithms, such as land-use regression.

The results of the proposed modeling approaches justify further devel-
opment and application of these methods to air pollution data. For both of
the pollutants considered in this research work, the precise elicitation of spa-
tial distribution parameters was difficult and almost impossible due to small
sets of valid observation points available for each year. Despite this, with
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no thorough preliminary analysis of data distribution, RRCM has provided
effective prediction sets. 35.32 µg/m3 is the optimal width of prediction
interval for NO2, and for PM10 this value is equal to 34.59 µg/m3. These
values are annual averages. Once data distribution form and covariance
parameters can be properly estimated, the models will sufficiently gain in
efficiency.

Keywords: conformal predictors, ordinary kriging, ridge regression, air
pollution, Barcelona.



Chapter 1

Introduction

1.1 Air pollution and its effects

Air pollutant is a problem of growing concern all over the world. By the
present moment, there has been accumulated a great body of the scientific
evidence on hazardous effect of air pollution on people’s health and well-
being, as well as on crops, plants and animals. Air pollution causes both
acute and chronic effects in people’s health: from minor upper respiratory
irritation to chronic respiratory and heart disease, and lung cancer [8]. Also,
exposure to contaminants has been connected with premature mortality and
reduced life expectancy.

In people, air pollutants are found associated with adverse health out-
comes both in adults and in children. Besides, it is proven that the least ones
are more susceptible to contamination [9]. It was identified within the Eu-
ropean Union’s Ministerial Conference on Children’s Environmental Health
in 2004 that exposure to air pollution is among the major contributors to
death and disabling of children in Europe [10]. It has been also reported that
almost 90 per cent of the residents of urban environments, including chil-
dren, were exposed to the levels of pollutants exceeding the World Health
Organization’s guideline values [11, 12]. Very young children, perhaps ian-
cluding the unborn ones, are particularly susceptible to pollution, and there
is a great variety of evidence suggesting links between contaminants and
health outcomes [11]. In particular, exposure to air pollution during preg-
nancy can affect fetal growth, as well as it is associated with low birth weight,
and with preterm birth [13]. There is enough evidence that claims there ex-
ists the connection between air pollution and lung function development in
children [14]. Also, air pollution is linked to childhood asthma aggravation,
mostly due to particulate matter and ozone exposure, and to cough and
bronchitis. Moreover, pollutants were connected to hay fever and allergic
rhinitis. Air pollution is also associated with the excess risk for mortality

1



CHAPTER 1. INTRODUCTION 2

in young children, especially in those with respiratory illnesses and infants
with lower respiratory infections [15].

In adult population, traffic-related air pollution has been linked with
respiratory outcomes, such as COPD (Chronic obstructive pulmonary dis-
ease), asthma or chronic bronchitis [16]. Exposure to fine particles has been
associated to all-cause, cardiopulmonary and lung cancer mortality, as well
as sulfur oxide pollution has been associated with the elevated mortality risk
[17]. Sulfur dioxide, oxides of nitrogen and ozone, were concatenated with
mortality, too[15]. Older adults are especially susceptible to pollution due
to the decrease in physiological processes [18]. There exist an evidence of
the link of cardiovascular morbidity with the exposure to particles in elderly
people. Moreover, the people of 75 years of age and more are more suscepti-
ble to nonaccidential mortality caused by short-term exposure to PM2.5 and
PM10, and by long-term exposure to ultrafine particles.

Not only the age or the health status of a person determine the influence
of air pollution on people, but there are other factors as well. Two of the
major agents, influencing the exposure to contamination in micro and macro
levels respectively are the socioeconomic status (SES) and the geographic
region of residence. Populations with a low socioeconomic status are most
probably exposed to air pollution to a greater extent, as well as these disad-
vantageous populations are perhaps more sensitive to pollutants [19]. Low
SES is linked to limited access to medical care facilities, as well as to fresh
food that hampers the intake of vitamins and fatty acids [18]. Also, it is
associated with the prevalence of preexisting diseases. All of these factors
may contribute to the development of air pollution related health effects.
When it comes to other characteristics that may modify susceptibility to
contamination, the following can be named apart from age and SES: genetic
polymorphisms, preceding cardiovascular and respiratory diseases, and some
additional factors like obesity [18].

Person-related factors are not the only decisive ones, but the exposure
generally varies from one geographic region to another. In the last twenty
years, there have been conducted numerous studies considering the geo-
graphic region as a health determinant [19]. From an epidemiological point
of view, air pollution related health effects appear mainly as a result of
long-term exposure [20], and living in areas with filthy air is connected to
emersion of these effects [21]. Persons residing in cities or in their immediate
surroundings are more likely to be exposed to air pollution as a result of
growing industrialization and increased combustion of fossil fuels [8].

Existing monitoring and exposure assessment information suggests that
the levels of airborne particles are sometimes higher in major Asian cities
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rather than in North American or Western European cities [15]. The Eu-
ropean Space Agency reports on the global air pollution map, produced by
its Envisat, the ten-instrument world’s largest satellite for environmental
monitoring launched in 2002 [22]. Its onboard Scanning Imaging Absorption
Spectrometer for Atmospheric Cartography (SCIAMACHY) tool records the
spectrum of sunlight, and then the obtained data is used to trace gases in
the atmosphere. It has been revealed that high distribution of nitrogen diox-
ide were seen in major cities across North America, Europe and north-east
China, as well as with Mexico City in South America, and with South Africa
coal-fired power plants region. Figure 1.1 represents the global air pollution
map created by Envisat’s SCIAMACHY. This image has been produced by
S. Beirle, U. Platt and T. Wagner of the University of Heidelberg’s Institute
for Environmental Physics.

Figure 1.1: Global air pollution map produced by Envisat’s SCIAMACHY

Air pollution is one of the major contributors to climate change. Black
carbon is known for its capacity to absorb sunlight, heat the air and con-
tribute to global warming. Generally, absorbing aerosols can affect regional
climate [23], as well as lead to global effects [24]. For example, human-made
aerosols can weaken the hydrological cycle, which can affect the availability
and quality of fresh water.

In urban areas, the main source of air pollution is traffic [19]. About 50
per cent of nitrogen oxide emissions, including nitrogen oxide (NO) and ni-
trogen dioxide (NO2), are produced by vehicle engine combustion [25]. Stud-
ies carried out in Europe conclude that traffic contributes up to 50 per cent
of the average annual concentration of particulates with the aerodynamic
diameter of less than 10 µm ( PM10) found in the ambient air [21]. This per-
centage is even higher for fine particles (those of the aerodynamic diameter
less than 2.5 µm) and ultrafine particles (those of the aerodynamic diameter
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less than 0.1 µm). Sometimes, the major contaminants are referred to as
“criteria” pollutants [26]. Those are: ground-level ozone, particles (PM2.5

and PM10), lead (Pb), nitrogen dioxide (NO2), carbon monoxide (CO) and
sulfur dioxide (SO2). The present research takes up two contaminants that
are most frequently monitored and assessed within epidemiological studies:
nitrogen dioxide (NO2) and particulate matter (PM10).

NO2 is a pollutant that has been associated with mortality and morbidity
in people both in short-term and long-term exposure, as well as it contributes
to forming of ground-level ozone, as causing the environmental and climate
effects. Nitrogen dioxide is emitted to the atmosphere mainly from the traf-
fic sources and power plants. World Health Organization points out multiple
impact of NO2 in their Air Quality Guidelines [12]. In short-term exposure,
in high concentrations - those exceeding 200 µg/m3 - NO2 is associated with
adverse effects both in animals and in humans. Current research shows that
short-term exposures, i.e. those in the range from 30 minutes up to 24
hours, are linked to adverse respiratory effects in healthy people, and with
increase of respiratory symptoms in those with asthma [27]. Short-terms ex-
posures are also connected to augmented visits to emergency departments
and hospital admissions for respiratory causes, in particular, asthma. In
the long-term exposure, NO2 is accosted with the increase of the risk of
coronary heart disease, particularly with fatal events [28]. Epidemiological
studies indicate that the bronchitis symptoms increase in asthmatic children
in association with annual concentrations of nitrogen dioxide. Furthermore,
in the presence of the ultraviolet light and of hydrocarbons, nitrogen dioxide
is transformed into ground-level ozone and of nitrate aerosols [12]. In order
to reduce the burden of air pollution, WHO has established and published
the guideline values for each of major pollutants, including NO2. Those val-
ues are based on expert evaluation of the up-to-date scientific knowledge,
and they are intended mostly for policy-makers all over the world. Achieving
the them for individual pollutants would yield public health benefits. For
nitrogen dioxide, the guidelines are the following: 40 µg/m3 for the mean
annual concentrations, and 200 µg/m3 for the hourly mean concentrations
[12]. Those guideline values are the limit values for EU, that have entered
into legal force January, 1, 2010 [29].

Particulate matter is a mixture of extremely small solid particles and
liquid droplets [30]. The mixture is composed by acids, like sulfates and
nitrates, metals, organic compounds and soil or dust particles. Particulate
matter is classified by its size, i.e. aerodynamic radius, and those of spe-
cial concern are with the aerodynamic diameter smaller than 10 and 2.5
micrometers respectively. The first ones are referred to as “coarse particles”,
or PM10, the least ones are named “fine particles”, or PM2.5. The size of
particles is directly connected with their potential health effects [30]. From
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10 micrometers in diameter on and smaller, they enter the lungs once in-
haled, and they can also affect heart. The range of adverse health effects
of airborne particulate matter is wide, but mainly it affects cardiovascular
and respiratory systems [12]. The epidemiological studies indicate that there
is an association with particles and diseases both in short- and long-term
exposures. Short-term effects include aggravating the condition when suffer-
ing from cardiovascular or respiratory diseases, hospital admissions, or even
premature deaths. Long-term exposure can lead to development of heart
or lung disease, and they are also associated with premature mortality [26].
PM10 is the most widely reported measure of particles pollution, and also
the indicator of relevance to the majority of the epidemiological data [12].
Nevertheless, the WHO air quality guidance is based on the studies that
take up fine particles, i.e. PM2.5. The values for the PM10 concentrations
are then obtained by applying a PM10/PM2.5 ratio by 0.5. The guideline
values for the PM10 are thus the following: 20 µg/m3 for the annual mean
concentrations, and 50 µg/m3 for the 24-hour mean concentrations, which
should not be achieved more than 35 times per year. [31]. Those guideline
values are the limit values for EU, which have entered into legal force on
January 1, 2005 [29].

1.2 Air pollution exposure assessment

By the present moment, there has been accumulated a great volume of stud-
ies that investigate exposure of the individuals to air pollution. Direct mea-
surements of the concentrations of contaminants at the residence address of
a given person are not always available. In order to predict the levels of air
pollution concentration at a given geographic site for a given period of time,
statistical modeling is used. There exist a large number of models suitable
for various study cases and data available. Different model classes can be
named: proximity models, geostatistical models, land use regression (LUR),
dispersion models, integrated meteorological emission techniques, and hy-
brid methods [7].

Proximity-based models are based on the simple assumption that the ex-
posure to air pollution is directly associated with the distance to the emission
source, that, in case of traffic-related contaminants, is roads. Some studies
that make use of this method establish a buffer around the source, and all
those persons who live inside of the buffer are classified as exposed, whilst
those who live outside are classified as not or less exposed.

Interpolation models are mostly based on geostatistical methods. The
target pollutant is measured at a spatial point, and this measure is dis-
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tributed over the study area. The objective of those methods is to generate
the estimates of the pollutions in the locations other than the monitoring
sites. The most common geostatistical interpolation technique is kriging [5,
7, 4, 32, 33, 34, 35]. It is a group of methods first introduced in the 1950s and
formalized and developed since then [4]. Kriging is famous for its capacity to
provide the best linear unbiased estimates (BLUE) for any point of a spatial
region. The core hallmark of kriging, however, is that in each and every point
it does not only provide the estimate, but also the error variance, otherwise
known as the ”kriging variance”. As for other interpolation methods, they
include splines, inverse distance weighting and similar techniques. Although
the interpolation methods are relatively precise, they are purely mechanical,
and thus might fall apart when there is a lack of data. The dependance on
availability of monitoring data is the core disadvantage of kriging [7]. Geo-
statistical interpolation models require a dense network of sampling sites.
The average number of measurement points involved in studies is between
10 and 100, and this number depends on many factors such as the scale of
the analysis, characteristics of the study region, meteorological conditions
etc. Poor availability of data leads to over-smoothed pollution surfaces and
large errors in predictions, especially in parts where few observations are
given. This problem can be aggravated for contaminants that are known to
vary significantly over small scales, such as nitrogen dioxide. To tackle these
problems, primary data collection is needed, but it might be costly.

Land-use regression models [7] are aimed to predict the levels of target
pollutant at a spatial point based on the land use and traffic characteristics
of the surrounding area. This technique involves the least squares regression
modeling for predicting pollution surfaces on the basis of the exogenous in-
dependent variables. The main advantages of this method are: its structure
which allows the adaptation of the method to various environments with-
out additional data acquisition, and that it is relatively low-cost. The main
drawback of LUR is that it works well for relatively homogeneous areas - in
the sense of land use, meteorology and vehicle. Land-use regression has been
recognized as a standard approach for predicting pollutant concentrations
using concentration measures, GIS spatial parameters and site character-
istics [36]. As being specific, these models have shown better capacity in
capturing small-scale intra-urban variability of air pollution than kriging
models, integrated meteorological-emission models, or dispersion models.
Nonetheless, LUR models are hard to generalize, because the parameters
of the model are derived for a given spatial region, and thus the estimates
obtained for two different cities might not be comparable.

Dispersion models generally rely on Gaussian plume equations [37, 7].
Those models describe the dilution and transport of pollution from its sources
as a stationary process, implying that the distribution is Gaussian. They
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require pollution, meteorological and emission data. The advantage of such
models is that they incorporate the spatiotemporal variation of air pollution
without needing dense monitoring networks. Among the disadvantages, the
following can be listed: those models are expensive, they might require ex-
tensive cross-validation, and the Gaussian approach is not always suitable
in reality.

Integrated meteorological-emission techniques consist of two modules,
which embrace the chemistry and the meteorology [7] . These techniques
imply the simulation of pollution involving the meteorological data: it is
provided to chemistry modules at every step of the simulation. The con-
trary is not necessary because chemical data might have a scant impact on
meteorology. The prediction efficiency of these combined models depend on
various factors like entry data, grid resolution etc. IME models are costly to
implement, they require a high-end computer facilities and can be performed
by high-skilled people only, and thus the complexity of their practical use is
their main drawback. The advantage of the IME models is the high precision
of the estimates, as these models are capable of simulating various scenarios,
which could incorporate even secondary pollutants such as ozone.

Hybrid models incorporate personal, regional or some other type of mon-
itoring with one or two of the previously named exposure models [7] . The
main advantage of these models is the possibility of validation, while the
drawbacks depend on the model specification being used.

Comparing all the listed techniques, it is obvious that the choice of a
model mostly depends on the data available and the problem to investigate.
It has been established in research that simple metrics like road buffers are
associated with children respiratory health outcomes [7]. However, if the
size of the effect matters, a more sophisticated model might be required.
In general, while all the listed techniques make use of the GIS data, the
interpolation models are low demanding but yet precise. This particular
research makes use of the classical interpolation method, kriging. It is a
well-developed approach, because it yields relatively precise estimates mak-
ing use of relatively little data, and it provides the estimates together with
the estimation variance.

1.3 Conformal prediction for air pollution

However, one of the problems of nowadays existing methods for air pollu-
tion exposure assessment is that nearly all of them yield point estimates that
might lack confidence. Even in case of kriging, the estimation variance that
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is computed together with the estimate can be quite broad, so the validity
of the prediction can not be guaranteed. In order to tackle this problem,
this research suggests making use of a newly developed approach that is
conformal predictors [1].

A conformal predictor is determined by some nonconformity measure.
Given a set of objects, or observations, when a new object comes along, the
nonconformity measure indicates how different this new example is from the
old ones in the set. The old objects in the set are somehow labeled, while
the new object has no label, and it is to be predicted. A conformal predictor
is a “confidence predictor”. Provided with a level of confidence, a conformal
predictor outputs a set of possible labels for the new example that should
contain the object’s actual label. The new object is labeled, assuming that
it will conform with the old objects in the set. The confidence level for pre-
diction is a complimentary term for the significance level which determines
the required amount of conformity for prediction. In regression terms, the
label for the new object is the value of the independent variable to estimate.

The main feature of conformal predictor is that its estimates are always
valid, i.e. for a given level of confidence, in the long run, the probability of
error of prediction does not exceed the value implied by this level of confi-
dence. A desired confidence level is introduced ad hoc by a researcher to the
model. For example, if the confidence level is set to 99 per cent, this means
that there might be up to 1 per cent of errors in the output of the predictor.
Thus it will be a highly confident prediction.

Another important point for conformal predictors is the efficiency of pre-
diction. The output of a conformal predictor comes in a form of a prediction
set which can be: an interval, a ray, a union of two rays, the whole real line,
or empty. Also, it may be a union of such sets. In practice, the most com-
mon type of a prediction set is an interval. Efficiency of prediction implies
that the obtained prediction sets (or intervals) should be as small as possible.

A valuable feature of a conformal predictor is its flexibility. This means
that a conformal predictor can be build upon any algorithm used in statis-
tics such as bootstrap, neural network, (ridge) regression, support vector
machines, Bayesian algorithms etc. [1]. Those initial methods, or underlying
algorithms, remain intact. A conformal predictor derived from a traditional
algorithm inherits the prediction power of the underlying method, and in
the same time, is always valid.

The classical interpolation approach used in this research is kriging. In
order to build a conformal predictor on top of this method, a regression spec-
ification is used that is called Ridge Regression Confidence Machine (RRCM)
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[1, 38]. Ridge regression is a sophistication of the classic least squares method
proposed in the 1960s. It implies introducing a small ridge coefficient to the
regression equation [39]. This is done in order to tackle possible problems
encountering when the data is nonorthogonal, like the need to invert a ma-
trix close to singular.

In this study the initial use is made of the iid model that makes no
specific requirements on data distribution, apart from that they should be
independent and identically distributed (iid) [38]. The linear iid model has
been further advanced with the aim to boost the prediction efficiency. In
order to do so, a special technique has been used, that is referred to as a
“kernel trick”. This method has been applied by Boser, Guyon and Vapnik
[6] for dealing with high-dimensional data. Kernel trick implies the employ-
ment of some kernel function instead of a scalar product in the regression
equation. In case GIS data, which do not form a high-dimentional set, a
non-linear kernel can be treated as a way to take into account spatial struc-
ture of the data and spatial covariances between observations at different
sites.

RRCM can be treated as an alternative to kriging, that is based on the
same regression principle, but provides valid prediction intervals with high
confidence instead of point estimates. The kernel approach in the RRCM can
be reciprocally handled as an analogue of a covariance function in kriging.
The main aim of using kernels is to tighten up the prediction interval with-
out a loss in confidence. Another way to boost the efficiency of an RRCM
prediction is to adjust the ridge parameter in the regression equation.



Chapter 2

Objectives

This dissertation has two major objectives:

1. to demonstrate the capacity of conformal predictors as a method for
spatial environmental modeling,

2. to provide valid estimates of nitrogen dioxide and fine particulate mat-
ter for Barcelona Metropolitan Region.

In our modern environment, especially in urban areas, there is a great
need to evaluate the levels of personal exposure to air pollution. Numerous
studies have shown that contaminants contribute to adverse health effects in
individuals both in long-term and short term exposure [40, 17, 12, 14, 20, 26,
15]. Continuous growth of knowledge regarding air pollution and its impact
on health causes continuous development of methodology for its estimation.
Various approaches, including geostatistical, have been used in research to
establish the actual levels pollution people are exposed to [7]. Some methods
are more sophisticated than the other ones, they require more entry data
and skilled staff and equipment, and therefore they can yield better esti-
mates. All in all, the choice of method to implement depends on the data
and resources available.

The present study evaluates the concentrations of nitrogen dioxide and
airborne particles in the Barcelona Metropolitan Region. The research
makes use of panel data, which includes mean annual levels of concentrations
and geographical coordinates of the measurement stations for several years.
The data for this study has been kindly provided by XVPCA of the Gen-
eralitat of Catalonia. Geostatistical approach is the suitable one to process
such data. This study takes up a specific method named ordinary kriging
for its purposes. However, small size of the given data set together with
some limitations of the method may lead to lack of validity in the estimates.
To cope with this problem, this research suggests to consider the recently

10
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developed machine learning method called conformal predictors [1].

Conformal predictors always provide valid estimates, and their flexibility
allows to derive a predictor on the basis of almost any underlying algorithm,
e.g. kriging. Thus, this dissertation makes use of a conformal predicts sim-
ilar to kriging that produces valid prediction intervals with a given level of
confidence. In other words, for every chosen level of confidence, this predic-
tor would come up with a set of values and guarantee that the actual value
of the estimated concentration falls within this set with this chosen confi-
dence. The objective, of course, is to make this set as small as possible, i.e.
to make it effective. Ways to achieve efficiency in prediction are disclosed in
this dissertation.

Unfortunately, the data set is small with a great share of missing values,
and no land-use variables have been available for this study. However, for
each year, it was desirable to come up with a prediction pollution surface
that would optimally fit the actual data.



Chapter 3

Methods and data

3.1 Kriging

3.1.1 General definitions

Kriging is a spatial interpolation method. It converts the data into an es-
timate of the spatial random field together together with the measure of
uncertainty [4]. This measure of uncertainty is called kriging variance (or
error variance). Kriging was first introduced by a South African engineer
D. G. Krige in the work that has been devoted to estimation of a mineral
ore body [32, 4]. The method has been first described in 1951 [41], but it
has been further developed and formalized by a French mathematician G.
Matheron [42]. In fact, “kriging” is a generic name for a whole group of spa-
tial interpolation methods, and the particular cases include: simple kriging,
ordinary kriging, co-kriging, Bayesian kriging etc. In its simples form, a krig-
ing estimate of the data at an unobserved location is a linear combination
of the data at observed locations of the spatial field [4]. Coefficients of the
kriging equation, and the estimation error depend on spatial configuration
of the data, and on spatial correlation. The least stands for the degree to
which data at one location can be a predictor for data at another location
as a function of spatial separation.

In order to measure spatial dependence, there has been introduced a
special term - variogram. A variogram (that is sometimes referred to as
semivariogram) is the cornerstone of geostatistics. It is introduced as follows:
suppose Z(x) : x ∈ D is a stochastic process on D, where D is a spatial
domain. Then

2γ(h) = var(Z(x)− Z(x+ h) ∀x, x+ h ∈ D (3.1)

is the variogram, and it depends only on the distance between points, h
[43]. A variogram is a common measure of spatial dependence. (3.1) can be

12
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replaced with a stronger assumption:

cov(Z(x+ h), Z(h)) = C(h) ∀x, x+ h ∈ D, (3.2)

where C(h) denotes the covariance function. If the mean function is
assumed constant:

E (Z(x)) = µ ∀x ∈ D (3.3)

then (3.2) and (3.3) define a class of second-order stationary processes
on D. Conditions (3.1) and (3.3) define instrinically stationary processes,
which form a wider class. A variogram and a covariance function are related
as follows:

γ(h) = C(0)− C(h). (3.4)

A covariance function is positive definite, and it is bounded by the value:

|C(h)| ≤ C(0) = var(Z(x)). (3.5)

A variogram is not always bounded, and that is why a variogram can
be deduced from a covariance function, and the reverse is not always true [5].

There exist a variety of covariance functions that are used in practice [5].
They assume that the spatial process is isotropic (rotation invariant). The
nugget-effect function serves to model a discontinuity at the origin of the
variogram, and it is defined as follows:

C(h) =

{
c0 for|h| = 0

0 for|h| > 0
(3.6)

where c0 > 0 is the nugget effect.

One of the most frequently used is the exponential covariance function:

C(h) = c0 ∗ exp

(
−h
σ

)
, (3.7)

where σ is a range parameter, and h is a distance between two spatial
points. Another one is the Gaussian covariance function:

C(h) = c0 ∗ exp

(
−
(
h

σ

)2
)
. (3.8)

Both exponential and Gaussian covariance functions are special cases of
Matérn family [32] model. It is defined as follows:
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C(h) = C(0){2κ−1Γ(κ)}−1
(
h

σ

)κ
Kκ

(
h

σ

)
(3.9)

where κ > 0 is a parameter called order, and it determines the smooth-
ness of the underlying process Z(x), Kκ denotes a modified Bessel function
of order κ, and σ is a range parameter. For κ = 0.5, the Matérn function
reduces to the exponential one, and with κ → ∞ - to the Gaussian covari-
ance function.

Both exponential and Gaussian covariances are used in the present re-
search. A linear covariance function [44] has been also tested out for vari-
ogram modeling.

3.1.2 Ordinary kriging

The most commonly used kriging type is ordinary kriging [5]. This method
has been also applied in the study of this dissertation. The ordinary kriging
is specified in the following way: assume that Z(x) is a realization of an
intrinsic stochastic process, and it has a (semi)variogram γ(h). Let there be
n neighboring locations, x1, . . . , xn, and an unobserved location x0. Then,
the kriging estimate of the value of Z(x) at the point x0 will be:

Z∗OK(x0) =
n∑

α=1

ωαZ(xα). (3.10)

Here, the ωα are the kriging weights. A kriging estimate is unbiased, fur-
thermore, it is a BLUE (best linear unbiased) estimate. The unbiasedness
of the ordinary kriging estimate is guaranteed by the following constraint on
weights:

n∑
α=1

ωα = 1. (3.11)

As known, the main strength of kriging is that it provides an estimate to-
gether with a measure of uncertainty, that is estimation, or kriging, variance.
The estimation variance for ordinary kriging is the variance:

σ2E = var(Z∗(x0)− Z(x0)), (3.12)

and a weight ω0 is equal to −1, so:

n∑
α=0

ωα = 0. (3.13)

The estimation variance is:
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σ2E = −γ(x0 − x0)−
n∑

α=1

n∑
β=1

ωαωβγ(xα − xβ) + 2
n∑

α=1

ωαγ(xα − x0). (3.14)

The ordinary kriging system can be obtained by minimizing the estima-
tion variance. It looks as follows:

{∑n
β=0 ω

OK
β γ(xα − xβ) + λOK = γ(xα − xβ) for α = 1 . . . n∑n

β=0 ω
OK
β = 1.

(3.15)

Here, ωOKβ are the ordinary kriging weights, and λOK is a Lagrange
multiplier. Therefore, the ordinary kriging estimation variance takes form:

σ2OK = λOK − γ(x0 − x0) +

n∑
α=1

ωOKα γ(xα − x0). (3.16)

For ordinary kriging, confidence intervals can be obtained in a standard
manner. Assuming that the data come from a Gaussian spatial process, a
95 % prediction intervals can be constructed as follows [44]:

A =
(
Ẑ(x0)− 1.96 ∗ σOK(x0), Ẑ(x0) + 1.96 ∗ σOK(x0)

)
. (3.17)

It is noteworthy that ordinary kriging is an exact interpolator. This
means that if the unobserved location x0 coincides with any of the data
locations xα : α = 1, n, then the value of the ordinary kriging estimate will
coincide with the data value at that point:

Z∗OK(x0) = Z(xα), if x0 = xα, α = 1, n. (3.18)

3.2 Conformal predictors

3.2.1 General definitions

Conformal predictors is a name for an approach coming from the statistical
learning theory [1]. It allows to obtain valid predictions with a given level of
confidence. In other terms, conformal predictors are “confidence predictors”.
In order to obtain a confidence prediction, one should specify a level of error
probability for it, otherwise called a significance level. Assuming the error
probability of 1, 5, or 10 %, the confidence level will respectively make up 99,
95 or 90 %. The of confidence would denote a highly confident prediction, a
90 per cent level would designate a confident prediction, and a, say, 20 per
cent level would correspond to a casual prediction.

There are two important features of a confidence predictor:
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1. It should be valid, which means that in the long run the frequency of
error of prediction shall not exceed the chosen error probability;

2. It should be efficient, which means that the prediction set that is out-
put is as small as possible.

As far as validity is concerned, conformal predictors are always valid, by
definition. When it comes to efficiency, it must be said that in regression
problems the a prediction set usually takes form of an interval. Thus, the
efficiency of a conformal predictor in a regression setting would imply that
the interval should have minimum length.

After all, the main feature of conformal predictors is their extreme flex-
ibility. This implies that a conformal predictor can be built upon almost
any machine learning (and statistical) algorithm: regression, support vector
machines, bootstrap, decision trees, Bayesian methods etc. Such a predic-
tor has the same predictive performance as its underlying algorithm, but,
provided with an ad hoc confidence level, it is also a valid predictor.

Let’s assume that there are given the pairs of observations of (xi, yi)
where xi will be called an object and yi will be a label. To put it in a
straightforward way, xi can stand for an air pollution measurement station
coordinates, and yi - for a corresponding concentration for given pollutant
and year. The space X will then be named object space, and Y - will be the
label space. Z defined as:

Z := X×Y (3.19)

is then the example space. Z∞ is a measurable space, and the infinite
data sequence (x1, y1), (x2, y2), . . . belongs to it. Then, we believe that this
infinite data sequence has a distribution P , which is exchangeable, i.e. for ev-
ery positive integer n, every permutation π of 1, . . . , n and every measurable
set E ⊆ Zn:

P (z1, z2, . . . ) ∈ Z∞ : (z1, . . . , zn) ∈ E =

= P (z1, z2, . . . ) ∈ Z∞ : (zπ(1), . . . , zπ(n)) ∈ E. (3.20)

Suppose there is a sequence (x1, y1), (x2, y2), . . . , (xn−1, yn−1), and the
aim is to predict the label yn for the object xn. For that purpose, the
following function will serve:

D : Z∗ ×X→ Y. (3.21)

This function, under the assumption that it is measurable, can be called
a simple predictor. Here, x1, y1, x2, y2, . . . ;xn−1 ∈ Z∗, and the value of the
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yn will be derived as follows: yn = D(x1, y1, x2, y2, . . . ;xn−1), Yn ∈ Y.

If we refer to air pollution stochastic interpolation, kriging can be clas-
sified as a simple predictor. It will output only one possible label yn, i.e. it
will be a point prediction.

However, there is a more sophisticated approach to prediction. Imagine
we allow the predictor output subsets of Y large enough to provide the con-
fidence of the predictor. That will mean, that we will be confident in that
the true value of the yn falls within this subset. This approach would re-
quire an additional measure ε ∈ (0, 1) referred to as significance level, and a
complementary measure 1−ε is called confidence level. For each significance
level, the corresponding level of confidence of prediction is a desiderata, or
that the probability of error in prediction is equal to ε.

A conformal predictor is a confidence predictor defined by some noncon-
formity measure. Given an object xn and a significance level ε, the predictor
provides a prediction set that should contain the actual value of yn. A pre-
dictor obtains this set on the basis of the assumption that the observation
(xn, yn) conforms with the rest of observations. The level of significance
shows the degree of conformity.

3.2.2 Ridge regression procedure

The ridge regression method has been first suggested by A. E. Hoerl [45, 3].
This procedure is aimed to tackle the problem arousing when the predictor
vectors in the matrix X of the independent variables are far from being
orthogonal. The correlation in predictors can cause the situation when the
matrix X ′X is close to singular [45]: The least, in its turn, can lead to
unstable parameter estimates. In order to cope with this problem, a small
scalar coefficient introduced into the regression equation. This is done in
the following way. Suppose Z is the matrix of predictors X, but scaled
and centralized. Let the matrix X, and consequently, Z, be of size n × p,
so there are n observations and p parameters (predictor vectors). Y then
would stand for the 1 × n vector of dependent variables. Then, the ridge
regression estimates are obtained as follows:

ω(a) = (Z ′Z + aIp)
−1Z ′Y, (3.22)

where a is the ridge parameter, and I is the identity matrix. In applica-
tions, the values of a usually fall within the interval (0, 1). By the present
day, there is no analytical procedure known aimed to choose the optimal
value of a. In order to do so, brute force method is normally employed, or
method of successive approximations [46]. At a certain value of a the system
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stabilizes and has the general characteristics of the orthogonal system [45,
3], and the regression coefficients will have proper signs, and the residual
sum of squares will not be too large. When the ridge factor is equal to zero,
the ridge regression estimate coincides with the least squares estimate: in
other words, least squares is a special case of the ridge regression.

ω(0) = (Z ′Z)−1Z ′Y. (3.23)

The ridge regression estimator can be expressed in terms of the least
squares estimator [45]:

ω(a) =
(
Ip + a(Z ′Z)−1

)−1
ω(0) = Qω(0), (3.24)

where Q is the sample covariance matrix. Thus, the ridge estimators are
all linear combination of least regression estimator with coefficients given by
the matrix:

(Ip + a(Z ′Z)−1)−1. (3.25)

The plot of the components of the vector ω(a) against a is called ridge
trace. With the increase of ridge parameter, the estimates become smaller
in their absolute value, and they tend to zero as a tends to infinity. Ridge
trace helps select the optimal value of ridge factor, because it provides visual
representation of how changes in the values of a affect the estimates.

When the optimal value of the ridge factor, a∗, is selected, the ridge
estimates ω(a∗) are obtained. Those estimates are not least squares, and
they are biased, but they are more stable, they have the correct sign and
reasonable values, and they provide a smaller mean square error. The bias
is explained by the presence of the ridge parameter, a, in the equation.

3.2.3 Ridge regression confidence machine

Ridge regression confidence machine (RRCM) is a conformal predictor sug-
gested by Nouretdinov [2], and it makes use of the ridge regression procedure
as an underlying algorithm [1]. Suppose Xn is the n×p matrix of objects (or,
independent variables), and Yn is the vector of labels (dependent variables).
The nonconformity score for this predictor is represented by the absolute
value of the residuals: ei := yi − ŷi, where i = 1, n. Namely, the ridge
regression estimate of the parameters ω will be written down as:

ω = (X ′nXn + aIp)
−1X ′nYn. (3.26)

It is noteworthy here, that normalization and centralization of the ma-
trix X is not compulsory, yet desirable. It helps overcome the possible
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multicollinearity problem, and it facilitates further computations to a great
extent. Since the computing capacities are bounded, the problems may if
the data is used in its initial representation. This may occur because of var-
ious reasons, for example, the difference of scaling, or just “huge” numbers
composing a matrix, and making it impossible to be inverted.

The predictions ŷi for the objects xi are given by the equation:

Ŷn = (ŷ1, . . . , ŷn)′ = Xn(X ′nXn + aIp)
−1X ′nYn. (3.27)

The matrix:

Hn = Xn(X ′nXn + aIp)
−1X ′n (3.28)

is named the hat matrix, because it transforms yi to ŷi. (3.28) is a
symmetric and idempotent matrix when a = 0, together with the matrix
In −Hn. Thus, the vector of regression residuals (or nonconformity scores)
can be written as follows:

(|e1|, . . . , |en|)′ = |(In −Hn)Yn|. (3.29)

Now suppose we have the incomplete data sequence:

x1, y1, x2, y2, . . . , xn−1, yn−1, xn, (3.30)

and the aim is to predict the value of yn. A significance level for pre-
diction must be introduced, let it be equal to ε. Let y be a possible label
for xn, and then Y := (y1, . . . , yn−1, y). The vector Y can be represented as
splitter into two parts: Y = (y1, . . . , yn−1, 0)′ + (0, . . . , 0, y)′, and the vector
of the regression residuals (or, nonconformity scores) will take form |A+By|
where:

A = (In −Hn)(y1, . . . , yn−1, 0)′

and
B = (In −Hn)(0, . . . , 0, 1)′.

The p-value of the prediction, p(y), changes sign only at points some points,
this is why a set of points y can be calculated, such that the p-values, p(y),
exceed the given significance level, ε. For each i = 1, n, let:

Si := {y : αi(y) ≥ αn(y)} = {y : |ai + biy| ≥ |an + bny|},

where ai and bi are the components of the vectors A and B. Each set
Si can be either a real line, a ray, a union of two rays, an interval, a point,
or empty. For example, if Si is an interval, then, if bi 6= bn, αi(y) and αn(y)
are equal in two points:
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−ai − an
bi − bn

and − ai + an
bi + bn

. (3.31)

Those points may coincide, and Si may be a point. In order to calculate
the p-value for y, it must be counted, how may Si include y, and then divide
it by n:

p(y) =
|{i = 1, n : y ∈ Si}|

n
. (3.32)

As y increases, the p-value p(y) changes only at points (3.31), so for any
significance level ε there can be found a union of a finite number of Si. This
will yield the final prediction set. The algorithm works as follows: the pre-
dictor arranges the points (3.31) into an increasing sequence y(1), . . . , y(m).
Then it adds two points: y(0) := ∞ and y(∞) := ∞ on the ends of the set.
Then it computes N(j), the number of i such that (y(j), y(j+1)) ⊆ Si for
j = 0, . . . ,m, and M(j), the number of i such that y(j) ∈ Si for j = 0, . . . ,m
[1]. A small set of the chosen significance levels, εk, k = 1, . . . ,K, is provided
to the algorithm. The predictor outputs the corresponding nested family of
prediction sets:

Γεkn (x1, y1, . . . , xn−1, yn−1, y) (3.33)

for k = 1, . . . ,K. For each k, Γεkn is equal to the set of all labels y ∈ Y
such that:

|{i = 1, . . . , n : αi ≥ αn}|
n

> ε. (3.34)

3.2.4 Dual form ridge regression confidence machine

When the number of parameters is large, the ridge regression procedure can
hardly handle the computation of the data, since it implies inverting the
p × p matrix. In order to deal with high-dimensional data, Boser, Guyon
and Vapnik have suggested a so-called “kernel trick” [6]. This method has
been implemented to non-linear support vector machines, and here it can be
used to introduce non-linear ridge regression procedure. The input space X
of objects (or, independent variables) Xn is mapped into another space H,
called feature space [1], or linearization space [6]. The substitution is done
as follows: for x(1), x(2) ∈ X; h(1), h(2) ∈ H

k(x(1), x(2)) = 〈h(1), h(2)〉 = F (x(1)) . . . F (x(2)), (3.35)

where k(·, ·) is a kernel, and 〈·, ·〉 denotes a scalar product. Thus, the de-
pendency between the elements of the original (or, input) space is described
through scalar product of the elements of the feature space.
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In order to apply “kernel trick”, ridge regression confidence machine
should undergo a specific transformation. The ridge regression procedure
must be written in the “dual form”:

Xn(X ′nXn + aIp)
−1 = (XnX

′
n + aIn)−1Xn, (3.36)

or

(X ′nXn + aIp)
−1X ′n = X ′n(XnX

′
n + aIn)−1. (3.37)

Thus, the ridge regression prediction (ŷ) for an object x based on exam-
ples (x1, y1, x2, y2, . . . , xn, yn) will be:

ŷ = Y ′n(XnX
′
n + aIn)−1Xn (3.38)

The hallmark of this representation is that it depends of the objects
x1, . . . , xn, x only via scalar products between them. If the object space X
is mapped into Euclidian feature space H, F : X→ H, and ridge regression
is performed in the feature space, the prediction (3.38) can be rewritten as:

ŷ = Y ′n(Kn + aIn)−1kn, (3.39)

where Kn is the matrix of the elements (Kn)i,j = k(xi, xj), kn is the
vector with the elements (kn)i = k(x, xi), and k(·, ·) is a kernel. The hat
matrix (3.28) in the dual representation is written as:

Hn = Xn(X ′nXn + aIn)−1X ′n = (XnX
′
n + aIn)−1XnX

′
n. (3.40)

When ridge regression is performed in the feature space, it takes form:

Hn = (Kn + aIn)−1Kn, (3.41)

and now, in order to perform the RRCM in a kernel form, or a non-linear
RRCM, one only would need to substitute the hat matrix in the primary
setting RRCM algorithm (and define a kernel).

3.2.5 Kernels

There is an infinite amount of kernels out there. Two most important fea-
tures of a kernel is that it is symmetric:

k(x(1), x(2)) = k(x(2), x(1)), ∀x(1), x(2) ∈ X, (3.42)

and nonnegative definite:
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m∑
i=1

m∑
j=1

K(x(i), x(j))aiaj ≥ 0,

∀x(1), . . . , x(m) ∈ X, ∀a1, . . . , am ∈ R.

It is also correct that any function K : X2 → R can be represented in
the form of a kernel [1]:

K(x(1), x(2)) = F (x(1), x(2)). (3.43)

This research makes use of two popular kernels - apart from the scalar
product in the linear model. These kernels are the Gaussian radial ba-
sis function (RBF kernel) and the polynomial kernel of the second order.
These are positive definite kernels. The justification for use of kernels is the
following: in literature, a covariance function is one of the terms used to
describe positive definite kernels [6]. The RBF kernel has been chosen here
in order to match the Gaussian covariance function in kriging prediction.
The polynomial kernel of the second order has been chosen with no special
justification. It has been guessed that the appropriate covariance function
is probably not linear. A better kernel can be further found, for sure.

The RBF kernel is specified as follows [6]:

k(x(1), x(2)) = exp

(
||x(1) − x(2)||2

2σ2

)
, (3.44)

where σ > 0 is a scale parameter. As for polynomial kernels, there are
distinguished two types of them: homogeneous polynomial kernels:

k(x(1), x(2)) = 〈x(1), x(2)〉d, (3.45)

where d is a degree (order), and inhomogeneous polynomial kernels:

k(x(1), x(2)) =
(
〈x(1), x(2)〉d + c

)d
,

where c > 0 is a constant. This particular research makes use of an
inhomogeneous polynomial kernel of the second degree, and it is specified
as [1]:

k(x(1), x(2)) =
(

1 + x(1) · x(2)
)2
.
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3.3 Computing

All the computational work for the present dissertation has been made with
the use of R statistical software [47]. The kriging calculations have been
performed employing the geoR package [48, 32], which embraces all the
essential tools for geostatistical analysis and modeling. As for RRCM mod-
eling, the package PredictiveRegression [38] has been employed. This
package has been developed to provide the computational support to the
on-line predictive version of the common problem of linear regression. In
this research, the function iidpred has been used in order to perform linear
RRCM estimation for the data. Then, in order to consider a non-linear
RRCM predictor, namely, to perform the “kernel trick”, the function iid-
pred has been rewritten by the author of the present dissertation so, that it
would match the RRCM in the dual setting. This function has been further
modified as involving kernels considered in this research, and two functions
appeared as a result:

• function iid rbf serves to compute ridge regression confidence machine
estimates with the RBF kernel,

• function polyn2 serves to compute the ridge regression confidence ma-
chine estimates with the polynomial kernel of the second degree.

For code of the functions, please see the Appendix A to the dissertation.

It is noteworthy that prior to application of both approaches, ordinary
kriging and ridge regression, the data has been scaled and centralized, as
ridge repression procedure suggests [45]. The scaling has been done in order
to be able to run the ridge regression procedure correctly, since it involves
matrix inversion, and also to overcome the difference in measurement. The
independent variables of both regression procedures, kriging and ridge re-
gression, are the geographical longitude and latitude, and not only they are
given in quite a big numbers, but also there is a difference in scaling of one
order (10 times) beet wen them. Both longitude and latitude have been
transformed into unit scale in the following way:

x̂(i) =
x(i) − x̄(i)

x
(i)
max − x(i)min

, i = 1, 2, (3.46)

Data transformed in such a manner has been used used both for kriging
and ridge regression - for accurate comparison of outputs of both models.
Although, using the original units in kriging would not affect the estimation
results.
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3.4 Data

3.4.1 Barcelona Metropolitan Region

Barcelona Metropolitan Region (BMR) is situated on the north-east of
Spain. Spread along the Mediterranean coast, it has a territory of about
3200 km2 and accommodates over 5 million inhabitants [49]. In 1986, there
has started a process of economic and geographic expansion, which has con-
verted the region into one of the 10 biggest urban agglomerations of Europe
[50]. In Spain, it is the second largest metropolitan area, after Madrid. The
BMR comprised 90 municipalities back in 1986. It has grown up to 220 mu-
nicipalities in 2011, and it has consequently seen the growth of the popula-
tion: from 3.58 million inhabitants in 1986 to 5.4 million in 2011. The actual
population of the BMR makes up 91 per cent of the whole population of the
Province of Barcelona; the Region houses about 195.000 enterprises, which
is a 91-percent share of the whole province as well. As far as the adminis-
trative subdivision is concerned, the BMR consists of: the city of Barcelona
surrounded by the Barcelona Metropolitan Area (BAM), encompassing 35
municipalities, and the rest of the BMR, embracing 128 other municipali-
ties. Sometimes, they refer to BMR simply as the Barcelona Metropolitan
Area which might provoke confusions. The city of Barcelona is the economic
centre of the BMR, as well as of the whole Catalonia. It is inhabited by 1.6
million people, and embodies 44 per cent of the whole volume of jobs of the
province. Badalona and L’Hospitalet de Llobregat are other important cities
within the region, together with Mataró, Granollers, Sabadell, Terrassa and
Vilanova i la Geltrú, which have played the role of the industrial centers
since the 19th century.

Every week, two third part of the whole amount of movements that take
place in Catalonia, occur in BMR, which is proportional to the share of
inhabitants and to the concentration of economic activities [49]. In BMR,
there happen about 107 million displacements weekly, with averagely 16.8
moves during a work day and 11.2 dislocations during a day-off. 54.1 per
cent of total weekly displacements happen by means of motorized transport:
both public and private [51]. The share of private engine-powered vehicles
alone is equal to 35.6 percent, or 38.8 million weekly moves.

3.4.2 The present data set

It is a well-known fact that traffic is the main contributor to air pollution in
urban surroundings. The present research makes use of the data representing
the concentrations of two air pollutants, nitrogen dioxide (NO2) and partic-
ulate matter (PM10), at the measurement cites spread over the Barcelona
Metropolitan Regions. The data for this research has been kindly provided
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by XVPCA (Network for Monitoring and Forecasting of Air Pollution) of
the Generalitat of Catalonia [19]. The dataset comprises observations made
in 27 municipalities of the BMR, that are: Barcelona, Badalona, Barberà de
Vallès, Castellbisbal, Cornellà de Llobregat, El Papiol, El Prat de Llobregat,
Esplugues, Gavà, Granollers, L’Hospitalet de Llobregat, Martorell, Molins
de Rei, Mollet, Montcada i Reixac, Ripollet, Rubi, Sabadell, Sant Adrià de
Besòs, Sant Andreu de la Barca, Sant Cugat de Vallès, Sant Feliu de Llo-
bregat, Sant Vicenḑels Horts, Santa Coloma de Gramenet, Santa Perpètua
de Mogoda, Terrassa and Vilanova i la Geltrú (see Table 2.1 and Figure 2.1)

Table 3.1: Distribution of measurement sites over BMR

municipality stations pollutants

Barcelona 13 NO2, PM10

Badalona 1 NO2, PM10

Barberà de Vallès 1 NO2, PM10

Castellbisbal 2 PM10

Cornellà de Llobregat 1 NO2

El Papiol 1 PM10

El Prat de Llobregat 1 NO2, PM10

Esplugues 1 NO2

Gavà 3 NO2, PM10

Granollers 2 NO2, PM10

L’Hospitalet de Llobregat 1 NO2, PM10

Martorell 1 NO2, PM10

Molins de Rei 1 PM10

Mollet 1 NO2, PM10

Montcada i Reixac 1 NO2, PM10

Ripollet 1 total suspended particles
Rubi 3 NO2, PM10

Sabadell 3 NO2, PM10

Sant Adrià de Besòs 1
Sant Andreu de la Barca 1 NO2, PM10

Sant Cugat de Vallès 1 NO2, PM10

Sant Feliu de Llobregat 1 PM10

Sant Vicenç dels Horts 2 NO2, PM10

Santa Coloma de Gramenet 1 NO2, PM10

Santa Perpètua de Mogoda 1 NO2, PM10

Terrassa 1 NO2, PM10

Vilanova i la Geltrú 1 NO2, PM10
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Figure 3.1: Distribution of stations over BMR

The time scope for the study is the following: for NO2 observations for
the years 1998-2009 were available - with the absence of observations for the
year 2003, and for PM10 the timeline was from 2001 to 2009, again with no
data for the year 2003. Both pollutants were measured on the 49 monitoring
sites mentioned above on the daily basis. Then the mean annual concentra-
tion were obtained with a geographic information system. Thus, in the data
set the pollutants are represented in the form of mean annual concentrations
together with the geographic coordinates of the measurement cites, their la-
bels, the names of municipalities where they are situated, and the year the
observations correspond to. This is a pooled data set. Unfortunately, the
data was not available for each year and station for neither of pollutants.
With 49 measurement stations all together, there were approximately 24
valid observations per year for NO2, and 29 for PM10. For each given year,
the concentrations of NO2 were provided at 22 to 25 stations (see Table 3.2).
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Table 3.2: Data on mean annual nitrogen dioxide concentrations

Available observations for each year

1998 1999 2000 2001 2002 2004 2005 2006 2007 2008 2009

24 25 25 25 25 24 22 24 25 25 24

Table 3.3 demonstrates how many observations of PM10 concentrations
were available for each of the study years.

Table 3.3: Data on mean annual particulate matter concentrations

Available observations for each year

2001 2002 2004 2005 2006 2007 2008 2009

22 24 28 28 29 30 33 36

Thus, there can be named two major drawbacks, or limiting factors, of
the data set:

• Size: there was a small number of observations for each year and
pollutant,

• Distribution: the measurement spots are situated quite far apart
from one another, and they are distributed, or placed, unevenly over
the geographic region.

Those two limitations sufficiently reduce the scope of the study, since
it implies the interpolation of the given data in order to obtain a “good”
estimate at any unobserved location over the study region.

Also, a few words should be said about the reliability of the data. Both
nitrogen dioxide and particulate matter concentrations taken up in this
study are mean annual concentrations. Initially, the data has been mea-
sured hourly, and these measurements have been further averaged. Only
these average observed concentrations were available for this study, while
the initial hourly concentrations were not. Mean annual measurements may
be uncertain, because they do not allow to make unambiguous conclusions
about the data distribution. Because of the lack of observations and their
low frequency, the shape and the parameters of the data distribution cannot
be established precisely, and thus the inference regarding the existence or
absence, or character of spatial covariance between observations might be
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misleading. Not only this may affect the modeling prediction capacity, but
also it can reduce the possibility for validation of the models.

Table 3.4 shows the descriptive statistics for the observed nitrogen diox-
ide concentrations. Those concentrations are the annual averages. For each
year of the study timeline, Table 3.4 depicts the following values: minimum,
first quartile of the distribution, median, mean, third quartile of the distri-
bution, maximum, and the percentage of missing values. It the data set for
nitrogen dioxide would be complete, the number of observations for each
year would be equal to 49, as this is the amount of measurement stations
at the Barcelona Metropolitan Region where the nitrogen dioxide pollution
has been recorded. However, the data set is not complete, and the Table 3.2
shows the number of valid observations available for each year for evaluation.
The right column of the Table 3.4 reflect the percentage that the missing
values for each year make up of the total of 49. It is seen that for each year,
on the average, at half of the stations the concentrations were not observed.

Table 3.4: Annual nitrogen dioxide concentrations (µg/m3). Descriptive
statistics

year min 1st q. median mean 3rd q. max missing

1998 11 35.75 47 46.50 61.00 68 51.02
1999 17 32.00 45 44.40 57.00 71 48.98
2000 13 33.00 42 41.20 48.00 65 48.98
2001 23 39.00 48 46.16 54.00 64 48.98
2002 25 38.00 45 45.24 53.00 69 48.98
2004 22 33.50 38 39.88 45.00 67 51.02
2005 21 36.50 44 44.23 48.00 83 55.10
2006 19 36.50 46 43.96 50.25 74 51.02
2007 21 40.00 44 43.40 50.00 66 48.98
2008 18 39.00 42 42.36 47.00 65 48.98
2009 11 41.00 44 43.12 50.00 63 48.98

Table 3.5 shows the descriptive statistics for the observed particular mat-
ter concentrations. Those concentrations are also annual averages, too. The
right column of the Table 3.5 shows the percentage of the missing values in
the whole data set for each year. The amount of the valid observations of
the PM10 observations for each year can be seen in Table 3.3.
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Table 3.5: Annual particulate matter concentrations (µg/m3). Descriptive
statistics

year min 1st q. median mean 3rd q. max missing

2001 33 40.25 43 47.82 55.25 75 55.10
2002 28 43.75 48 49.29 55.25 67 51.02
2004 26 38.50 45 44.36 50.50 57 42.86
2005 31 43.75 47 48.61 54.25 70 42.86
2006 29 45.00 48 49.24 53.00 69 40.82
2007 33 40.25 44 45.93 48.75 89 38.78
2008 29 36.00 38 39.94 43.00 63 32.65
2009 25 33.00 36 36.19 40.00 48 26.53

3.4.3 Previous research for BMR

It is noteworthy that a similar research aimed to predict the spatial con-
centrations of nitrogen dioxide and particles (PM10) has previously been
carried out [33]. This study has considered the same geographic region, that
is Barcelona Metropolitan Region. There, spatial distribution for both of the
pollutants has been obtained for the study region. Also, the concentrations
have been predicted in centre of the census track for every day of the entire
study period. These daily values have been further averaged. Moreover, this
was the first evidence of using kriging for predicting the concentrations of
air contaminants for this region. A preliminary data analysis has been car-
ried out in this study, aimed to establish the existence or absence of spatial
tendencies in the distribution of the pollutants. It has been done by means
of linear regression. As far as kriging is concerned, the four spatial depen-
dence structures have been taken up: exponential, spherical, Gaussian and
Gneiting, and Bayesian inference has been used in modeling. The calculus
have been made employing R, especially its geoR library [48]. The timeline
for the study is the following: the years 1994-2004 for NO2, and the years
2004-2004 for PM10. For both of the pollutants, the observations have been
made at up to 9 stations.

The difference between the above mentioned study and the one presented
in the current dissertation is not only denoted by somewhat dissimilar time
scope and number of the measurement stations involved. When it comes to
methodology and results, there are differences as well. The study of Saez
and Lertxundi is very accurate when it comes to preliminary data analysis.
Here, this initial exploration aimed to elicit spatial tendencies is not done
intentionally. Here, instead, two types of spatial dependency have been as-
sumed, i.e. two different covariance functions in kriging have been taken up,
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and then the corresponding kernels were employed in the RRCM modeling.

The main goal of the current study is to introduce a new method for air
pollution assessment, that is, conformal prediction on the basis of kriging,
and testing this method out. The main aim was to implement and “debug”
the method, rather than find a perfect fit for this particular data. This is,
however, a plan for future research. It is planned to extend the current data
set for this purpose.

By now, in order to “test and debug” the method, cross-validation anal-
ysis has been carried out. Regarding the fact, that 25 observations without
missing values have been available for each year and pollutant, leave-one-out
cross-validation has been considered [52].
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Results

4.1 Ordinary kriging with exponential covariance

4.1.1 NO2

Model for 1999

Below, it will be shown below how the computation of the ordinary kriging
with exponential covariance function has been performed and which results
it has yielded. Linear covariance function has also been considered, but,
due to relatively small distances, the approximation with linear variomodel
is practically the same as with the exponential one. Here, the computa-
tions and the results are shown for year 1999. For the ease of comparison of
the results, this year has been taken up for all further models for nitrogen
dioxide. The detailed results for each year in the data set can be found in
Appendix B.

For ordinary kriging computation, the function krige.conv from the R
[47] package geoR [48] has been used. The initial data (the regressors, i.e.
coordinates) has been scaled and normalized. This has been done to com-
pare the results of the ordinary kriging model with the results of the further
demonstrated RRCM model. The scaling of the coordinates has been per-
formed following the formula (3.46).

The computation of the model is shown below. First, a geodata [32]
object should be created.

> geo_no2_1999 <- as.geodata(no2_1999[1:25, ],

+ coords.col = 1:2, data.col = 3)

> locs_no2_1999 <- no2_1999[26:49, 1:2]

An exponential variogram model has been fitted:

> aae <- variofit(variog(geo_no2_1999), cov.model = "ex")

31
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variog: computing omnidirectional variogram

variofit: covariance model used is exponential

sigmasq phi tausq kappa

initial.value "327.08" "0.91" "163.54" "0.5"

status "est" "est" "est" "fix"

loss value: 2171172.0506172

A linear variomodel has been fitted, too. This has been done to ascertain,
which variomodel would make a better fit. Also, the kriging modeling results
are to be further compared to the predictions of ridge regression confidence
machine, which is linear and makes use of no kernels in its standard iid
setting.

> aal <- variofit(variog(geo_no2_1999), cov.model = "li")

variog: computing omnidirectional variogram

variofit: covariance model used is linear

sigmasq phi tausq kappa

initial.value "327.08" "0" "163.54" "0.5"

status "est" "est" "est" "fix"

loss value: 2015475.3850871

Figure 4.1 shows how the theoretical variogram models fits the data.
This is a two-dimensional plot where the values of the empirical variogram
(or semivariogram) are plotted against the values of the Euclidian distance
between points. Moreover, two curves for the fitted theoretical variogram
models are added. On this plot, the two fitted model curves coincide. Thus,
the exponential function will be used as it is considered by default for con-
ventional kriging in the geoR package.
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Figure 4.1: Empirical and modeled variograms

Running the ordinary kriging model with exponential covariance func-
tion:

> ok_no2_1999 <- krige.conv(geo_no2_1999,

+ locations = locs_no2_1999,

+ krige = krige.control(type.krige = "ok",

+ obj.model = aae))

Table 4.1 shows the results of the modeling. It is seen that the predic-
tion turned out to be very smooth, as the predicted values vary from 42.57
(µg/m3) to 45.30 (µg/m3). Ascending order in the predicted values is a
result of that the data has been sorted. Column 2 of the table shows the
estimates for the kriging variances. They are very big, which is explained
by the small number of the observed data.
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Table 4.1: Ordinary kriging prediction results (µg/m3)

NO2 kriging variance

42.57 260.75
42.60 260.86
43.19 272.10
43.25 271.72
43.57 261.27
43.40 271.61
43.14 259.15
43.57 259.81
43.17 258.36
43.21 257.77
44.12 260.17
44.45 260.94
44.56 258.78
44.60 258.73
44.86 257.04
44.78 255.15
44.80 256.88
45.57 256.87
45.11 255.23
45.63 258.53
45.63 258.85
45.68 257.95
45.69 257.98
45.30 256.52

Cross-validation of the model

Kriging is an exact interpolator, so the prediction has been obtained for the
points where the data was not available, on the basis of the observed values.
For 1999, the data was available at 25 points out of the total number of
49. So, for 24 spatial locations, the concentrations of nitrogen dioxide for
1999 were unavailable. They have been predicted with the use of ordinary
kriging, as shown above. However, the measure of error, i.e. the kriging
variance, is by itself an estimate, since the real observations are not given.
This means there is no way to ascertain the goodness of fit of the model since
one cannot compare the model output to reality. Nevertheless, the goodness
of fit of the model can be tracked with the use of a cross-validation method.
Regarding the number of observations available, the leave-one-out specifica-
tion of cross-validation has been considered [53]. On each step, the value of



CHAPTER 4. RESULTS 35

nitrogen dioxide concentrations at every location has been predicted on the
basis of its values at the other observed locations. Table 4.2 shows that the
absolute values of the errors of prediction are big, which is due to that the
predictions are very smooth while the real data distribution is not so even.
A wide range of the observed values of the nitrogen dioxide concentrations
might be explained by general variability of the pollutant. A little range in
the kriging estimates indicates that the exponential covariance model does
not match the empirical variogram of the data very well. However, a better
model can be barely derived for this data.

Table 4.2: Leave-one-out cross-validation results (µg/m3)

observed predicted absolute
error

17.00 47.42 30.42
20.00 45.42 25.42
22.00 44.38 22.38
25.00 48.10 23.10
28.00 47.25 19.25
30.00 47.44 17.44
32.00 45.29 13.29
33.00 44.46 11.46
37.00 43.92 6.92
38.00 42.19 4.19
38.00 47.02 9.02
44.00 44.95 0.95
45.00 44.86 0.14
48.00 44.25 3.75
50.00 44.09 5.91
51.00 43.00 8.00
52.00 43.75 8.25
53.00 44.42 8.58
57.00 43.68 13.32
61.00 44.14 16.86
61.00 44.10 16.90
64.00 43.58 20.42
65.00 41.37 23.63
68.00 43.70 24.30
71.00 43.77 27.23
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4.1.2 PM10

Model for 2009

Here, a similar computational process has been used for particulate matter
data, and its results are shown below. The year that has been chosen for
this example is 2009, simply because there are more observations available
for this year than for any other year in the data set.

Computing a variogram, considering the linear covariance function:

> aal <- variofit(variog(geo_pm10_2009), cov.model = "li")

variog: computing omnidirectional variogram

variofit: covariance model used is linear

sigmasq phi tausq kappa

initial.value "52.94" "0" "17.65" "0.5"

status "est" "est" "est" "fix"

loss value: 18785.3075752401

Computing a variogram, considering the exponential covariance function:

> aae <- variofit(variog(geo_pm10_2009), cov.model = "ex")

variog: computing omnidirectional variogram

variofit: covariance model used is exponential

sigmasq phi tausq kappa

initial.value "35.29" "0.89" "17.65" "0.5"

status "est" "est" "est" "fix"

loss value: 18208.9238162109

It it visible that the fitted variomodel parameters are smaller for the
particulate matter data, rather than for nitrogen dioxide data. The σ2 pa-
rameter stands for the variance of the spatial process of which the data
(signal) is assumed to be a realization, φ denotes the practice range, τ2 is
the measurement error variance, and κ is the smoothness parameter [32].
Such a difference in the parameter estimates for two contaminants might ei-
ther be contributed by the difference in years (1999 and 2009), or generally
indicate the tendency of nitrogen dioxide to have a greater variability than
particulate matter.

Figure 4.2 shows how the chosen variomodel would fit the data. It is
seen that the fitted the curves coincide:
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Figure 4.2: Empirical and modeled variogram

The next step is to perform ordinary kriging.

> ok_pm10_2009 <- krige.conv(geo_pm10_2009,

+ locations = locs_pm10_2009,

+ krige = krige.control(type.krige = "ok",

+ obj.model = aae))

The results are shown in the Table 4.3.
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Table 4.3: Ordinary kriging prediction results (µg/m3)

PM10 kriging variance

35.61 24.79
32.75 27.15
33.09 27.39
36.04 24.37
35.62 24.71
37.07 24.81
37.22 24.95
37.03 24.14
37.15 24.24
37.21 24.01
37.00 24.26
36.49 24.57
37.35 30.64

It is noteworthy that the estimates of the kriging variance are roughly
10 times smaller than for nitrogen dioxide. The reasoning behind that is
perhaps the same as behind the difference in covariance model parameter
estimates.

Cross-validation of the model

Leave-one-out cross-validation procedure has been executed for particulate
matter data, too. The results of the LOO cross-validation for PM10 data
for 2009 can be seen from the Table 4.4. Comparing these results to the
same results for NO2, it is seen that absolute errors of prediction for both
pollutants are averagely in the same range. The mean absolute value of
prediction errors for PM10 is equal to 13.49 (µg/m3).
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Table 4.4: Leave-one-out cross-validation results (µg/m3)

observed predicted absolute
error

25.00 42.77 17.77
25.00 61.00 36.00
28.00 20.00 8.00
29.00 42.79 13.79
31.00 65.00 34.00
31.00 45.42 14.42
32.00 45.46 13.46
33.00 43.23 10.23
33.00 44.06 11.06
33.00 46.09 13.09
33.00 45.00 12.00
34.00 38.00 4.00
34.00 44.00 10.00
34.00 44.25 10.25
34.00 44.50 10.50
34.00 45.32 11.32
35.00 43.50 8.50
36.00 51.00 15.00
36.00 33.00 3.00
37.00 64.00 27.00
38.00 43.00 5.00
38.00 38.00 0.00
39.00 53.00 14.00
39.00 30.00 9.00
40.00 22.00 18.00
40.00 43.57 3.57
40.00 61.00 21.00
40.00 45.57 5.57
40.00 17.00 23.00
41.00 50.00 9.00
41.00 32.00 9.00
41.00 68.00 27.00
42.00 43.17 1.17
43.00 52.00 9.00
46.00 71.00 25.00
48.00 25.00 23.00
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4.2 RRCM in iid setting

4.2.1 NO2

Model for 1999

Ridge regression confidence machine prediction has been performed for all
the data in the data set, in order to see how this machine learning method
works with geostatistical data. At first, the basic linear iid setting [38] of
the RRCM has been considered. Then, the model has been advanced to use
a non-linear approach. For nitrogen dioxide, the same 1999 year has been
used for demonstration of the application of the RRCM method - in order
to better show its capacity in comparison to classical kriging. The data that
has been used here has been scaled and normalized, as said before. The
RRCM prediction has been carried out with the use of the PredictiveRe-
gression package [38]. In this ridge regression procedure, the ridge factor
has been set to 0.01, and the confidence level has been chosen equal to 95
percent - due to the size of the data set. By its specification, iid RRCM
model has the following limitation: for a significance level ε, a data set must
count at least 1/ε observations to impart valid predictions [38]. Therefore,
a 95 % confidence is the highest feasible level. The observed data has been
taken up as a training set, and the unobserved part, for which the prediction
has been made, is the test set.

First, a training and a test set must be created:

> train <- no2_1999[1:25, ]

> test <- no2_1999[26:49,1:2]

For the correct performance of the model, training and test sets should be
declared of type matrix :

>train <- as.matrix(train)

>test <- as.matrix(test)

Then, the model is to be performed:

> iid_no2 <- iidpred(train, test, 0.05, 0.01)

The results of the application of the method can be seen from the Ta-
ble 4.5. There, the first column denotes lower bounds of the prediction
interval, the second column denotes their upper bounds, and the third col-
umn indicates width of the intervals, namely, the difference between the
upper and the lower bounds. As seen from the results, the mean width of
the prediction interval for this (test) data set is equal to 66.31 (µg/m3). The
mean value of the lower bound of the prediction interval is 66.31 (µg/m3),
while the mean value of upper bound of the prediction interval makes up
77.76 µg/m3.



CHAPTER 4. RESULTS 41

Table 4.5: RRCM iid for NO2 for 1999 (µg/m3)

lower bound upper bound interval width

5.60 72.64 67.05
5.45 72.72 67.27
6.04 76.22 70.18
6.26 76.28 70.01
8.13 73.07 64.94
6.80 77.15 70.36
8.64 73.13 64.49
9.08 73.40 64.32
8.28 74.04 65.76
8.93 74.16 65.23
10.49 75.04 64.55
11.49 77.41 65.92
12.41 77.40 64.98
11.22 77.62 66.39
13.78 78.72 64.94
15.40 78.89 63.49
14.12 78.64 64.51
15.41 81.65 66.24
16.25 80.74 64.49
15.61 83.28 67.67
15.61 83.54 67.93
15.95 83.28 67.32
16.03 83.41 67.38
17.74 83.74 66.00

Cross-validation of the model

Cross-validation of this method is useful because of two reasons:

1. the data set (as well as the data sets for other years) is small,

2. the modeling is performed to predict the values which are not ob-
served, i.e. there is no possibility of comparison of the observed and
the predicted.

The results of cross-validation can be seen from the Table 4.6. There is
one error in the prediction, i.e. for the first point, the observed value, 17
(µg/m3), falls below the prediction interval [22.94, 73.60] (µg/m3). As up
to 5 per cent of errors is allowed, the method generally works well.
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Table 4.6: Leave-one-out cross-validation results (µg/m3)

observed lower upper is in

17.00 22.94 73.60 no
20.00 -29.97 104.26 yes
22.00 6.88 74.96 yes
25.00 15.09 83.56 yes
28.00 17.30 85.39 yes
30.00 18.45 88.72 yes
32.00 13.66 79.09 yes
33.00 12.53 76.66 yes
37.00 9.04 74.80 yes
38.00 -1.63 73.04 yes
38.00 18.07 92.43 yes
44.00 13.26 79.69 yes
45.00 17.61 82.90 yes
48.00 16.72 91.42 yes
50.00 8.78 77.14 yes
51.00 -0.13 74.06 yes
52.00 10.00 79.11 yes
53.00 15.57 79.88 yes
57.00 12.09 76.06 yes
61.00 14.78 78.66 yes
61.00 17.84 83.30 yes
64.00 16.55 79.77 yes
65.00 7.01 71.09 yes
68.00 13.61 77.98 yes
71.00 15.45 80.05 yes

4.2.2 PM10

Model for 2009

The same RRCM model in the default iid setting has been performed for
the other contaminant, particulate matter, as well. Here below it is shown,
how the method has been applied stepwise, and which results it has yielded.
For the better comparison to kriging technique, the same 2009 year has been
used for demonstration of the conformal predictor as well. Training and test
sets for PM10 data for 2009 should be created first, and then the model can
be executed:

> train <- pm10_2009[1:36, ]

> test <- pm10_2009[37:49, 1:2]
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> iid_pm10_2009 <- iidpred(train, test, 0.05, 0.01)

The results can be seen from the Table 4.7. The mean value of the lower
bound of prediction intervals makes up 22.80 (µg/m3) , while the mean
value of the upper bound is 51.22 (µg/m3). The mean width of prediction
intervals is equal to 28.41 (µg/m3).

Table 4.7: RRCM iid for PM10 for 2009 (µg/m3)

lower bound upper bound interval width

20.71 48.92 28.22
19.72 48.58 28.86
19.90 48.84 28.94
22.02 49.61 27.59
22.02 49.53 27.52
23.55 51.41 27.86
24.05 51.91 27.87
24.04 51.49 27.44
23.19 51.97 28.77
23.40 51.98 28.58
24.13 51.97 27.84
24.35 52.75 28.39
25.35 56.91 31.56

Cross-validation of the model

The results of leave-one-out cross-validation for the linear RRCM model in
iid setting for PM10 for 2009 can be seen from the Table 4.8. Out of 36 points
in the set, there is 1 error: one observed value (25 µg/m3) falls below the
prediction interval [26.42, 50.60] (µg/m3), but nonetheless, regarding that 5
per cent of errors is allowed, the prediction is still considered as valid.
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Table 4.8: Leave-one-out cross-validation results (µg/m3)

observed lower upper is in

25.00 20.48 49.96 yes
25.00 26.42 50.60 no
28.00 4.77 56.75 yes
29.00 22.45 50.16 yes
31.00 21.35 48.69 yes
31.00 22.51 50.17 yes
32.00 23.52 52.38 yes
33.00 20.84 49.05 yes
33.00 21.57 48.76 yes
33.00 23.89 52.92 yes
33.00 24.73 53.20 yes
34.00 18.50 48.79 yes
34.00 22.80 50.58 yes
34.00 23.02 50.56 yes
34.00 23.83 51.17 yes
34.00 23.53 52.57 yes
35.00 21.79 48.99 yes
36.00 20.25 50.95 yes
36.00 23.13 50.22 yes
37.00 24.98 53.71 yes
38.00 21.36 48.69 yes
38.00 25.32 57.66 yes
39.00 24.54 52.74 yes
39.00 23.88 52.85 yes
40.00 19.88 48.30 yes
40.00 20.75 48.17 yes
40.00 23.11 50.77 yes
40.00 22.81 51.05 yes
40.00 24.67 51.98 yes
41.00 22.22 51.45 yes
41.00 23.59 51.01 yes
41.00 22.62 50.66 yes
42.00 21.27 49.30 yes
43.00 20.18 49.15 yes
46.00 22.31 51.06 yes
48.00 23.09 49.37 yes
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4.3 Comparison of both models in default settings

4.3.1 NO2

After introducing both models, the classical ordinary kriging and the newly
developed ridge regression confidence machine, it is interesting to compare
their predictive performance. All the data pools composed of the observa-
tions for all the 11 years, are taken up for the comparison. Figure 4.3 shows
the results. The upper and the lower dark green dashed lines depict the
mean values of upper and lower bounds of RRCM iid prediction intervals
for each year. The purple line delineates the mean values of kriging pre-
dicted (point) concentrations. It is noteworthy to mention that there have
occurred no errors in prediction of the RRCM model - in the sense that all
the kriging predicted values have fallen within the RRCM intervals. For the
general comparison of the models, the ridge factor has been taken up equal
to 0.01, and the confidence level - to 0.95, which has been dictated by the
average size of the data sets available for each year.
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Figure 4.3: Ordinary kriging and ridge regression confidence machine pre-
dictions for nitrogen dioxide

It is noteworthy to bring up again that all the predictions have been
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performed for the locations where the actual observations are not available.
Thus there is no way to compare the modeling results to real data and so to
find the model error. Ordinary kriging allows to estimate prediction errors,
and prediction intervals for kriging can be derived following the formula
(3.17). Kriging prediction intervals are built under the assumption that the
confidence level is equal to 95 %. The histogram shown on the Figure 4.4
opposes the kriging intervals to mean width of the RRCM prediction inter-
vals. On this histogram, the light purple bars denote mean kriging intervals,
and the shaded purple bars stand for mean RRCM intervals. With no loss
of generality, here and below, kriging intervals have been derived assuming
that the spatial process is Gaussian. As Figure 4.4 shows, they are generally
smaller than those of RRCM, but RRCM intervals are valid and the model
does not require any prior assumption on data distribution.
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Figure 4.4: Estimated variance for kriging and RRCM prediction

4.3.2 PM10

For particulate matter, the same comparison of the models has been made.
This contrasting has been also carried out for the whole data available: from
2001 to 2009, with the exception of 2003. Figure 4.5 depicts the results of the
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comparison. As in the nitrogen dioxide case, there have occurred no errors
in RRCM prediction - in the same sense as before, i.e. that all the kriging
predicted values have fallen within the corresponding RRCM intervals. For
RRCM modeling, the ridge factor has been set to 0.01, and the confidence
level has been chosen equal to 0.95. Here, the dashed teal lines stand for
the mean values of the upper and the lower bounds of RRCM prediction
intervals, and the dark orange line denotes the mean kriging predictions.
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Figure 4.5: Ordinary kriging and ridge regression confidence machine pre-
dictions for particulate matter

For this data set, no real observations are available at the modeling
locations, and the comparison of the model variance has been made. In order
to evaluate the estimated variance in kriging prediction, kriging prediction
(or confidence) intervals have been derived. Figure 4.6 shows a histogram
where kriging intervals are opposed to RRCM prediction intervals. On this
histogram, the blue bars reflect the estimated kriging intervals, while the
shaded bars stand for RRCM prediction intervals. These are mean perdition
intervals for confidence level of 95 per cent. Kriging variance estimates for
PM10 are generally smaller than for that NO2.
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Figure 4.6: Estimated variance for kriging and RRCM prediction

4.4 Ordinary kriging with Gaussian covariance

4.4.1 NO2

Here another specification of the ordinary kriging model is presented: the
one that makes use of the Gaussian covariance function. As before, the
detailed computation and results are provided for 1999. All the detailed
results for every year are listed in Appendix B.

For practical realization of the model, the geoR package for R has been
employed as well. The Gaussian variomodel has been specified, and ordinary
kriging procedure has been applied to the NO data for 1999.

> aag <- variofit(variog(geo_no2_1999), cov.model = "ga")

variog: computing omnidirectional variogram

variofit: covariance model used is gaussian

sigmasq phi tausq kappa

initial.value "327.08" "0.91" "163.54" "0.5"
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status "est" "est" "est" "fix"

loss value: 2212678.3434232

Figure 4.7 shows how the chosen variomodel fits the actual data.
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Figure 4.7: Empirical and modeled variogram

Running the ordinary kriging model with Gaussian covariance function:

> ok_no2_1999 <- krige.conv(geo_no2_1999,

+ locations = locs_no2_1999,

+ krige = krige.control(type.krige = "ok",

+ obj.model = aag))

Table 4.9 shows the results of this prediction.
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Table 4.9: Ordinary kriging prediction results (µg/m3)

NO2 kriging variance

41.78 250.12
41.80 250.37
41.39 260.62
41.46 260.19
41.89 248.55
41.72 260.42
42.28 246.67
42.25 246.99
42.79 247.67
42.93 246.89
42.66 247.67
43.17 249.81
43.49 247.73
44.52 249.34
44.10 247.03
44.80 244.24
45.22 246.69
45.05 248.38
45.30 245.62
45.35 250.39
45.39 250.76
45.48 249.78
45.53 249.84
46.29 247.86

The estimated kriging variances are slightly smaller for this model spec-
ification than those for the one making use of the exponential covariance
function. This decrease might be indicating that this variomodel is a better
fit for the data (which is also seen, comparing Figure 4.1 and Figure 4.7).
Nevertheless, the variances are still very big.

Cross-validation of the model

Cross-validation of this model has been performed as for the previous model.
Its results can be seen in Table 4.10. A quick view on the absolute errors
of predictions reveal that for this particular data set, a Gaussian covariance
function does not provide any significant improvement of efficiency of pre-
diction. The errors in both kriging models for this data are within the same
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range of values.

Table 4.10: Leave-one-out cross-validation results (µg/m3)

observed predicted absolute
error

17.00 47.81 30.81
20.00 45.42 25.42
22.00 42.80 20.80
25.00 45.87 20.87
28.00 46.97 18.97
30.00 47.83 17.83
32.00 45.41 13.41
33.00 44.35 11.35
37.00 43.30 6.30
38.00 40.83 2.83
38.00 49.53 11.53
44.00 43.99 0.01
45.00 44.38 0.62
48.00 44.25 3.75
50.00 43.99 6.01
51.00 41.90 9.10
52.00 42.57 9.43
53.00 45.42 7.58
57.00 43.98 13.02
61.00 43.89 17.11
61.00 45.52 15.48
64.00 43.58 20.42
65.00 40.37 24.63
68.00 43.33 24.67
71.00 44.20 26.80

4.4.2 PM10

For PM10 data, an ordinary kriging model with Gaussian covariance function
has also been derived. Here below the detailed computation and results are
demonstrated for the data set corresponding to 2009. For the rest of the
years, the results can be seen in Appendix B.

A Gaussian covariance model has been fitted as follows:

> aag <- variofit(variog(geo_pm10_2009), cov.model = "ga")
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variog: computing omnidirectional variogram

variofit: covariance model used is gaussian

sigmasq phi tausq kappa

initial.value "35.29" "0.71" "17.65" "0.5"

status "est" "est" "est" "fix"

loss value: 21882.6068581801

Figure 4.8 depicts how the chosen variomodel fits the given data.
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Figure 4.8: Empirical and modeled variogram

Then an ordinary kriging procedure with the fitted Gaussian variomodel
has been executed:

> ok_pm10_2009 <- krige.conv(geo_pm10_2009,

+ locations = locs_pm10_2009,

+ krige = krige.control(type.krige = "ok",

+ obj.model = aag))

The results of the modeling can be seen from Table 4.11. It is noteworthy
that the estimated kriging variance is very low: the maximum value of it
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(28.46 µg/m3) is smaller than the smallest predicted concentration (34.41
µg/m3).

Table 4.11: Ordinary kriging prediction results (µg/m3)

NO2 kriging variance

35.45 25.87
34.41 26.54
34.51 26.57
36.01 25.50
35.47 25.50
37.04 25.74
37.31 25.77
36.78 25.31
36.59 25.84
36.68 25.75
36.96 25.47
37.29 25.71
39.20 28.46

Cross-validation of the model

Table 4.12 shows the results of cross-validation for ordinary kriging model
that makes use of the Gaussian covariance function for PM10 data for 2009.
This kriging model provides a significantly better fit for this data compared
to the ordinary kriging model that makes use of the exponential (or linear)
covariance function. The absolute values of the errors of prediction are small.
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Table 4.12: Leave-one-out cross-validation results (µg/m3)

observed predicted absolute
error

25.00 35.35 10.35
25.00 38.67 13.67
28.00 36.43 8.43
29.00 36.42 7.42
31.00 35.30 4.30
31.00 35.90 4.90
32.00 37.50 5.50
33.00 35.59 2.59
33.00 35.43 2.43
33.00 36.95 3.95
33.00 37.55 4.55
34.00 35.01 1.01
34.00 36.01 2.01
34.00 36.12 2.12
34.00 36.67 2.67
34.00 36.75 2.75
35.00 35.39 0.39
36.00 36.26 0.26
36.00 36.42 0.42
37.00 37.96 0.96
38.00 35.39 2.61
38.00 39.26 1.26
39.00 37.56 1.44
39.00 37.15 1.85
40.00 34.93 5.07
40.00 34.88 5.12
40.00 36.30 3.70
40.00 36.30 3.70
40.00 37.20 2.80
41.00 36.71 4.29
41.00 36.79 4.21
41.00 36.14 4.86
42.00 35.68 6.32
43.00 34.87 8.13
46.00 36.40 9.60
48.00 35.56 12.44
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4.5 RRCM with RBF kernel

4.5.1 NO2

Model for 1999

In order to switch to a nonlinear setting, ridge regression confidence machine
makes use of the so-called “kernel trick” [6]. With the use of this technique
any kernel can be considered. Hereby it is demonstrated, how the Gaussian
RBF kernel has been employed for the nitrogen dioxide data. For the sake of
precise comparison, the same 1999 year has been taken up for the example
below. The R [47] function for executing the RRCM procedure with an
RBF kernel has been derived on the basis of the function iidpred from the
PredictiveRegression [38] package. The detailed listing of the code can
be found in the Appendix A. The new function has been named iid rbf.
The confidence level has been set to 0.95, and the ridge factor has been
chosen equal to 0.01, as in the other models presented in this dissertation.
The R function has been called as follows:

> iid_no2 <- iid_rbf(train, test, 0.05, 0.01)

The results of the application of the method can be seen in the Table 4.13.
It should be pointed out that this prediction has seen no errors - in the sense
that all the prediction intervals contained the relevant kriging predictions.
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Table 4.13: RRCM RBF for NO2 for 1999 (µg/m3)

lower bound upper bound interval width

6.56 73.23 66.67
6.60 73.29 66.69
0.30 88.02 87.72
0.83 87.84 87.01
6.70 75.12 68.42
0.75 90.83 90.09
9.19 74.32 65.13
8.71 75.15 66.44
10.97 74.62 63.65
11.51 74.77 63.26
11.34 77.43 66.09
13.27 80.65 67.38
14.83 79.37 64.54
14.05 79.18 65.13
16.79 79.60 62.81
17.46 78.46 60.99
15.94 78.54 62.60
18.36 81.35 63.00
18.27 79.59 61.32
17.99 83.38 65.40
17.85 83.78 65.93
18.20 82.87 64.68
18.17 82.96 64.79
17.39 81.96 64.57

Cross-validation of the model

Cross-validation of the RRCM model with the RBF kernel has been per-
formed as well. As before, the leave-one-out cross-validation has been cho-
sen, which has been dictated by the size of the data set available. This
method helps assess the efficiency of the method’s specification as opposing
its prediction to the observed data. The results of the application of the
leave-one-out cross-validation to the NO2 data for 1999 can be seen in the
Table 4.14. The cross-validation has revealed one error in prediction: for the
first observation the actual value lies below the RRCM predicted interval.
Nevertheless, the assumed level of confidence allows up to 5 per cent of error,
so with 1 error the prediction is still valid. It is clear that the prediction
interval for the second observation is very ineffective, since its size is huge,
but the actual value lies within the interval, so this cannot be classified as
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an error.

Table 4.14: Leave-one-out cross-validation results (µg/m3)

observed lower upper is in

17.00 22.25 75.20 no
20.00 -8477.56 579.32 yes
22.00 7.82 79.18 yes
25.00 19.58 85.12 yes
28.00 18.73 84.78 yes
30.00 18.33 89.36 yes
32.00 15.88 80.71 yes
33.00 14.59 78.72 yes
37.00 11.56 76.20 yes
38.00 -11.42 79.65 yes
38.00 9.89 95.32 yes
44.00 16.36 82.19 yes
45.00 17.38 81.38 yes
48.00 -2.53 97.45 yes
50.00 10.26 81.32 yes
51.00 -3.49 81.31 yes
52.00 5.46 93.48 yes
53.00 16.14 78.22 yes
57.00 14.26 76.32 yes
61.00 17.43 78.30 yes
61.00 7.28 79.96 yes
64.00 15.76 75.92 yes
65.00 2.35 71.19 yes
68.00 14.94 78.31 yes
71.00 15.67 78.19 yes

4.5.2 PM10

Model for 2009

This modeling approach has also been used for particulate matter data. The
RRCM procedure with the Gaussian RBF kernel has been called as follows:

> iid_pm10 <- iid_rbf(train, test, 0.05, 0.01)

The results of the application of this method can be seen from the Ta-
ble 4.15. As in the other models, this prediction has seen no errors - in the
sense that all the kriging predicted values fall within the RRCM predictive
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intervals. On the average, the predictive intervals obtained with this RRCM
specification are of slightly bigger size than the corresponding estimated
kriging variance. Nevertheless, those intervals are valid, i.e. the real con-
centrations fall within those intervals with a given level of confidence, that
is, 95 per cent. Considering that the mean width of the prediction intervals
is equal to 29.15, it is a good result.

Table 4.15: RRCM RBF for PM10 for 2009 (µg/m3)

lower bound upper bound interval width

21.88 49.01 27.14
16.99 49.04 32.06
16.78 49.85 33.07
23.32 49.48 26.16
22.34 48.87 26.53
24.16 50.85 26.68
24.44 51.19 26.75
24.70 51.17 26.47
23.49 51.63 28.15
23.80 51.63 27.83
24.56 51.71 27.15
24.17 52.79 28.62
16.07 58.50 42.43

Cross-validation of the model

Cross-validation has been performed for this model and data. The result of
the leave-one-out cross-validation can be seen from the Table 4.16. There
has occurred one error in the prediction: in the second observation, the lower
bound of the prediction interval is bigger than the actual value. With the
assumed confidence of 95 per cent, up to 1.8 errors are allowed, so generally
the prediction is good. Nonetheless, it is seen from the table that in the
third observation the prediction set is the whole real line, which means that
the prediction at this point is completely inefficient.
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Table 4.16: Leave-one-out cross-validation results (µg/m3)

observed lower upper is in

25.00 19.53 51.23 yes
25.00 26.06 51.81 no
28.00 -Inf Inf yes
29.00 23.95 50.17 yes
31.00 22.05 48.62 yes
31.00 23.54 49.56 yes
32.00 24.07 52.06 yes
33.00 22.02 49.42 yes
33.00 22.40 48.82 yes
33.00 24.35 52.97 yes
33.00 25.09 53.76 yes
34.00 17.47 51.82 yes
34.00 23.72 49.94 yes
34.00 24.12 50.02 yes
34.00 25.01 51.13 yes
34.00 23.96 52.48 yes
35.00 22.33 48.63 yes
36.00 18.69 52.73 yes
36.00 24.24 50.29 yes
37.00 24.40 52.81 yes
38.00 22.21 48.70 yes
38.00 10.95 65.22 yes
39.00 24.31 51.72 yes
39.00 23.26 53.03 yes
40.00 20.56 48.27 yes
40.00 20.81 47.90 yes
40.00 23.94 50.31 yes
40.00 23.47 50.55 yes
40.00 24.57 51.58 yes
41.00 20.73 51.19 yes
41.00 24.14 50.56 yes
41.00 23.35 50.14 yes
42.00 22.47 49.12 yes
43.00 17.93 48.74 yes
46.00 22.05 50.23 yes
48.00 23.72 48.95 yes

There are two ways to tackle the efficiency problem. First is to consider
a lower confidence level, and second is to boost the ridge factor. Also, it
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should be assured that covariance function (or, kernel) parameters values
are specified well. Table 4.17 shows the results obtained for this “trouble”
point using both of the proposed solutions.

Table 4.17: Solutions comparison

solution observed lower upper

conf = 0.90 28 -7.70 53.22

ridge = 1 28 5.30 39.35

It must be said that shifting the ridge factor has resulted more beneficial
than decreasing the confidence level. It has not only improved the efficiency
of the prediction, but also has yielded 0 errors in it, i.e. all the observed
values have appeared to be within the prediction intervals. The mean pre-
diction interval size for the RRCM model with the ridge factor set to 1 is
26.15 (µg/m3). For a cross-validation result, i.e. the average for 36 different
models, it is a good efficiency. It is clear that the choice of the ridge fac-
tor influences the efficiency of the RRCM prediction to a great extent. This
point is discussed below. All of the models are introduced and demonstrated
assuming the confidence level equal to 0.95 and the ridge factor equal to 0.01.

4.6 Comparison of both models in Gaussian set-
ting

4.6.1 NO2

The results of the comparison of the kriging and RRCM models in the Gaus-
sian setting are presented here. Figure 4.9 opposes the ordinary kriging with
Gaussian covariance model to the ridge regression confidence machine pre-
dictor with Gaussian RBF kernel. The dark red upper and lower dashed
lines reflect the mean values of upper and lower bounds of prediction in-
tervals of RRCM, and the blue line between them shows the mean kriging
predictions. It is noteworthy that there have appeared no errors in the pre-
dictions of these nonlinear models as well - in the sense that all of the RRCM
prediction intervals withhold the kriging predicted values for all the years
throughout the given timeline.
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Figure 4.9: Ordinary kriging and ridge regression confidence machine pre-
dictions for nitrogen dioxide

With this model, there is no possibility to evaluate the “true” error of the
estimation, since the observations are not available for the points where the
prediction has been made. Mead kriging prediction intervals, derived under
assumption of Gaussianity for 95 per cent confidence, have been opposed
to mean RRCM intervals. Figure 4.10 reflects this comparison: the dark
orange bars denote the estimated kriging intervals, while the shaded ones
stand for the mean size of RRCM prediction intervals.
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Figure 4.10: Estimated variance for kriging and RRCM prediction

4.6.2 PM10

The same analysis has been carried out for the particulate matter data. The
results of comparison of the ordinary kriging model with Gaussian covariance
to the ridge regression confidence machine with RBF kernel prediction has
been done, and the results of it are shown on the Figure 4.11. The dashed
grey lines depict the upper and the lower bounds of the RRCM prediction
intervals, while the center red line shows the mean kriging prediction. Like
in the other models, there has been no errors in the prediction - in the same
sense as above, i.e. all the RRCM intervals have contain the relevant kriging
prediction.
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Figure 4.11: Ordinary kriging and ridge regression confidence machine pre-
dictions for particulate matter

As for NO2 data, no observed values for the points where the prediction
has been carried out are available. So, mean kriging prediction intervals
have been constructed and compared to RRCM prediction intervals. The
results of this comparison can be seen on the Figure 4.12. Here, the dark
red bars denote the mean kriging intervals, and the shaded bars stand for
the mean RRCM interval size.
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Figure 4.12: Estimated variance for kriging and RRCM prediction

4.7 RRCM with polynomial kernel of second order

4.7.1 NO2

Model for 1999

The last model to be introduced is the RRCM model with the inhomoge-
neous polynomial kernel of the second order [1]. This kernel has been applied
to the data as a result of a guess that since it makes use of the square of
longitude and latitude, it might be a fit for the data. The data pools for
each year are rather small to come up with a precise distribution for the
data, so in this dissertation, as a matter of introduction of the methods and
their testing, various approaches are used, regardless of how well do they ac-
tually sort with the data. Polynomial kernel of the second order might not
be the best fit, but its implementation demonstrates how any kernel can be
employed, once it suits the data. As said before, ridge regression confidence
machine can can be treated as an additional method or even an alternative
to kriging. In some sense it is a similar method, so every covariance function
that can be used in kriging can be also used as a kernel for RRCM.
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In order to actually employ the RRCM with a polynomial kernel of the
second order for the nitrogen dioxide (and particulate matter) data, an R
function has been created: iid polyn 2. In fact, this function is a modifica-
tion of the iidpred function from the PredictiveRegression package, and
it makes use of the inhomogeneous polynomial kernel of the second order.
The function is called as follows:

> iid_no2 <- iid_polyn_2(train, test, 0.05, 0.01)

The results of modeling can be seen in Table 4.18. Again, there have
occurred no errors in the prediction - in the sense that all the prediction in-
tervals included the corresponding kriging predicted values. Mean prediction
interval size is 65.31 (µg/m3).

Table 4.18: RRCM polynomial for NO2 for 1999 (µg/m3)

lower bound upper bound interval width

4.28 69.67 65.39
4.28 69.80 65.52
-1.16 70.84 72.01
-0.95 70.76 71.70
3.91 68.57 64.66
-0.82 70.87 71.70
5.12 68.71 63.58
4.73 68.49 63.75
5.72 70.04 64.31
5.96 69.88 63.92
4.53 68.57 64.03
4.11 69.10 64.99
5.07 68.91 63.84
6.33 72.82 66.49
5.77 69.16 63.39
7.21 69.51 62.30
7.15 72.35 65.20
6.06 70.05 63.99
7.09 70.05 62.96
5.67 70.59 64.92
5.59 70.67 65.09
5.94 70.62 64.68
5.96 70.68 64.72
7.01 71.45 64.44
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Cross-validation of the model

Cross-validation has been also made for this model as before. The results
of it can be seen in the Table 4.19. There has occurred one error in the
prediction: for the last observation in the set, the actual value is bigger than
the upper bound of the correspondent prediction interval. Nevertheless, 1
error makes up less than 5 per cent of errors, which is allowed under 95 per
cent confidence level, and thus the prediction is correct. The average size of
the prediction intervals in the cross-validation is 69.35 (µg/m3).

Table 4.19: Leave-one-out cross-validation results (µg/m3)

observed lower upper is in

17.00 9.80 71.47 yes
20.00 -29.03 97.00 yes
22.00 5.11 70.09 yes
25.00 7.11 69.56 yes
28.00 8.25 70.50 yes
30.00 7.92 71.59 yes
32.00 7.79 71.53 yes
33.00 7.48 69.66 yes
37.00 5.95 69.85 yes
38.00 1.14 71.15 yes
38.00 3.46 81.70 yes
44.00 4.36 69.29 yes
45.00 6.90 71.27 yes
48.00 0.41 82.88 yes
50.00 4.64 73.22 yes
51.00 2.31 72.52 yes
52.00 0.49 69.76 yes
53.00 5.82 73.16 yes
57.00 5.46 71.48 yes
61.00 3.94 69.72 yes
61.00 4.32 72.25 yes
64.00 4.51 73.57 yes
65.00 0.96 67.89 yes
68.00 2.41 69.80 yes
71.00 4.62 69.18 no
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4.7.2 PM10

Model for 2009

The RRCM model with the second order polynomial kernel has been also
applied to the particulate matter data. The function has been called as
follows:

> iid_pm10 <- iid_polyn_2(train, test, 0.05, 0.01)

The results of the implementing of this model can be seen from the Ta-
ble 4.20. Mean prediction interval size is 32.26 (µg/m3), and the prediction
is correct - in the sense that all the prediction intervals contain the kriging
predicted values. Here, the kriging model with the Gaussian variomodel is
meant.

Table 4.20: RRCM polynomial for PM10 for 2009 (µg/m3)

lower bound upper bound interval width

17.03 48.55 31.53
14.56 48.69 34.12
14.60 48.71 34.12
17.67 48.47 30.80
16.77 47.86 31.09
17.91 49.47 31.56
17.93 49.68 31.75
17.93 48.30 30.37
17.24 48.49 31.25
17.39 48.48 31.09
17.87 48.52 30.65
17.79 48.95 31.16
15.03 54.98 39.95

Cross-validation of the model

Leave-one-out cross-validation has been performed for this model and data.
The results are in the Table 4.21. Cross-validation has revealed one error in
the last observation: the actual value is higher than the upper bound of the
corespondent prediction interval. Nevertheless, since the confidence level for
the prediction is chosen equal to 95 per cent, the prediction is still correct.
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Table 4.21: Leave-one-out cross-validation

observed lower upper is in

25.00 15.23 49.01 yes
25.00 18.43 49.53 yes
28.00 1.18 59.55 yes
29.00 17.89 48.65 yes
31.00 16.90 47.79 yes
31.00 17.29 47.78 yes
32.00 17.71 50.11 yes
33.00 16.98 48.50 yes
33.00 17.12 47.76 yes
33.00 17.39 48.51 yes
33.00 18.04 48.93 yes
34.00 15.72 49.23 yes
34.00 17.07 47.92 yes
34.00 17.35 47.87 yes
34.00 17.98 48.08 yes
34.00 17.17 48.46 yes
35.00 16.82 47.69 yes
36.00 16.41 50.23 yes
36.00 17.92 48.27 yes
37.00 17.38 50.39 yes
38.00 17.01 47.85 yes
38.00 14.94 53.87 yes
39.00 17.37 50.01 yes
39.00 17.18 48.94 yes
40.00 16.33 48.11 yes
40.00 16.27 47.72 yes
40.00 17.16 48.10 yes
40.00 16.90 48.23 yes
40.00 17.69 48.99 yes
41.00 16.76 50.06 yes
41.00 17.57 49.02 yes
41.00 16.81 48.13 yes
42.00 17.02 48.40 yes
43.00 15.04 48.12 yes
46.00 16.44 48.60 yes
48.00 18.92 45.44 no
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4.8 Comparison of kriging and ridge regression con-
fidence machine with polynomial kernel

4.8.1 NO2

In order to see what polynomial kernel can yield in relation to nitrogen
dioxide data, the corresponding mode las been run on the data for all the
given years. The results of this model have been opposed to those of ordinary
kriging with Gaussian covariance. No other covariance function has been
taken up here, because both Gaussian covariance function and polynomial
kernel are nonlinear of the same order, i.e. of the second degree. A finer
analytical form of a covariance function to contrast with a polynomial kernel
of second order can be derived, of course. Figure 4.13 shows the results of
the comparison of approaches. The upper and the lower lines stand for
mean values of RRCM prediction intervals for each year, and the central
line depicts mean kriging predictions. There have appeared no errors in the
prediction - in the sense that all the kriging predictions have fallen within
the correspondent RRCM prediction intervals.
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Figure 4.13: Ordinary kriging and ridge regression confidence machine pre-
dictions for nitrogen dioxide
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The measure of uncertainty of prediction, the kriging variance, has been
opposed to mean width of prediction intervals for RRCM with polynomial
kernel of the second order. To do so, as before, kriging intervals have been
constructed, and their mean size has been compared to mean size of RRCM
intervals. The results of the comparison can be seen on Figure 4.14. The
light purple bars show the kriging intervals for each year, and the shaded
bars stand for mean size of RRCM prediction intervals.
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Figure 4.14: Estimated variance for kriging and RRCM prediction

4.8.2 PM10

Models of the same type have been used for particulate matter data. Fig-
ure 4.15 shows the comparison of the ordinary kriging and the RRCM pre-
dictions. Here, there also have appeared no errors in prediction - in the sense
that the RRCM intervals for all of the years contain the kriging predicted
values.
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Figure 4.15: Ordinary kriging and ridge regression confidence machine pre-
dictions for particulate matter

The estimated error variance of kriging model in for of prediction inter-
vals is opposed to the RRCM intervals, and the results of this contrasting
for each year are shown on the Figure 4.16. The yellow bars stand for krig-
ing intervals, and shaded bars depict the mean interval size of RRCM with
polynomial kernel of the second order.
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Figure 4.16: Estimated variance for kriging and RRCM prediction

4.9 Comparison of ridge regression confidence ma-
chine models

4.9.1 NO2

The models

It has been demonstrated that ridge regression confidence machine is a suit-
able approach for assessment of air pollution data. It can be treated as an
add-on to kriging, because it adds validity to kriging prediction. It can be
also treated as an independent prediction technique, but the setting of the
method must be carefully selected. This dissertation takes up both linear
and nonlinear approaches to RRCM, and two nonlinear kernels have been
taken up: the Gaussian radial basis function and the polynomial kernel of
the second order. The RBF kernel has been used because it is a direct
analogue of the Gaussian covariance function in kriging, the the polynomial
kernel has been employed on the basis of a guess that it might be a good
fit for spatial data. However, the implementation of the polynomial kernel
is not aimed to match the actual data distribution in the best possible way
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rather then to demonstrate that kernels of any kind can be used in RRCM.
Those kernels should, of course, sort with the data.

First, performance of the basic linear RRCM model in the iid setting is
investigated. Table 4.22 shows the description of the results of modeling,
which could help assess how the model suits the given data. Minimum and
maximum values of the lower and the upper bounds of prediction intervals
are shown in order to track to which extremes do they get (if they contain
negative or very big values). Minimum, mean and maximum values of pre-
diction intervals are also provided for each year with the aim to elicit the
variation in the estimates. Numbers in bold depict the minimum and the
maximum values of the predictions for correspondent columns. It is seen
that the “best” prediction in terms of efficiency has been achieved for 2001,
and the “worst” - for 2005.

Table 4.22: RRCM iid model for NO2 (µg/m3)

min max min mean max min max
lower lower interval interval interval upper upper
bound bound width width width bound bound

1998 -0.55 14.73 72.89 76.08 80.73 79.91 90.20
1999 5.45 17.74 63.49 66.31 70.36 72.64 83.74
2000 3.61 19.11 49.68 51.69 54.13 57.75 69.43
2001 20.21 31.84 34.28 36.25 38.15 57.23 69.74
2002 9.15 25.04 50.06 52.12 54.12 63.26 76.48
2004 2.19 16.49 50.71 53.65 61.59 61.16 72.38
2005 -10.09 8.50 73.99 78.75 90.92 76.51 90.56
2006 6.50 15.26 59.10 61.79 69.98 69.57 84.59
2007 14.63 25.29 44.53 47.01 51.91 61.78 73.04
2008 13.92 23.37 44.60 46.96 52.12 60.57 73.68
2009 10.97 21.20 53.08 55.59 62.47 67.34 82.24

Table 4.23 shows the same parameters for the prediction obtained with
the ridge regression confidence machine that makes use of the Gaussian RBF
kernel. Naturally, this model is also iid. It is seen that the “best” prediction
in the sense of efficiency has been obtained for 2001, and the “worst” one
has been obtained for 2005, as with the plain iid model. However, RRCM
with the RBF kernel acts “worse” as its plain linear counterpart, because
the lowest of the lower bounds of the prediction intervals over all the years
reaches −31.35 (µg/m3) for 2005, while for the linear model it is equal to
−10.09 (µg/m3). Generally, there are more negative values amongst the
minimums of the lower bounds of prediction intervals for RRCM Gaussian
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RBF model. Nevertheless, the mean prediction interval size is smaller for
the RBF iid specification (56.92 µg/m3) than for the plain iid one (55.09
µg/m3).

Table 4.23: RRCM RBF model for NO2 (µg/m3)

min max min mean max min max
lower lower interval interval interval upper upper
bound bound width width width bound bound

1998 4.89 20.88 59.41 65.81 85.35 76.53 90.24
1999 0.30 18.36 60.99 67.68 90.09 73.23 90.83
2000 -1.77 20.49 47.09 50.91 58.32 56.55 72.64
2001 18.24 32.05 32.94 35.32 40.67 57.96 67.90
2002 10.63 27.78 44.52 47.78 53.73 61.83 74.83
2004 -7.08 18.17 48.99 53.89 83.14 62.90 76.06
2005 -31.35 11.56 71.38 79.44 124.73 78.26 93.39
2006 -11.00 18.20 56.24 61.24 94.33 69.09 83.33
2007 1.40 27.66 43.21 48.15 71.33 63.97 80.98
2008 6.16 24.94 42.28 47.45 68.97 62.02 76.11
2009 8.05 26.18 43.65 48.38 72.05 63.53 80.10

Finally, Table 4.24 presents the same characteristics for the ridge regres-
sion confidence machine model with the polynomial kernel of the second
order. This model is iid, too. It is seen that the “best” prediction in terms
of efficiency has been achieved for 2001, as with the other models, and the
“worst” for 2005. Compared to other models, the RRCM with polynomial
kernel of the second order is “worse”: for 2005, the maximum lower bound
of the prediction intervals is negative, but it must be taken into consider-
ation that 2005 is clearly an “outlying” year for the whole data set. The
mean prediction interval width is equal to 63.68 (µg/m3), which is higher
than for both linear iid and Gussian RBF iid model settings. This might
indicate that the polynomial kernel of the second order is not suitable for
this particular nitrogen dioxide data.
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Table 4.24: RRCM polynomial model for NO2 (µg/m3)

min max min mean max min max
lower lower interval interval interval upper upper
bound bound width width width bound bound

1998 1.18 11.83 62.58 65.27 72.11 71.51 77.42
1999 -1.16 7.21 62.30 65.32 72.01 68.49 72.82
2000 -4.27 7.19 59.36 61.89 68.17 63.28 69.89
2001 8.31 17.36 47.52 49.54 54.55 62.06 67.37
2002 4.33 14.29 52.36 54.51 59.91 63.57 69.72
2004 -7.28 2.95 63.49 67.06 84.93 65.58 77.65
2005 -22.78 -6.78 88.99 94.41 119.77 81.53 96.99
2006 -7.04 2.67 71.00 74.90 94.59 72.90 87.55
2007 3.60 11.10 54.24 57.15 71.84 64.39 75.44
2008 3.05 9.93 54.69 57.63 72.44 63.36 76.44
2009 5.09 13.28 50.02 52.79 66.28 61.16 76.03

Comparison to observed data

In order to complete the comparison of predictive powers of the models,
hereby the minimum, the mean and the maximum observed concentrations
are provided. It is clear that at the points where RRCM, and kriging, mod-
eling has been performed, the real observations are not available. However,
those descriptives can serve as indicators for the assessment of the perfor-
mance of the used models. Table 4.25 shows the descriptive statistics for
the observed nitrogen dioxide concentrations for each given year.

Table 4.25: Observed NO2 concentrations (µg/m3)

min mean max

1998 11.00 46.50 68.00
1999 17.00 44.40 71.00
2000 13.00 41.20 65.00
2001 23.00 46.16 64.00
2002 25.00 45.24 69.00
2004 22.00 39.88 67.00
2005 21.00 44.23 83.00
2006 19.00 43.96 74.00
2007 21.00 43.40 66.00
2008 18.00 42.36 65.00
2009 11.00 43.12 63.00
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Choice of the ridge factor

The efficiency of ridge regression confidence machine predictor to a great
extent depends of the choice of the ridge factor. There is no analytical pro-
cedure known by now that is used for that purpose, so the brute force method
is recommended. In other words, it is recommended to test out various ridge
factors until the optimal modeling results will be achieved. The ridge regres-
sion procedure suggests plotting the obtained regression coefficients against
the ridge factor values, and such a plot is called ridge trace [45]. In this
research, for each contaminant, year and model a similar plotting method
has been used: mean prediction intervals obtained by each model have been
plotted against the correspondent ridge factor values. Machine has repeat-
edly evaluated the mean values of RRCM prediction interval size for each
ridge factor value within the interval form 0 to 2 with a step of 0.01. Re-
sulting predictions have been plotted against the ridge factor values. Such
plots help elicit the optimal value of the ridge factor that for every particular
model yields the most effective prediction, i.e. the smallest mean prediction
set. For each contaminant, average annual concentrations are not the same
throughout the years, so there is no common value of the ridge factor that
would suit all of the models of a kind. In this chapter, all of the RRCM
models are demonstrated in one common setting: with the ridge factor equal
to 0.01 and the confidence level equal to 95 per cent. Considering the vari-
ation in years and data distribution, it is questionable whether this setting
is the optimal one for every year and pollutant. While the choice of the
confidence parameter value is explained above, and this value is hardly to
improve, the choice of the ridge factor can alter the efficiency of prediction.
Ridge factor evaluating plots for every year and contaminant can be found
in the Appendix B.

Two plots are provided below. Figure 4.17 shows the dependence of the
mean width of prediction intervals from the ridge factor for the nitrogen
dioxide 1999 data. It is visible from the graph that the optimal prediction
is obtained when the ridge factor is equal to 1.4.
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Figure 4.17: Mean prediction interval size and ridge factor

Figure 4.18 depicts how the mean size of the prediction interval changes
with the ridge factor value for the 2009 data. It is clear from the plot that
the optimal value of the ridge factor is 2 (or may be, a bigger value). Also,
it is visible that the character of the dependence is different for both of the
years: for the 2009 data set, the mean width of prediction intervals is clearly
monotonically decreasing with growth of the ridge factor, while for the 1999
data, the function seems to decrease first, and the further increase, starting
from the 1.4 point at the ridge factor scale.
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Figure 4.18: Mean prediction interval size and ridge factor

In order to provide some quick visual comparison, Table 4.26 provides
the values of the size of the mean prediction intervals for each of the models
considered here and a set of ridge factors. This set has been dictated by
the common sense, and it is noteworthy that the prediction of the RRCM
models with both polynomial and RBF kernels are not computable for the
ridge factor equal to 0. In other words, for these specifications it is not
possible to obtain least squares estimates. This is why its value of 0.01 has
been used instead. For each model specification, the optimal prediction is
marked in bold.
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Table 4.26: Comparison of models for different ridge factors (µg/m3)

linear iid RBF polynomial
ridge 0.01 1 2 0.01 1 2 0.01 1 2
1998 76.08 72.33 68.27 65.81 72.37 68.37 65.27 64.71 65.99
1999 66.31 60.11 61.44 67.68 60.57 60.39 65.32 68.20 70.87
2000 51.69 55.27 57.89 50.91 52.90 55.63 61.89 64.19 66.38
2001 36.25 41.30 44.90 35.32 38.65 42.36 49.54 52.34 54.95
2002 52.12 46.57 49.51 47.78 51.44 57.38 54.51 56.99 59.37
2004 53.65 59.11 62.46 53.89 56.95 60.41 67.06 69.36 71.60
2005 78.75 84.77 88.57 79.44 82.18 86.14 94.41 96.94 99.43
2006 61.79 66.39 69.78 61.24 63.82 67.38 74.90 77.36 79.76
2007 47.01 49.35 53.13 48.15 47.11 51.04 57.15 59.91 62.48
2008 46.96 50.15 53.58 47.45 48.04 51.55 57.63 60.21 62.63
2009 55.59 55.17 53.89 48.38 54.35 52.68 52.79 55.19 57.57

4.9.2 PM10

The models

As for nitrogen dioxide data, for particulate matter the predictive capaci-
ties of the models have also been compared. Table 4.27 demonstrates the
results of RRCM modeling in plain linear iid setting. For PM10 data, the
minimum and the maximum values in the relevant tables are marked in bold
- for this particular model, and for the two subsequent models. Here, the
“best” prediction in terms of efficiency is obtained for 2009, and the “worst”
corresponds to 2007. The minimum prediction interval’s lower bound for
2007 is negative. Also, the highest maximum upper bound and the highest
maximum and thus the mean size of prediction intervals have correspond to
this year, which might indicate that this is sort of an “outlying” year for the
data. In terms of mean prediction, the average prediction interval for this
model has the width of 51.48 (µg/m3).
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Table 4.27: RRCM iid model for PM10 (µg/m3)

min max min mean max min max
lower lower interval interval interval upper upper
bound bound width width width bound bound

2001 9.18 18.53 61.42 64.46 67.06 74.46 84.93
2002 22.65 32.76 41.41 43.43 50.10 67.82 82.86
2004 18.07 26.59 44.94 47.26 54.87 65.17 79.37
2005 25.37 33.26 37.61 39.65 46.34 63.92 73.47
2006 24.99 30.33 44.68 47.68 53.02 70.85 78.58
2007 -6.67 1.39 87.01 91.43 102.21 87.08 100.25
2008 9.77 17.58 47.05 49.48 58.41 60.60 72.47
2009 19.72 25.35 27.44 28.42 31.56 48.58 56.91

The results of modeling with the use of ridge regression confidence ma-
chine with a Gaussian RBF kernel are shown in Table 4.28. The mean
prediction interval size that this model yields for this data is 52.62 (µg/m3),
which is slightly bigger than for the model in the linear iid specification.

Table 4.28: RRCM RBF model for PM10 (µg/m3)

min max min mean max min max
lower lower interval interval interval upper upper
bound bound width width width bound bound

2001 4.79 16.75 66.14 71.08 80.05 75.34 88.61
2002 13.78 35.57 42.12 47.41 70.32 68.45 98.79
2004 9.32 25.80 45.33 51.48 77.39 65.19 93.08
2005 28.02 35.89 30.58 35.50 58.10 59.12 86.80
2006 15.61 29.30 48.30 55.51 80.11 73.41 95.73
2007 -15.46 7.35 74.01 85.40 122.28 81.36 113.64
2008 9.52 22.12 38.50 45.42 77.07 56.20 86.81
2009 16.07 24.70 26.16 29.16 42.43 48.87 58.50

RRCM model with the polynomial kernel of the second order has been
employed, too, and the results of the modeling are shown in Table 4.29.
This specification is denoted by the lowest minimum lower bound for all of
the prediction intervals across all the RRCM models (−18.75 µg/m3). To
top it up, this model setting is the only one for which there has appeared
a negative value for the maximum lower bound of the prediction intervals
(−6.61 µg/m3). This model generally performs less effectively for the given
data than both iid and Gaussian RBF iid specifications.
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Table 4.29: RRCM polynomial model for PM10

min max min mean max min max
lower lower interval interval interval upper upper
bound bound width width width bound bound

2001 -1.81 5.82 69.22 71.95 78.69 74.16 78.88
2002 13.06 19.38 47.55 50.44 63.89 65.70 79.30
2004 18.56 23.83 32.16 34.66 45.49 54.94 64.04
2005 11.15 19.28 48.15 51.44 65.22 66.54 76.37
2006 13.50 19.00 49.15 52.48 65.49 68.15 78.99
2007 -18.75 -6.61 93.46 99.83 124.23 86.85 105.48
2008 3.86 9.82 52.64 55.60 68.66 61.12 74.19
2009 14.56 17.93 30.37 32.26 39.95 47.86 54.98

Comparison to observed data

As in case of the nitrogen dioxide data, the modeled results unfortunately
cannot be directly compared to the observed values at the same locations for
particulate matter data. Nevertheless, Table 4.30 shows descriptive statistics
for observed concentrations of each year. This information can help assess
the comparative performance of the above presented models for this data.

Table 4.30: Observed PM10 concentrations (µg/m3)

min mean max

2001 33.00 47.82 75.00
2002 28.00 49.29 67.00
2004 26.00 44.36 57.00
2005 31.00 48.61 70.00
2006 29.00 49.24 69.00
2007 33.00 45.93 89.00
2008 29.00 39.94 63.00
2009 25.00 36.19 48.00

Choice of the ridge factor

Similar to the nitrogen dioxide data, the analysis of the optimal value of the
ridge factor for the particulate matter data has been made for each year. All
of the graphs can be found in the Appendix B, and here it will be shortly
mentioned that there is no common value of the ridge factor for each of the
employed RRCM models that would be optimal for all of the years. That
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means that the distribution of the data from year to year is not the same.
In order to demonstrate this, two graphs are provided below. Figure 4.19
shows how of the average size of the prediction interval changes dependent
on the ridge factor for the RRCM iid model for 2009 data.

0.0 0.5 1.0 1.5 2.0

42
.5

43
.0

43
.5

44
.0

44
.5

45
.0

45
.5

RRCM iid predictions for PM10

for 2002
ridge factor

m
ea

n 
pr

ed
ic

tio
n 

in
te

rv
al

Figure 4.19: Mean prediction interval size and ridge factor

Figure 4.20, in its turn, demonstrates the same for the same model spec-
ification, but for 2004 data. It is clear that the character of the dependence
is different for both years.
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Figure 4.20: Mean prediction interval size and ridge factor

Those graphs have been derived assuming the ridge factor taking every
value within the range [0, 2] with a step of 0.01. For the 2002 model, the
optimal value of ridge factor is about 0.95, while the optimal value for the
parameter for the 2004 model is 2 (or, perhaps, smaller). Table 4.31 presents
the differences in modeling results for each of the three RRCM models em-
ployed in this research for a set of ridge factors (dictated by common sense):
0.01, 1, 2. It should be mentioned that the RBF and the polynomial specifi-
cations of the ridge regression confidence machine are not computable with
the ridge factor equal to 0, so the value of 0.01 has been chosen as a “start
point”. The optimal predictions for each year and model specification and
ridge factor are marked in bold.
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Table 4.31: Comparison of models for different ridge factors (µg/m3)

linear iid RBF polynomial
ridge 0.01 1 2 0.01 1 2 0.01 1 2
2001 64.46 64.44 67.13 71.08 63.11 66.06 71.95 74.63 77.24
2002 43.43 42.46 45.54 47.41 42.91 45.05 50.44 53.17 55.82
2004 47.26 39.17 34.59 51.48 39.29 35.19 34.66 37.00 39.51
2005 39.65 45.14 49.28 35.50 47.60 51.91 51.44 54.76 57.76
2006 47.68 45.40 48.63 55.51 46.09 48.86 52.48 55.27 57.86
2007 91.43 94.02 96.45 85.40 94.09 96.65 99.83 102.11 104.29
2008 49.48 50.90 52.58 45.42 55.27 58.21 55.60 57.26 58.91
2009 28.42 27.32 29.01 29.16 26.11 27.79 32.26 33.67 35.09



Chapter 5

Discussion

5.1 General notions

On the bottom line, the results have shown the following: conformal predic-
tors can be successfully used for air pollution modeling. In this dissertation,
an application of a kriging-based conformal predictor is discussed, and it has
provided good predictive capacity. The ultimate conclusion is that this pre-
dictor, or its variations, can be treated as an upgrade of kriging. As bringing
validity into kriging prediction, it can be employed as an additional valida-
tion method. Also, it can perform as an independent prediction technique
always when interval output is convenient.

The results have revealed two major points of discussion. First is the
goodness of fit of the chosen models. Second is the comparative efficiency
of predictions imparted by kriging and ridge regression confidence machine.
Based on the results, the predictive capacity of the models is still to be ex-
plained prior to advocating the use of these models for other data sets.

5.2 Fittng the models

First of all, goodness of fit should be explained. It can be described in com-
mon terms for both methods used in this work since these models are based
on the same geostatistical paradigm. This study uses two major approaches:
ordinary kriging and ridge regression confidence machine. Ordinary kriging
is the specification of the kriging methods that is to be used to handle raw
data with unknown mean. The present data set is represented by mean
annual concentrations of two pollutants, nitrogen dioxide and fine particles,
within several years. Considering a great share of missing values for each
year and pollutants, and a scarce number of spatial points where data is
observed, it can be concluded that the means are unknown. Moreover, it
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is complicated to approach data distributions for each year with theoretical
variograms. As it is often done in practice [5], variograms have been chosen
without a particular justification. Three variograms have been used: lin-
ear, exponential and Gaussian. Graphical representations of variogram fits
divulge that linear approach generally performs equally or worse as an expo-
nential function. Also, exponential model is the default one for conventional
kriging prediction in the geoR package [48]. Ordinary kriging with exponen-
tial function has been performed. Overall, it has yielded smooth predictions
with huge variance estimates for nitrogen dixode and smooth predictions
with small variance estimates for particulate matter. Smoothness of predic-
tion is a common kriging problem, since it does not take into account local
pollution sources. As for the big difference in variance estimates for two pol-
lutants, nitrogen dioxide is prone to strong spatial variability, whereas for
particulate matter the variability is small [12]. Approximations with other
variomodels can be done and have been done for Barcelona Metropolitan Re-
gion before [33]. Nonetheless, this study makes use of very little data, and
these are annual average concentrations with up to 50 per cent of missing
values, so it is doubtful that a model other than the suggested ones could
provide a remarkably better approach.

Ridge regression predictor in its basic iid setting is aimed to be opposed
to kriging models with linear and exponential covariance functions. Instead
of point predictions, it imparts intervals. This predictor considers variomod-
els with the use of “kernel trick”. The standard iid model uses dot product
as a kernel, and it can be seen as an analogue of a linear variomodel. An
exponential kernel could be practically implemented, too, but it would not
significantly boost the efficiency of prediction with this data. On almost
all variogram plots, exponential curves are flat as straight lines. As for
non-linear approximation, Gaussian functions serve this purpose. Ordinary
kriging with Gaussian covariance function has been performed. Ridge re-
gression predictor with the Gaussian RBF kernel is the counterpart approach
of the kriging models. Gaussian covariance function fits the data generally
better than linear and exponential functions do, but, nevertheless, spatial
distribution can vary for each year and pollutant. Also, an inhomogenous
polynomial kernel of the second order has been employed in RRCM. In the
present data set, the concentrations of pollutants are annual averages, so it
is hard to establish the initial data distribution for every year.

Table 5.1 summarizes the main features of ordinary kriging and ridge
regression confidence machine.
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Table 5.1: Comparison of ordinary kriging and ridge regression confidence
machine

OK RRCM

point predictions prediction sets (usually intervals)

regression algorithm regression algorithm

Gaussianity assumption iid assumption

estimates error variance -

uses variogram and uses any appropriate
covariance function kernel

to approach it

- ridge factor

may lack confidence confidence level is
chosen and guaranteed

All in all, when using both of the approaches, ordinary kriging and ridge
regression confidence machine, for spatial prediction, in case of full data
availability, preliminary data analysis cannot be neglected. It can help es-
tablish a proper variomodel which would yield better predictions. In case of
this particular data set, however, finding a proper variomodel is challenging.

5.3 Efficiency of predictions

Second issue to clarify is the comparative efficiency of ridge regression and
ordinary kriging models. Kriging predictions are smooth and predicted val-
ues vary to a small extent. Error estimates, however, are huge in case of
nitrogen dioxide, and small in case of airborne particles. These estimates
help come up with 95 % confidence intervals for the predicted values. Re-
sults generally suggest that RRCM prediction intervals are of comparable
size or larger than these kriging confidence intervals. Nevertheless, two ma-
jor subjects are to dispute. First of all, kriging confidence intervals can be
derived only under the assumption that the data is a realization of a Gaus-
sian spatial process. This is a common assumption in geostatistics [32, 54],
but it is not always correct. The specification of a ridge regression conformal
predictor, the RRCM iid model, does not make any assumption regarding
data distribution, apart from the iid property. This is an important benefit
of ridge regression conformal predictors in comparison to kriging. Second is
that kriging confidence intervals, left alone the Gaussianity assumption, are
based on kriging variances, which are, in their turn, estimates themselves.
No real observations are available for the points where kriging is performed,
thus real errors of prediction cannot be established, too. Ordinary kriging
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capacity would be dependent on variomodel fit only, and thus validity of pre-
diction cannot be guaranteed. Cross-validation can be made, and is made
in this research, but the size of the data set is insufficient to provide solid
validation capacities for kriging models. When it comes to ridge regression
confidence machine prediction intervals, they are always valid, by definition
of conformal predictors.

Although RRCM intervals are valid predictions, they are relatively big,
as the results claim. Nevertheless, ridge regression confidence machine can
make use of two adjustment tools to boost efficiency of its predictions, be-
sides the variomodel fit, or kernel. These tools are: ridge factor and confi-
dence level. RRCM allows to choose the value of these parameters. When
it comes to confidence, a researcher is free to choose almost any convenient
confidence level. Naturally, the highest confidence is preferred. However, if
the iid setting of RRCM is taken up, it is important to mention that it puts
the following restriction on the value of the confidence level: for a chosen
confidence level 1−ε, where ε is the significance level, or the maximum error
probability, the data set must count at least 1/ε observations to deliver valid
predictions [38]. In other words, a data set composed of 20 observations is
sufficient to provide 95% confidence. In this research, the confidence of pre-
diction has been set to 95 per cent. This choice has been dictated by the
average size of the datasets available for every year.

As for ridge parameter, considering that the data has been scaled and
normalized (as the ridge regression procedure suggests), the optimal ridge
factor has been picked from the interval from 0 to 2 by brute force method.
For each year and pollutant, for each year, plots similar to ridge traces [45]
have been derived to elicit the optimal values of the ridge factor.

5.4 Bottom line

In the main, with validity and efficiency of RRCM predictions explained,
regarding the limitations of the study data set, optimal models for each
year and pollutant can be produced. The best result for nitrogen diox-
ide, in terms of mean prediction interval size, is 36 (µg/m3). Compared to
the overall distribution of nitrogen dioxide at the BMR for 11 years, this
interval is equal to the first quartile of the distribution, and it is smaller
than the mean observed NO2 concentration (43.67 µg/m3). On the average,
the size of optimal prediction intervals for NO2 for each year is from 58 to
68 (µg/m3). It is smaller than the observed maximum concentration (83
µg/m3). Compared to the guideline values recommended by WHO for an-
nual concentrations of nitrogen dioxide (40 µg/m3) [12], this interval could
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house this value 1.5 times. For PM10, the size of the best average prediction
interval was equal to 26.5 (µg/m3). Compared to the overall distribution
of particulate matter, this interval is slightly bigger than the minimum ob-
served concentration (25 µg/m3), but it is smaller than the mean observed
concentration (44.6 µg/m3). For all the years, the optimal prediction set
width varies between 53 and 63 (µg/m3). Compared to the guideline annual
concentrations recommended by WHO (20 µg/m3), this average interval is
three times bigger.

On the basis of the results, it can be concluded that RRCM iid model
and its derivations with kernels are a suitable approach to assess air pollu-
tion exposure data. The only desideratum for further development of this
research and therefore the models is: more data. A denser monitoring net-
work and, perhaps, observations with higher frequency than annual means
are needed for better variomodel fits.



Chapter 6

Conclusion

6.1 The subject of this study

The present dissertation uses the newly developed approach of conformal
predictors to evaluate concentrations of two air pollutants for the Barcelona
Metropolitan Region for several years. Also, it suggest that conformal pre-
dictors can be seen as a good method for spatial prediction. This work
compares the application of a specification of conformal predictors, called
ridge regression confidence machine (RRCM) [1], to a classical geostatisti-
cal method, ordinary kriging. After employing both methods, a conclusion
is made that RRCM can be seen as an additional and/or complementary
method to ordinary kriging.

In this research, conformal predictors have been used to predict the pol-
lutants concentrations for the Barcelona Metropolitan Region (BMR). This
geographic region is situated in the UTM31 time zone, and the study dataset
is composed of the GIS data. Those are the observations of two pollutants,
nitrogen dioxide (NO2) and particulate matter with the aerodynamic di-
ameter of 10 micrometers (PM10), and they are provided together with the
geographical coordinates of the measurement stations. For NO2, the time-
line of the study embraces the period from 1998 to 2009, with the exception
of 2003. For PM10, the time period is from 2001 to 2009, also with the
exception of 2003. The concentrations of pollutants in the dataset are the
mean annuals, and there are 49 monitoring sites across the region. However,
not for every station and year and pollutant the observations are available.
The average number of the available observations for nitrogen dioxide is 24,
while for particulate matter it is 22. For every year, the concentrations of
pollution have been predicted for the unobserved measurement spots. Those
prediction can be expanded to a grid over the whole Barcelona Metropolitan
Region, of course. The predictions have been made in such a way because
thus they can be compared with the observed values for the other years
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(when there are such). The data for the study has been kindly provided by
the XVPCA of the Generalitat of Catalonia.

Taking into consideration the limitations imposed by the data, conformal
predictors have performed as a good prediction method to tackle the given
problem. For future investigation, the main goal is, of course, to increase
the efficiency of prediction. In order to do so, a bigger data set must be
available. Then, other kernels and covariance functions can be implemented
if they would work well for the data.

6.2 Conformal predictors and geostatistics

Ridge regression confidence machine method is based on the ridge regres-
sion procedure [45], but instead of providing a point estimate of the value
of factor of interest, it outputs its prediction in the form of a prediction set,
which, in a specific case, can be a point, too. A prediction set can be a ray,
a union of two rays, the whole real line, a point, or an interval. Practically,
it is almost always an interval. It is desired to obtain the smallest possible
intervals.

An outstanding hallmark of a conformal predictor is its flexibility: it
can be build upon almost any machine learning (or, statistical) algorithm.
Provided with a confidence level, a newly developed predictor inherits all
the predictive power of its underlying algorithm, but it is also always valid.

In this work, ridge regression confidence machine is contrasted with the
classical geostatistical approach that is kriging [4, 5]. Kriging is a well-
developed procedure, which is famous for its capacity to provide the measure
of uncertainty together with the prediction [4]. This measure is called krig-
ing error of kriging variance. However, some drawbacks of this approach
are known. When it comes to air pollution assessment, the main criticism
towards kriging is that it ignores the local pollution sources such as traf-
fic arteries. Kriging comes up with a smooth prediction surface, and the
prediction at each given point may be incorrect. The algorithm takes up
observed values at a set of points where measurement stations are situated,
and it performs an interpolation procedure to output the predicted value
for an unobserved point. The predictions can be spread to a grid of any
size and density. As its adjustment tool, it uses a variogram model. It al-
lows to introduce spatial variability into the estimation equation, but it is
fitted on the basis of the observed points only. Thus, the local variability
of air pollution is not mentioned. Nevertheless, the unavailability of moni-
toring data is a general problem for geostatistical interpolation methods [7].
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Scientific evidence infers that the average number of monitoring sites for
a geographic study region is between 10 to 100 stations. Poor network of
available sampling sites may provide over-smoothed pollution surfaces and
large estimation errors.

Furthermore, a definite letdown of the ordinary kriging method is that it
lacks validity in its estimates. Kriging is an exact interpolator which implies
that it outputs the observed values of the factor of interest at the observed
locations, while the measure of uncertainty for the unobserved locations, i.e.
the kriging variance, is itself an estimate [4].

Conformal predictors help overcome the lack of validity problem. RRCM,
like kriging, is a regression method, and it can be applied in a similar way.
It can take the observed locations as a set of its objects, where the concen-
tration of a given pollutant at a given spot is the label of the corresponding
object. Unlike kriging, that provides point estimates, RRCM yields valid
intervals as its prediction. These intervals are valid, as they contain the real
value with a given level of confidence.

Prediction intervals can be, however, quite wide, and it is naturally pre-
ferred to come up with the smallest possible intervals. In order to achieve
this goal, RRCM suggest two three expedients. First of all, the confidence
level can be abated, but this is perhaps not desired. Secondly, a ridge pa-
rameter can be adjusted, which is usually done by a brute force method.
Another solution is the use of kernels. A non-linear setting can be consid-
ered with the help of so-called “kernel trick” [6]. It has been proposed by
Boser, Guyon and Vapnik for non-linear support vector machines, and it
is aimed to deal with high-dimensional problems [1]. The object space is
mapped to a so-called feature space by means of a kernel function, and the
ridge regression procedure is performed in the feature space.

Kernel trick can be applied to RRCM in a similar way a a covariance
function is applied in kriging, i.e. with the intention to consider spatial dis-
tribution and spatial covariance between observations. For modeling, the
empirical variograms are replaced by theoretical ones, and this fit is done
by eye [5]. There are several classes of covariance functions that are imple-
mented on practice: the Matérn family, spherical, “nugget effect” etc. The
main point is that they are positive definite, since it is the necessary and
sufficient condition for a parametric family of functions to be legitimate to
define a class of covariance functions [32]. This condition allows using co-
variance functions as kernels in ridge regression procedure and vice versa.
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6.3 Key points and further development of this
work

Conformal prediction is a newly developed approach. Coming from machine
learning, this paradigm can be successfully applied to epidemiological stud-
ies. As providing confidence predictions, conformal predictors can be of great
use for clinical research, because it is dealing with health and well-being of
people. Air pollution has been associated with adverse effects in people [14,
12, 18, 15], and it is known that the grade and the duration of exposure
to contamination determines the occurrence of certain outcomes. Unlike
the common methods, conformal predictors are capable of providing expo-
sure estimates with confidence, and the levels of confidence can be very high.

This research shows that conformal predictors can be used for geosta-
tistical modeling, and that it can handle GIS data well. Nearly any good
statistical air pollution assessment algorithm can be transformed to a confor-
mal predictor, and it will both inherit the predictive power of the underlying
technique and yield estimates with confidence. Thus, popular air pollution
assessment models, such as land use regression [36], can be turned into con-
formal predictors. Those methods would be feasible subject to availability
of relevant data, such as, for example, land use data. Bayesian models, such
as trans-Gaussian kriging [32], can be also altered to follow conformal pre-
diction paradigm [1].

Overall, with practically any regression model allotted for spatial pre-
diction, the aim of converting it to a conformal predictor is to obtain not
only valid, but also efficient prediction intervals. The efficiency of prediction
mostly depends on the correct specification of the underlying algorithm and
on the data set size. On the bottom line, there are many ways to obtain effi-
cient predictions. Therefore, as being a valid, efficient and extremely flexible
method, conformal predictors are concluded to be a beneficial method for
air pollution assessment and, generally, for spatial prediction.

Popular algorithms that are successfully applied in air pollution investi-
gation practice, such as land use regression (LUR) or dispersion models [7],
can be transformed to conformal predictions, provided with a significance
level for prediction. LUR is a linear regression model that makes use of land
use data, e.g. traffic density. A regression conformal predictor can be easily
derived on the basis of a LUR algorithm, and regression residuals will serve
as a nonconformity measure. Moreover, when the independent variables are
not heavily correlated, ridge factor can be omitted, and a plain least squares
predictor would work out. Dispersion models are based on Gaussian plume
equations that represent air pollution concentrations via complex exponen-
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tial function of meteorological parameters and height above the sea level.
A transformation of a dispersion model into a informal predictor is not as
straightforward as for LUR. It is certainly doable, but it requires some spe-
cific focused investigation aimed to determine a nonconformity measure.

Derivation of conformal predictors on the basis of well-developed air pol-
lution modeling algorithms is one of important directions for future research.
Another important thing to do is to further develop kriging-based predictors.
This would imply two major issues. First of all, various covariance functions
should be used as kernels for kriging-based conformal predictors. Secondly,
Bayesian approach to geostatistical modeling should be taken up, and a
Bayesian kriging-based conformal predictor should be developed. Finally,
all the models should be tested on various data sets. The Barcelona data
set is to be amplified soon. It will help derive new models for Barcelona’s
data and also adjust the covariance function parameters for the models that
have already been developed, and therefore yield more efficient predictions.
Nevertheless, data for one city is not enough to validate the models, and
they should be tested on data sets for other cities, too.
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Appendix A

R functions code

iid dual function

iid dual is an R [3] function that has been developed on the basis of the
iidpred function from the PredictiveRegression package [5, 1]. This is an
auxiliary function aimed to present the ridge regression equation (2.26) in
the dual form (2.32 - 2.34) [4]. The duality approach is needed to further
implement the “kernel trick”. To create this function, only a part of the
initial function iidpred code has been modified. The initial unmodified code
is marked in grey.

> function(train, test, epsilons = c(0.05, 0.01), ridge = 0) {

+ N <- dim(train)[1]

+ K <- dim(train)[2] - 1

+ N2 <- dim(test)[1]

+ K2 <- dim(test)[2]

+ flag <- 0

+ up <- array(Inf, c(N2, length(epsilons)))

+ low <- array(-Inf, c(N2, length(epsilons)))

+ if (K2 != K) {

+ flag <- 1

+ return(list(low, up, flag))

+ }

+ ZZ <- train[, 1:K]

+ dim(ZZ) <- c(N, K)

+ ZZ <- cbind(1, ZZ)

+ dim(ZZ) <- c(N, K + 1)

+ yy <- train[, K + 1]

+ dim(yy) <- c(N, 1)

+ ZZ2 <- cbind(1, test)

+ dim(ZZ2) <- c(N2, K + 1)

1



+ A <- array(0, c(N + 1, 1))

+ B <- array(0, c(N + 1, 1))

+ toinvert <- array(0, c(K + 1, K + 1))

+ inverseZZ <- array(0, c(K + 1, N + 1))

+ P <- array(0, c(2 * N + 2, 1))

+ NM <- array(0, c(2 * N + 2, 1))

+ for (n2 in 1:N2) {

+ P[1] <- -Inf

+ sizeP <- 1

+ ZZ_ext <- rbind(ZZ, ZZ2[n2, ])

+ yy0 <- rbind(yy, 0)

+ OO1 <- rbind(array(0, c(N, 1)), 1)

+ K0 <- ZZ_ext %*% t(ZZ_ext)

+ inverseZZ <- solve(K0 + ridge * diag(N + 1))

+ H <- inverseZZ %*% K0

+ A <- yy0 - H %*% yy0

+ B <- OO1 - H[, N + 1]

+ A[B < 0] <- -A[B < 0]

+ B[B < 0] <- -B[B < 0]

+ L <- 0

+ R <- 0

+ for (n in 1:N) {

+ if (B[n] != B[N + 1]) {

+ point1 <- (A[n] - A[N + 1])/(B[N + 1] - B[n])

+ point2 <- -(A[n] + A[N + 1])/(B[N + 1] + B[n])

+ P[sizeP + 1] <- min(point1, point2)

+ P[sizeP + 2] <- max(point1, point2)

+ if (B[n] < B[N + 1]) {

+ NM[sizeP + 1] <- 1

+ NM[sizeP + 2] <- -1

+ }

+ else {

+ NM[sizeP + 1] <- -1

+ NM[sizeP + 2] <- 1

+ L <- L + 1

+ R <- R + 1

+ if (point1 == point2) {

+ sizeP <- sizeP - 2

+ }

+ }

+ sizeP <- sizeP + 2
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+ }

+ else {

+ if (A[n] == A[N + 1]) {

+ L <- L + 1

+ R <- R + 1

+ }

+ else {

+ if (B[N + 1] != 0) {

+ point1 <- -(A[n] + A[N + 1])/(B[N + 1] + B[n])

+ if (A[n] > A[N + 1]) {

+ NM[sizeP + 1] <- 1

+ R <- R + 1

+ }

+ else {

+ NM[sizeP + 1] <- -1

+ L <- L + 1

+ }

+ sizeP <- sizeP + 1

+ }

+ else {

+ if (A[n] > A[N + 1]) {

+ L <- L + 1

+ R <- R + 1

+ }

+ }

+ }

+ }

+ }

+ P[sizeP + 1] <- Inf

+ sizeP <- sizeP + 1

+ NM[1] <- L + 1

+ NM[sizeP] <- -R - 1

+ P_order <- order(P, -NM)

+ P <- P[P_order]

+ NM <- NM[P_order]

+ eps_order <- order(epsilons)

+ p <- 0

+ P_reached <- 1

+ for (eps_index in 1:length(epsilons)) {

+ eps_real_index <- eps_order[eps_index]

+ epsilon <- epsilons[eps_real_index]

+ found <- FALSE

+ for (P_index in P_reached:sizeP) {

+ p <- p + NM[P_index]/(N + 1)
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+ if (p > epsilon) {

+ found <- TRUE

+ low[n2, eps_real_index] <- P[P_index]

+ P_reached <- P_index

+ p <- p - NM[P_index]/(N + 1)

+ break

+ }

+ }

+ if (!found) {

+ for (eps_ind in eps_index:length(epsilons)) {

+ eps_real_ind <- eps_order[eps_ind]

+ low[n2, eps_real_ind] <- Inf

+ up[n2, eps_real_ind] <- -Inf

+ }

+ break

+ }

+ }

+ p <- 0

+ P_reached <- sizeP

+ for (eps_index in 1:length(epsilons)) {

+ eps_real_index <- eps_order[eps_index]

+ epsilon <- epsilons[eps_real_index]

+ found <- FALSE

+ for (P_index in P_reached:1) {

+ p <- p - NM[P_index]/(N + 1)

+ if (p > epsilon) {

+ found <- TRUE

+ up[n2, eps_real_index] <- P[P_index]

+ P_reached <- P_index

+ p <- p + NM[P_index]/(N + 1)

+ break

+ }

+ }

+ if (!found) {

+ cat("You have found a bug in the program.\n")

+ cat("Please contact the package's maintainer.\n")

+ }

+ }

+ }

+ max_eps <- max(epsilons)

+ if (N + 1 < 1/max_eps)

+ flag <- 2

+ list(low, up, flag)

+ }
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iid rbf function

This function has been created in the same manner as the iid dual. It allows
to calculate the ridge regression equation, implementing the ”kernel trick”
and considering the Gaussian RBF kernel [2]. Only the modified part of the
code is presented below.

> ZZ_ext <- rbind(ZZ, ZZ2[n2, ])

> yy0 <- rbind(yy, 0)

> OO1 <- rbind(array(0, c(N, 1)), 1)

> K0 <- ZZ_ext %*% t(ZZ_ext)

> K1 <- matrix(diag(K0), dim(K0)[1], dim(K0)[2])

> D <- K1 + t(K1) - (K0 + K0)

> RBF <- exp(-D/2)

> inverseZZ <- solve(RBF + ridge * diag(N + 1))

> H <- inverseZZ %*% RBF

> A <- yy0 - H %*% yy0

> B <- OO1 - H[, N + 1]

iid polyn 2 function

iid polyn 2 function has been developed similarly, as substituting the same
part of the initial code with a new chunk. This function allows to consider
the inhomogenous of the second order [4] in the regression equation.

> ZZ_ext <- rbind(ZZ, ZZ2[n2, ])

> yy0 <- rbind(yy, 0)

> OO1 <- rbind(array(0, c(N, 1)), 1)

> NA

> K0 <- (diag(N + 1) + ZZ_ext %*% t(ZZ_ext))^2

> inverseZZ <- solve(K0 + ridge * diag(N + 1))

> H <- inverseZZ %*% K0

> A <- yy0 - H %*% yy0

> B <- OO1 - H[, N + 1]
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Appendix B

Detailed results
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In Table 1, columns 1 and 2 correspond to ordinary kriging model with
exponential covariance, and columns 2-5 correspond to linear RRCM iid
model. Ridge factor equal to 0.01, confidence level equal to 0.95.

Table 1: Results (µg/m3)
kriging variance lower upper interval

48.70 242.90 8.32 85.38 77.06
48.64 243.32 8.38 85.72 77.34
44.14 275.31 -0.55 79.91 80.46
44.26 274.23 -0.35 79.94 80.28
48.60 244.66 6.76 81.17 74.41
44.24 273.98 -0.53 80.20 80.73
48.39 241.07 8.87 82.82 73.95
48.49 242.27 7.89 81.59 73.71
47.69 238.44 10.77 86.33 75.56
47.35 236.96 11.04 85.96 74.92
47.67 242.75 6.79 80.75 73.97
46.53 243.13 5.30 80.96 75.65
46.74 237.94 6.75 81.32 74.57
50.14 239.11 13.88 90.20 76.33
46.75 232.66 7.55 82.13 74.58
48.06 234.77 14.06 87.58 73.51
45.53 232.05 10.67 83.56 72.89
49.06 235.60 14.73 88.79 74.07
46.94 231.70 7.56 83.81 76.25
44.91 229.93 10.13 84.26 74.13
46.16 237.02 6.62 84.65 78.03
46.06 238.05 6.44 84.78 78.34
45.98 235.43 7.21 84.82 77.61
45.87 235.57 7.25 84.93 77.68
42.09 231.64 10.41 86.44 76.03
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Fitted Gaussian variomodel:
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Table 2 shows the following results: columns 1 and 2 correspond to krig-
ing prediction and variance, columns 3-5 correspond to RRCM model with
Gaussian kernel, columns 6-8 correspond to RRCM model with polynomial
kernel.

Table 2: Results (µg/m3)
kriging variance lower upper interval lower upper interval

241.18 242.90 17.17 82.19 65.02 9.56 73.90 64.34
241.58 243.32 17.28 82.33 65.06 9.64 74.08 64.44
251.90 275.31 5.20 89.06 83.86 1.18 73.29 72.11
251.41 274.23 5.68 88.89 83.20 1.38 73.20 71.82
238.04 244.66 15.80 81.43 65.63 7.69 71.90 64.20
251.83 273.98 4.89 90.24 85.35 1.29 73.23 71.94
236.24 241.07 17.58 80.97 63.40 9.42 72.40 62.98
236.30 242.27 16.89 80.98 64.09 8.55 71.88 63.33
238.23 238.44 19.68 81.92 62.24 10.89 74.32 63.43
237.16 236.96 19.75 81.60 61.85 10.97 74.08 63.11
236.92 242.75 16.81 80.98 64.16 7.54 71.51 63.97
239.63 243.13 16.13 81.69 65.56 6.39 71.67 65.28
237.21 237.94 17.34 80.12 62.77 7.47 71.58 64.11
240.32 239.11 20.88 84.82 63.94 11.75 77.42 65.68
236.56 232.66 17.64 78.74 61.10 8.01 71.80 63.79
235.17 234.77 20.33 81.17 60.84 11.83 75.48 63.65
233.24 232.05 17.82 77.23 59.41 9.91 72.49 62.58
236.55 235.60 20.44 81.65 61.21 11.79 76.58 64.79
238.57 231.70 16.00 77.63 61.64 7.86 72.54 64.68
235.06 229.93 16.61 76.53 59.92 9.40 72.86 63.46
241.25 237.02 13.34 78.51 65.17 7.17 72.96 65.79
241.74 238.05 12.87 78.76 65.89 7.04 73.03 65.98
240.50 235.43 13.38 77.92 64.54 7.52 73.05 65.53
240.58 235.57 13.13 77.91 64.77 7.53 73.11 65.58
238.00 231.64 12.17 76.88 64.71 9.06 74.26 65.19
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In Table 3, columns 1 and 2 correspond to ordinary kriging model with
exponential covariance, and columns 2-5 correspond to linear RRCM iid
model. Ridge factor equal to 0.01, confidence level equal to 0.95.

Table 3: Results (µg/m3)

kriging variance lower upper interval

38.96 68.44 10.41 62.72 52.31
38.98 69.72 10.48 62.99 52.51
27.13 76.34 3.61 57.75 54.13
27.27 74.35 3.84 57.86 54.03
34.44 67.70 9.39 59.80 50.41
37.44 73.18 11.33 61.51 50.18
36.03 71.97 10.60 60.59 49.98
37.79 63.94 13.34 64.63 51.29
37.11 60.46 13.68 64.54 50.86
35.02 72.97 10.33 60.48 50.15
33.98 69.98 9.84 61.15 51.31
38.19 67.29 11.25 61.90 50.65
45.13 63.00 17.74 69.43 51.69
44.33 59.37 12.52 63.28 50.75
44.10 69.04 15.61 65.30 49.68
44.43 61.67 19.11 69.35 50.24
53.76 57.26 13.52 65.57 52.05
45.77 60.92 15.76 66.37 50.61
51.79 67.76 13.07 66.39 53.32
51.45 69.61 12.95 66.50 53.55
52.32 65.37 13.66 66.71 53.06
52.23 65.60 13.74 66.85 53.11
43.54 61.55 17.00 69.03 52.03
45.33 64.12 16.58 69.19 52.61
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Figure 4: Empirical and modeled variograms
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Table 4 shows the following results: columns 1 and 2 correspond to krig-
ing prediction and variance, columns 3-5 correspond to RRCM model with
Gaussian kernel, columns 6-8 correspond to RRCM model with polynomial
kernel.

Table 4: Results (µg/m3)

kriging variance lower upper interval lower upper interval

89.55 68.44 12.79 64.03 51.23 3.16 65.41 62.24
89.81 69.72 13.05 64.30 51.26 3.22 65.59 62.37
92.39 76.34 -1.77 56.55 58.32 -4.27 63.90 68.17
92.21 74.35 -1.33 56.67 58.00 -4.03 63.86 67.89
86.88 67.70 9.05 60.10 51.06 1.93 63.37 61.44
86.47 73.18 12.48 62.29 49.81 3.64 64.13 60.50
86.19 71.97 10.93 61.02 50.09 2.93 63.55 60.62
88.02 63.94 16.34 65.22 48.88 4.99 66.25 61.26
87.39 60.46 16.50 65.07 48.57 5.20 66.08 60.88
86.32 72.97 10.57 60.03 49.46 2.43 63.28 60.86
87.80 69.98 10.42 60.21 49.79 1.79 63.54 61.75
86.81 67.29 12.67 61.20 48.54 2.98 63.68 60.70
88.74 63.00 19.14 69.16 50.01 6.51 69.89 63.38
86.84 59.37 14.90 62.81 47.91 3.87 64.19 60.32
85.37 69.04 18.31 65.40 47.09 5.92 65.28 59.36
86.64 61.67 20.49 68.38 47.89 7.19 69.36 62.17
88.47 57.26 16.72 66.42 49.70 4.35 65.29 60.95
86.58 60.92 18.88 67.05 48.17 5.80 65.81 60.01
90.13 67.76 15.98 68.50 52.52 3.92 65.76 61.84
90.43 69.61 15.76 68.83 53.07 3.83 65.83 62.00
89.78 65.37 16.72 68.91 52.18 4.30 65.92 61.62
89.85 65.60 16.78 69.18 52.40 4.34 66.00 61.66
88.52 61.55 19.51 71.80 52.29 6.04 67.51 61.48
89.28 64.12 18.99 72.64 53.65 5.75 67.56 61.81
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Figure 5: Empirical and modeled variograms
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In Table 5, columns 1 and 2 correspond to ordinary kriging model with
exponential covariance, and columns 2-5 correspond to linear RRCM iid
model. Ridge factor equal to 0.01, confidence level equal to 0.95.

Table 5: Results (µg/m3)

kriging variance lower upper interval

40.59 27.48 22.16 58.36 36.21
39.96 28.84 22.03 58.49 36.46
35.75 28.48 20.21 57.23 37.02
35.98 26.81 20.40 57.35 36.95
43.98 23.86 23.06 57.58 34.52
42.87 32.23 24.15 58.56 34.42
44.25 29.85 24.02 58.31 34.28
36.72 22.69 24.97 60.50 35.53
35.49 18.94 25.53 60.68 35.16
45.41 31.59 24.69 59.28 34.59
46.35 29.87 25.23 60.83 35.61
47.43 27.95 26.22 61.50 35.29
49.28 23.12 28.67 65.40 36.73
49.60 21.50 27.52 63.15 35.63
48.08 30.64 29.57 64.79 35.21
49.98 23.54 30.72 66.60 35.88
53.44 19.38 29.04 65.99 36.95
46.87 22.93 30.25 66.33 36.09
50.41 28.33 29.16 67.13 37.97
50.13 29.84 29.14 67.29 38.15
49.75 26.20 29.56 67.41 37.85
49.34 26.26 29.64 67.56 37.92
48.81 22.79 31.84 69.41 37.56
48.00 24.65 31.74 69.74 38.00
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Table 6 shows the following results: columns 1 and 2 correspond to krig-
ing prediction and variance, columns 3-5 correspond to RRCM model with
Gaussian kernel, columns 6-8 correspond to RRCM model with polynomial
kernel.

Table 6: Results (µg/m3)

kriging variance lower upper interval lower upper interval

52.87 27.48 22.75 58.57 35.82 13.56 63.40 49.84
53.04 28.84 22.87 58.71 35.84 13.60 63.54 49.94
54.50 28.48 18.24 58.92 40.67 8.31 62.87 54.55
54.40 26.81 18.55 59.00 40.45 8.51 62.84 54.33
51.21 23.86 22.24 57.96 35.72 12.87 62.06 49.19
50.98 32.23 24.10 58.94 34.85 14.16 62.60 48.44
50.80 29.85 23.66 58.71 35.04 13.69 62.22 48.53
51.94 22.69 26.56 60.74 34.18 15.16 64.21 49.05
51.56 18.94 26.92 60.88 33.96 15.36 64.12 48.75
50.87 31.59 24.86 59.44 34.59 13.49 62.21 48.72
51.77 29.87 26.05 60.80 34.75 13.19 62.61 49.42
51.18 27.95 27.30 61.20 33.90 14.12 62.71 48.59
52.35 23.12 30.57 65.53 34.97 16.62 67.37 50.75
51.20 21.50 28.97 62.43 33.46 14.91 63.20 48.29
50.31 30.64 30.79 63.73 32.94 16.53 64.05 47.52
51.07 23.54 32.05 65.54 33.49 17.36 67.14 49.78
52.21 19.38 30.47 64.70 34.23 15.47 64.25 48.78
51.05 22.93 31.43 64.79 33.35 16.56 64.60 48.04
53.23 28.33 30.15 66.01 35.86 15.22 64.72 49.49
53.41 29.84 30.03 66.26 36.24 15.16 64.78 49.62
53.01 26.20 30.51 66.13 35.62 15.52 64.85 49.33
53.06 26.26 30.53 66.29 35.76 15.56 64.91 49.36
52.24 22.79 31.76 67.29 35.52 16.92 66.13 49.22
52.71 24.65 31.45 67.90 36.45 16.73 66.21 49.48
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In Table 7, columns 1 and 2 correspond to ordinary kriging model with
exponential covariance, and columns 2-5 correspond to linear RRCM iid
model. Ridge factor equal to 0.01, confidence level equal to 0.95.

Table 7: Results (µg/m3)

kriging variance lower upper interval

41.27 74.70 15.84 68.70 52.86
41.28 75.64 15.74 68.98 53.24
34.07 83.24 9.15 63.26 54.12
34.22 81.59 9.39 63.40 54.01
39.93 74.49 14.92 65.64 50.72
40.67 77.85 16.94 67.54 50.59
40.56 77.00 16.22 66.53 50.31
40.74 71.09 18.73 70.94 52.21
39.73 68.53 19.32 70.87 51.54
40.77 74.97 16.10 66.44 50.34
42.63 68.96 17.29 68.04 50.75
50.58 70.04 22.45 76.44 53.99
45.41 65.72 18.72 69.60 50.88
47.23 75.23 21.85 71.92 50.06
49.17 68.28 25.04 76.48 51.44
51.55 65.31 20.04 72.22 52.18
49.60 71.55 22.18 73.15 50.97
50.84 73.81 19.80 73.17 53.38
50.70 75.31 19.71 73.30 53.59
51.37 72.27 20.38 73.55 53.17
51.38 72.56 20.47 73.71 53.23
49.62 70.84 22.67 74.28 51.62
48.39 71.01 23.74 76.26 52.52
49.01 73.16 23.40 76.45 53.05
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Figure 8: Empirical and modeled variograms
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Table 8 shows the following results: columns 1 and 2 correspond to krig-
ing prediction and variance, columns 3-5 correspond to RRCM model with
Gaussian kernel, columns 6-8 correspond to RRCM model with polynomial
kernel.

Table 8: Results (µg/m3)

kriging variance lower upper interval lower upper interval

98.94 74.70 16.10 64.66 48.56 10.81 65.66 54.86
99.22 75.64 16.41 65.00 48.59 10.86 65.84 54.98
101.57 83.24 10.63 64.36 53.73 4.33 64.24 59.91
101.39 81.59 10.95 64.38 53.43 4.52 64.19 59.66
96.13 74.49 13.83 61.83 48.00 9.63 63.73 54.10
95.77 77.85 16.25 63.31 47.07 11.12 64.43 53.31
95.45 77.00 15.38 62.54 47.16 10.48 63.88 53.40
97.33 71.09 20.72 67.02 46.30 12.39 66.41 54.02
96.69 68.53 20.87 66.87 45.99 12.55 66.23 53.69
95.50 74.97 16.68 62.92 46.24 9.98 63.57 53.59
95.97 68.96 19.61 64.87 45.27 10.38 63.84 53.47
98.00 70.04 27.31 74.83 47.53 13.80 69.72 55.93
96.03 65.72 21.49 66.33 44.84 11.10 64.25 53.16
94.62 75.23 23.38 67.89 44.52 12.89 65.25 52.36
95.93 68.28 27.78 73.37 45.59 14.29 69.16 54.87
97.74 65.31 23.32 69.62 46.30 11.43 65.16 53.74
95.87 71.55 24.13 69.45 45.31 12.73 65.67 52.94
99.46 73.81 22.93 71.73 48.80 11.02 65.54 54.53
99.76 75.31 22.81 72.10 49.29 10.93 65.60 54.67
99.12 72.27 23.19 71.77 48.58 11.34 65.69 54.35
99.20 72.56 23.18 71.97 48.79 11.37 65.76 54.39
96.76 70.84 24.22 70.90 46.68 12.74 66.16 53.42
98.00 71.01 23.96 73.46 49.50 12.88 67.15 54.27
98.78 73.16 23.54 74.17 50.63 12.61 67.17 54.57
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In Table 9, columns 1 and 2 correspond to ordinary kriging model with
exponential covariance, and columns 2-5 correspond to linear RRCM iid
model. Ridge factor equal to 0.01, confidence level equal to 0.95.

Table 9: Results (µg/m3)

kriging variance lower upper interval

39.88 129.87 5.87 61.16 55.29
39.88 129.87 5.63 61.24 55.60
39.88 129.87 10.09 64.25 54.17
39.88 129.87 9.70 61.41 51.71
39.88 129.87 2.19 63.79 61.59
39.88 129.87 9.23 61.36 52.13
39.88 129.87 10.20 61.60 51.40
39.88 129.87 7.57 62.03 54.46
39.88 129.87 8.32 62.01 53.69
39.88 129.87 12.01 62.92 50.91
39.88 129.87 13.68 64.78 51.10
39.88 129.87 8.72 64.54 55.81
39.88 129.87 14.55 65.76 51.21
39.88 129.87 10.41 64.36 53.95
39.88 129.87 14.98 65.69 50.71
39.88 129.87 11.61 65.18 53.58
39.88 129.87 15.62 68.04 52.42
39.88 129.87 15.72 67.17 51.44
39.88 129.87 15.79 69.35 53.55
39.88 129.87 15.80 69.55 53.75
39.88 129.87 15.98 69.41 53.43
39.88 129.87 16.09 68.14 52.04
39.88 129.87 13.76 67.58 53.82
39.88 129.87 16.49 69.43 52.94
39.88 129.87 11.74 72.38 60.64
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Figure 10: Empirical and modeled variograms
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Table 10 shows the following results: columns 1 and 2 correspond to krig-
ing prediction and variance, columns 3-5 correspond to RRCM model with
Gaussian kernel, columns 6-8 correspond to RRCM model with polynomial
kernel.

Table 10: Results (µg/m3)

kriging variance lower upper interval lower upper interval

129.87 129.87 8.37 63.23 54.87 -0.79 66.17 66.96
129.87 129.87 8.18 63.29 55.11 -0.89 66.24 67.14
129.87 129.87 7.63 63.33 55.70 -2.55 69.23 71.78
129.87 129.87 10.62 63.21 52.59 0.38 65.92 65.54
129.87 129.87 -0.06 68.91 68.97 -3.33 68.66 71.99
129.87 129.87 11.06 63.19 52.13 0.77 65.58 64.81
129.87 129.87 11.49 63.37 51.88 0.93 65.67 64.74
129.87 129.87 10.05 62.92 52.87 0.09 66.18 66.09
129.87 129.87 10.77 62.90 52.13 0.48 65.99 65.52
129.87 129.87 13.20 63.72 50.52 1.32 66.09 64.77
129.87 129.87 15.47 64.85 49.38 1.97 66.51 64.54
129.87 129.87 8.15 64.11 55.97 -0.72 68.21 68.93
129.87 129.87 16.79 65.78 48.99 2.46 66.65 64.19
129.87 129.87 10.92 63.50 52.58 0.38 67.51 67.12
129.87 129.87 17.06 66.06 49.00 2.95 66.44 63.49
129.87 129.87 11.65 63.75 52.11 0.50 67.97 67.46
129.87 129.87 18.07 67.95 49.89 2.64 67.51 64.87
129.87 129.87 17.96 67.24 49.27 2.95 67.08 64.13
129.87 129.87 17.82 69.51 51.70 2.41 68.17 65.76
129.87 129.87 17.71 69.79 52.09 2.36 68.28 65.92
129.87 129.87 18.05 69.59 51.54 2.52 68.16 65.64
129.87 129.87 18.17 68.15 49.98 2.86 67.57 64.71
129.87 129.87 12.10 65.14 53.04 0.09 69.65 69.56
129.87 129.87 17.75 69.57 51.81 2.57 68.38 65.81
129.87 129.87 -7.08 76.06 83.14 -7.28 77.65 84.93
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Figure 11: Empirical and modeled variograms
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In Table 11, columns 1 and 2 correspond to ordinary kriging model with
exponential covariance, and columns 2-5 correspond to linear RRCM iid
model. Ridge factor equal to 0.01, confidence level equal to 0.95.

Table 11: Results (µg/m3)

kriging variance lower upper interval

41.03 173.19 -4.05 76.71 80.75
40.85 173.82 -4.40 76.84 81.23
38.70 180.09 1.19 81.25 80.06
42.99 170.75 1.25 76.73 75.47
39.32 190.49 -10.09 80.83 90.92
39.47 181.27 1.64 82.11 80.47
42.70 170.34 0.48 76.51 76.03
43.46 169.90 1.82 76.81 74.99
40.19 170.76 -2.21 77.52 79.74
40.45 169.06 -1.17 77.38 78.55
44.61 167.91 4.03 78.43 74.40
46.59 164.05 5.87 80.61 74.74
40.49 176.25 -1.78 80.64 82.42
48.50 161.75 6.81 81.66 74.85
40.92 172.00 0.66 80.08 79.42
47.98 164.18 7.22 81.22 73.99
41.33 173.63 2.04 80.94 78.90
50.80 161.08 7.78 84.38 76.60
48.89 162.78 7.96 83.03 75.06
50.01 164.33 7.78 86.09 78.31
49.90 165.11 7.75 86.36 78.61
41.63 178.16 3.29 82.47 79.17
49.87 163.24 7.99 86.07 78.08
48.49 162.88 8.26 84.20 75.94
41.91 180.73 4.35 83.67 79.33
47.52 164.27 8.50 85.74 77.24
39.32 207.30 -0.33 90.56 90.89
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Figure 12: Empirical and modeled variograms
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Table 12 shows the following results: columns 1 and 2 correspond to krig-
ing prediction and variance, columns 3-5 correspond to RRCM model with
Gaussian kernel, columns 6-8 correspond to RRCM model with polynomial
kernel.

Table 12: Results (µg/m3)

kriging variance lower upper interval lower upper interval

174.93 173.19 0.83 80.60 79.78 -11.39 82.44 93.82
175.44 173.82 0.54 80.69 80.15 -11.54 82.54 94.08
176.77 180.09 -4.69 81.19 85.88 -14.07 86.89 100.96
169.52 170.75 3.30 80.09 76.79 -9.79 82.11 91.90
186.65 190.49 -12.78 88.12 100.90 -15.27 85.72 100.99
177.00 181.27 -5.11 82.43 87.54 -13.86 87.06 100.91
169.65 170.34 4.05 79.90 75.84 -9.30 81.53 90.83
168.65 169.90 4.45 80.06 75.61 -9.09 81.68 90.77
173.73 170.76 2.06 79.25 77.19 -10.40 82.24 92.65
172.38 169.06 3.01 79.10 76.09 -9.87 81.96 91.83
168.03 167.91 6.03 80.17 74.14 -8.64 82.21 90.84
168.03 164.05 8.56 81.13 72.56 -7.89 82.63 90.52
178.17 176.25 -3.62 79.42 83.05 -12.10 84.69 96.78
167.88 161.75 10.25 81.91 71.66 -7.32 82.68 90.00
174.50 172.00 0.54 78.41 77.87 -10.53 83.69 94.21
167.03 164.18 10.36 81.74 71.38 -6.78 82.21 88.99
174.34 173.63 0.85 78.26 77.41 -10.51 84.21 94.72
169.63 161.08 11.56 84.24 72.68 -7.25 83.68 90.93
168.21 162.78 11.29 83.01 71.71 -6.88 83.00 89.88
171.45 164.33 10.95 86.28 75.33 -7.64 84.54 92.18
171.77 165.11 10.75 86.67 75.92 -7.72 84.68 92.40
175.43 178.16 0.21 78.43 78.22 -11.11 85.41 96.52
171.24 163.24 11.25 86.24 74.99 -7.52 84.48 92.00
169.26 162.88 11.29 84.03 72.74 -7.10 83.60 90.70
176.09 180.73 -0.01 79.14 79.15 -11.46 86.27 97.73
171.05 164.27 10.13 85.65 75.52 -7.65 84.59 92.24
195.24 207.30 -31.35 93.39 124.73 -22.78 96.99 119.77
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Figure 13: Empirical and modeled variograms
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In Table 13, columns 1 and 2 correspond to ordinary kriging model with
exponential covariance, and columns 2-5 correspond to linear RRCM iid
model. Ridge factor equal to 0.01, confidence level equal to 0.95.

Table 13: Results (µg/m3)

kriging variance lower upper interval

41.65 138.60 8.14 71.00 62.86
41.64 139.04 8.05 71.17 63.12
35.38 146.33 6.50 70.47 63.96
41.37 138.12 9.45 69.57 60.12
36.28 148.06 6.72 70.94 64.22
41.94 137.87 10.15 70.26 60.11
42.06 137.69 10.25 69.91 59.67
40.98 135.32 10.14 72.11 61.97
40.74 134.21 10.60 71.88 61.28
42.71 135.72 10.84 70.38 59.54
44.67 131.44 11.89 71.72 59.84
43.99 138.75 12.11 75.55 63.44
46.49 128.97 12.80 72.68 59.89
43.29 135.82 13.11 74.82 61.71
47.52 132.43 14.37 73.47 59.10
43.70 136.98 14.04 75.55 61.50
49.86 127.84 13.53 74.67 61.14
48.73 130.39 14.64 74.59 59.95
49.04 131.34 13.28 75.66 62.38
48.92 132.23 13.21 75.81 62.59
44.16 138.95 14.97 76.85 61.88
49.20 129.97 13.66 75.87 62.21
48.61 130.06 14.86 75.47 60.61
47.88 130.66 15.26 76.83 61.57
41.27 169.25 14.62 84.59 69.98
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Figure 14: Empirical and modeled variograms
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Table 14 shows the following results: columns 1 and 2 correspond to krig-
ing prediction and variance, columns 3-5 correspond to RRCM model with
Gaussian kernel, columns 6-8 correspond to RRCM model with polynomial
kernel.

Table 14: Results (µg/m3)

kriging variance lower upper interval lower upper interval

142.12 138.60 11.45 73.07 61.63 -0.53 74.08 74.61
142.49 139.04 11.62 73.30 61.68 -0.59 74.20 74.79
145.30 146.33 1.35 69.09 67.75 -4.92 75.84 80.76
138.43 138.12 9.23 69.90 60.67 -0.28 73.08 73.36
145.54 148.06 1.29 70.93 69.64 -4.77 75.96 80.73
138.10 137.87 11.55 71.28 59.73 0.66 73.05 72.39
137.57 137.69 10.71 70.44 59.73 0.47 72.90 72.42
140.76 135.32 13.85 72.96 59.11 0.63 74.23 73.59
139.74 134.21 13.89 72.61 58.72 0.95 73.94 72.99
137.39 135.72 11.35 69.91 58.56 0.46 73.04 72.58
137.54 131.44 13.87 71.18 57.31 1.02 73.36 72.34
143.66 138.75 12.66 74.45 61.79 0.20 76.84 76.65
137.42 128.97 15.82 72.41 56.59 1.63 73.54 71.91
140.94 135.82 13.97 73.24 59.26 1.14 75.86 74.72
136.28 132.43 17.00 73.24 56.24 2.67 73.67 71.00
140.85 136.98 13.78 72.99 59.21 1.20 76.33 75.13
139.03 127.84 17.72 75.13 57.40 1.79 74.44 72.65
137.46 130.39 17.94 74.43 56.49 2.53 74.26 71.73
140.73 131.34 17.56 77.08 59.52 1.40 75.06 73.66
141.03 132.23 17.45 77.43 59.98 1.32 75.16 73.84
141.79 138.95 12.97 72.87 59.91 0.84 77.39 76.55
140.50 129.97 17.94 77.17 59.23 1.61 75.11 73.50
138.42 130.06 18.20 75.47 57.27 2.40 74.78 72.38
139.93 130.66 17.76 77.08 59.32 2.13 75.71 73.58
157.31 169.25 -11.00 83.33 94.33 -7.04 87.55 94.59
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Figure 15: Empirical and modeled variograms
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In Table 15, columns 1 and 2 correspond to ordinary kriging model with
exponential covariance, and columns 2-5 correspond to linear RRCM iid
model. Ridge factor equal to 0.01, confidence level equal to 0.95.

Table 15: Results (µg/m3)

kriging variance lower upper interval

39.55 88.10 14.88 61.86 46.97
39.43 88.56 14.63 61.78 47.15
35.63 93.08 18.44 69.66 51.22
41.14 88.05 18.71 64.33 45.62
37.03 95.29 18.87 70.45 51.58
40.86 88.65 18.27 63.29 45.02
41.75 88.38 19.25 64.24 44.99
38.29 85.24 16.18 62.38 46.20
38.22 84.25 16.94 62.64 45.71
43.93 86.65 20.61 66.36 45.75
47.06 82.64 22.11 68.41 46.31
42.23 87.01 16.62 63.74 47.12
48.66 80.41 22.99 69.19 46.19
41.12 84.80 18.41 64.27 45.86
46.84 84.72 23.66 68.19 44.53
42.24 84.68 19.52 65.21 45.69
50.74 78.94 24.13 71.36 47.22
47.66 82.28 24.37 69.80 45.44
49.56 82.14 24.36 72.81 48.45
49.44 83.00 24.37 73.04 48.67
48.90 80.60 24.57 72.69 48.12
46.94 81.52 24.77 70.73 45.96
45.49 81.14 25.29 71.80 46.51
39.94 111.12 18.54 70.45 51.91
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Figure 16: Empirical and modeled variograms
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Table 16 shows the following results: columns 1 and 2 correspond to krig-
ing prediction and variance, columns 3-5 correspond to RRCM model with
Gaussian kernel, columns 6-8 correspond to RRCM model with polynomial
kernel.

Table 16: Results (µg/m3)

kriging variance lower upper interval lower upper interval

97.34 88.10 16.41 64.03 47.63 7.89 64.90 57.00
97.55 88.56 16.30 63.97 47.67 7.83 64.97 57.13
100.35 93.08 17.06 78.79 61.73 5.40 67.20 61.80
94.89 88.05 19.85 67.18 47.32 8.48 64.58 56.10
100.60 95.29 17.34 80.98 63.64 5.58 67.36 61.78
94.38 88.65 19.39 65.60 46.22 9.07 64.39 55.32
94.07 88.38 20.48 66.89 46.41 9.05 64.42 55.37
95.41 85.24 18.63 64.20 45.57 8.86 65.04 56.19
94.70 84.25 19.14 64.40 45.27 9.15 64.88 55.73
93.61 86.65 22.76 69.33 46.57 9.28 64.78 55.50
93.20 82.64 25.17 71.00 45.84 9.88 65.20 55.32
96.54 87.01 18.08 65.22 47.14 8.60 67.00 58.41
92.75 80.41 26.45 70.90 44.45 10.40 65.38 54.98
94.51 84.80 19.47 64.73 45.26 9.42 66.38 56.96
91.57 84.72 25.17 68.38 43.21 11.09 65.32 54.24
94.48 84.68 19.53 64.64 45.11 9.57 66.82 57.25
93.58 78.94 27.66 71.96 44.31 10.66 66.20 55.54
92.29 82.28 25.88 69.26 43.38 11.10 65.89 54.80
94.90 82.14 27.58 73.67 46.09 10.45 66.77 56.31
95.14 83.00 27.51 74.01 46.50 10.41 66.86 56.45
94.68 80.60 27.49 72.97 45.47 10.60 66.78 56.18
92.98 81.52 25.64 69.61 43.97 11.06 66.34 55.29
94.29 81.14 24.10 69.72 45.62 10.91 67.09 56.18
117.12 111.12 1.40 72.73 71.33 3.60 75.44 71.84
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Figure 17: Empirical and modeled variograms
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In Table 17, columns 1 and 2 correspond to ordinary kriging model with
exponential covariance, and columns 2-5 correspond to linear RRCM iid
model. Ridge factor equal to 0.01, confidence level equal to 0.95.

Table 17: Results (µg/m3)

kriging variance lower upper interval

37.92 73.11 14.58 60.57 45.99
37.95 73.79 14.51 60.57 46.06
29.76 75.94 13.92 65.48 51.56
37.79 72.96 15.92 61.86 45.94
31.49 79.62 14.30 66.22 51.93
38.24 75.10 16.56 61.52 44.96
38.82 74.47 16.72 62.03 45.32
36.74 69.62 16.55 61.60 45.05
36.30 68.30 17.16 61.75 44.60
41.53 72.60 17.60 63.68 46.09
45.82 67.74 19.02 65.68 46.66
43.90 71.83 18.09 64.71 46.62
47.87 65.04 20.11 66.66 46.56
41.31 69.75 19.54 64.41 44.87
46.00 71.77 21.60 66.49 44.89
42.36 69.75 20.73 65.35 44.61
50.92 62.74 21.35 68.96 47.61
47.18 68.18 22.20 68.02 45.82
48.87 66.60 21.43 70.28 48.85
48.69 67.72 21.41 70.49 49.07
48.12 64.28 21.80 70.32 48.52
46.28 66.71 22.65 69.00 46.35
44.24 65.01 23.37 70.28 46.91
42.33 95.79 21.56 73.68 52.12
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Figure 18: Empirical and modeled variograms
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Table 18 shows the following results: columns 1 and 2 correspond to krig-
ing prediction and variance, columns 3-5 correspond to RRCM model with
Gaussian kernel, columns 6-8 correspond to RRCM model with polynomial
kernel.

Table 18: Results (µg/m3)

kriging variance lower upper interval lower upper interval

88.14 73.11 15.97 62.02 46.05 6.72 64.20 57.48
88.41 73.79 15.97 62.06 46.09 6.69 64.31 57.61
90.04 75.94 12.13 73.90 61.77 3.05 65.37 62.32
85.43 72.96 16.32 63.67 47.34 6.84 63.40 56.57
90.24 79.62 12.43 76.11 63.68 3.22 65.52 62.30
85.23 75.10 17.87 62.85 44.97 7.72 63.50 55.79
84.84 74.47 17.57 63.64 46.07 7.53 63.36 55.83
87.03 69.62 18.71 62.77 44.06 7.94 64.60 56.66
86.29 68.30 19.03 62.79 43.76 8.20 64.39 56.20
84.69 72.60 18.91 65.72 46.81 7.59 63.56 55.97
84.85 67.74 21.48 67.58 46.10 8.22 64.00 55.79
88.58 71.83 19.74 65.32 45.58 8.21 67.11 58.90
84.78 65.04 23.09 67.84 44.74 8.86 64.30 55.44
86.72 69.75 20.60 64.35 43.75 8.92 66.36 57.44
83.85 71.77 23.84 66.13 42.28 9.92 64.61 54.69
86.55 69.75 20.81 64.43 43.61 9.13 66.86 57.73
85.98 62.74 24.74 69.40 44.66 9.23 65.23 56.00
84.72 68.18 24.69 67.15 42.46 9.92 65.18 55.26
87.24 66.60 24.73 71.20 46.47 8.99 65.78 56.79
87.47 67.72 24.67 71.55 46.88 8.94 65.86 56.93
87.06 64.28 24.93 70.66 45.72 9.21 65.86 56.65
85.40 66.71 24.94 67.71 42.77 9.93 65.68 55.75
86.43 65.01 24.13 68.24 44.11 9.89 66.55 56.65
97.02 95.79 6.16 75.12 68.97 3.99 76.44 72.44
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Figure 19: Empirical and modeled variograms
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In Table 19, columns 1 and 2 correspond to ordinary kriging model with
exponential covariance, and columns 2-5 correspond to linear RRCM iid
model. Ridge factor equal to 0.01, confidence level equal to 0.95.

Table 19: Results (µg/m3)

kriging variance lower upper interval

40.29 66.76 11.08 67.61 56.53
40.24 67.83 10.97 67.71 56.74
21.64 66.11 11.19 69.60 58.41
37.98 65.71 12.96 67.34 54.38
23.64 72.22 11.65 70.28 58.63
39.57 70.57 13.52 67.69 54.17
39.30 69.17 13.80 67.69 53.88
37.52 61.77 13.36 68.95 55.60
36.67 59.79 13.91 68.91 55.00
39.45 67.18 14.90 68.76 53.86
42.93 61.05 16.55 70.60 54.06
46.58 64.97 15.77 72.47 56.70
46.43 57.57 17.74 71.74 54.00
42.04 62.89 16.99 72.18 55.19
47.42 67.85 19.21 72.29 53.08
43.24 63.21 18.22 73.20 54.98
52.29 54.11 19.17 74.16 54.99
49.66 62.66 19.93 73.74 53.81
50.05 58.97 19.35 75.42 56.07
49.81 60.50 19.35 75.61 56.26
50.06 55.28 19.72 75.59 55.87
49.39 60.23 20.44 74.78 54.34
48.20 56.55 21.20 76.30 55.11
44.78 89.72 19.77 82.24 62.47
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Figure 20: Empirical and modeled variograms
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Table 20 shows the following results: columns 1 and 2 correspond to krig-
ing prediction and variance, columns 3-5 correspond to RRCM model with
Gaussian kernel, columns 6-8 correspond to RRCM model with polynomial
kernel.

Table 20: Results (µg/m3)

kriging variance lower upper interval lower upper interval

89.88 66.76 16.50 64.61 48.11 9.90 62.48 52.58
90.10 67.83 16.63 64.78 48.15 9.92 62.62 52.70
92.61 66.11 8.61 69.45 60.85 5.09 62.94 57.86
87.15 65.71 15.73 63.53 47.80 9.42 61.16 51.74
93.01 72.22 8.77 71.40 62.63 5.26 63.13 57.87
86.75 70.57 17.40 64.08 46.68 10.62 61.64 51.03
86.36 69.17 17.03 63.91 46.88 10.22 61.29 51.07
87.70 61.77 19.44 65.47 46.03 11.38 63.21 51.83
86.97 59.79 19.57 65.29 45.72 11.57 62.97 51.41
85.71 67.18 18.35 64.69 46.33 10.09 61.28 51.19
85.20 61.05 21.14 66.45 45.32 10.75 61.77 51.02
88.66 64.97 20.97 68.59 47.62 12.38 66.26 53.88
84.73 57.57 23.18 67.48 44.30 11.53 62.23 50.70
86.48 62.89 21.85 67.56 45.71 12.89 65.43 52.54
83.54 67.85 24.17 67.82 43.65 12.98 63.01 50.02
86.40 63.21 22.31 67.88 45.56 13.19 66.01 52.82
85.60 54.11 25.54 70.16 44.62 12.06 63.28 51.21
84.26 62.66 25.40 69.21 43.81 13.03 63.57 50.54
87.07 58.97 25.92 72.13 46.21 11.84 63.76 51.93
87.35 60.50 25.92 72.48 46.56 11.78 63.84 52.06
86.83 55.28 26.18 72.11 45.93 12.14 63.95 51.81
84.99 60.23 25.90 70.32 44.41 13.11 64.10 50.99
86.45 56.55 25.89 71.97 46.08 13.28 65.10 51.82
112.77 89.72 8.05 80.10 72.05 9.75 76.03 66.28
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Figure 21: Empirical and modeled variograms
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In Table 21, columns 1 and 2 correspond to ordinary kriging model with
exponential covariance, and columns 2-5 correspond to linear RRCM iid
model. Ridge factor equal to 0.01, confidence level equal to 0.95.

Table 21: Results (µg/m3)

kriging variance lower upper interval

45.94 57.20 10.50 75.65 65.15
55.42 74.09 9.18 75.59 66.41
55.46 72.34 9.35 75.65 66.30
44.58 59.78 12.25 74.46 62.22
47.66 65.22 12.95 75.14 62.18
45.61 62.82 12.87 76.86 63.98
45.98 60.91 13.42 76.83 63.41
42.75 64.57 13.71 77.24 63.54
41.01 62.18 14.61 77.44 62.83
47.34 75.36 16.05 77.47 61.42
50.87 68.29 15.36 80.24 64.88
40.72 58.31 15.48 78.68 63.21
51.78 72.70 16.44 79.71 63.27
51.88 73.95 16.99 79.48 62.49
44.29 68.90 17.23 79.35 62.12
54.70 69.49 17.51 80.57 63.06
43.78 57.36 15.92 80.72 64.80
45.01 58.23 16.07 81.34 65.28
44.44 62.58 17.37 80.89 63.52
48.12 58.81 15.72 82.78 67.06
47.50 61.81 16.08 82.85 66.77
47.55 62.78 16.11 82.99 66.87
46.92 69.03 16.86 83.53 66.67
49.49 72.76 18.53 82.49 63.96
48.10 75.15 17.95 83.73 65.79
48.09 77.12 17.68 84.27 66.58
50.43 85.65 18.36 84.93 66.57
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Figure 22: Empirical and modeled variograms
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Table 22 shows the following results: columns 1 and 2 correspond to krig-
ing prediction and variance, columns 3-5 correspond to RRCM model with
Gaussian kernel, columns 6-8 correspond to RRCM model with polynomial
kernel.

Table 22: Results (µg/m3)

kriging variance lower upper interval lower upper interval

138.34 57.20 4.79 75.34 70.55 3.02 75.35 72.34
138.34 74.09 5.66 85.16 79.50 -1.81 76.89 78.69
138.34 72.34 5.91 84.91 79.00 -1.61 76.77 78.38
138.34 59.78 7.20 76.32 69.12 2.95 74.16 71.21
138.34 65.22 7.98 76.19 68.22 4.01 74.27 70.26
138.34 62.82 9.46 77.78 68.32 4.37 75.72 71.36
138.34 60.91 10.07 77.97 67.90 4.62 75.55 70.92
138.34 64.57 11.45 78.98 67.53 3.01 74.60 71.59
138.34 62.18 12.17 78.39 66.22 3.88 74.35 70.46
138.34 75.36 12.95 79.76 66.81 5.75 75.18 69.42
138.34 68.29 14.19 85.61 71.42 4.74 78.88 74.14
138.34 58.31 12.75 78.89 66.14 4.45 74.57 70.13
138.34 72.70 15.27 83.95 68.67 5.44 77.81 72.38
138.34 73.95 15.48 83.25 67.77 5.77 77.22 71.44
138.34 68.90 13.59 80.25 66.66 5.76 74.98 69.22
138.34 69.49 16.75 85.03 68.28 5.61 78.38 72.77
138.34 57.36 12.09 80.48 68.38 4.50 75.26 70.77
138.34 58.23 11.65 81.14 69.49 4.52 75.51 70.99
138.34 62.58 12.89 81.42 68.52 5.53 75.55 70.02
138.34 58.81 9.74 83.05 73.31 4.05 76.09 72.05
138.34 61.81 9.90 83.12 73.22 4.30 76.14 71.84
138.34 62.78 9.73 83.34 73.60 4.31 76.20 71.90
138.34 69.03 9.41 84.49 75.08 4.71 76.59 71.87
138.34 72.76 12.77 84.67 71.90 5.82 77.01 71.19
138.34 75.15 10.06 85.81 75.74 5.27 77.17 71.90
138.34 77.12 8.86 86.52 77.65 5.02 77.30 72.28
138.34 85.65 8.56 88.61 80.05 5.15 78.17 73.02
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Figure 23: Empirical and modeled variograms
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In Table 23, columns 1 and 2 correspond to ordinary kriging model with
exponential covariance, and columns 2-5 correspond to linear RRCM iid
model. Ridge factor equal to 0.01, confidence level equal to 0.95.

Table 23: Results (µg/m3)

kriging variance lower upper interval

49.44 58.10 28.64 71.84 43.21
48.25 110.71 22.65 67.82 45.17
48.25 109.13 22.80 67.84 45.04
50.10 60.01 27.31 69.03 41.72
48.27 108.30 22.80 67.99 45.19
52.41 64.41 28.80 70.21 41.41
51.68 61.58 30.18 72.56 42.38
52.40 59.05 30.30 72.38 42.08
45.09 65.11 26.61 68.95 42.34
42.59 60.52 27.49 69.33 41.84
52.17 65.98 32.02 74.67 42.65
53.69 68.76 31.95 74.10 42.15
49.80 69.98 29.84 71.32 41.48
55.60 66.76 32.31 75.07 42.76
50.79 69.24 29.53 71.82 42.29
49.62 56.62 27.88 71.86 43.98
49.87 58.17 27.90 71.94 44.04
52.32 73.91 29.49 72.38 42.89
51.93 73.02 28.58 72.61 44.03
56.30 78.86 30.59 73.48 42.88
61.37 72.43 32.58 76.46 43.88
54.89 84.72 29.68 73.45 43.77
54.54 86.08 29.34 73.51 44.18
56.84 92.70 29.99 74.41 44.42
62.36 90.66 32.76 82.86 50.10
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Figure 24: Empirical and modeled variograms
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Table 24 shows the following results: columns 1 and 2 correspond to krig-
ing prediction and variance, columns 3-5 correspond to RRCM model with
Gaussian kernel, columns 6-8 correspond to RRCM model with polynomial
kernel.

Table 24: Results (µg/m3)

kriging variance lower upper interval lower upper interval

100.45 58.10 25.35 71.05 45.71 17.61 67.47 49.86
100.45 110.71 14.52 72.85 58.33 13.06 67.31 54.25
100.45 109.13 14.81 72.62 57.81 13.20 67.23 54.02
100.45 60.01 24.98 70.73 45.75 17.02 66.00 48.98
100.45 108.30 13.78 72.83 59.04 13.21 67.21 54.00
100.45 64.41 26.83 71.25 44.42 17.99 66.29 48.30
100.45 61.58 28.36 71.69 43.33 18.55 67.65 49.10
100.45 59.05 28.80 71.89 43.09 18.69 67.49 48.80
100.45 65.11 23.83 68.45 44.62 16.65 65.80 49.15
100.45 60.52 25.82 68.76 42.94 17.34 65.70 48.36
100.45 65.98 32.91 75.53 42.62 19.23 69.23 50.00
100.45 68.76 33.34 75.64 42.30 19.38 68.71 49.33
100.45 69.98 30.48 72.60 42.12 18.85 66.40 47.55
100.45 66.76 34.04 77.07 43.03 19.27 69.62 50.35
100.45 69.24 30.14 72.94 42.80 18.60 66.69 48.09
100.45 56.62 26.69 70.74 44.05 17.53 66.78 49.24
100.45 58.17 26.70 70.93 44.23 17.54 66.82 49.28
100.45 73.91 29.98 74.03 44.05 18.49 67.05 48.57
100.45 73.02 27.74 73.40 45.66 17.88 67.20 49.32
100.45 78.86 31.81 77.70 45.89 18.89 67.92 49.03
100.45 72.43 35.57 81.63 46.06 18.90 71.03 52.13
100.45 84.72 29.56 77.09 47.52 18.38 67.82 49.44
100.45 86.08 28.59 76.94 48.35 18.17 67.84 49.68
100.45 92.70 29.23 80.40 51.17 18.31 68.61 50.30
100.45 90.66 28.48 98.79 70.32 15.41 79.30 63.89
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Figure 25: Empirical and modeled variograms
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In Table 25, columns 1 and 2 correspond to ordinary kriging model with
exponential covariance, and columns 2-5 correspond to linear RRCM iid
model. Ridge factor equal to 0.01, confidence level equal to 0.95.

Table 25: Results (µg/m3)

kriging variance lower upper interval

43.25 110.78 18.07 66.77 48.70
43.29 109.19 18.23 66.81 48.58
44.99 59.72 19.99 65.21 45.22
43.41 108.31 18.64 67.40 48.75
42.44 63.80 20.04 65.17 45.13
40.27 59.72 19.80 66.09 46.29
40.21 58.00 20.25 66.12 45.87
42.94 62.42 22.02 67.88 45.86
44.19 71.41 20.61 69.52 48.90
46.24 60.95 22.50 69.22 46.72
43.67 67.40 24.61 69.55 44.94
48.40 63.04 23.42 70.24 46.82
45.08 63.80 25.22 70.86 45.64
49.42 55.18 25.18 72.32 47.14
49.36 56.36 25.24 72.43 47.19
45.35 63.07 25.63 71.80 46.17
48.11 63.82 25.74 72.91 47.18
50.68 71.47 25.13 73.00 47.87
45.05 60.94 26.20 73.20 47.00
44.34 70.83 26.59 74.23 47.64
52.02 90.78 24.50 79.37 54.87
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Figure 26: Empirical and modeled variograms

51



Table 26 shows the following results: columns 1 and 2 correspond to krig-
ing prediction and variance, columns 3-5 correspond to RRCM model with
Gaussian kernel, columns 6-8 correspond to RRCM model with polynomial
kernel.

Table 26: Results (µg/m3)

kriging variance lower upper interval lower upper interval

62.51 110.78 9.54 70.59 61.05 20.31 57.30 36.98
62.51 109.19 9.95 70.47 60.52 20.41 57.23 36.82
62.51 59.72 18.34 65.58 47.24 22.45 55.22 32.78
62.51 108.31 9.32 71.43 62.11 20.48 57.33 36.85
62.51 63.80 19.06 65.19 46.13 22.67 54.94 32.26
62.51 59.72 19.30 65.57 46.26 22.37 55.46 33.08
62.51 58.00 19.79 65.72 45.93 22.56 55.37 32.81
62.51 62.42 20.16 67.67 47.51 22.63 55.84 33.21
62.51 71.41 18.29 71.24 52.95 21.53 57.55 36.01
62.51 60.95 22.31 70.08 47.76 22.56 56.83 34.27
62.51 67.40 24.71 70.04 45.33 23.81 55.97 32.16
62.51 63.04 23.57 71.59 48.02 22.63 57.27 34.64
62.51 63.80 25.45 71.54 46.08 23.83 56.42 32.58
62.51 55.18 24.90 72.53 47.63 23.40 56.90 33.50
62.51 56.36 24.93 72.74 47.82 23.40 56.94 33.54
62.51 63.07 25.75 73.09 47.34 23.81 56.78 32.98
62.51 63.82 25.43 74.35 48.93 23.57 57.15 33.58
62.51 71.47 25.62 76.13 50.50 22.43 58.60 36.17
62.51 60.94 25.80 76.33 50.53 23.70 57.41 33.72
62.51 70.83 25.54 79.48 53.94 23.52 57.97 34.45
62.51 90.78 15.69 93.08 77.39 18.56 64.04 45.49
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Figure 27: Empirical and modeled variograms
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In Table 27, columns 1 and 2 correspond to ordinary kriging model with
exponential covariance, and columns 2-5 correspond to linear RRCM iid
model. Ridge factor equal to 0.01, confidence level equal to 0.95.

Table 27: Results (µg/m3)

kriging variance lower upper interval

51.51 110.81 27.66 68.57 40.91
51.56 109.22 27.78 68.59 40.81
49.53 59.72 27.52 65.28 37.76
51.94 108.36 28.28 69.27 40.99
45.66 63.51 26.67 64.28 37.61
41.87 56.10 25.37 63.92 38.55
49.73 62.43 30.31 68.78 38.47
49.74 65.75 26.00 65.98 39.97
48.73 63.80 27.37 66.39 39.02
48.01 67.25 31.50 69.15 37.65
52.55 66.68 28.26 67.41 39.15
50.28 63.82 32.29 70.57 38.28
53.85 57.34 32.99 72.87 39.89
58.47 67.62 29.12 68.84 39.72
53.36 58.43 32.99 72.62 39.63
53.48 59.67 33.03 72.71 39.68
52.13 63.35 32.69 71.45 38.76
54.03 66.61 33.19 72.84 39.65
55.56 64.17 33.26 73.05 39.79
55.77 70.54 33.19 73.23 40.04
60.81 90.08 27.13 73.47 46.34
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Figure 28: Empirical and modeled variograms
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Table 28 shows the following results: columns 1 and 2 correspond to krig-
ing prediction and variance, columns 3-5 correspond to RRCM model with
Gaussian kernel, columns 6-8 correspond to RRCM model with polynomial
kernel.

Table 28: Results(µg/m3)

kriging variance lower upper interval lower upper interval

70.23 110.81 28.28 69.80 41.52 15.50 70.44 54.94
68.41 109.22 28.50 69.62 41.12 15.62 70.33 54.71
32.40 59.72 30.70 62.58 31.88 17.65 67.09 49.44
66.21 108.36 28.16 70.44 42.29 15.75 70.46 54.71
30.07 63.51 29.56 60.63 31.06 17.75 66.54 48.79
30.00 56.10 28.02 59.12 31.09 17.20 66.80 49.60
30.96 62.43 33.06 65.26 32.21 18.23 68.00 49.76
34.27 65.75 29.21 63.07 33.87 16.52 68.48 51.96
32.50 63.80 31.02 63.46 32.45 17.35 68.02 50.66
31.37 67.25 34.84 65.42 30.58 19.28 67.42 48.15
33.14 66.68 32.52 65.73 33.20 17.43 68.47 51.04
30.04 63.82 35.62 66.98 31.36 19.27 67.97 48.70
31.69 57.34 35.16 68.14 32.98 18.87 69.01 50.14
34.50 67.62 34.25 69.17 34.92 17.21 69.36 52.16
30.86 58.43 35.44 68.03 32.60 18.98 68.86 49.88
31.11 59.67 35.45 68.16 32.72 18.97 68.90 49.92
30.41 63.35 35.89 68.55 32.67 19.20 68.39 49.19
32.10 66.61 35.70 69.55 33.86 19.03 68.98 49.95
34.24 64.17 35.77 72.04 36.27 18.93 69.25 50.32
37.19 70.54 35.72 74.50 38.78 18.68 69.63 50.96
47.15 90.08 28.70 86.80 58.10 11.15 76.37 65.22
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Figure 29: Empirical and modeled variograms
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In Table 29, columns 1 and 2 correspond to ordinary kriging model with
exponential covariance, and columns 2-5 correspond to linear RRCM iid
model. Ridge factor equal to 0.01, confidence level equal to 0.95.

Table 29: Results (µg/m3)

kriging variance lower upper interval

55.67 110.86 25.71 75.91 50.20
55.78 109.28 25.83 75.90 50.07
52.29 59.72 26.88 72.00 45.12
56.40 108.45 25.90 76.51 50.62
48.61 63.45 26.17 70.85 44.68
51.49 62.45 28.64 75.13 46.50
46.76 60.25 26.21 71.92 45.71
47.74 67.41 29.54 74.63 45.09
48.35 64.46 26.83 72.69 45.85
48.66 64.26 29.98 75.95 45.97
53.55 64.84 29.70 78.39 48.69
53.68 66.82 29.64 78.58 48.94
51.19 66.76 27.35 73.83 46.48
52.71 64.53 29.91 78.24 48.33
52.60 65.49 29.93 78.31 48.38
48.76 63.86 30.16 76.74 46.58
50.70 67.54 30.33 78.25 47.92
48.43 61.40 30.28 77.70 47.42
49.15 71.01 30.24 78.24 48.00
58.53 89.99 24.99 78.00 53.02
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Figure 30: Empirical and modeled variograms

59



Table 30 shows the following results: columns 1 and 2 correspond to krig-
ing prediction and variance, columns 3-5 correspond to RRCM model with
Gaussian kernel, columns 6-8 correspond to RRCM model with polynomial
kernel.

Table 30: Results (µg/m3)

kriging variance lower upper interval lower upper interval

63.97 110.86 24.10 92.20 68.10 13.98 70.38 56.40
63.97 109.28 24.41 91.84 67.44 14.12 70.29 56.16
63.97 59.72 26.45 76.87 50.42 17.71 68.22 50.51
63.97 108.45 23.10 93.56 70.46 14.10 70.29 56.19
63.97 63.45 24.56 73.41 48.85 18.47 68.19 49.72
63.97 62.45 29.30 80.80 51.50 17.33 68.33 51.00
63.97 60.25 23.90 73.48 49.58 18.78 70.10 51.33
63.97 67.41 26.67 74.97 48.30 19.00 68.15 49.15
63.97 64.46 24.27 74.20 49.93 18.69 70.40 51.70
63.97 64.26 26.42 75.76 49.33 18.71 68.46 49.75
63.97 64.84 26.91 79.59 52.67 17.61 68.86 51.25
63.97 66.82 26.76 79.92 53.15 17.53 68.92 51.39
63.97 66.76 24.39 75.48 51.09 18.33 71.13 52.80
63.97 64.53 26.56 78.94 52.38 17.76 68.86 51.09
63.97 65.49 26.39 78.96 52.57 17.76 68.89 51.13
63.97 63.86 25.61 76.30 50.69 18.52 68.76 50.25
63.97 67.54 25.04 78.21 53.17 17.96 69.06 51.10
63.97 61.40 23.56 77.28 53.72 18.24 69.37 51.13
63.97 71.01 21.57 78.26 56.70 18.00 69.97 51.96
63.97 89.99 15.61 95.73 80.11 13.50 78.99 65.49
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Figure 31: Empirical and modeled variograms
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In Table 31, columns 1 and 2 correspond to ordinary kriging model with
exponential covariance, and columns 2-5 correspond to linear RRCM iid
model. Ridge factor equal to 0.01, confidence level equal to 0.95.

Table 31: Results (µg/m3)

kriging variance lower upper interval

42.74 58.16 -1.89 89.50 91.39
59.59 110.79 -6.67 88.86 95.53
59.79 109.21 -6.48 88.81 95.29
48.39 59.72 -1.31 87.08 88.39
61.19 108.34 -6.62 89.04 95.66
44.26 64.16 -0.41 87.56 87.97
41.54 60.38 -0.38 89.44 89.83
41.32 58.52 -0.02 88.99 89.01
53.92 62.43 -1.83 87.81 89.64
42.82 59.72 1.05 90.74 89.69
40.35 63.47 1.24 88.25 87.01
44.30 61.55 1.39 90.99 89.60
46.90 56.02 -1.83 90.27 92.10
46.20 55.74 -1.31 90.13 91.44
46.34 56.46 -1.31 90.20 91.52
42.81 57.05 0.48 89.64 89.16
44.80 58.88 0.23 90.67 90.44
46.07 69.55 0.14 91.50 91.36
54.63 89.76 -1.96 100.25 102.21
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Figure 32: Empirical and modeled variograms
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Table 32 shows the following results: columns 1 and 2 correspond to krig-
ing prediction and variance, columns 3-5 correspond to RRCM model with
Gaussian kernel, columns 6-8 correspond to RRCM model with polynomial
kernel.

Table 32: Results (µg/m3)

kriging variance lower upper interval lower upper interval

105.87 58.16 3.52 82.98 79.46 -9.23 88.93 98.16
107.06 110.79 -13.13 94.92 108.05 -15.58 91.87 107.45
107.01 109.21 -12.45 94.58 107.03 -15.31 91.68 106.99
105.71 59.72 4.55 83.39 78.84 -9.07 87.48 96.55
107.00 108.34 -15.46 95.86 111.32 -15.29 91.67 106.96
105.52 64.16 5.14 82.12 76.99 -7.95 87.24 95.19
105.68 60.38 5.36 82.07 76.72 -8.04 88.52 96.56
105.59 58.52 5.64 81.85 76.21 -7.70 88.10 95.80
105.80 62.43 3.90 84.71 80.81 -9.38 87.67 97.05
105.88 59.72 6.85 83.87 77.02 -7.99 90.04 98.04
105.34 63.47 7.35 81.36 74.01 -6.61 86.85 93.46
105.95 61.55 7.31 84.42 77.11 -8.12 90.49 98.61
105.86 56.02 4.44 84.07 79.63 -8.92 88.44 97.36
105.79 55.74 5.17 83.47 78.30 -8.54 88.27 96.81
105.80 56.46 5.07 83.56 78.49 -8.55 88.32 96.88
105.59 57.05 6.41 82.58 76.17 -7.41 87.91 95.32
105.79 58.88 4.78 84.74 79.96 -7.97 88.91 96.88
105.97 69.55 3.16 87.32 84.16 -8.51 89.90 98.41
108.82 89.76 -8.64 113.64 122.28 -18.75 105.48 124.23
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Figure 33: Empirical and modeled variograms
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In Table 33, columns 1 and 2 correspond to ordinary kriging model with
exponential covariance, and columns 2-5 correspond to linear RRCM iid
model. Ridge factor equal to 0.01, confidence level equal to 0.95.

Table 33: Results (µg/m3)

kriging variance lower upper interval

35.90 57.17 13.78 62.16 48.38
47.16 110.76 9.77 62.00 52.23
47.27 109.17 9.92 61.95 52.03
42.33 59.48 13.55 60.60 47.05
47.98 108.30 9.95 62.23 52.28
35.28 54.52 15.37 62.61 47.24
43.60 62.43 13.63 61.42 47.79
38.78 59.64 17.11 64.79 47.69
40.41 61.53 17.58 65.27 47.69
40.93 56.01 14.96 64.01 49.05
40.55 55.73 15.34 64.05 48.71
40.61 56.45 15.37 64.12 48.75
37.34 56.51 16.61 64.15 47.53
39.07 58.80 16.87 65.07 48.20
40.73 69.54 17.15 65.84 48.69
57.40 89.75 14.06 72.47 58.41
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Figure 34: Empirical and modeled variograms
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Table 34 shows the following results: columns 1 and 2 correspond to krig-
ing prediction and variance, columns 3-5 correspond to RRCM model with
Gaussian kernel, columns 6-8 correspond to RRCM model with polynomial
kernel.

Table 34: Results (µg/m3)

kriging variance lower upper interval lower upper interval

24.87 57.17 16.20 56.20 40.01 8.12 62.21 54.09
44.75 110.76 10.73 66.28 55.55 3.86 63.17 59.31
43.81 109.17 11.03 66.00 54.97 4.02 63.08 59.06
25.91 59.48 18.04 57.96 39.92 7.86 61.12 53.26
43.34 108.30 9.52 67.16 57.64 4.06 63.10 59.05
24.42 54.52 18.05 56.55 38.50 9.25 62.06 52.82
25.39 62.43 18.18 59.44 41.26 7.75 61.32 53.57
24.73 59.64 21.03 60.23 39.20 9.74 63.84 54.09
24.85 61.53 22.12 61.42 39.30 9.82 64.25 54.43
25.03 56.01 18.36 59.02 40.66 8.51 62.28 53.77
24.56 55.73 18.80 58.77 39.97 8.79 62.26 53.47
24.64 56.45 18.76 58.83 40.06 8.79 62.30 53.51
24.01 56.51 19.88 58.73 38.85 9.65 62.29 52.64
25.59 58.80 19.55 60.33 40.78 9.54 63.05 53.51
27.70 69.54 19.36 62.28 42.91 9.43 63.79 54.36
38.93 89.75 9.75 86.81 77.07 5.53 74.19 68.66
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Figure 35: Empirical and modeled variograms
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In Table 35, columns 1 and 2 correspond to ordinary kriging model with
exponential covariance, and columns 2-5 correspond to linear RRCM iid
model. Ridge factor equal to 0.01, confidence level equal to 0.95.

Table 35: Results (µg/m3)

kriging variance lower upper interval

35.41 57.17 20.71 48.92 28.22
29.26 66.09 19.72 48.58 28.86
30.20 72.35 19.90 48.84 28.94
35.47 54.52 22.02 49.61 27.59
35.35 61.37 22.02 49.53 27.52
37.61 59.64 23.55 51.41 27.86
37.98 61.53 24.05 51.91 27.87
37.33 58.84 24.04 51.49 27.44
37.20 53.81 23.19 51.97 28.77
37.25 51.43 23.40 51.98 28.58
37.41 58.63 24.13 51.97 27.84
35.60 56.30 24.35 52.75 28.39
37.64 89.65 25.35 56.91 31.56
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Figure 36: Empirical and modeled variograms
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Table 36 shows the following results: columns 1 and 2 correspond to krig-
ing prediction and variance, columns 3-5 correspond to RRCM model with
Gaussian kernel, columns 6-8 correspond to RRCM model with polynomial
kernel.

Table 36: Results (µg/m3)

kriging variance lower upper interval lower upper interval

25.87 57.17 21.88 49.01 27.14 17.03 48.55 31.53
26.54 66.09 16.99 49.04 32.06 14.56 48.69 34.12
26.57 72.35 16.78 49.85 33.07 14.60 48.71 34.12
25.50 54.52 23.32 49.48 26.16 17.67 48.47 30.80
25.50 61.37 22.34 48.87 26.53 16.77 47.86 31.09
25.74 59.64 24.16 50.85 26.68 17.91 49.47 31.56
25.77 61.53 24.44 51.19 26.75 17.93 49.68 31.75
25.31 58.84 24.70 51.17 26.47 17.93 48.30 30.37
25.84 53.81 23.49 51.63 28.15 17.24 48.49 31.25
25.75 51.43 23.80 51.63 27.83 17.39 48.48 31.09
25.47 58.63 24.56 51.71 27.15 17.87 48.52 30.65
25.71 56.30 24.17 52.79 28.62 17.79 48.95 31.16
28.46 89.65 16.07 58.50 42.43 15.03 54.98 39.95
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