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The dynamics of homogeneously heated granular gases which fragment due to particle collisions is ana-
lyzed. We introduce a kinetic model which accounts for correlations induced at the grain collisions and analyze
both the kinetics and relevant distribution functions these systems develop. The work combines analytical and
numerical studies based on direct simulation Monte Carlo calculations. A broad family of fragmentation
probabilities is considered, and its implications for the system kinetics are discussed. We show that generically
these driven materials evolve asymptotically into a dynamical scaling regime. If the fragmentation probability
tends to a constant, the grain number diverges at a finite time, leading to a shattering singularity. If the
fragmentation probability vanishes, then the number of grains grows monotonously as a power law. We
consider different homogeneous thermostats and show that the kinetics of these systems depends weakly on
both the grain inelasticity and driving. We observe that fragmentation plays a relevant role in the shape of the
velocity distribution of the particles. When the fragmentation is driven by local stochastic events, the long
velocity tail is essentially exponential independently of the heating frequency and the breaking rule. However,
for a Lowe-Andersen thermostat, numerical evidence strongly supports the conjecture that the scaled velocity
distribution follows a generalized exponential behavior f�c��exp�−cn�, with n�1.2, regarding less the frag-
mentation mechanisms.
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I. INTRODUCTION

Fragmentation is a phenomenon which arises commonly
in many natural and technological processes �1–5�. As a re-
sult, the performance and quality of many technological ac-
tivities are closely related to grain size control, which devel-
ops naturally in response to internal or external forcing.
Consequently, understanding and controlling the complex
phenomenology of fragmentation and the granular mixtures
to which it gives rise has both a clear applied and fundamen-
tal interest.

There are cases where fragmentation is basically only sen-
sitive to the grain properties. In this limiting situation, which
may arise when the external driving becomes dominant, the
fragmentation process does not depend significantly on par-
ticle collisions and the fragmentation dynamics is linear
�6,7�. However, for granular materials usually the interaction
between the grains plays a relevant role and the evolution is
nonlinear. Such scenarios include a wide variety of exter-
nally driven situations, such as granulate processing �1�, par-
ticle comminution �2�, shattering of solid objects �4�, or me-
teorite clouds �5�. Theoretical studies on nonlinear
fragmentation have been carried out, following mean-field
theory �6–8�, which neglect the role of particle velocities at
impact and describe the evolution of the particle size distri-
bution. These approaches to linear and nonlinear fragmenta-
tion have led to explicit results, providing insight into the
emergence of dynamic scaling regimes �6,7,9–11�.

In order to gain understanding of the physics of fragmen-
tation, during the past decades, quantitative experimental
studies have been carried out to analyze systematically the
physical processes involved in collision-induced fragmenta-

tion �4,12,13�. Early studies on the fragmentation of brittle
glass spheres smashed against a wall �12� showed that the
glass breaks into pieces of a wide range of sizes, which can
be characterized by a power-law mass distribution with a
characteristic exponent 2

3 . Although generically wide mass
distributions are obtained, Ishii and Matsushita �13� showed
that particle size distributions change from a log-normal to a
power-law distribution as the falling height increases. Fol-
lowing the same procedure, but using thick plates of dry clay,
Meibom and Balslev �14� figured out that the mass distribu-
tion of fragments presents a crossover between two different
power-law regimes also with remarkable size dependence.
Further studies on a variety of materials have led to the con-
clusion that size distributions vary significantly and that they
are more sensitive to the material properties rather than to the
particle shape �4�.

Computer simulations have also been used to study the
explosive fragmentation of particle clusters. Starting from a
thermalized cluster, this linear fragmentation process leads to
a wide distribution of fragment sizes, which was initially
characterized as an algebraic distribution with an exponent
−1 �15,16�. More recent studies have shown that the cumu-
lative fragment distribution is better described by the scaling
ansatz P�m��m−� exp�−�m /m0���, where m is the fragment
mass, m0 is a characteristic mass, and � is a nonuniversal
scaling exponent which depends on the temperature �16�.
Collision-induced fragmentation has also been explored
through computer simulations �17,18�. These studies have
shown that also these systems evolve into a mixture charac-
terized by power-law or log-normal fragment size distribu-
tion depending on the details of the fragmentation process
�18�.
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There has not been much effort devoted to the analysis of
the collective properties of granular materials emerging as a
result of collision-induced grain fragmentation. In comminu-
tion, computer simulations have shown the development of
force chain networks and the role of their spatial distribution
of the comminution efficiency in ball mills �17�. For homo-
geneous granular gases, earlier studies have focused on their
kinetics and have characterized the corresponding dynamical
regimes �11,19�. We want to extend previous results and ana-
lyze the kinetic evolution of granular gases when energy is
injected homogeneously. The careful and systematic study of
such simplified scenarios will help to clarify the relative im-
portance of the competing processes which determine the
dynamic evolution of granular materials. Since fragmenta-
tion is related to the collisions suffered by the grains, one
needs to account both for the grain velocity and size as well
as for grain inelasticity and the energy lost at each collision.
Previous studies have shown that the material properties and
the mechanics of fragmentation affect the grain size distribu-
tion. Therefore, rather than concentrating on a realistic mod-
eling of fragmentation for a particular material, we will de-
scribe the breakup process of grains as a stochastic process
and consider a wide family of fragmentation events. We are
interested in understanding which features of such processes
become relevant in the material collective response, which
can be better addressed from a more general framework. It is
well known that for these driven systems some properties
depend on the details of energy injection. To assess the role
of such a mechanism in the fragmentation kinetics, we con-
sider some previously proposed thermostats �20–23�. We
implement two types of momentum-conserving thermostats,
which allow a more faithful description of the intrinsic dy-
namics, and describe which features depend on the particular
thermostat under scrutiny.

We introduce the model in Sec. II. In Sec. III we analyze
the kinetic evolution of the granular gas analytically in the
asymptotic dynamic scaling regime. Such a study sets al-
ready the role of the fragmentation probability and its inter-
relation with grain number. In Sec. IV we describe the nu-
merical method, based on direct simulation Monte Carlo
�DSMC� calculations, which allows us to verify the hypoth-
esis of dynamic scaling and provides us with the size and
velocity distributions these granular gases develop as a result
of their intrinsic dynamics. We report the main results of this
numerical model in Sec. V and conclude with a summary of
the main results and perspectives.

II. MODEL

We consider a gas of spherical particles of radius � which
interact through hard-core potentials; therefore, all collisions
are binary and instantaneous. For a D-dimensional system, at
each collision a fraction �1−�2� / �2D� of the relative kinetic
energy is lost, where ��1 is the restitution coefficient ��
=1 corresponds to completely elastic particles�. Since energy
is not conserved for ��1, a freely evolving gas will even-
tually be arrested. Energy must be injected to reach a steady
state; hence, in theses systems the steady-state features are
intimately related to the energy injection mechanisms. We

will concentrate in the simplest case where energy input is
homogeneous, leading to homogeneous steady states.

Since grains are extended objects, they will develop de-
fects as a result of their subsequent collisions, and defect
buildup leads eventually to particle breakup. During grain
collisions the relative kinetic energy of the incoming collid-
ing pair will be stored transiently as elastic potential energy
Ep and a part of it will be recovered as kinetic energy. The
details of this process and the corresponding particle defor-
mations will determine how defects develop and lead to par-
ticle fragmentation. Experimental studies on the collisions of
particles against large obstacles have shown that very brittle
materials break if the stored potential energy becomes larger
than a characteristic threshold, while soft particles will typi-
cally accumulate energy dissipation on a number of colli-
sions, leading to damage evolution and defect growth, before
breaking up �24�. Detailed theoretical studies which address
how energy is stored and dissipated during the interaction
between grains and their dependence on grain deformation
will be extremely helpful to gain detailed insight into the
origin and propagation of particle defect generation �25�.

Rather than describing in detail how grains deform and
store energy during their interaction, we will regard colli-
sions as instantaneous and use the relative incoming kinetic
energy of the grain pair as a measure of the stored potential
energy. Due to the intrinsic uncertainty of grain breakup, we
then adopt a statistical description of the fragmentation
event. To this end, we use the stored energy Ep and grain size
to determine the breaking probability of the colliding par-
ticles; hence, the fragmentation can be regarded as a stochas-
tic process. Since we do not keep memory of the collision
events of the grains, this approach corresponds to brittle ma-
terials, although the generalization to soft particles is
straightforward.

The larger the accumulated potential energy at a collision,
Ep, the larger the chance that grain defects increase, leading
to grain breakup. Since the number of defects grows with
grain area, a usual form for the breaking probability is given
by the Weibull distribution �26�; we generalize it to a frag-
mentation probability of the form

P��,Ep� = 1 − exp�− A0��Ep
�� , �1�

where A0 is a material parameter which characterizes the
relevant size and energy scales involved in particle fragmen-
tation �26�. The Weibull distribution corresponds to the par-
ticular case �=D−1 and �=0. The exponents � and � may
be either positive or negative. If their combination leads to a
decrease of the product ��Ep

�, then typically the fragmenta-
tion probability will decrease with time. On the contrary, an
increasing product will lead to an effective constant fragmen-
tation probability after a transient and the fragmentation pro-
cess will become independent of the details of the colliding
grains. In all cases, the model we will analyze differs from
standard fragmentation models based on the mean-field frag-
mentation equation which do not correlate particle fragmen-
tation with grain collisions �6�.

To complete the description of fragmentation, we have to
specify the number, size, shape, and velocities of outgoing
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particle fragments and how they are related to the broken
grain. Here the situation is more controversial, and in general
it depends on the mechanisms which drives fragmentation.
For collision-induced fragmentation, the Roslin-Rammer law
is commonly used �6�. In the present work, for simplicity’s
sake we will assume that a fragmenting grain breaks into two
offsprings which will keep the spherical shape of the parent.
The mass of the parent is conserved, and it is distributed
uniformly between the two offsprings. The fragments also

inherit the parent velocity, and we will disregard energy dis-
sipation during the fragmentation process.

If we neglect the role of fluctuations and concentrate on
the mean behavior of the system, the homogeneous Boltz-
mann equation will determine the time evolution of homoge-
neous granular gases through the temporal evolution of the
one-particle distribution function f�v ,� , t�, where v stands
for the particle velocity. In a D-dimensional space this equa-
tion reads

� f�v,�,t�
�t

=
1

2
� du g�u�� dv1dv2d�1d�2d�̂ 	�v12 · �̂��v12 · �̂��12

D−1
„f�v1,�1,t�f�v2,�2,t�	− 
�v − v1�
�� − �1�

− 
�v − v2�
�� − �2� + �1 − P��1,Ep1��
�v − v1
��
�� − �1� + �1 − P��2,Ep2��
�v − v2

��
�� − �2�

+ P��1,Ep1�
�v − v1
���
�� − �1 · u1/D� + 
�� − �1 · �1 − u�1/D�� + P��2,Ep2�
�v − v2

���
�� − �2 · u1/D�

+ 
�� − �2 · �1 − u�1/D��
… + Ff�v,�,t� , �2�

where �̂ is a unit vector joining the centers of the colliding
grains. The Heaviside function 	 ensures the appropriate ki-
nematic constraint that only approaching grains will collide,
while �v12· �̂��12

D−1 accounts for the collision cross section. In
the previous equation v12=v1−v2 and �12= ��1+�2� /2, while
g�u� corresponds to the probability density that one of the
offsprings, in the case of fragmentation, has a mass u times
the parent mass. Mass conservation implies g�u�=g�1−u�. In
the model we will analyze subsequently, we will concentrate
in the simplest case where this distribution is uniform—i.e.,
g�u�=1 and 0�u�1.

The first two terms on the right-hand side of Eq. �2� ac-
count for the disappearance of particles of velocity v due to
collisions. Through collisions, particles with velocity v are
also generated from grains with precollisional velocities v�.
It is through these precollisional velocities that the inelastic
character of the collision enters through the inelasticity pa-
rameter �. Indeed, the precollision velocities v1

� and v2
�, in

terms of the post-collisional ones v2 and v2 �the relevant
velocities to describe the kinetic evolution�, are given by

v1
� = v1 −

m2

m1 + m2
�1 + �−1���̂ · v12��̂ , �3�

v2
� = v2 +

m1

m1 + m2
�1 + �−1���̂ · v12��̂ , �4�

The two terms in Eq. �2� containing the prefactor 1
− P�� ,Epi� correspond to collisions in which, with probabil-
ity 1− P�� ,Epi�, particles do not break. The last four terms
account for the fragmentation of grain 1 with mass m1 �
=�1

D� �grain 2 with mass m2�, leading to the creation of two
offsprings with masses um1 and �1−u�m1 �um2 and �1
−u�m2�. Mass conservation leads to correlation between the
sizes of the newborn particles.

The last term in the Boltzmann equation corresponds to
an external forcing which injects energy in the gas. In its
absence, for ��1, the system cools, leading asymptotically
to a system at rest. Energy is usually introduced inhomoge-
neously through the boundaries. However, we will concen-
trate on homogeneous systems and will study homogeneous
thermostats. Different one-particle thermostats have been
proposed in the literature �23�; we identify them generically
as Ff�v ,� , t� and will analyze some of them in more detail in
subsequent sections.

In order to gain insight into the nature of the fragmenta-
tion of inelastic granular gases, we will consider in Sec. III
the kinetic evolution of averaged quantities for which it is
possible to carry out a detailed analytical study. In Sec. IV
we describe the numerical method we will use subsequently
in Sec. V to validate the theoretical predictions and analyze
the grain size and velocity distributions in the dynamical
scaling regime. We conclude in Sec. VI with a discussion of
the main results derived and their implications for the kinet-
ics of fragmenting gases.

III. KINETICS

The kinetics of homogeneous fragmenting systems can be
addressed through the study of moments of the distribution
function, Mnm�t���0

�d��−�
� dv �nvmf�v ,� , t�, in the frame-

work of the Boltzmann equation. For example, mass conser-
vation implies that M =MD0 does not evolve in time, as can
be easily verified from Eq. �2�. The total number of grains,
N�t��M00�t�, increases monotonically in time. Its evolution
can be derived again from Eq. �2�, leading to

dN

dt
= �̃�t�N�t� , �5�

where �̃�t� is the fragmentation frequency, given by

DRIVEN FRAGMENTATION OF GRANULAR GASES PHYSICAL REVIEW E 77, 061305 �2008�

061305-3



�̃�t� =
1

2N�t�� d�̂ d1 d2 �12
D−1	��̂ · v12�


��̂ · v12�f�v2,�2,t�f�v1,�1,t��P��1,Ep1�

+ P��2,Ep2�� . �6�

The shorthand notation d1 d2 stands for dv1d�1dv2d�2, and
P��1 , Ep1�, the breaking probability, makes it explicit that
the number of grains increases only due to fragmentation.

For inelastic grains, the global energy E�t��MD2�t� is not
conserved and evolves according to

dE

dt
= − bc�t���t��0E + �0

2� , �7�

where �0= 1−�2

2D and bc is the dimensionless collisional aver-
age given by

bc =
D

2�Ec
� d�̂ d1 d2 	�v12 · �̂�


�v12 · �̂�3
m1m2

m1 + m2
f�v1,�1,t�f�v2,�2,t� , �8�

and � is the collision frequency, which reads as

��t� =
1

N�t�� d�̂ d1 d2 �12
D−1	��̂ · v12�


��̂ · v12�f�v1,�1,t�f�v2,�2,t� . �9�

For constant fragmentation probability P�� ,Ep�= p0, the
fragmentation and collision frequencies are directly propor-
tional to each other, �̃�t�= p0��t�, showing the close correla-
tion between collision and fragmentation events. The last
term in Eq. �7� accounts for energy injection through a ho-
mogeneous thermostat. It does not appear in Eq. �5� as the
thermostat conserves the number of particles. The factor �0
characterizes the magnitude of the energy input �a freely
evolving granular gas corresponds to the limiting case �0
=0 when no thermostat acts on the system �11��, while the
specific type of thermostat will determine the functional
form of �. The kinetic evolution of fragmenting gases is
determined by the dependence of the thermostat on the col-
lision frequency and hence on how � depends on ��t�. In
Sec. V we will discuss the relevance of the energy injection
mechanism on size and velocity grain distributions.

One can make further analytic progress assuming that af-
ter a transient the material relaxes into a dynamic scaling
regime described by a unique characteristic velocity v̄�t� and
size r̄�t�. In this scaling regime, the time dependence enters
only through the time evolution of these characteristic quan-
tities. Accordingly, the time dependence of the distribution
function reduces to

f�v,�,t� �
N�t�
r̄v̄D f̃�c,�̄� , �10�

where we have introduced the rescaled size and velocity

c =
v

v̄�t�
, �̄ =

�

r̄�t�
. �11�

A natural choice for the characteristic velocity v̄ is the vari-
ance of the velocity distribution v̄2= 
v2�, while for the char-
acteristic length r̄, we take the mean particle radius r̄= 
��.
The dependence on N�t� comes from the normalization con-
dition. Mass conservation implies that the mass for each par-
ticle, m, scales as m�1 /N. Hence the characteristic size de-
creases as �̄�N−1/D. As a result, the collision frequency
evolves as

��t� � ṽ N�t��̄D−1 = ṽ N�t�1/D. �12�

In the dynamic scaling regime, f̃�c , �̄� becomes a normalized
time-independent distribution which shows that in this re-
gime the relative amounts of the different species which
evolve internally through the fragmentation do not change in
time. Dynamic scaling has been shown to hold on different
types of fragmenting systems �11,27�; we will analyze its
implications assuming dynamic scaling holds and will check
its validity in the next sections.

In order to study the time evolution of a fragmenting gas,
it is useful to consider an intrinsic time scale C directly re-
lated to the number of collisions suffered by a particle �28�:

dC = � dt . �13�

In terms of this new time scale, Eq. �5� can be expressed as
dN /dC=N�t��̃�t� /��t�. Accordingly, the particle number
evolution in the scaling regime reduces to

dN

dC
� P„�̄�t�,Ēp�t�…N�t� , �14�

where Ēp�t� will be a function of �̄ and v̄. In the scaling
regime, the generalized Weibull breaking probability relaxes
either to a constant p0 or vanishes as a power law,
P�� ,Ep����Ep

�. Therefore, the results we will describe are
in fact applicable to any fragmentation probability with
asymptotic algebraic behavior. Since Ep is of the order of the
kinetic energy that a particle carries during a collision, Ep
�mv̄2� v̄2 /N, the fragmentation probability reduces to

P��̄,Ēp� � v̄2��̄�N−� � v̄2�N−D�+�/D. �15�

After substituting Eq. �15� into Eq. �6�, we also obtain the
time evolution of the fragmentation frequency:

�̃�t� � v̄N�̄D−1P��̄,Ēp� � v̄2�+1N1−�D−�/D. �16�

We will now analyze the different kinetic scenarios associ-
ated to the thermostat heating frequency.

A. Freely evolving granular gas

Let us start by considering the evolution of a freely evolv-
ing gas, with a size-dependent breaking probability. This lim-
iting situation corresponds to Ff�v ,� , t�=0 in the Boltzmann
equation, when no energy is injected. In this case, the energy
evolution equation reduces to
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dE

dC
= − 2bc�0NE , �17�

yielding

E = E0e−2bc�oC, �18�

where E0 is a characteristic energy scale in the scaling re-
gime. The total energy is related to the typical particle veloc-
ity because in the scaling regime E�t��N�̄Dv̄2� v̄2. Hence,
substituting Eqs. �18� and �15� into Eq. �14� leads to

dN

dC
= N1−�/D−�E0

�e−2bc�0�C. �19�

There are different kinetic scenarios with qualitative varia-
tions in the time evolution of the number of grains depending
on the temporal evolution of the fragmentation probability

1. Constant fragmentation probability

This is the simpler case, which corresponds to �=�=0
and has been analyzed previously �11�. In this scenario the
breaking probability is p0 and the time evolution of the num-
ber of grains reads simply

N = N0ep0C, �20�

where N0 is the initial number of grains in the scaling re-
gime. In order to obtain the explicit time dependence, we
need to solve Eq. �13�. Using the relation between collision
frequency and particle number, one arrives at

dC
dt

= N0
1/DE0e−bc�0C+C/D, �21�

which leads to

C =
1

bc�0 − 1/D
ln�1 + �bc�0 −

1

D
�E0

1/2N0
1/2�t − t0�� .

�22�

Accordingly, the time evolution of the number of grains and
energy reduces to

N = N0�1 + �bc�0 −
1

D
�E0

1/2N0
1/2�t − t0��1/bc�0−p0/D

,

�23�

E = E0
1

�1 + �bc�0 − 1
D�E0

1/2N0
1/2�t − t0��2bc�0/bc�0−p0/D .

�24�

In the absence of fragmentation, p0=0, the number of par-
ticles does not increase and the energy vanishes as E�t�
� t−2, which corresponds to the well-known Haff’s law �29�.
Hence, Eq. �24� can be regarded as a generalization of Haff’s
law for fragmenting grains. For �=1 the energy is obviously
conserved.

In the presence of fragmentation, the number of particles
will diverge. For bc�0− p0 /D�0 the number of particles di-
verges asymptotically, while for bc�0− p0 /D�0 this diver-

gence takes place at a finite time, giving rise to shattering
�30�. Everything else being constant, increasing p0 increases
the possibility of generating a shattering singularity. Since
the total mass is conserved, the divergence in the number of
particles implies that a dust is generated.

2. Decreasing fragmentation probability

In a freely evolving system, if the fragmentation probabil-
ity vanishes asymptotically, the system will not develop any
singularity in the number of grains. It evolves now as

N = N0�1 + � E0
���/D + ��

2bc�0�N0
�/D+���1 − e−2bc�0�C��D/�+�D

,

�25�

and for C→� the system ends up with a finite number of
grains, N�:

N� = N0�1 + � E0
���/D + ��

2bc�0�N0
�/D+���D/�+�D

. �26�

In order to know the explicit time evolution, we need to
solve for the number of collisions as a function of time as we
have done before. The relation between the number of colli-
sions and time now reads

dC
dt

= N1/Dv = N1/DE1/2e−2bc�0C. �27�

For a large number of collisions, C tends asymptotically to

C =
1

�0
ln� bc�0�t − t0��1 +

E0
�� �

D
+��

2bc�0�N0
�/D+�

�1/�/D+�

1F2�− 1
2 , 1

�+� , 1
2 ,0�

� , �28�

and, accordingly, the total energy decays as

E =
E0

bct0�t − t0�2
1F2

2�− 1
2 , 1

�+� , 1
2 ,0�

�1 +
E0

���/D+��
2bc�0�N0

�/D+��2/�/D+� , �29�

where 1F2 is a generalized hypergeometric function. Equa-
tion �29� has the same time dependence predicted by Haff.
Such a result is not surprising given that asymptotically the
number of cooling particles becomes constant.

For the singular case �
D +�=0 and ��0 the previous sce-

nario does not change qualitatively. In this particular situa-
tion the number of grains evolves as

N = N0eE0
�/2bc�0��1−e−2bc�0�C�, �30�

which for C→� saturates to

N� = N0eE0
�/2bc�0�. �31�

The evolution equation for the number of collisions is sim-
pler, leading to

C =
1

bc�0
	ln�bc�0E0

1/2N0
1/2�t − t0��
 . �32�

Finally, the energy decays as
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E�t� =
1

N0�bc�0�t − t0��2 , �33�

which recovers again the time dependence predicted by Haff.

B. Kinetics of homogeneous steady states

In order to reach a steady state with a constant mean
kinetic energy, it is necessary to inject energy in the system.
However, since the number of grains increases with time, the
frequency of energy injection should also increase accord-
ingly. Hence, ����t�. In this case the energy evolution can
be written as

dE

dt
= − 2�0bc�E + �2� , �34�

leading to an asymptotic state characterized by a mean total
energy

E =
�2

2bc�0
= E�. �35�

As we have pointed out earlier, v̄2�E, implying that the
mean velocity per particle does not evolve in time. As a
result, the kinetics in these states is controlled only by the
particle size. Specifically, the number of grains increases as

dN

dt
= N1/DvN−�/D−�v2�N , �36�

which in terms of E� reads as

dN

dt
= E�

�+1/2N�, �37�

with �=1+ 1
D − �

D −�. The general solution of Eq. �36� shows

N = N0�1 − �� − 1��t − t0�E�
�+1/2N0

�−1�1/1−�. �38�

For ��1 the number of particles increases algebraically:

N�t� � �t − t0�1/1−k. �39�

The form of the generalized Weibull breaking probability
leads to different scenarios. If ��1, at long times the num-
ber of grains increases algebraically as N�t�� t1/�1−��. On the
contrary, for ��1 a finite-time singularity at a shattering
time ts develops and the number of grains in its vicinity
diverges as N�t���ts− t�−1/��−1�. The limiting situation �=1
displays an exponential increase in the number of grains,
which diverges at infinity.

In the present framework, a constant breaking probability
corresponds to �=�=0. If the breaking probability does not
vanish, one always observes a shattering singularity and the
number of grains in its vicinity diverges as N��ts− t�−D. This
situation corresponds to materials whose fragmentation prob-
ability does not depend significantly on the grain size and
energy as it may happen for certain brittle materials �24�.
Finally, for standard Weibull fragmentation distributions the
breaking fragmentation is related to the density of surface
defects. Accordingly �=D−1 and ��0, and in this case the
number of grains grows algebraically at long times, N�t�
� tD/�D��+1�−2�.

If energy injection scales generically with the collision
frequency through an exponent �, ����, then typically for
��1 the granular gas heats up indefinitely, while for ��1 it
cools down. Depending on the details of the fragmentation
process different kinetic scenarios are possible for both �
�1 and ��1.

IV. DIRECT SIMULATION MONTE CARLO TECHNIQUE

A more detailed study of the kinetics of fragmenting gases
requires the use of numerical analysis. To this end, we have
adapted the direct simulation Monte Carlo technique, which
has been widely used in the context of rarefied gases �31�
and granular gases �23,32�, and has been used recently to
analyze fragmenting granular gases �11�.

The assumption of spatial homogeneity simplifies the
implementation of the DSMC technique, because it is
enough to sample uniformly the relative orientation of col-
liding pairs �̂ without the need to keep track of particle po-
sitions. Sequentially, a pair of particles is selected at random.
Then �̂ is chosen randomly on the unit sphere and the kine-
matic constraint is checked. In case the particles can collide,
the cross section is computed and the collision takes place
proportionally to its value. If the collision takes place, we
need to decide if a colliding grain will subsequently break.
To evaluate the fragmentation probability we estimate the
stored elastic energy Ep as the relative kinetic energy of the
incoming colliding pair. On this basis we compute the frag-
mentation probability. If the fragmentation event is accepted,
the grain breaks into two offsprings. During this process,
mass, energy, and momentum are conserved. The collision
frequency for a collision involving grains i and j can be
computed on the basis of the cross section, and hence the
time is advanced accordingly at each collision:

t → t +
1

N2�vij · �̂��ij
D−1 , �40�

where N is the instantaneous number of grains.
In order to reach a steady state where the mean kinetic

energy per particle is fixed, it is necessary to inject energy
into the system. Although the kinetic evolution of the mean
quantities is not sensitive to the details of the forcing mecha-
nism, we will compare the implications of different thermo-
stats on grain distribution functions. We describe first the
different thermostats we have implemented.

Energy injection: Thermostats

We will analyze several procedures to input energy in a
fragmenting dissipative gas. It is well known that for mono-
disperse granular gases the mechanism used to inject energy
to reach a steady state determines the deviations observed
from Gaussianity in the velocity distribution function
�23,33�. The role of inelasticity on velocity statistics has
been studied through Sonine expansions for different kinds
of thermostats �23,33�. Numerical results have shown that
the grain velocity distribution is by no means universal and
depends on both the thermostat and grain interactions �33�.
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The simplest way to fix the mean kinetic energy of a
particle system was introduced by Andersen �20�, who pro-
posed that particles collide with a virtual massive particle
with frequency �. This procedure fixes the temperature of the
particle to that of the thermostat, and in practice it means that
the velocity of a particle is reassigned from a Gaussian with
frequency �. Accordingly, in the interval �t a grain suffers a
heating collision with probability � �t. For a sufficiently
high � the velocity distribution corresponds to the Gaussian
imposed by the bath; hence, it is possible to fix the tempera-
ture, although the system’s dynamics is essentially controlled
by the interaction with the thermostat.

In granular fluids, injecting energy homogeneously by ap-
plying a random force of prescribed amplitude with a given
frequency � has attracted the attention of many theorists
�21,33–35�. If this heating frequency scales with the collision
frequency, a steady state is reached in which the mean ki-
netic energy of the system does not change. Such a steady
state arises as a competition between energy injection and
energy dissipation. While Andersen fixes the temperature re-
gardless of the properties of the system, this second energy
injection mechanism will in particular lead to a diverging
temperature for an elastic gas; hence, the temperature is a
function of the inelasticity coefficient.

These two energy injection mechanisms conserve mo-
mentum only on average. One can enforce momentum con-
servation by subtracting the overall net momentum homoge-
neously over all particles. For a fragmenting system where
particles of disparate sizes coexist, such a procedure can lead
to large transient perturbations for the smallest species.

An alternative to the Andersen thermostat has been re-
cently proposed by Lowe �22�. According to this Lowe-
Andersen thermostat, with a frequency � the relative velocity
of a randomly chosen pair of particles is selected from a
prescribed Gaussian. As was the case for the Andersen ther-
mostat, also here the velocity distribution will obey a Gauss-
ian distribution with the prescribed temperature imposed by
the thermostat if the heating frequency is at least of the order
of the collision frequency. The advantage of this thermostat
is that momentum is conserved, and hence the dynamics of
the grain velocity field will be properly accounted for; tech-
nically, we also avoid the problem of subtracting the center-
of-mass acceleration and its impact on small-size grains.
Specifically, for a randomly chosen pair of grains i and j,
their velocities are reassigned according to

vi = Vc.m. +
�

mi

w

2
, v j = Vc.m. −

�

mj

w

2
, �41�

where Vc.m.= �mivi+mjv j� / �mi+mj� is the center-of-mass ve-
locity and w is a random velocity chosen from a prescribed
Gaussian distribution.

A similar local generalization of the homogeneous ran-
dom acceleration thermostat can be proposed: the relative
homogenous forcing thermostat. With a fixed heating fre-
quency � a pair of particles is selected at random and a
randomly chosen force with a prescribed mean amplitude,
F0, is applied to both particles in opposite directions. This
local acceleration thermostat also preserves momentum con-
servation by construction and can therefore capture properly

the dynamics of the collective variables of the system. Spe-
cifically, for a chosen pair of grains i and j,

mivi = miVc.m. + �g + F0, mjv j = mjVc.m. − �g − F0,

�42�

where �=mimj / �mi+mj� is the reduced mass and g=vi−v j
the relative velocity. We have verified that in the absence of
fragmentation the velocity distribution functions already re-
ported for homogeneous random forcing �21,23� are recov-
ered.

V. NUMERICAL RESULTS

We will analyze the results obtained from DSMC simula-
tions. We will validate the dynamic scaling scenario investi-
gated theoretically in Sec. III and will subsequently describe
the mass and velocity distributions which characterize the
evolution of these fragmenting systems in the scaling regime.
The numerical results are restricted to spatially homogeneous
two-dimensional gases, D=2, of hard disks. In all the simu-
lations we start from an equilibrium system of monodisperse
disks and study their evolution after a transient once the sys-
tem has lost memory of its initial state.

A. Kinetics

In order to validate the dynamic scaling regime, we have
computed the total number of particles, N�t� and the mean
absolute velocity 
v2�1/2 as well as different moments of the
particle size distribution, 
�n��t�. If dynamic scaling holds,
then 
�n�� �r̄�n and all the curves 
�n�t��1/n should become
parallel to each other. For D=2, mass conservation ensures

m1/2�= 
���N−1. In Fig. 1 we display the time evolution of
the quantities mentioned for a homogeneously forced granu-
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FIG. 1. Time evolution in a log-log scale of the mean size and
characteristic velocities for different values of the restitution coef-
ficient � and a constant fragmentation probability p=1 /100. An
auxiliary time scale � is used to highlight the functional depen-
dence, and the corresponding analytical power-law decays are dis-
played as solid lines. In the inset we display different moments of
the mass distribution.
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lar gas with different degrees of inelasticity, where grains
break upon colliding with a constant probability p=1 /100.
Since a shattering divergence appears at a finite time, we use
the auxiliary time scale d�= N�t�

No
dt, introduced in Ref. �11�. In

this intermediate scale, the divergence shifts to infinity, while
the algebraic dependence of the typical size and velocity is
preserved, although with modified exponents. For example,
the mean mass decays as 
m���−2 �see Sec. III B�, a behav-
ior that is clearly recovered in our numerical analysis of the
Boltzmann equation as displayed in Fig. 1. In the figure one
can appreciate the time scale in which the steady state is
reached by tracing the variation of the mean grain velocity. A
further validation of the dynamic scaling is shown in the
inset, where we display several moments of the particle size
distribution, which decay parallel to each other rather soon
as the steady state is reached.

We have modified the inelasticity parameter and have ob-
served always the same temporal dependence. Introducing a
Lowe-Andersen thermostat does not lead to any significant
deviation, consistent with the results which show that the
behavior of the relevant size is only sensitive to the fre-
quency of energy injection. We have also analyzed the ki-
netic evolution of a heated granular gas through a Lowe-
Andersen thermostat when the fragmentation probability
follows a generalized Weibull distribution, Eq. �1�, in which
defect formation is proportional to the grain surface ��=D
−1� and decreases continuously with time. In this case, the
number of particles does not show any singularity, as can be
appreciated from Fig. 2, which displays results for �=2. A
dynamic scaling regime is achieved as soon as the system
reaches its steady state. In the inset we show the time depen-
dence of the fragmentation probability for different values of
� and compare them with their theoretical prediction. In the
scaling regime an asymptotic algebraic decay of the frag-

mentation probability is found. The results depicted are not
modified if the thermostat and/or the degree of inelasticity
are varied.

The results obtained with the DSMC technique validate
the theoretical framework introduced in the previous section,
according to which two different scenarios emerge in driven
granular gases. If the fragmentation probability does not
show a significant time dependence, then the number of
grains will exhibit a finite time divergence characteristic of a
shattering singularity. On the contrary, if the fragmentation
probability decays algebraically to zero, so that it becomes
less probable that grains of a given relative size break as time
evolves, then the number of grains increases algebraically
with an exponent related to the rate of decrease of the frag-
mentation probability.

B. Particle mass distributions

Grain fragmentation leads to a time evolving polydisperse
mixture, and in the asymptotic dynamic scaling regime this
polydisperse mixture changes only through the mixture mean
particle size and velocity. In Fig. 3 we show results for the
scaled mass distribution f� m


m� �, of a granular gas driven by a
Lowe-Andersen thermostat which breaks with a constant
breaking probability p=1 /100. The distribution function
shows an exponential decay at large sizes as displayed in the
inset. However, for small particles the size dependence is
consistent with an algebraic decay with exponent
−0.75�0.05. This implies that there is no singularity in the
mass distribution at small masses. We have observed that the
scaled mass distribution is independent of the inelasticity
parameter. However, a different behavior is observed for
elastic fragmenting grains, which do not need a thermostat to
reach a steady state. In this case the mass distribution is
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similar to the one described for large and intermediate
masses, but displays a qualitatively different behavior from
that of inelastic grains in the region of small particles. It is in
fact characterized by the formation of extremely small
grains: a powder. This powder signals the existence of a
fragmentation process �6�, in which the small fragments tend
to follow a sequence of breaking events, due to the high
velocity of the smaller particles.

We can also apply the Lowe-Andersen thermostat to the
elastic gas. In this case the system is brought to a steady state
where the temperature is fixed by the thermostat. The mass
distribution shows a qualitative change and becomes essen-
tially identical to that of inelastic grains, which displayed an
algebraic decay at small masses. This fact shows that inelas-
ticity is not as relevant, as it would seem at first sight, and
that the velocity distribution plays a relevant role in the pro-
cess of collision-induced fragmentation, as we will discuss in
the next subsection. If a local homogeneous random forcing
thermostat is applied to inelastic gases, the scaled mass dis-
tributions recovered are essentially equivalent to the ones
shown in Fig. 3.

We display in Fig. 4 the scaled mass distributions of a
heated granular gas which fragments following a generalized
Weibull distribution. We consider a local forcing thermostat
and analyze the impact of modifying the shape of the frag-
mentation probability distribution by changing �. For small
particles the mass grain distribution becomes uniform. In
fact, the smaller the grains, the less likely they will break; as
a result, they evolve more slowly than their larger counter-
parts. The latter induce a more uniform distribution of sizes
which might be associated with the development of an effec-
tive threshold at small sizes. In the limiting case when the
fragmentation probability does not depend on grain velocity,
�=0, the large mass tail is consistent with an exponential. As
� increases, there is an asymptotic departure toward an alge-
braic behavior characterized by an exponent −2.3�0.05 in-

dependent of �. However, with the current data it is not pos-
sible to determine whether this algebraic behavior is indeed
the true asymptotic regime.

We have considered a system of elastic grains in the lim-
iting case �=0 and have observed that for a vanishing frag-
mentation probability the mass distribution does not show
the deviations reported in Fig. 3. If a Lowe-Andersen ther-
mostat is used instead of local relative forcing, the scaled
mass distributions are not significantly altered. Finally, Fig. 5
shows the independence of the mass distributions on the in-
elasticity parameter for a generalized fragmentation Weibull
distribution with parameter �=2, when a Lowe-Andersen
thermostat is considered. One can clearly see that the inelas-
ticity does not affect the relative distribution of masses and
that in the elastic limit no deviations are observed.

C. Particle velocity distributions

As we have pointed out earlier, in the asymptotic dynamic
scaling regime the polydisperse mixture which characterizes
the fragmenting gas evolves only through the mean particle
size and velocity. For a freely evolving elastic gas which
breaks with constant probability, large deviations from a
Maxwellian distribution are observed because smaller par-
ticles acquire a proportionally larger velocity, as depicted in
Fig. 6�a�. This marked deviation can be traced to the asym-
metric dynamic behavior of small and large grains, as shown
in the inset of Fig. 6�a�. It becomes clear that the maximum
in the grain velocity distribution at a finite velocity comes
from smaller grains, a behavior analogous to the one ob-
served previously for freely evolving nearly elastic grains
�11�. The characteristic velocities of the smallest and largest
fractions of the grains differ significantly.

The functional form of the velocity distribution depends
on the fragmentation process; for a generalized Weibull frag-
mentation probability, the asymmetric behavior of small and
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large grains is lost �see Fig. 6�b��. It is noticeable that during
fragmentation the generation of very fast and light particles
is again detected. However, in the scaling regime the effec-
tive breaking probability decreases as the number of particles
within the system increases, as can be appreciated in Eq.
�15�. This decrease prevents the formation of a dust of small
grains.

The mechanism of energy injection does affect the shape
of the velocity distribution, even in the absence of fragmen-
tation due to the breakdown of detailed balance �23,33,36�.
In general, overpopulated high-energy tails with asymptotic
decay f�c��exp�cn� are obtained. Hence, power-law and
Gaussian tails correspond to borderline cases �33,36�. An ex-
ample of the latter is obtained with a Lowe-Andersen ther-
mostat at high injection frequency �37�. For momentum-
conserving thermostats, we have analyzed the velocity
distributions obtained in the steady states in the absence of
fragmentation. In Fig. 7 the scaled velocity distributions ob-
tained for several frequencies of energy input are displayed.

In order to assess the effect of the thermostat on the
asymptotic, large velocity decay, we assume a functional
form f�c��A exp�−Bcn� and estimate the exponent n using
the infinite limit of the corresponding logarithmic derivative:

n = lim
c→�

�

� ln c
ln�ln� f�0�

f�c�
�� . �43�

In the insets of Figs. 7�a� and 7�b� we show the estimated
exponents for Lowe-Andersen and local acceleration thermo-
stats. The Lowe-Andersen thermostat gives rise to
asymptotic tails consistent with a Gaussian n=2.05�0.05,
independently of the heating frequency when the number of
heating events suffered by a grain between collisions is large.
For the local acceleration method, we obtain n=1.6�0.05,
which is consistent with the same decay f�c��exp�c−3/2� as
predicted for the already studied random forcing thermostat
�21,23�. The mean values and the confidence intervals are
estimated using the n data values for c�1 in the high-
frequency limit.
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Collision-induced grain fragmentation interferes signifi-
cantly with the grain velocities and leads to significant de-
partures in the velocity distribution function with respect to
their counterparts in the absence of grain breakup. In Figs.
8�a� and 8�b� we show results for granular gases, which
break with a constant fragmenting probability. Additionally,
Figs. 9�a� and 9�b� illustrates the scaled velocity distributions
of fragmenting granular gases which break through a gener-
alized Weibull distribution. For each case, two energy injec-
tion mechanisms have been explored. The data in Figs. 8�a�
and 9�a� correspond to a local Lowe-Andersen thermostat,
while Figs. 8�b� and 9�b� show the outcomes obtained from
systems in contact with a local acceleration thermostat. The
insets of the figures display the value of the exponent n,
assuming that the distribution follows a generalized expo-
nential decay f�c�=A exp�−Bcn�.

For the Lowe-Andersen thermostat �Figs. 8�a� and 9�a��,
independently of the breaking mechanisms, the scaled veloc-

ity distributions are compatible with generalized exponential
decays exp�−cn�. In the case of fragmenting systems with
constant breaking probability the decay has been consistent
with n=1.20�0.05, and for velocity-dependent breaking
rules the asymptotic exponents numerically are n
=1.15�0.05. The reported values correspond to the limit
where a grain, on average, suffers a large number of heating
events between collisions.

For the local acceleration thermostats �Figs. 8�b� and
9�b�� the velocity distributions are more robust to changes in
the heating frequency. Given the numerical precision, the
changes are always minor and we can consider that essen-
tially the decay is exponential n�1 regardless of the heating
frequency.

In general, we observe a very weak dependence of the
shape of the distribution on the breaking rule. Moreover, for
the ranges explored the shape of the velocity distribution is
independent of the heating frequency. All numerical evidence
strongly supports that in driven fragmentation the scaled ve-
locity distribution follows a generalized exponential behav-
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ior f�c��exp�−cn�, where the exponent n is fairly insensitive
to the fragmentation mechanisms. In Fig. 10 we show also
that both the degree of grain inelasticity and the exponent
which characterizes the Weibull distribution do not affect
significantly the grain velocity distributions.

Finally, the velocity distributions of a subset of grain spe-
cies �data not shown� show different widths and mean val-
ues. This cast doubts on the meaning of a single temperature
to characterize fragmenting polydisperse granular mixtures.
The absence of a common temperature invalidates the use of
perturbative calculations—e.g., through a Sonine
expansion—to determine the deviations from Gaussian be-
havior. The existence of a stationary size distribution sug-
gests the possibility to map the fragmenting granular gas
onto an effective polydisperse mixture with a time-dependent
mean. Although this is indeed possible in principle, we do
not have any simple theoretical framework to predict either
the power-law decays or the details of the tails of f� m


m� � and
f�c�.

VI. CONCLUSIONS

We have studied the kinetics of granular gases which can
fragment upon collision. We have shown that generically the

gas evolves at long times to a dynamic scaling regime, in
which its properties are controlled by the temporal evolution
of the mean grain size and velocity. We have seen that the
interplay between collisions and fragmentation leads to
strong correlations in the temporal behavior of the fragment-
ing gases. Therefore, the kinetics in these materials arises as
a balance between these two processes. This fact shows that
collision-induced fragmentation imparts the system with
properties which are different from other systems in which
the fragmentation depends on the particle sizes, but not on
their velocities, such as in the standard mean-field theory of
fragmentation. This result is complementary to the observa-
tion in coagulation systems, where also the correlations be-
tween the velocities of the colliding pair and their structural
properties determining the likelihood of aggregating produce
kinetic scenarios which differ from those based on Smolu-
chowski approaches �38�. We have performed a wide study,
in which we have varied the grain fragmentation probability,
the inelasticity of the grains, and the way in which energy is
imparted in the system, although we have restricted our-
selves to homogeneous gases. We have implemented differ-
ent thermostats and have in particular proposed a new forc-
ing thermostat which conserves momentum locally.

We have obtained analytic results for the time evolution
of the number of grains in the asymptotic regime and have
shown that it depends both on the gas properties and the
details of the fragmentation process. Although we have con-
sidered that fragmentation is determined by a generalized
Weibull distribution, the analysis has shown that the granular
gas evolution is controlled by the asymptotic behavior of the
effective fragmentation probability. If the fragmentation
probability is constant or tends asymptotically to a constant
value, then the number of grains diverges at a finite time; a
shattering singularity develops and the system will form a
dust. On the contrary, if the mean breaking probability tends
algebraically to zero, the divergence at finite time is generi-
cally not present. In this respect, the results obtained are
generic for any fragmentation probability which vanishes
analytically. In both cases information on the breaking kinet-
ics can be induced from the temporal increase in the grain
number and opens an alternative procedure to study the de-
tails of the fragmentation process in granulate materials. In
the scaling regime, we have also analyzed mass and velocity
distributions. We have seen that the fragmentation process
plays a relevant role in the shape of the mass distribution and
that it also interferes with the velocity distribution of the
particles. When the fragmentation is driven by local stochas-
tic events, we have shown that the long velocity tail is es-
sentially exponential independently of the heating frequency
and the details of the breaking process. On the contrary, the
Lowe-Andersen thermostat leads to a scaled velocity distri-
bution which follows a generalized exponential behavior
f�c��exp�−cn�, with n�1.2.

The results obtained generalize previous studies on freely
cooling fragmenting gases, but are still restricted to spatially
homogeneous systems. The insight gained will be relevant to
address the kinetics of similar systems under inhomogeneous
drivings, which are more relevant from the understanding of
transport and handling of granular materials.
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FIG. 10. Linear-log plot of particle velocity distributions, scaled
by their mean velocities. Results �a� for particles with different
breaking probabilities, Eq. �1�, changing � and keeping �=0.5, and
�b� several inelasticities are illustrated with �=2.
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