
Intelligent Task-Level Grasp
Mapping for Robot Control

JOSEP MARIA COMAS JORDÀ

Master’s Thesis at NADA
Supervisor: Staffan Ekvall, CVAP/CAS

Examiner: Jan-Olof Eklundh, KTH
October 2006

A tothom qui ho ha fet possible.

Abstract

In the future, robots will enter our everyday lives to help us with various tasks.
For a complete integration and cooperation with humans, these robots need
to be able to acquire new skills. Sensor capabilities for navigation in real hu-
man environments and intelligent interaction with humans are some of the key
challenges.

Learning by demonstration systems focus on the problem of human robot
interaction, and let the human teach the robot by demonstrating the task using
his own hands. In this thesis, we present a solution to a subproblem within the
learning by demonstration field, namely human-robot grasp mapping. Robot
grasping of objects in a home or office environment is challenging problem.
Programming by demonstration systems, can give important skills for aiding
the robot in the grasping task.

The thesis presents two techniques for human-robot grasp mapping, direct
robot imitation from human demonstrator and intelligent grasp imitation. In
intelligent grasp mapping, the robot takes the size and shape of the object into
consideration, while for direct mapping, only the pose of the human hand is
available.

These are evaluated in a simulated environment on several robot platforms.
The results show that knowing the object shape and size for a grasping task
improves the robot precision and performance.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Project Goals . 2
1.3 Outline . 3

2 Related Work 5
2.1 Teleoperation . 6

2.1.1 Definition: Teleoperation 8
2.2 Human-Robot Interaction . 9
2.3 Natural Interfaces . 10

3 Background 11
3.1 Programming by Demonstration 12

3.1.1 Implementation of PbD System 14
3.2 Sensors . 16

3.2.1 Computer Vision . 16
3.3 Grasp Mapping . 17

3.3.1 Classifying Grasps Taxonomies 18
3.4 Dinamic scene interpretation . 18

3.4.1 Grasp Recognition . 20
3.4.2 Object Recognition . 21
3.4.3 Object Movement . 22

3.5 Task Execution . 23

4 Implementation 25
4.1 Data acquisition . 26

4.1.1 Data Gloves . 26
4.1.2 Magnetic Trackers . 26
4.1.3 Nest of Birds as a Data Glove 27

4.2 Modeling using Artificial Neural Networks 29
4.2.1 Motivation for Using Artificial Neural Networks 29
4.2.2 Neural Network Theory 29
4.2.3 Artificial Neural Networks 31
4.2.4 Fast Artificial Neural Network 34
4.2.5 FANN Data Modeling . 35

4.3 Mapping . 37
4.3.1 Graspit! . 38

5 Mapping Human Grasps to Robot Grasps 40
5.1 Direct Mapping for a Robot Hand 42

5.1.1 Barrett Hand . 43
5.1.2 DLR Hand . 46
5.1.3 Robonaut Hand . 47

5.2 ANN training . 48
5.2.1 Choice of Training Algorithm 48
5.2.2 Number of Hidden Neurons 51
5.2.3 Number of Training Postures 52

5.3 Intelligent mapping based on object shape 55

6 Object Grasping Results 56
6.1 Object Grasping using Direct Mapping 56
6.2 Object Grasping Aided by Shape and Size Knowledge 58

6.2.1 Basic Shape: Cylinder . 58
6.2.2 Basic Shape: Cube . 59

6.3 Object Grasping Comparison . 60

7 Conclusions and Future Work 63
7.1 Conclusion . 63
7.2 Future Work . 63

Bibliography 64

List of Figures

2.1 Development of operator effort in robotics, source [1]. 8

3.1 The general process of robot Programming by Demonstration. . . 12
3.2 The Programming by Demonstration process when the task is

known to the robot. 13
3.3 System structure for a Programming by Demonstration imple-

mentation. 15
3.4 Grasp mapping strategy . 18
3.5 Cutkosky’s grasp hierarchy. 19
3.6 Different possible grasps for picking up a cup. 20
3.7 CHH applications: (a) model images and typical result of object

recognition in spite of background clutter and partial occlusion.
The matched model image source [2] (b)Camera view of scene,
before and after filtering with the background image, source[3]. . 23

3.8 Two different robotic platforms: (a) Service robot platform AL-
BERT (b) Experimental platform on XR4000. 24

4.1 Our system structure for intelligent grasp mapping in a PbD
framework. 25

4.2 Example of two different commercial Data Gloves of 5DT Data-
Glove Series : (a) 5DT Data Glove 5 (b) 5DT Data Glove 16 . . 26

4.3 Nest of Birds Real-time Motion Tracking 27
4.4 The glove used for measuring human input. 28
4.5 Simplified human neuron. 30
4.6 An artificial neuron. 31
4.7 A fully connected multilayer feedforward network with one hidden

layer. 32
4.8 A fully connected multilayer feedforward network with one hidden

layer and bias neurons. 33
4.9 The primitive model used for the toy airplane with the generated

set of grasps to be tested, and five of the best grasps found sorted
in quality order source[4]. 38

4.10 The several Robot Hands and arms available in Graspit! simula-
tor . 39

5.1 Three different robotic manipulators studied in this thesis: (a)
Barrett hand (b) DLR hand (c) Robonaut hand. 40

5.2 Example of the everyday objects used for training: (a) Objects
related to cubic shapes and examples of typical grasps trained
(b) Objects related with cylinder shapes and examples of typical
grasps trained. 41

5.3 Cylinder and cube Shape Cartesian coordinates. 41
5.4 Example of a two-layer network used for Barrett hand mapping.

There are nine input neurons and four output neurons to fit the
number of Barrett DoFs and the same number of hidden neurons.
The black circles represents the bias units (always 1). 43

5.5 Four training postures used for the Barrett hand: Open hand,
Thumb closed, Index finger closed and Little finger closed. 44

5.6 First alternative training postures to control all DOF of a Barrett
hand. The distance between the index and little finger is used to
control the spread angle. 45

5.7 Second alternative training postures to control all DOF of a Bar-
rett hand. Two fingers of robotic hand are controlled with the
index finger, and the closure angle of remaining finger is con-
trolled with the thumb. The fourth DOF is controlled by the
little finger. 45

5.8 Training postures for the DLR hand. Four different postures:
open hand, thumb closed, index finger closed and little finger
closed that controls two fingers in the DLR hand. 46

5.9 Two collision examples for the DLR and Robonaut hand. Here,
we can see that thumb finger is locked. To solve the situation the
fingers have to be unfolded in correct order. 47

5.10 Two examples of mapping to avoid colisions for the DLR and
Robonaut hand. Here, for cylinder grasp thumb finger is not
locked by the others. 47

5.11 Training postures for Robonaut hand. Four different postures
are used: open hand, thumb closed, index finger closed and little
finger closed. 48

5.12 ANN training graph for the Barrett hand, for four different FANN
algorithms. Black: Batch algorithm, green: Rear propagation,
blue: Quick propagation and red: Incremental. 49

5.13 Error difference for each trained position and sum of all of them
for a Barrett hand ANN, comparison between four different train-
ing algorithms. Black: Batch algorithm, green: Rear propaga-
tion, blue: Quick propagation and red: Incremental. 49

5.14 Posture error comparison between different number of hidden
neurons for Barrett hand training. Note that this graph starts at
2 neurons. 51

5.15 Posture error comparison between different number of hidden
neurons for DLR hand training. Note that this graph starts at 2
neurons. 51

5.16 Posture error comparison between different number of hidden
neurons for Robonaut hand training. Note that this graph starts
at 3 neurons. 52

5.17 Four new test positions for testing the DLR direct mapping net-
work. They are: index/little finger half closed, index/little fingers
closed, thumb and little fingers half closed and thumb and little
fingers closed. 53

5.18 Comparison of posture error in DLR network for the number
of training postures, Note that starts with four basic postures.
(a)Average posture training error. (b) Average posture test error. 54

5.19 New neural network for intelligent mapping implementation, in
red the new neuron added for object size. 55

6.1 Three test grasps towards objects. Precision grasp on three dif-
ferent cylinders. 56

6.2 Error difference for three different grasps, comparison between
trained data and new acquired data. Gray: trained data and
Black: not trained data. 57

6.3 Comparison between trained and not trained positions, in grasp-
ing with direct mapping network (a)Position with trained data
(b) Position with not trained data, from same human position. . 57

6.4 Examples of training postures given to the system. 58
6.5 Error difference for three different grasps, comparison between

training and test error for the same postures. 59
6.6 Position comparison for cylinder shape and sphere grasp with

DLR hand (a) Human position demonstration (b) Network posi-
tion for trained data (c) Network position for untrained data. . . 59

6.7 Error position difference for three different grasps. Comparison
between training and test error for the same human posture. . . 60

6.8 Comparison of grasp postures for correct and wrong size in input:
(a) Robonaut grasp demonstration (b) Position obtained with
correct size in input(wood cube see table 5 on Page 42) (c)
Position obtained with wrong size in input (carton box see table
5 on Page 42). 60

6.9 . 61
6.10 Position comparison for small cylinder shape and sphere grasp

with Robonaut hand (a) human position demonstration (b) demon-
strated grasp position (c) obtained grasp position with mapping
aided by shape and size knowledge. 62

6.11 Position comparison for big cube and wrap grasp with DLR hand
(a) human position demonstration (b) demonstrated grasp posi-
tion (c) obtained grasp position with mapping aided by shape
and size knowledge. 62

List of Tables

5.1 Table of size for trained Cylinder objects, with radius and height
size in mm. 42

5.2 Table of size for trained Cube objects, with Depth, Height and
Length size in mm. 42

List of Acronyms

AI Artificial Intelligence

AGI Agents for Gesture Interpretation

ANN Artificial Neural Networks

CCH Color Cooccurrence Histograms

DOF Degree of Freedom

FANN Fast Artificial Neural Networks

FSR Field and Service Robots

GBP Gesture-Based Programming

GWS Grasp Wrench Space

HMD Head Mounted Display

HMM Hidden Markov Models

HO Human Operator

HRI Human-Robot Interaction

IEEE Institute of Electrical and Electronics Engineers

IROS Intelligent Robots and Systems

NASA National Aeronautics and Space Administration

NoB Nest of Birds

NN Neural Networks

PbD Programming by Demonstration

PDA Personal Data Assistant, hand held computer

RSJ the Robotics Society of Japan

SLAM Simultaneous Localization and Mapping

SMM Sensory-Motor Map

USB Universal Serial Bus

VPT View-Point Transformation

2D Two Dimensional

3D Three Dimensional

Chapter 1

Introduction

The next generation of robots will be placed in our homes and help us in every-
day lives. The number of possible tasks these robots may help us in is huge and
we cannot expect the robots to arrive pre-programed for all these tasks. The
end-users of robots and devices will be unexperienced in programming and not
familiar with classical ways of programming. Classical robot task programming
requires an experienced programmer and a lot of tedious work. Hence, a system
which allows the user to demonstrate the task in a natural way by manipulating
real objects is nowadays an important field of research.

Two main technological steps will take robots from factories to homes.
First development of perception and navigation capabilities in an unstructured,
changing environments. Second development of the capability of continuous
communication with humans, rapid learning/adaptation to new work tasks. The
first step has almost been taken. The rapid development of sensor technology
(especially commercial laser scanners) and continuous increase in processing
power, allows for heavy image processing and Simultaneous Localization and
Mapping (SLAM) techniques. This made it possible to allow slowly moving
robots to enter into the same areas as humans. However, since the difference
between performance of animals is huge, it becomes clear that a lot of work
remains to be done.

The second step is still far from being completed. Traditional industrial
robots are mechanically capable of changing tools and performing different work
tasks. Due to the nature of factory work, the time between reprogramming is
relatively long and therefore interactive communication and continuous learn-
ing is not needed. The most sophisticated programming methods allows task
design, testing and programming off-line with a simulation tool without any
contact with the robot itself. Commercial mobile robots like vacuum cleaners
and lawn mowers are limited to a single task by their mechanical construction.
A multitask service robot needs both mechanical flexibility and high level of ”in-
telligence” in order to carry out and learn several different tasks in continuous
interaction with the operator. Instead of being a ”multitool”, the robot should
be capable of using different kinds of tool designed for humans. These tasks
depend on the environment the robot will operate in and cannot be entirely
preprogrammed. It is therefore important to equip the robot with capabilities
that allow it to learn new tasks or refine the existing ones either through direct
interaction with the environment or through a teaching process with a user.

1

1.1. Motivation 2

The main demand for these robots is almost complete human-machine in-
teraction. Human expects machines with humanlike capabilities but this still
difficult to be provide. The main bottlenecks are physical robotic constrains and
intelligence, the existing physical constraints can be avoid by systems more in-
telligent and better human-robot interaction. The interaction should be natural
for human and adapted at very limited learning capabilities in current robotic
systems. The interaction should be optimized between these two limits, robot
intelligence and natural human demonstration.

1.1 Motivation

It is clear that to date, no robot hand with the same capabilities and flexibility
as the human hand have been developed. The technology in the robotic field is
advancing fast, but it have still not been possible for a robot hand to perform
the wide list of different grasps of the human hand.

For a human it is easy to recognize an object and directly grasp this object as
have been done thousands of times before. Helped by our cerebellum coordinates
and all of our muscles and movements which allows us to perform all the every
day movements in a intuitive way, avoiding the need to think with our brain.
For our robots even if they are able to recognize the object, they cannot grasp
it unless they know how. They can learn by training grasping on a common
object, but it would be even better if they were able to relate the shape of the
object to another object, previously known, and then perform a similar grasp
only changing the approach for the differences on size of the object.

A Programming-by-Demonstration framework is based on robot imitation
and learning from a human teacher by observation, to allow users without pro-
gramming education to easily instruct a robot. The rapid development of sensors
is giving the robots the capabilities to interact with humans in everydays envi-
ronments, and the state of the art in PbD gives robots the possibility to learn
how humans perform different grasps. We still have a big problem. Robots are
not able to perform the same movements and grasps as humans. Depending
on the kinematics of the manipulator different mappings between human and
robot spaces are needed, a non-linear grasp mapping from human hand to the
robot hand is necessary.

1.2 Project Goals

Understanding and interpreting dynamic scenes and activities is a very chal-
lenging problem. Programming-by-Demonstration is a flexible framework that
reduces the complexity of programming robot tasks. PbD allows end-users to
demonstrate the tasks instead of writing code, providing a programming system
useful for every end-users and is able to learn a wide list of new tasks.

The basic idea in the field of programming-by-demonstration is to develop
a system able of learning tasks demonstrated by a human teacher, in natural
environments and with real objects. The system is given the ability to under-
stand the real situation and transform it into the limited robot world, using a
mapping from human hand to robot hand.

1.3. Outline 3

The goal is to develop an artificial cognitive system acting in everyday envi-
ronments capable of learning actions commonly induced by humans, a system
capable of learning pick-and place tasks by manually demonstrating them.

The main purpose of this project is to develop a system capable of learning
robot tasks from demonstration. The system should be capable of recognition
and modeling human grasps in a natural way. In this project we focus our
work on robotic hands. As mentioned their capabilities are still far from a real
human hand. Hence, when a PbD system is faced, our robots must know the
existing differences between the robot manipulator and human hand, and apply
an intelligent system to cope with these differences. For all of these reasons an
Intelligent Grasp Mapping System is an important goal in robotics field.

1.3 Outline

Currently, our world is changing faster than ever, new objects are introduced
in our life every day, and as humans we have a huge capability of adaptation
and learning, for example what is this new object?, how to use this new object?
are solvable questions for ourself. Adaptation was an opposite word with the
traditional idea about robotics. The traditional robots are preprogrammed and
they know what to do when the task has been programed before, but if they
find a new challenge, they are not able to solve a new task or new situation that
they have not been programmed for. To introduce these new capabilities for
robots an expert programmer and a lot of tedious work is required. A solution
of this traditional problem in robotics field is Programming by Demonstration.

In chapter 2, new techniques for controlling and programming robots are
studied as Programming by Demonstration, that give robots the capability to
learn and adapt to new objects and environments, by interaction with humans.
Teleoperation and Human-Robot Interaction are both techniques based on the
cooperation between human and robots, in order to perform certain tasks that
otherwise would be dangerous or impossible to do for a human. Also, natural
interfaces are studied to enable human-robot communication in an easy way, or
in a specific way for disabled persons.

In chapter 3, is explained the general process of PbD systems, possible so-
lutions for PbD implementation and grasp mapping situation within complete
PbD system. Shows some possible applications for grasp mapping system. Also,
at the beginning of this chapter is given a grasp classification.

To arrive to the goal of this project we must demonstrate the possibility
for robot hands to learn a new non-linear mapping towards different everyday
objects. The implementation of this system is explained in chapter 4. The
system implementation was divided in three main phases:

• The data acquisition phase that in our case is done through a data glove
using a general sensor device called Nest of Birds.

• The modeling phase using ANNs which is the main contribution of this
project. Using this method, strategies are studied and evaluated to find
the needed mapping between human and robot hands.

• The final mapping result is obtained using simulation with Graspit! simu-
lator, a versatile tool that allow us to see and to evaluate our mappings in

1.3. Outline 4

a easy way without need of using expensive robotics systems not available
to us.

In chapter5 we test and evaluate several mappings for different objects and
robot hands. Using the system we model the mapping between the human
hand space and the more limited robot hand space. This work consists of two
steps. In the first step, a linear mapping is done between human hand and robot
hand. In this part transmission of movement is direct and does not always make
sense when an object is to be grasped. We call it direct or linear mapping, and
it is motivated to call this a non-intelligent mapping. In the second step, we
improve our system to get a non-linear mapping where the mapping depends
on the object to be grasped. It has the ability to adapt to the object shape.
Thus, we call this an intelligent mapping. To know and understand the possible
grasps for a human hand and the possible resulting grasp applied for different
robot hands. This classification gives the own robotic system the capability
understand to how humans grasp objects.

Results obtained with different mapping systems are shown in chapter 6.
For different systems and with different robotic hands and objects. In this part
we study real capabilities of grasp mapping systems.

Finally, in Chapter 7 we extract some conclusions of our work done and
comment on possible future work, how the system could be improved and which
new features could be added.

Chapter 2

Related Work

In the literature study of this thesis we have studied several publications in the
field of Programming-by-Demonstration(PbD), as well as different techniques
in robot grasping, the main purpose of this project. Also, Artificial Neural
Networks(ANN) have been studied because they are used throughout the project
to learn from human input. Below is a short introduction of the work previously
done in PbD, and a more detailed description is provided in the next chapter.

Much of the research that has been done in PbD considers Intelligent Grasp
Mapping to be an important technique in order to do real interactive grasp
mapping between human and robot hands. For example, [3] discuss a system
capable of learning and replicating tasks demonstrated by human teacher, and
how this can be integrated to a PbD solution. In [5], the general process of a
PbD system is described. It is based on Demonstration, Action Segmentation,
Interpretation, Abstraction, Mapping and Execution. The abstraction design
depends on the purpose of the system. In general, each task is decomposed into
a number of actions. In these papers the interpretation system is built from two
independent modules: Object Recognition and Grasp Recognition, concerned
on understanding what has been demonstrated, rather than how to execute the
task.

A common learning strategy is to generate a number of training sequences
and build a representation that later is used for on-line control of the robot hand
motion. One of the problems encountered in human based learning settings is
how to record the human action. A popular approach here is to use sensors
such as a data glove or a magnetic tracker to retrieve the hand and fingertip
positions. In [6],[7] and [8] PbD systems using a data glove is used to learn
mappings between a human hand and several robot hands.

In [9], a setup is presented for controlling a four-finger robot hand using
a dataglove. They present a solution for mapping human and artificial hand
workspace using a neural network to implement a nonlinear learning calibration,
that enables the operator to intuitively and easily telemanipulate objects with
the artificial hand.

Other techniques have been studied, e.g., [10], where two new techniques for
Gesture Imitation are presented, Sensory-Motor Map (SMM) and View-Point
Transformation (VPT). The VPT allows the robot to map observed gestures to
canonical point-of-view. The final step consists in transforming these mapped
features to motor commands, which is referred to as the SMM. The SMM can

5

2.1. Teleoperation 6

be computed explicitly if the parameters of the arm-hand-eye configuration are
known a priori, and it can also be learned from observations of arm/hand mo-
tions.

Gesture-Based Programming(GBP) is a form of programming by human
demonstration. The technique relies on the existence of previously acquired
robotic skills, which are approximately the robotic equivalents of everyday hu-
man experiences. The interpretation of the human demonstration and matching
to robotic primitives is a qualitative problem. In [11], they made an approach
for this problem using skilled agents. The defined Agents for Gesture Inter-
pretation are Gesture Recognition Agents and Gesture Interpretation Agents.
They are interested in the interpretation of four types of manual and articula-
tory gestures for GBP. These include symbolic gestures, such as the pre-shape
of dexterous grasp, motion gestures, such as transporting or manipulating an
object, tactile gestures, such as fingertip contact force, and articulatory gestures,
which are utterances such as when an error is made.

Not only PbD techniques have been studied, because despite significant ad-
vances in the field of artificial intelligence, human intelligence is far superior in
terms of reasoning, language comprehension, vision, and ingenuity, among oth-
ers. Some tasks may require both the acute reasoning and perceptive abilities
of a human, and the strength and precision of a mobile manipulator. Therefore,
it is good to design a control scheme such that humans may easily cooperate
with the robots. Hence, another type of robot control system, teleoperation,
was studied in [12],[1],[13]. A teleoperation system allow people to control ma-
chines in remote locations, generally inaccessible to humans. Because of its
many benefits, such as increasing the reachability and safety of humans, the
topic of teleoperation has been studied extensively for decades[14]. Controlling
mobile robots through teleoperation is a challenging task that demands a flexi-
ble and efficient user interface. Mobile robots are often equipped with numerous
sensors(proximity sensors, system status sensors, positioning and heading de-
vices, multiple cameras, etc.) that provide a high volume of data to the user[15].
The area of teleoperation systems will be explored more thoroughly in the next
section.

Related to PbD and teleoperation systems, Human-Robot interaction is a
key subject that let robots enter in everyday human life. Human-Robot inter-
action and Natural Interfaces show us that, while controlling a service robot,
the operator has several possibilities when interacting with the robot.

2.1 Teleoperation

Robots are slowly moving from factories to mines, construction sites, public
places and homes. This new type of robots should be capable of performing
different kinds of tasks in unstructured changing environments, not only among
humans but through continuous interaction with humans. The main require-
ments for service robots(FSR) are mobility, advanced perception capabilities,
high ”intelligence” and easy interaction with humans. Although mobility and
perception capabilities are no longer bottlenecks, they can nevertheless still be
greatly improved. The main bottlenecks are intelligence and the human-robot
interaction(HRI). Despite huge efforts in ”artificial intelligence” research, the
robots and computers are still very ”stupid” and there are no major advance-

2.1. Teleoperation 7

ments on the horizon. This emphasizes the importance of HRI. In the subtasks,
where high-level cognition or intelligence is needed, the robot has to ask for
help from the operator. In addition to task commands and supervision, the
HRI has to provide the possibility of exchanging information about the task
and environment through continuous dialogue. Furthermore, methods for direct
teleoperation, and robot interfaces based on high-level cognitive interaction, are
needed.

Unhanded vehicles have developed from teleoperated machines to multitask
service robots during the last 60 years. Some applications are in remote un-
structed environments such as battlefield robotics, (nuclear) waste cleanup, con-
struction in space, underwater operations, etc. Such tasks are not foreseen to be
achievable with high degrees of autonomy, due to cost constraints, technological
unfeasibility, and/or high levels of operational uncertainty, and will consequently
require mediation by a human operator(HO). In general, the role of the HO in
teleoperation systems is expected to range anywhere from continuous close loop
manual control to monitoring semi-automated systems with some degree of local
control autonomy.

Mechanical manipulators developed rapidly to electric servos and finally to
unmanned vehicles. Vehicle teleoperation was enabled by the possibility of
transferring control and image data between the vehicle and the operator. This
can already be seen as a primitive HRI. Despite the fact that a teleoperated
vehicle does not fulfill any of the definitions of a robot, it can still be seen as a
precursor to the robot. Step-by-step, the teleoperation technology was improved
to telepresence-based technology by increasing the sensory feedback and the
possibility of the operator controlling the sensor positions. Both traditional
teleoperation and telepresence include the operator as ”a main processor” in
the control loop[16]. All the sensors information is brought to the operator and
he controls all the actuators directly. In telepresence, the amount of sensor data
and controllable actuators have been increased with the help of special interface
devices like Head Mounted Display HMDs, head trackers, datagloves, etc.[17]

Robotics emerged along with digital processor technology, which made it
possible to program autonomous functions of a vehicle or a manipulator. Most
of today’s robots are manipulators, which typically repeat the same task con-
tinuously and are reprogrammed infrequently. Typically, the operator’s help is
not needed during the operation. The existing commercial service robots, like
vacuum cleaners and lawn mowers, are similar types of single-task robots. The
operator simply switches them on and leaves them to perform the task. If the
robot has problems during the task, e.g., gets stuck, it has to wait until the
operator notices the situation and solves the problem.

The situation changes dramatically when the robot has to solve several more
complicated tasks, including object/environment recognition and manipulation.
Despite the continuously increasing computing power and development in ”ar-
tificial intelligence”, the autonomous abilities of robots remain very limited. In
all the more complicated tasks, human help is needed. Human help can take the
form of direct teleoperation or higher-level action like giving verbal instructions,
but in all cases it involves the human as part of the task execution control loop
of the robot[18]. The human effort can be either pre-planned or non-planned.
The non-planned effort is usually called intervention[19],[18] and it can be ac-
tivated by both the robot and the operator. However the need for the operator
effort decreases the autonomy of the robot, and increases both the operator load

2.1. Teleoperation 8

and the transferred amount of information between the robot and the operator.
The development of the needed operator effort between a robot and an operator
is illustrated in Figure 2.1 .

Figure 2.1: Development of operator effort in robotics, source [1].

Instead of a single robot, the robot can also be of a type that includes
several independent entities[20]. One operator is not capable of operating such
a swarm by direct teleoperation. However, increasing the autonomy of the
robots and operator actions to task level, the teleoperation of swarming robots
is also possible and can be achieved based on the same principles as the control
of a single robot.

The aim of the robots is to serve and help humans, not vice versa. In a way,
the single-task is perfect: human intervention is not needed during the task and
the operator is released for other tasks. If the human effort is anyway needed
to control the robot, it has to be in a sensible relation to the realized payback
of the robot performance in a certain task. As mentioned before, the formula
is totally task dependent. In some simple tasks, even a minimal intervention
of the operator is too much, whereas the unmanned aerial vehicle Predator
requires continuous control of several operators[21]. The best way to study this
optimization problem is to use the well-known definition of usability[22]. First of
all, effectiveness: Can the robot complete the commanded tasks and achieve the
goals? If yes, the next question relates to efficiency: How much effort does the
robot, and especially the operator, require to perform the task? If the operator
effort is too big in comparison to the result, the robot should not be used at all.
And finally comes satisfaction: What does the operator think about the ease of
use?

2.1.1 Definition: Teleoperation

The term teleoperation refers simply to the operation of a vehicle or system over
a distance [23]. Broadly, all interaction with a mobile robot comes under this
definition. Traditionally, teleoperation is divided into direct teleoperation and
supervisory control. In direct teleoperation, the operator closes all control loops

2.2. Human-Robot Interaction 9

himself, while when in supervisory control a remarkable amount of the control
is exercised by the teleoperator, i.e., the teleoperator is a robot. The term
teleoperation refers to direct teleoperation, while supervisory control is handled
under human-robot interaction. In today’s digital world it has to be noted that
even in the case of the direct teleoperation there usually exist control loops in
the teleoperator. Typically these loops control the position or the velocity of
the ”directly” controlled actuators. The author has used the term coordinated
teleoperation in [24] to separate this case from supervisory control. Here the
teleoperator is always a moving work-machine/robot. In the case of a station-
ary robot the situation is slightly different. If the human is in the vicinity of the
robot, he perceives more information than just the robot sensor values. Hence,
the control of the robot is more simple.

Teleoperation information from [1] and [24].

2.2 Human-Robot Interaction

As mentioned in the introduction of this chapter, the service robots need human
help as part of the task-processing loop. The help can be occasional advice[18],
periodic teleoperation [25], continuous dialogue [26] or some combination of
these. The most intensive operator effort is needed when new tasks are taught
to the robot. The main interest is usability, i.e., how efficiently the operator can
perform a task with the robot and how satisfied she/he is in the work process.
To reduce the operator effort, it is important to evaluate the usability of possible
interfaces in human-robot interaction.

While controlling a service robot, the operator has several possibilities open
to him when interacting with the robot. Commands can be given traditionally
via a computer interface [27], by speech [28], by gestures [27] or even by brain
waves [29] and the robot can be directly controlled by means of different kinds
of teleoperation devices. Fong [23] has divided the interfaces to four groups:
direct, multimodal/multisensor, supervisory control and novel, according to the
functional principle, except in the case of the last one, which relates to the
relative novelty of the interface causing the possibility of misconceptions. The
other problem is the word supervisory, which covers a very large area and causes
a lot of overlapping with the others. Despite the shortcomings, the presented
classification is quite clear. It is definitely difficult to classify the interfaces into
closed groups. Here the interfaces are presented and classified according to the
primary area of interaction they are used in. The starting point is that a service
robot interface is always supervisory, but consists of several subinterfaces, which
are classified in following way:

• Command and dialogue interfaces
Interfaces to give commands and general information to the robot and
receive the robot reply, questions and state information. Typical examples:
computer/PDA interfaces, speech and gesture interfaces.

• Direct control interfaces
Closed loop control interfaces to control movements of the robot or its
manipulators. Typical examples: joysticks, manipulator controllers and
telepresence equipment.

2.3. Natural Interfaces 10

• Spatial information interfaces
Interfaces to help the robot and operator to understand the environment
and to fix locations and objects in common coordinates. Typical examples:
map interfaces, pointers and cameras.

The command and dialogue type of interface is always needed for a robot.
To fulfill its definition, a robot should be controllable. At its simplest, the
commanding interface is just an on/off button, as in vacuum cleaning robots.

2.3 Natural Interfaces

As the name indicates, these should be as natural as possible for human to use.
To fulfill this requirement, interfaces should mimic human communication as
much as possible. The main method for human communication is speech, but in
face-to-face communication, gestures and expressions have a lot of significance,
sometimes much more than we think [30].

Speech is the most obvious way to transfer information to a service robot.
Commercial speech (voice) controlled interfaces are already available in mobile
phones and computers. In the case of mobile phones, speech is used just for
giving the calling command and the name (e.g., ”call Ruben”). New speech
processing software like Philips[31] provides the possibility of controlling the
computer by speech and even of recognizing dictation. There have also been a
lot of experiments in controlling robots by speech. However, recognition seems
still to be a problem, especially in environments with changing background
noise.

Gestures and expressions are a very important part of human communica-
tion. Usually they are used in addition to speech to intensify the message, but
sometimes they can be the only method of communication. Typical examples of
gesture communication are the sign languages of deaf people, the maritime flag
signaling, the referee’s signs in different sport and different gestures used in mil-
itary and vehicle control. In robotics, gestures make communication possible,
especially in noisy environments, and provides a possibility for pointing which
makes it possible to provide additional information, along with other commu-
nication methods. Dynamic gestures can also be easily recognized by inertial
sensors, located in hand or in handheld devices like mobile phones or PDAs.
”Primate” or humanoid-type robots can also use their manipulators to reply
with gestures.

These natural interfaces can be helped by the direct interfaces used in closed
loop teleoperation of a robot or its subsystem. Traditional examples are joy-
sticks, driving wheels, pedals, mechanical hand/finger trackers like data gloves
etc. However, the hardware of these interfaces is almost fully developed, and
thus the possibility of new contributions relies in the software. The new inno-
vations are related to gaze control and different bio controllers like myoelectric
control [32] and brainwave control [29].

Chapter 3

Background

One of the ways of programming robots in a natural and easy way is to allow
the user to first demonstrate the task and equip the robot with the functionality
to learn from observation. An artificial system can retrieve a large amount of
knowledge, simply by looking at other individuals, humans or robots working
in the same area. In fact, similarly to human infants, a robot could learn
significant information if it were able to recognize and imitate what others are
doing. Nowadays, the demand for flexible and re-programmable robots has
increased the need for programming-by-demonstration systems.

Learning-by-Demonstration frameworks, where the robot observes the hu-
man performing a task and is afterwards able to perform the task itself, use
different sensory modalities for observation: vision, force-torque and haptics.
To make the learning problem tractable, a hierarchical representation is com-
monly used depending on the complexity of the task at hand. Systems in which
users demonstrate their task to the system, and then the system learns a pro-
gram that accomplishes the task is a goal of PbD. The benefits of PbD are that
the user does not need to learn an arcane programming language in order to
automate repetitive tasks.

PbD is a remarkable method that allows end users to create, customize, and
extend programs by demonstrating what the program should do. Until recently
most programming power has been in the hands of the professional programmer
rather than the end user. PbD is a method that allows end users by demon-
stration improve the old programs or teach new programs without knowledge of
programming language. These techniques should allow the user with minimal
programming expertise to create highly interactive software. Researchers have
applied PbD techniques in order to reduce the amount of programming required
for interactive software. A PbD system uses inductive learning to generate a
program from example demonstrations.

To produce a program, the user draws the various interface components and
then demonstrates their behavior by mimicking the desired program response to
various events. The system records and analyzes the demonstrations, converting
the low-level demonstrated actions into a higher-level description of the program
behavior.

PbD allows learning complex functions from examples of their input and
output behavior. The purpose is to have the user demonstrate the result of a
computation, from which the system is able to construct a generalized program

11

3.1. Programming by Demonstration 12

which is able to accomplish the user’s task.
Grasp recognition is considered to be part of a PbD framework. The user

demonstrates the task by manipulating objects in a natural way. The objects
are arranged to the desired configuration, and the system then automatically
builds the task description. The basic idea is develop a system able of learn-
ing tasks demonstrated by a human teacher, the user demonstrates the task,
and various sensors such as cameras observe and store the demonstration. The
user notifies the system when the demonstration starts and when it is com-
plete. Understanding and interpreting these dynamic scenes and activities is
the authentic challenge.

3.1 Programming by Demonstration

Let us assume that we want to develop a PbD system able of learning tasks
demonstrated by humans in natural environments, like everyday object grasp-
ing. As we see in [3], [33], this process can be summarized in different phases.
From the user demonstration of a specific task which is observed for the robot
by a sensoring system, to the final state where the robot is able to replicate this
task by itself. To show this process more clearly, we have divided the complex
process of learning a task in different phases from the robotic system’s point of
view, see Figure 3.1 . The PbD process can be divided into four phases:

Figure 3.1: The general process of robot Programming by Demonstration.

1. Observation Phase.
The robot observes the user demonstration. The sensor system is used for
observing the user movements and actions, and important changes in the
environment like object positions and task constraints. Various sensors
are used for this purpose, such as cameras, magnetic trackers and data
gloves.

2. Recognition Phase.
This phase consists of two main processes. First, action segmentation
which is the filtering of irrelevant sensor data, and identification of sub-
tasks which are segmented. Next, the action interpreter transforms the

3.1. Programming by Demonstration 13

sensor data into meaningful actions, here the system extracts what the
demonstrator is doing.

3. Modeling Phase.
Here the interpretation of each subtask is stored as a task knowledge in a
form that it is reuseable even if execution conditions changes slightly from
the demonstration conditions. The entire demonstration is abstracted
into a set of linked key identifiers. This is the abstraction of the current
demonstration. Also in this phase a mapping is done from the abstraction
symbols types, and trajectories are calculated for the robotic platform.
For this, additional background knowledge about the kinematic structure
of the target system is required.

4. Execution Phase.
The execution can be done by simulation or by executing the task on a
real robotic platform. In simulation, the system is tested in the simu-
lated environment. This allows the user to confirm the correctness while
avoiding dangerous situations in the execution case. For a real execution,
success and failure can serve as feedback for modifications on the current
mapping strategy.

Learning a Known Task

To simplify the complex process of learning new tasks another strategy is stud-
ied, see Figure 3.2 . This is a training of a specific task by human demonstra-
tion, where the task is known to the robot, so the robot knows what the human
demonstrator is doing and it does not have to recognize every parameter of the
demonstrated scene. In this process the human demonstrator has direct contact
with the robot, providing it with the missing parameters for full interpretation
of a scene. This type of teaching can help robots when faced with a new PbD
problem.

Figure 3.2: The Programming by Demonstration process when the task is known
to the robot.

3.1. Programming by Demonstration 14

The main differences and advantages from the general process of PbD are
listed below.

• The robot observes the user task demonstration and stores this informa-
tion together with the task knowledge. That gives the robotic platform
the necessary skills to easily repeat similar actions, when encountered with
a similar known situation.

• More direct teaching can be done, for example the human can help the
robot with an input device to perform the known task. This device can be
a joystick or a similar robotic controller. Even direct contact methods can
be used, by taking the robotic device, i.e. hand or arm, and performing
the movements using force/torque sensors.

• The interpretation and abstraction are done by the human demonstrator,
avoiding possible robotic errors and imprecision.

• This system gives more useful information than a simple robot observation
but also requires more human implication and some experience in robotics
from the human teacher.

3.1.1 Implementation of PbD System

Figure 3.3 on Page 15 shows a complete PbD system. It shows all the steps
from human demonstration to robotic execution. As seen, this is a complex
process. The focus in this thesis is on the implementation of an intelligent grasp
mapping system. In order to understand how a PbD system works, the different
components are briefly explained in the following sections, with examples of
possible solutions for a future complete PbD system.

• The observation is done using sensors. There are numerous different
robotic sensors, and they are briefly described in the next section. A
more thorough description of the sensors relevant for this thesis is given
in the next chapter.

• The object recognition is a key part of a PbD system. Some of the different
strategies and systems done so far are described in section 3.4.2. These
systems have been chosen since we believe they are easily integrated with
our system.

• The modeling between human hand and different robotic hands is the goal
of this project. Our implementation allows us to study and test different
model configurations and our grasp mapping strategy.

• The execution on the robotic platform is the definite test of a PbD sys-
tem, however this lies outside the scope of this work since we only imple-
mented a part of a PbD system. However, in the result chapter are given
experiments of the isolated mapping problem obtained by using robotic
simulation. Also, in section 3.5 we provide some example applications for
this system.

3.1. Programming by Demonstration 15

Figure 3.3: System structure for a Programming by Demonstration implemen-
tation.

3.2. Sensors 16

3.2 Sensors

Let us assume robotic mobile manipulation in unstructured environments as
a goal for a PbD implementation. This requires integration of a number of
key research areas such as localization, navigation, object recognition, visual
tracking/serving, grasping and object manipulation. It has been demonstrated
that, given the above, and through simple sequencing of basic skills, a robust
system can be designed [34]. In order to provide the robustness and flexibility
required of the overall robotic system in unstructured and dynamic everyday
environments, it is important to consider a wide range of individual skills us-
ing different sensory modalities, some of them introduced in this section. The
sensory modalities can be classified in the following categories:

• Range

• Imaging

• Proximity

• Orientation

• Contact

• Internal

• Other

The laser scanner gives information about distance from objects. It is an
example of range and proximity sensors, which are commonly used in SLAM
applications rather than for activity recognition. Pressure sensors, measures
the pressure distribution during a contact, is a classical contact sensor used
in grasping field. Imaging sensors like cameras can give huge quantities of
information, and this sensory system will be studied in following section. In
our work we have used a magnetic tracking data glove, this sensor type are
described in detail in the implementation chapter.

3.2.1 Computer Vision

Nowadays, cameras are considered key sensors for robots. Computer vision
allows the robot to obtain wide information of the current environment, using
various cameras and processing systems. The purpose of computer vision is to
obtain as much as information as possible from images.

A drawback compared to the rest of the sensors is that cameras are are
sensitive to changes in illumination and in general to the environment in which
the action is learned. On the other hand, they do not have the problem of metal
influence on sensor readings, like magnetic sensors have.

An alternative to the use of a data glove is to use a camera and computer
vision to track the 3D pose and trajectory of the hand, at the cost of tactile
feedback. But it has the disadvantages as mentioned before, sensitivity of envi-
ronment, object occlusion etc. For all of these reasons we think that the best
way is use a combination of these systems. Camera sensors can be used either
as a complementary system of our dataglove or as a completely independent
system. However, in the limited study of this thesis we only used a data glove.

3.3. Grasp Mapping 17

3.3 Grasp Mapping

As the kinematics and configuration spaces of a human hand and an artificial
robotic hand are generally different, the fingertip positions of the robotic hand
cannot correspond exactly to the fingertip positions of the human hand (es-
pecially when fingertip grasps are considered). Grasp mapping is required to
translate the recognized human hand posture, which is acquired from a data
glove input and sensor devices, to the different robot hand available in the cur-
rent simulated setup. A good mapping between the human and the artificial
fingers positions is required. In general there are two ways of representing map-
ping between these two spaces, using:

• Joint Space
Mapping using the joint space representation facilitates the similarity be-
tween hands poses. This is suitable for enveloping or power grasps.

• Cartesian Space
Mapping using the Cartesian space is more suitable for representation of
the fingertip positions. This is a natural approach when, for example,
precision grasps are considered.

A third group may be added to this list, namely the combination of above.
Here the positions of the human hand fingertips are mapped to some joint values
of the robot hand. If the robot and the human have similar hand configurations,
the result is likely to be the same as for purely Cartesian mapping. However, if
the robot hand’s kinematics is very different from the human one, as for example
in the Barrett hand case, Cartesian mapping is not situable. The limitations and
possible solutions for different robot hands will be studied in following chapters.

We are interested in learning the grasp mapping between a human hand
and different types of robotic hands. This is done by interacting with common
objects of everyday life. A simple data glove device is used as an input for
human hand postures.

In following sections we show how a camera system used for the recognition
of objects would be used in our system to to determine position and shape/size
of the objects. The user’s hand posture and the known shape and size of the
object, is the input for our grasp mapping system. Hence, the system determines
what is the best robotic hand posture for the given grasp, and how this mapping
should be defined to use the full dexterity of the robotic hand.

Figure 3.4 on Page 18 show our grasp mapping strategy. This strategy is
based on two main sources of information, the previous knowledge about the
hand kinematics and shapes of everyday objects, and the grasp mapping training
data. Both are important and complementary in the grasp mapping decision.

In order to do intelligent grasp mapping, the system needs knowledge about
the human and robot world. We classify this a priori knowledge in three dif-
ferent categories: a priori knowledge of the human hand, a priori knowledge of
manipulator, and a priori knowledge of common objects in the everyday world.
This gives us the grasp constrains for robotic manipulator, and also helps to
know what and how human is performing a task. With this information is
possible to do grasp/object recognition, which provides key information for the
robot grasp strategy.

3.4. Dinamic scene interpretation 18

Figure 3.4: Grasp mapping strategy

The hierarchical description of different grasps is extracted from Cutkosky’s
work[35]. He summarizes a number of analytic measures, several of which are
for the purpose of grasp synthesis. This can be seen in more detail in the next
section, Classifying grasps taxonomies. Examples of such analytic measures
are manipulability, grasp isotropy, force and form closure, internal forces and
resistance to slipping.

3.3.1 Classifying Grasps Taxonomies

In order to classify grasps and represent different ways of grasping objects
we base our modeling on Cutkosky’s grasp hierarchy introduced in [35]. The
Cutkosky’s grasp taxonomy seen in Figure 3.5 on Page 19 is a grasp hierarchy
which offers classification schema for typical grasps occurring doing everyday
grasps and another common actions for a human hand. Hence, Cutkosky’s
grasp taxonomy have been used for the definition of different grasp classes. In
this hierarchy, grasps are sorted into 16 different classes. Each class is either
a power-grasp or precision-grasp, circular or prismatic. The basic idea is to
perform the classification based on hand posture data. Then, the classification
helps the system finding the most accurate robot grasp. In this work, all 16
grasps are not considered, and for a single robot grasp there may be several
correspondant human grasps.

3.4 Dinamic scene interpretation

Interpretation is a key part of a Programming by Demonstration system. An
interpretation system is usually built from two different modules, Object recog-
nition and Grasp recognition. This approach allows the robot to know what the
human demonstrator is doing and how he/she is performing the demonstration.

3.4. Dinamic scene interpretation 19

Figure 3.5: Cutkosky’s grasp hierarchy.

3.4. Dinamic scene interpretation 20

The object class and location are estimated by the object recognition module,
while the grasp used and trajectory movement or manipulation is estimated by
the grasp recognition module. These two modules are closely related and the
information of each one helps the other.

3.4.1 Grasp Recognition

The grasp recognition and grasp decision is based in the data extracted from
the human demonstration, but previous knowledge is also important in this
decision. The system has to know the real world constrains. The two following
facts must be considered in grasp recognition task: i) A grasp depends on the
target object, and ii) A grasp depends on the current task. For example: if
the task is to take a cup to fill it with coffee, the object shape provides three
possible grasps: a circular sphere grasp, a power wrap grasp around cup, and a
two-finger-thumb precision grasp as seen in Figure 3.6 .

Figure 3.6: Different possible grasps for picking up a cup.

But the known task gives new limitations because in order to fill the cup the
hole cannot be blocked. If the system knows the object and the task the group
of possible grasps is reduced into only two, which makes the choice of grasp an
easier decision. This reflection brings us to the top-down and bottom-up design.

Top-down and Bottom-up Design

• In the top-down model an overview of the system is formulated, without
going into detail for any part of it. Each part of the system is then
refined by designing it in more detail. Each new part may then be refined
again, defining it in yet more detail until the entire specification is detailed
enough to validate the model. Using the top-down model, a complete
system can be designed without knowing the implementation details of
every part.

3.4. Dinamic scene interpretation 21

• In contrast, in a bottom-up design individual parts of the system are spec-
ified in detail. The parts are then linked together to form larger compo-
nents, which are in turn linked until a complete system is formed. Strate-
gies based on this bottom-up information flow seem potentially necessary
and sufficient because they are based on the knowledge of all variables
that may affect the elements of the system.

For the grasp recognition in [3], Hidden Markov Models(HMM) are used to
model the hand posture transitions during a grasp. The fingertip positions is
captured by magnetic tracker, which requires the user to wear a dataglove. In
[6] another method is presented, grasp classification based on arm movement
trajectories. Here, the importance of the arm trajectory in the grasping pro-
cess is evaluated. The magnetic tracker used in the HMM model is also used
for trajectory recording, giving the position and orientation parameters of the
hand during the grasping process. A hybrid method for dynamic classification is
presented in [6], which combine HHM classification and hand trajectory classi-
fication. Ten grasps were considered from Cutkosky’s taxonomy and the results
showed a recognition ability of about 70% for a multiple user setting.

In [36] and [37] static hand posture classification has been investigated using
Artificial Neural Networks. Here we give brief overview of these systems.

In [37], they implemented a method for grasp recognition in Master-Slave
system. The 22 joint values of the human hand are captured using a data glove.
The slave hand is rotationally symmetric and has nine DOFs. They designed a
ANN grasp recognition and mapping, because is not possible do joint-to-joint
mapping. The data glove recordings are written in a vector V = [s1, s2, ...s22].
This vector is reduced to eight data channels to represent a hand posture VR =
[s1, s2, ...s8]. A set of hand posture vectors DR = [VR1, VR2, ...VRn] is taken.
This set is used to train the ANN. The ANN has eight inputs which is the
length of the VR vector. The output of the ANN is a vector of length three
which is the number of grasps that the network should discriminate between.
To train the neural network a set of 200 master hand postures vectors was taken
for each grasp. Outputs of the ANN were used to do the recognition of three
different grasps A, B and C.

In [36], they use Cutkosky’s taxonomy [35] as a basis. They make a division
of the grasp hierarchy into 10 different layers. As sensor system a 22 sensor
data-glove was used. It gives 2 angular values for the wrist joint and 4 angular
values for each finger representing the flexion of the three finger joints and one
abduction angle. The 20 finger flexion and abduction values are pre-processed
and used as input of the grasp classification process since these describe the
posture of the user’s hand. This classification obtained an overall result of
91.7% for a single-user, and 81.4% and 88.9% depending of ANN type for a
multi-user. A similar approach has been adopted in [38].

3.4.2 Object Recognition

There are numerous different methods for object recognition. In our studies we
have focused on the methods for object recognition from [3] and [2]. Objects
are recognizable by an appearance based method, using Color Cooccurrence
Histograms(CCHs). The CCH is an extension of regular color histograms. The
CCH is an effective way to represent objects for recognition in images by keeping

3.4. Dinamic scene interpretation 22

track of pairs of pixels, it allows a variable amount of geometry to be added
to the regular color histogram. CCH improves the recognition capabilities by
capturing more of the texture features.

1. Color Cooccurrence Histograms: A CCH keeps track the of number of
pairs of certain colored pixels that occur at certain separation distances in
image space. By changing these distances, the sensitivity of the algorithm
can be adjusted to geometric changes in the searched object appearance,
caused by viewpoint change or object flexing. CCH is also robust to partial
occlusions or cluttered backgrounds. see [39],[2].

2. Object Recognition using Color Cooccurrence Histograms: The system
stores several model images for an object changing the viewpoint. The
system computes each of these images using CCHs. When the new input
image contains many objects, the searched object can not be found di-
rectly using CCHs. To find the object in a new image, the system make
overlapping subimages from the input image and compute the CCH for
each subimage. Then, by comparison of these to the CCH object model
image, the most probable subwindow is identified. This process can be
repeated for each object that system is searching for. In Figure 3.7(a) on
Page 23 is shown a typical result for this technique to find an object.

3. Object Localization: Once the object has been found and recognized in
an input image, its position can be determined. The object center is
calculated from the vote matrix in two steps. First, a rough segmentation
of the object is performed, by starting from the strongest vote cell, and
gradually expanding the borders. The process is described in detail in
[3]. Then, the position is calculated as the average positions of all vote
cells in this segmentation. The position is returned in screen coordinates
of the image by the object recognizer and then transformed into world
coordinates.

3.4.3 Object Movement

Object movement can be detected by comparing the searched objects from dif-
ferent images, just taking frames of a video like sequence of images and doing
the comparison of their positions. For location the above technique can be used.
However, the CCH based recognition and location in a new image consumes a
lot of time. To avoid this inconvenience and speed up the process [3] presents
a solution for this problem. They used a fixed mounted camera, and only care
about the temporal changes in the image, based on the known background be-
cause the background image is stored at the beginning of the demonstration.
Then, during task demonstration, each pixel is compared with the background
image, and only pixels which have changed color more than a certain threshold
are kept. Naturally, this means that some parts of the moving object will also
be removed, as illustrated in Figure 3.7(b) . Shadows is another issue, they may
also reveal background, as seen in Figure 3.7(b) . Despite these problems we
believe that this method could performs satisfactory for a PbD system.

3.5. Task Execution 23

Figure 3.7: CHH applications: (a) model images and typical result of object
recognition in spite of background clutter and partial occlusion. The matched
model image source [2] (b)Camera view of scene, before and after filtering with
the background image, source[3].

3.5 Task Execution

As seen in Figure 3.3 on Page 15, an important part to close the loop in PbD
systems is the task execution. This allows us to notice possible errors of the
system. In the implementation chapter we explain our simulation execution in
order to visualize our grasp mapping errors. However, the implementation of
this system on a real robotic platform is the only way for a complete test for our
system. Here, three different robotic platform implementations are presented
to give an idea of the ”next step” for our system execution on real robotic
platforms.

An arm/hand system is used in [7] to verify the grasp mapping technique.
The arm used is the PUMA 560 arm while the dextrous hand used is the
Utah/MIT hand. Both the arm and hand are controlled via Chimera, which
is a real-time operating system for sensor-based control developed at Carnegie
Mellon University[40]. The joint angles of the arm and the hand are fed from
the grasp simulator to the arm/hand system via Chimera.

In [41] and [33] two different robotic platform are presented, with a three
fingers Barrett hand attached. They present a complete PbD process implemen-
tation. The experimental platform in [41] is a Nomadic Technologies XR4000
with a Puma 560 arm for manipulation Figure 3.8(b) . The robot has sonar
sensors, a SICK laser scanner, a wrist mounted force/torque sensor(JR3), and
color CCD camera mounted on the Barrett Hand gripper. The palm of the
Barrett hand is covered by a VersaPad touch sensor and, on each finger, there
is a binocular stereo camera head. The head is equipped with a pair of Sony
XC999 cameras, with focal lengths of 18 mm. This system known as Yorick, has
four mechanical degrees of freedom; neck pan and tilt, and pan for each camera
in relation to the neck.

In [33], the generated robot program is simulated in a graphical environment
to find errors, and reject certain actions and movements. After that the program

3.5. Task Execution 24

is executed on a real robotic platform called Albert Figure 3.8(a) . Albert
is equipped with a stereo camera head and a 7 DOF light-weight arm. The
arm weighs about 35kg and can lift objects of up to 10kg with fully extended
modules. A 6 DOF force/torque sensor supplied by the DLR, sensor wrist
Munich interconnects the arm with the three finger Barrett hand. The upper
body part is mounted on a mobile platform ODETE which was developed at
their institute. ODETE is equipped with supersonic sensors and planar SICK
laser scanner for self-localization and obstacle avoidance.

They are two similar ways to implement a complete PbD system. The differ-
ent techniques studied in this project could be easily adapted to these robotics
platforms.

Figure 3.8: Two different robotic platforms: (a) Service robot platform AL-
BERT (b) Experimental platform on XR4000.

Chapter 4

Implementation

Our main goal is to implement and study different grasp mapping strategies
for different objects/manipulators. In order to study different grasp mapping
strategies, the system shown in Figure 4.1 was constructed. The system allows
us to test several robotic manipulators towards everyday objects. This system
consist of three basic PbD, explained in last chapter: data acquisition, grasp
mapping modeling and visualization.

Figure 4.1: Our system structure for intelligent grasp mapping in a PbD frame-
work.

The data is acquired from a human demonstrator wearing a data glove, in
our case a magnetic tracking device. The modeling phase contains the main
contributions of this project. Here, an ANN is implemented to model the map-
ping between human and robot space. This network allows us to study different
mapping strategies avoiding the need of changing the whole structure for each
test. By only providing new training data or changing a few parameters, a new
study can be done. In order to do mapping visualization a simulated environ-
ment is used. This enables us to repeat the experiment hundreds of times. New

25

4.1. Data acquisition 26

studies with small changes can be done without much effort.
In this chapter more details of the implemented system are given as well as

a little background of the components used for this implementation, in order to
understand how each part operates, and to understand its role in the complete
PbD system implementation.

4.1 Data acquisition

4.1.1 Data Gloves

A Cyber glove or Data glove is an interactive device. Mounting a wired glove
on the hand facilitates tactile sensing and fine-motion control in robotics and
virtual reality. Data gloves are also one of several types of electromechanical
devices used in haptics applications. These gloves are capable of measuring the
movements of hand and fingers. A glove is equipped with sensors that sense the
movements of the hand and forwards those movements with a computer. The
sensors are situated near finger and wrist joints, to detect possible movements
on them. Data gloves are commonly used in virtual reality environments where
the user sees an image of the data glove and can manipulate the movements of
the virtual environment using the glove.

Commercial Data Gloves

Wired gloves are often called ”datagloves” or ”cybergloves”, but these two terms
are trademarks. They respectively belong to Sun Microsystems (which acquired
the patent portfolio of VPL Research Inc. in February of 1998) and Immersion.

Figure 4.2: Example of two different commercial Data Gloves of 5DT DataGlove
Series : (a) 5DT Data Glove 5 (b) 5DT Data Glove 16

More information of this and more commercial Data Gloves in [42], [43], [44]

4.1.2 Magnetic Trackers

Magnetic trackers in general are devices capable of estimating positions and
orientations of magnetic sensors. Usually these system consists of an electronic
unit, a transmitter generating magnetic fields and several pose measuring sen-
sors. They can give position and orientation by measuring the magnetic fields
relative to the transmitter. With this data the the system is capable to track
of all sensors and estimate their positions and orientation at 30 Hz.

4.1. Data acquisition 27

These sensors can be mounted almost everywhere. For example, on the
human body for virtual reality applications or on a moving platform to calculate
the position and orientation of it. The disadvantages of these systems are that
magnetic fields are often influenced by the environment in such a way that
the position and orientation values measured by the sensors contain too much
undesirable noise and even sometimes they present extreme points. For this
reason we recommended a parallel use with other sensory system, like sensor
systems studied in last chapter, to improve the general stability and reliability
for the resulting data.

Nest of Birds

The Nest of BirdsFigure 4.3 simultaneously tracks the position and orientation
of up to four sensors, providing tracking data, position and orientation of these
four sensors in real time. It comes either with a USB or RS-232 interface, and
a CD for installation on a windows system. More details and specifications of
the product can be seen in [45].

Figure 4.3: Nest of Birds Real-time Motion Tracking

4.1.3 Nest of Birds as a Data Glove

In this project, training sequences are obtained using the Nest of Birds sen-
sor. As seen in the specification NoB is a magnetic tracker that consists of an
electronics unit, a transmitter and four pose measuring sensors. The sensors
measure transmitter-generated magnetic fields. The electronic unit controls the
transmitted signals and directs the sensor measurement. From signals mea-
sured by the sensors, Nest of Birds calculates the position and orientation of
each sensor.

The motivation for using this sensor is the possibility to mount sensors on
different parts of the human body (arm, hand, leg) and easily exchange their
configurations. This allows us to learn trajectories and poses for human hand-
arm-torso-leg motion and to evaluate different sensor configurations and choose
the one that captures the representation space in the best way, an example of
this can be seen in [46]. For learning by demonstration frameworks for service
robots, and for natural interfaces for human-robot interaction, this approach
has much stronger potential compared to dedicated sensors such as the Data
Glove. In our project the Nest of Birds individual sensors have been mounted
on a glove, as shown in Figure 4.4 .

4.1. Data acquisition 28

Figure 4.4: The glove used for measuring human input.

As we can see in Figure 4.4 , the center sensor, mounted on the back side of
the glove, serves as a reference sensor. It measures the position and orientation
of the hand. The remaining sensors are mounted on the thumb, index finger
and little finger, respectively, and provide position measurements. Each of the
sensors estimate a 3D-position position in (x, y, z) coordinates and orientation
by rotation matrix. More details of this are given in the following Data Modeling
section.

Data Modeling

As shown in Figure 4.4 , we have mounted four different sensors on our data
glove. We obtain the position of three different fingers in reference to a sensor
mounted on the back side of the glove. The fingers can be chosen as it fits the
experiment best.

To calculate the relative positions, we use the data structure sent by the
NoB. The NoB provides two matrices. First, a position matrix (4x3) which
contains three values (x, y, z) for each of the four sensors of NOB. Second, an
orientation matrix (4x9) which contains nine values for rotation for each sensor.

The resulting values are calculated according to equation 4.1 , giving a total
of nine values. The position of each sensor is represented by x = (x, y, z) and
the reference sensor is represented by xr = (xr, yr, zr). The rotation matrix M is
the rotation of the reference sensor, given by the NoB. As seen in equation 4.2
, the features derived from the sensors are both translational and rotational
invariant, since the positions are multiplied by the transpose (inverse) of the
rotation matrix.

p = MT (x− xr) (4.1)

px = (x− xr)M11 + (y − yr)M21 + (z − zr)M31

py = (x− xr)M12 + (y − yr)M22 + (z − zr)M32

pz = (x− xr)M13 + (y − yr)M23 + (z − zr)M33

(4.2)

4.2. Modeling using Artificial Neural Networks 29

4.2 Modeling using Artificial Neural Networks

The human hand can perform a wide variety of grasps. Because of the difficulties
in constructing a robotic gripper equivalent to the human hand, most robotic
grippers have much less flexibility. However, the grippers may also have other
features, that the human hand cannot compete with. Consequently, the human
and robot hand cannot, in general, perform the same types of grasps. A mapping
of the grasp type from the human and the robot hand is necessary. As the
kinematics and configuration spaces of a human hand and an artificial robot
hand are generally different, the fingertip positions of the robot hand cannot
correspond exactly to the fingertip positions of the human hand (especially when
fingertip grasps are considered).

4.2.1 Motivation for Using Artificial Neural Networks

As mentioned above, a good mapping between the human and the artificial
fingers positions is required. The mapping between human hand and robot
hand changes in the case of different robotic manipulators. For example, the
mappings differ in the case of a three finger robot hand like the Barrett hand,
which has only four degrees of freedom, and a five finger robot hand like the
Robonaut hand, which has 14 DoFs.

To do an analytical grasp mapping the complex inverse kinematics of the
different robotic hands must be solved, for each robot hand. One solution to
these differences is to use an Artificial Neural Network (ANN), with which it is
possible to adapt the ANN to different robotic hands by only slightly changing
some parameters. Knowing the current robotic hand and with knowledge from
the robotic hand configuration, it can create the best ANN for the current
robotic manipulator.

ANNs allow solving complicated problems with simple and effective solu-
tions. Here grasp mapping is required, for this mapping we use human fingertip
positions as input and robotic joint values as output. With ANN it is possible
to do specific training between human hand and several robot hands and create
the mapping between them. This is easily done with the teacher demonstrating
different hand postures to the robot, and using the ANN to train the system
to the desired mapped robot pose. The modeling from human grasp to robot
grasp is performed during training. These teaching behavior also fits well in the
Programming by Demonstration paradigm.

4.2.2 Neural Network Theory

Neural Networks

The human brain is a highly complicated machine capable of solving very com-
plex problems. In order to understand an ANN, we will need to have a basic
knowledge of how the internals of how the human brain works. The brain is
part of the central nervous system and consists of a very large NN.

The NN is a network consisting of connected neurons. The center of the
neuron is called the nucleus. The nucleus is connected to other nucleuses by
means of the dendrites and the axon. This connection is called a synaptic
connection.

4.2. Modeling using Artificial Neural Networks 30

Figure 4.5: Simplified human neuron.

The neuron can fire electric pulses through its synaptic connections, which is
received at the dendrites of other neurons. Figure 4.5 shows what a simplified
neuron looks like.

When a neuron receives enough electric pulses through its dendrites, it acti-
vates and fires a pulse through its axon, which is then received by other neurons.
In this way information can propagate through the NN. The synaptic connec-
tions change throughout the lifetime of a neuron and the amount of incoming
pulses needed to activate a neuron (the threshold) also change. This behavior
allows the NN to learn.

The Artificial Neuron

A single artificial neuron can be implemented in many different ways. The
general mathematic definition is given in equation 4.3,

y(x) = g

(
n∑

i=0

wixi

)
(4.3)

where x is a neuron with n input dendrites (x0 . . . xn) and one output axon
y(x) and where (w0 . . . wn) are weights determining the importance of each
individual input. g is an activation function that weights how powerful the
output (if any) should be from the neuron, based on the sum of the input. The
output from the activation function is either between 0 and 1, or between -1 and
1, depending on which activation function is used. This is not entirely true, since
e.g. the identity function, which is also sometimes used as activation function,
does not have these limitations, but most other activation functions uses these
limitations. The inputs and the weights are not restricted in the same way and
can in principle be between −∞ and +∞, but they have often very small values
centered around zero. The artificial neuron is illustrated in equation 4.6 . In the
figure of the real neuron Figure 4.5 , the weights are not illustrated, but they
are implicitly given by the number of pulses a neuron sends out, the strength of
the pulses and how closely connected the neurons are.

As mentioned earlier there are many different activation functions, some of
the more commonly used are threshold equation 4.4 , sigmoid Figure 4.5 and
hyperbolic tangent equation 4.6 .

g(x) =
{

1 if x + t > 0
0 if x + t ≤ 0 (4.4)

4.2. Modeling using Artificial Neural Networks 31

Figure 4.6: An artificial neuron.

g(x) =
1

1 + e−2s(x+t)
(4.5)

g(x) = tanh(s(x + t)) =
sinh(s(x + t))
cosh(s(x + t))

=
es(x+t) − es(x+t)

es(x+t) + es(x+t)
=

e2(s(x+t)) − 1
e2(s(x+t)) + 1

(4.6)
Here, t is the value that pushes the center of the activation function away

from zero and s is a steepness parameter.

4.2.3 Artificial Neural Networks

It is not possible (at the moment) to make an artificial brain, but it is possible
to make simplified artificial neurons and artificial neural networks. These ANNs
can be made in many different ways and can try to mimic the brain in many
different ways. ANNs are not intelligent, but they are good for recognizing pat-
terns and making simple rules for complex problems. They also have excellent
training capabilities which is why they are often used in artificial intelligence
research.

Most Artificial Neuron Network (ANN) models are not a very good nor accu-
rate descriptions of biological networks, but should rather be seen as biologically
inspired algorithms. An artificial neuron is a very small but essential computa-
tional unit, as in the case of biological nervous systems. A single neuron is not
very interesting by itself, instead a rather large number of connected neurons
are necessary for any substantial computations.

In multilayer feedforward ANNs, which is the most common form of ANNs,
the neurons are ordered in layers, starting with an input layer and ending with
an output layer. Between these two layers are a number of hidden layers. Con-
nections in these kinds of network only go forward from one layer to the next.
Many other kinds of ANNs exists, [47] describes several of these other kinds of
ANNs.

Multilayer feedforward ANNs have two different phases: A training phase
(sometimes also referred to as the learning phase) and an execution phase. In
the training phase the ANN is trained to return a specific output when given a
specific input. This is done by continuous training on a set of training data. In
the execution phase the ANN returns outputs on the basis of inputs.

A feedforward ANN functions as follows: An input is presented to the input
layer. The input is propagated through all the layers (using equation 2.1) until

4.2. Modeling using Artificial Neural Networks 32

Figure 4.7: A fully connected multilayer feedforward network with one hidden
layer.

it reaches the output layer, where the output is returned. In a feedforward
ANN an input can easily be propagated through the network and evaluated to
produce an output. It is more difficult to compute a clear output from a network
where connections are allowed in all directions (like in the brain), since this will
create loops.

Figure 4.7 shows a multilayer feedforward ANN where all the neurons in
each layer are connected to all the neurons in the next layer. This is called a
fully connected network and although ANNs do not need to be fully connected,
they often are.

Two different kinds of parameters can be adjusted during the training of an
ANN, the weights and the t value in the activation functions. This is impractical
and it would be easier if only one of the parameters should be adjusted. To cope
with this problem a bias neuron is invented. The bias neuron lies in one layer,
is connected to all the neurons in the next layer, but none in the previous layer
and it always emits 1. Since the bias neuron emits 1 the weights, connected to
the bias neuron, are added directly to the combined sum of the other weights
(equation 4.3), just like the t value in the activation functions. A modified
equation for the neuron, where the weight for the bias neuron is represented as
wn+1, is shown in equation equation 4.7 .

y(x) = g

(
wn+1

n∑
i=0

wixi

)
(4.7)

Adding the bias neuron allows us to remove the t value from the activa-
tion function, only leaving the weights to be adjusted, when the ANN is being
trained. A modified version of the sigmoid function is shown in equation 4.8.

g(x) =
1

1 + e−2sx
(4.8)

Is not possible remove the t value without adding a bias neuron, since this
would result in a zero output from the sum function if all inputs where zero,
regardless of the values of the weights. Some ANN libraries do however remove
the t value without adding bias neurons, counting on the subsequent layers to
get the right results. An ANN with added bias neurons is shown in Figure 4.8 .

4.2. Modeling using Artificial Neural Networks 33

Training an ANN

When training an ANN with a set of input and output data, we wish to adjust
the weights in the ANN, to make the ANN give the same outputs as seen in the
training data. On the other hand, we do not want to make the ANN too specific,
making it give precise results for the training data, but incorrect results for all
other data. When this happens, we say that the ANN has been over-fitted.

The training process can be seen as an optimization problem, where we
wish to minimize the mean square error of the entire set of training data. This
problem can be solved in many different ways, ranging from standard opti-
mization heuristics like simulated annealing, through more special optimization
techniques like genetic algorithms to specialized gradient descent algorithms like
backpropagation.

The most used algorithm is the backpropagation algorithm (see following
section), but this algorithm has some limitations concerning the extent of ad-
justment to the weights in each iteration. This problem has been solved in more
advanced algorithms like RPROP [48] and quickprop [49].

The Backpropagation Algorithm

The backpropagation algorithm works in much the same way as the name sug-
gests: After propagating an input through the network, the error is calculated
and the error is propagated back through the network while the weights are ad-
justed in order to make the error smaller. The explanation is for fully connected
ANNs, but the theory is the same for sparse connected ANNs.

Although the purpose is to minimize the mean square error for all the train-
ing data, the most efficient way of doing this with the backpropagation algo-
rithm, is to train on data sequentially one input at a time, instead of training
on the combined data. However, this means that the order the data is given
in is of importance, but it also provides a very efficient way of avoiding getting
stuck in a local minima.

A brief explanation of how the backpropation algorithm works: First the
input is propagated through the ANN to the output. After this the error of
a single neuron and of all the output layer is calculated. The errors and the

Figure 4.8: A fully connected multilayer feedforward network with one hidden
layer and bias neurons.

4.2. Modeling using Artificial Neural Networks 34

learning rate parametrer are used for adjusting the weights. The backpropaga-
tion algorithm moves on to the next input and adjusts the weights according to
the output. This process goes on until a certain stop criteria is reached. The
stop criteria is typically determined by measuring the mean square error of the
training data while training with the data, and when this error reaches a certain
limit, the training is stopped. More advanced stopping criterias involving both
training and test data are also used.

This is a short and brief explanation of the backpropagation algorithm with-
out discussion of the mathematics. For a more detailed explanation of the
theory behind and the mathematics of this algorithm, see the following refer-
ences [47],[50].

Neural Networks and Artficial Networks Theory from FAST ARTIFICIAL NEU-
RAL NETWORK LIBRARY (FANN), found in [51].

4.2.4 Fast Artificial Neural Network

The Fast Artificial Neural Network (FANN) library is an ANN library, which
can be used with C, C++, PHP, Python, Delphi and Mathematica.

An ANN is normally run in two different modes, a training mode and an
execution mode. Although it is possible to do this in the same program, using
different programs is recommended.

There are several reasons to why it is usually a good idea to write the training
and execution in two different programs, but the most obvious is the fact that
a typical ANN system is only trained once, while it is executed many times.

FANN Creation/ Execution

The FANN library is designed to be very easy to use. A feedforward ANN can
be created by a simple fann create standard function, while other ANNs can be
created just as easily.

The library can be used without much knowledge of the internals of ANNs.
More advanced users with ANN knowledge can designed customized and spe-
cialized networks.

FANN Training

There are several ways of training neural networks and the FANN library sup-
ports a number of different approaches. Below two common fundamentally
different approaches are presented.

Fixed topology training The size and topology of the ANN is determined in
advance and the training alters the weights in order to minimize the difference
between the desired output values and the actual output values. This kind of
training is supported by fann train on data.

Evolving topology training The training start out with an empty ANN, only
consisting of input and output neurons. Hidden neurons and connections is the
added during training, in order to reach the same goal as for fixed topology
training. This kind of training is supported by FANN Cascade Training.

4.2. Modeling using Artificial Neural Networks 35

FANN Training Algorithms

There are four main training algorithms in FANN library.

• INCREMENTAL
Standard backpropagation algorithm, where the weights are updated after
each training pattern. This means that the weights are updated many
times during a single epoch. For this reason some problems will train very
fast with this algorithm, while other more advanced problems will not
train very well.

• BATCH
Standard backpropagation algorithm, where the weights are updated after
calculating the mean square error for the whole training set. This means
that the weights are only updated once during a epoch. For this reason
some problems will train slower with this algorithm. But since the mean
square error is calculated more correctly than in incremental training,
some problems will reach a better solutions with this algorithm.

• RPROP
A more advanced batch training algorithm which achieves good results
for many problems. The RPROP training algorithm is adaptive, and does
therefore not use the learning rate. Some other parameters can however
be set to change the way the RPROP algorithm works, but it is only
recommended for users with insight in how the RPROP training algorithm
works.

• QUICKPROP
A more advanced batch training algorithm which achieves good results
for many problems. The quickprop training algorithm uses the learning
rate parameter along with other more advanced parameters, but it is only
recommended to change these advanced parameters for users with insight
in how the quickprop training algorithm works.

Installing FANN

• Copies of FANN can be obtained from the Source Forge page, located at
[52]

• You can currently get FANN as source code (fann-*.tar.bz2), Debian pack-
ages (fann-*.deb), or RPM’s (fann-*.rpm).

• FANN is available under the terms of the GNU Lesser General Public
License.

• FANN bindings to several other programming languages is also available
from [52]

4.2.5 FANN Data Modeling

As seen in the NoB data modeling section 4.1.3, nine values are obtained from
equation 4.1 to determine the human hand position. Our ANN use these nine
variables to represent the input from human hand joint values. These values

4.2. Modeling using Artificial Neural Networks 36

have a range approximately between [12,−12], which is the maximum distance
from the fingertips to the reference sensor. They range differs for different users.

The Robotic hand joint values are obtained from Graspit!. These values are
the output for the network. These values can have a range between [π,−π],
depending on the robot manipulator constrains.

In order to train our ANN, we made tuples of input values representing
human hand posture and output values from Graspit!, to link different human
hand postures with robotic hand posture.

Our data can be represented with two matrices, an input matrix and an
output matrix. The input matrix has same number of rows as number of training
postures and nine columns which is the number inputs to the system. The
output matrix has the same number of rows and columns as the number of
manipulator’s DoF. In 4.9 and 4.10 the generalization of these matrices is shown.

InputMatrix =

v(1,1) . . . v(1,9)

.

.

.
v(numTrain,1) . . . v(numTrain,9)

 (4.9)

OutputMatrix =

v(1,1) . . . v(1,numDoF)

.

.

.
v(numTrain,1) . . . v(numTrain,numDoF)

 (4.10)

In our ANN a symmetric sigmoid function is used in both layers, hidden
and output layer. To match the symmetric sigmoid function the input and
output values they have to be within [−1, 1] range (FANN also offers the sigmoid
function the possibility then the range is [0, 1]). A pre-processing of our training
data is required, to scale these training values into this range.

To achieve maximum accuracy, our system values are scaled separately by
inputs and outputs, but with the same equations. The following steps are done
for the input and output matrices.

First, we find the maximum and minimum values of training matrix with
equation 4.11 , where max and min are the maximum and minimum values
found in the matrix so far, and v is the current process data. This is done for
all matrix values.

max/min(x) =
{

max = v if (v > max)
min = v if (v < min) (4.11)

After that, we change all the matrix values to the positive side, to make the
manipulation easy. This is done with equation 4.15 . Then we change maximum
and minimum. With equation 4.13 we find the new max, obviously the new
minimum is 0.

v = v + abs(min) (4.12)

newmax = max+ min (4.13)

4.3. Mapping 37

Finally, with equation 4.14 we normalize all values to a range between -1
and 1.

v =
newmax− v

newmax
(4.14)

In order to visualize the outputs in Graspit! these values have to be rescaled
to the original range (π,−π), so we use the inverse of the same equations, see
equation 4.15 and equation 4.16 .

v = v − abs(min) (4.15)

v = newmax− (v ∗ newmax) (4.16)

4.3 Mapping

Nowadays robotic simulation allow researchers, engineers, and students to test
control algorithms in a safe environment, recently these systems are able to
simulate the dynamics of the mechanism itself and could simulate contacts with
other bodies in the environment. That’s necessary if the robot’s task involves
grasping an object, accurate simulation of contact and friction forces is nece-
sited. The following lists we give some reasons to use the simulator environment
instead test the different codes and programs in a real environment.

Simulation for hand design

• Mechanical prototypes are costly.

• Spend time and money.

• Evaluate design in simulation.

• Examine range of motion, finger placement, kinematics, link geometry.

• Ensure it can grasp desired objects.

• Change design easily.

Simulation for grasp planning

• Integrated grasp analysis

• Grasp quality, weak point, force optimization

• Visualize grasp from all angles

• Perform many grasps quickly

• Faster than using a real arm and hand

• Build a library of saved grasps

• Recall grasp when object is encountered again

4.3. Mapping 38

4.3.1 Graspit!

GraspIt! was created to serve as a tool for grasping research. It is a simulator
that can accommodate arbitrary hand and robot designs. The user simply
specifies the kinematics in a configuration file and provides the link geometry
files. It also includes a rapid collision detection and contact determination
system that allows a user to interactively manipulate the joints of the hand
and create new grasps of a target object. Each grasp is evaluated with numeric
quality measures, and visualization methods allow the user to see the weak point
of the grasp and create arbitrary 3D projections of the 6D grasp wrench space.

Graspit! a Tool for Grasping Research

• Library of hands and objects.

• Intuitive interface allows many grasps to be tested quickly.

• Visualize grasp wrench space.

• Quality measures evaluate grasp.

GraspIt! also has an automatic grasp planner for the Barrett hand. Given a
simplified model of an object constructed from shape primitives, the system can
plan a set of candidate grasps, which can then be tested and evaluated. The
system can account for the presence of obstacles and the reachability constraints
of an attached robot arm. In practice the system can find multiple stable grasps
of an object in less than 1 minute. See an example of Graspit! in the Figure 4.9

Figure 4.9: The primitive model used for the toy airplane with the generated
set of grasps to be tested, and five of the best grasps found sorted in quality
order source[4].

Graspit! [4] is a real-time, interactive simulator that allows the user to ma-
nipulate a model of an articulated robotic hand, perform grasps with the hand,
and visualize stability analysis results on the fly. Graspit has facilities for mod-
eling a robotic arm and workcell to allow the user to examine the reachability
constraints for a given grasping task as well. By consistently using accurate
geometric models of all elements of the task, we ensure that grasps planned in
the simulator can actually be executed in the real world.

GraspIt! makes it possible to import a wide variety of different robot designs.
Library of hands currently includes the Barrett Hand, the DLR hand, the NASA
Robonaut hand, the Rutgers hand, and a simple parallel jaw gripper, also a
puma robot arm. The Graspit! hands are illustrated in Figure 4.10 .

4.3. Mapping 39

Figure 4.10: The several Robot Hands and arms available in Graspit! simulator

There are two main types of bodies that exist in a GraspIt! simulation world:
static bodies (also known as obstacles) and dynamic bodies (such as robot links
and objects). Static objects do not participate in the dynamics, but provide
collision surfaces for dynamic bodies [53].

Grasping simulator qualities

• Flexible method to specify hand construction.

• Interactive interface.

• Contact determination system.

• Inclusion of material properties.

• Integrated grasp analysis theory into simulation system.

• Grasp Wrench Space GWS, quality measures.

• Visualization techniques.

• Object Dynamics: First implementation of algorithm with large scale and
interactive bodies.

• Integration of simulation system into grasping task.

• A useful tool for research in grasping and hand design.

• Currently being used by a number of research groups for design and syn-
thesis: NASA, Sandia, Rutgers, etc.

Chapter 5

Mapping Human Grasps to
Robot Grasps

Figure 5.1: Three different robotic manipulators studied in this thesis: (a)
Barrett hand (b) DLR hand (c) Robonaut hand.

The system presented in chapter 4 have been implemented to allow us to
study and analyze different grasp mapping strategies. The goal of PbD systems
is give to robots skills to interact in human natural environments with everyday
objects. As examples of everyday objects, we have used two basic shapes, a cube
and a cylinder. They can be easily related with a wide list of common objects in
the human environment. For the robotic system implementation it is easier to
obtain knowledge about basic shapes with different sizes than the full complex
model of an object. Also, once the robot has learned grasp mapping to one
shape, it can use that knowledge when grasping the same shape with different

40

41

size. These are the main motivations to why we focused our work towards these
two simples shapes. As an example, any cup or glass is a variation of cylindrical
shape, also a lot of common kitchen items like jars, bottles, etc can be related to
a basic cylinder shape. The same case occurs with cube shape, there is a huge
number of items in our homes that can easily be related to cubic shapes. To
see another example, see Figure 5.2 , which shows some of the everyday objects
used in training phase.

Figure 5.2: Example of the everyday objects used for training: (a) Objects re-
lated to cubic shapes and examples of typical grasps trained (b) Objects related
with cylinder shapes and examples of typical grasps trained.

Figure 5.3: Cylinder and cube Shape Cartesian coordinates.

In Classifying grasps taxonomies, section 3.3.1, we have seen the hierarchy
of possible different human grasps. From this hierarchy and our own human
experience we extract three main kinds of grasps for our work: Circular sphere
grasp, Power wrap grasp and Precision grasp. They can be seen in Figure 5.2
and Figure 3.6 on Page 20. We think that they are the most commonly used

5.1. Direct Mapping for a Robot Hand 42

Object name Cylinder code Radius (mm) Height (mm)
Vitamines 0 15 145

Talc 1 24 105
Cup 2 33 93

Pringels 3 37 230

Table 5.1: Table of size for trained Cylinder objects, with radius and height size
in mm.

Object name Cube code Depth (mm) Height (mm) Length(mm)
Wood cube 0 44 44 44

Toy car 1 62 80 125
Russini 2 33 96 128

Uncle Ben’s 3 45 153 190
Carton box 4 70 150 220

Table 5.2: Table of size for trained Cube objects, with Depth, Height and Length
size in mm.

grasp for the kind of objects studied.
The task of our system is to do the translation between the grasp performed

by human demonstrator to the grasp on a robotic manipulator, adapting it for
the robot/object constraints. The Neural Network described in the implemen-
tation chapter 4, is used for this purpose. Several network training strategies
have been studied, in order to get the best results.

We have studied two different systems. Using the ANN to do direct mapping
and using the ANN to do intelligent mapping. Direct mapping is finger position
to joint mapping. This results in direct control of the robot movements for the
human operator, in other words, direct teleoperation. However, due to sensor
noise and limited operator perception, grasping objects using direct teleoper-
ation is still difficult for the operator. In order to get better accuracy when
grasping known objects, we made a new system that takes the object’s shape
and size into consideration. In this way, the system can obtain more precise
grasps.

5.1 Direct Mapping for a Robot Hand

The mapping is done directly joint to joint, that means it gives the robotic
manipulator the capabilities to do human hand imitation. This system is able
to collect fingertip position values from the data glove input, and convert them
in robot manipulator joint values.

For direct posture mapping we used an artificial neural network(ANN) cre-
ated with the FANN library. This network represent the modeling between the
user (human hand) and the robot hand configuration spaces. The basic steps
involved in this process are i) the sampling of a number of typical human hand
postures, ii) matching those directly to robot hand poses and iii) using those
for ANN training. The resulting ANN represents the entire mapping surface
between these two spaces. An example of a used neural network is a two-layer
feedforward network as illustrated in Figure 5.4 .

5.1. Direct Mapping for a Robot Hand 43

Figure 5.4: Example of a two-layer network used for Barrett hand mapping.
There are nine input neurons and four output neurons to fit the number of Bar-
rett DoFs and the same number of hidden neurons. The black circles represents
the bias units (always 1).

As seen in previous chapter the FANN library offers a wide list of configura-
tions. Here, the direct mapping use the configuration discussed before. Direct
mapping is implemented for three different robotic hands: the Barrett, DLR
and Robonaut Hand, shown in Figure 5.1 on Page 40 and presented in following
sections. For each manipulator the created ANN has differences, because of
the robotic constraints, the number of DoFs, the number of output and hidden
neurons and the provided training postures.

5.1.1 Barrett Hand

The Barrett hand shown in Figure 5.1(a) has three fingers and four degrees of
freedom (DoFs), one DoF for each finger, the fourth degree is for spread angle.
One finger is static only have the possibility to close towards the center, while
the movement of two remaining fingers is defined by spread angle and the angle
closure for each finger. More information of this robotic manipulator is available
in [54].

The kinematic constraints of this hand means that there are many differences
between the Barrett and the human hand. This makes controlling the fourth
DoF, the spread angle, very difficult. Therefore, this joint was fixed during
the first training sequence and only three degrees of freedom were controlled
(the angle closure of each finger). However, to demonstrate that the system
is capable of controlling all four DOFs, we will present an alternative training
scheme in the following section.

5.1. Direct Mapping for a Robot Hand 44

Using a Fixed Spread Angle

Despite the big differences between human and Barrett hand, an intuitive joint
to joint mapping is possible, if the spread angle is fixed. Note that we have the
same number of sensors and DoFs to control. In this sequence the training is
done with four simple postures in order to link each finger of the human hand
with each finger of Barrett hand, shown in Figure 5.5 .

An Alternative Training Scheme

In Figure 5.6 , is shown some alternative training postures to control the Barrett
hand. All DOFs are included, even the spread angle. This example use the most
natural way to control this spread angle, from human hand mapping.

In the first training scheme attempting to control the fourth DoF, the spread
angle is controlled by moving two sensors, the index and little finger sensors
of the NOB data glove. By changing the distance between the fingers, the
spread angle is controlled. Increasing this distance will increase the spread
angle, and when the distance is reduced the angle is reduced. This mapping
shows inefficiency cause the distance change when a finger is moved, for example
when grasping an object. This makes control of this DOF difficult and instable.

For these reasons an alternative training scheme is presented, see Figure 5.7
. This setup allows grasping with all robot fingers at once, by using the thumb
and the index finger to close the Barrett fingers. Two fingers of robotic hand
are controlled with the index finger, and the closure angle of remaining finger
is controlled with the thumb. The fourth DOF is controlled by the little finger.
As shown in Figure 5.7 , closing the little finger causes the spread angle to close.
This type of control is not very intuitive for a human, but may be necessary
for certain tasks. Results with this mapping shows more effective grasping than
using the intuitive control of our first attempt.

Figure 5.5: Four training postures used for the Barrett hand: Open hand,
Thumb closed, Index finger closed and Little finger closed.

5.1. Direct Mapping for a Robot Hand 45

Figure 5.6: First alternative training postures to control all DOF of a Barrett
hand. The distance between the index and little finger is used to control the
spread angle.

Figure 5.7: Second alternative training postures to control all DOF of a Barrett
hand. Two fingers of robotic hand are controlled with the index finger, and the
closure angle of remaining finger is controlled with the thumb. The fourth DOF
is controlled by the little finger.

5.1. Direct Mapping for a Robot Hand 46

5.1.2 DLR Hand

The DLR hand shown in Figure 5.1(b) has four fingers and twelve degrees of
freedom: two DOFs for each finger closure and another degree for the spread
angle of each finger. This hand has the possibility of closing each finger in
two different directions limited for the spread angle. The kinematic constrains
make DLR hand different from the Barrett hand, more similar to the human
hand. This makes it easier and more intuitive to do joint to joint mapping.
However, the spread DOF of each finger is difficult to control using position
to joint mapping, and it may cause problems with finger collisions. Therefore,
this joint was limited during the first training sequence, and the two remaining
DOFs for each finger were directly controlled (the angle closure of each finger).
For the DLR hand different training configurations have been tested. Most
similar to human motion is controlling the DLR thumb with the human thumb
and separate the three remaining fingers into two groups. We decided that the
index finger controls the first group and the little finger controls the second
group. More information of this robotic manipulator is available in [55]. In
Figure 5.8 , we can see the different postures for DLR hand. If more sensors are
available, the individual fingers could easily be controlled separately.

Figure 5.8: Training postures for the DLR hand. Four different postures: open
hand, thumb closed, index finger closed and little finger closed that controls two
fingers in the DLR hand.

Finger Collisions

A problem in mapping with DLR is that the fingers of the manipulator hand
may collide, even when fingers of human hand do not collide, due to spread
angle motion. Depending how the mapping is learned this spread angle can
cause problems. This represents a problem since if one of the fingers when the
hand is closed locks another finger, then the fingers have to be ”unfolded” in
the correct order, i.e., the finger on top should be opened first. But if the user
unfolds his/her grasp in another order, it results in a situation in which the
manipulator hand is closed while the human hand is open, then the movements
of human hand can not be done for the robot hand until it is unlocked.

5.1. Direct Mapping for a Robot Hand 47

To avoid this problem we have limited the spread angle range, with these
limits there are less possibilities of collision between fingers.

Figure 5.9: Two collision examples for the DLR and Robonaut hand. Here, we
can see that thumb finger is locked. To solve the situation the fingers have to
be unfolded in correct order.

Figure 5.10: Two examples of mapping to avoid colisions for the DLR and
Robonaut hand. Here, for cylinder grasp thumb finger is not locked by the
others.

5.1.3 Robonaut Hand

The NASA Robonaut Hand shown in Figure 5.1(c) , has a total of fourteen
degrees of freedom. There are two DoFs for the wrist, and five fingers with
twelve degree of freedom. A dextrous work set allows the hand to maintain a
stable grasp while manipulating an object. Training results on this hand are
good because control is intuitive and simple, due to the obvious similarities to
the human hand. Even in 14-DOF control the ANN has no problems to map
the finger positions of the human hand to joint values. The training scheme
is similar to the DLR-scheme, where the thumb sensor control the Robonaut
thumb and the other four finger can be divided into sections. Note here that
the NOB Data Glove does not have enough sensors to cover all fingers. More
information on this robotic manipulator is available in [56].

Hence, in our training the little finger or the index finger has to control three
fingers simultaneously. Of course, it is possible to demonstrate different behav-
iors, for example, letting the index and little finger control two fingers each.
As said for DLR hand, we are constrained here by the number of sensors. The
underlying methodology can easily be extended if more sensors are available.

For this manipulator there is also a big risk of collision, as seen in section
5.1.2. To cope with this, some DOF limitations are given to the direct mapping.
The training postures for Robonaut can be seen in Figure 5.11

5.2. ANN training 48

Figure 5.11: Training postures for Robonaut hand. Four different postures are
used: open hand, thumb closed, index finger closed and little finger closed.

5.2 ANN training

In order to obtain the best possible mapping with our ANN, some paremetres
and options of the FANN library used have to be stipulated and tested in real
conditions. In this section present an experimental evaluation of how various
parameters affect the result.

5.2.1 Choice of Training Algorithm

As seen in section 4.2.4, the FANN library offers a wide list of options and
configurations. Here we have studied how some of the options affect the network.
Note our data glove has only three different sensors. For this reason, we chose
to start with a network for the Barrett hand, because it has only four DoFs
and we can fix one to facilitate the process, see section 5.1.1 for details. We
started out with a simple two-layer feedforward neural network as illustrated in
Figure 5.4 , with the same number of neurons in the hidden layer than as in
the output layer. We trained the network using four basic postures: open hand,
thumb closed, index finger closed and little finger closed, shown in Figure 5.5
on Page 44.

Choice of Algorithm

The initial test was done by scaling the data from NoB and Graspit! to sym-
metric sigmoid range using the equations in section 4.2.4. This test was used for
deciding which training algorithm to use, to minimize the error and optimize
the training time.

As seen in section 4.2.4, the FANN library offers four different training al-
gorithms: Back-, Rear-, Incremental- and Quick propagation. Fig. Figure 5.12
shows the training execution for all of these algorithms, i.e., how the training
evolves for each iteration. The basis of all algorithms is to calculate the mean
square error and update the connection weights to minimize this error. Each al-
gorithm has different ways of changing these weights, giving different properties

5.2. ANN training 49

to the resulting ANN.

Figure 5.12: ANN training graph for the Barrett hand, for four different FANN
algorithms. Black: Batch algorithm, green: Rear propagation, blue: Quick
propagation and red: Incremental.

Figure 5.13: Error difference for each trained position and sum of all of them
for a Barrett hand ANN, comparison between four different training algorithms.
Black: Batch algorithm, green: Rear propagation, blue: Quick propagation and
red: Incremental.

We obtain four different networks trained with the same data. Once the
network is trained and we measure the training efficiency by calculating the
training error, i.e., how well the networks responds to the same input it just
has been trained with. This is done by feeding the network with each training
position, and then compare the output with each given output. This comparison
is done using equation 5.1 , where Difference Error is the squared sum of all
DoF differences for this position.

5.2. ANN training 50

In these graphs we see that the faster training algorithm clearly is Quick
propagation (blue color). However, the training error for Quick propagation
is not the lowest. Instead, Rear propagation (green color) is giving the least
error, although it also comes with the worst training time. Since the training is
done offline, the training time is not as important as the training error, so Rear
propagation was chosen for this system.

PositionError =
numDoF∑

i=1

(ObtainedDoFi − ExpectedDoFi)2 (5.1)

5.2. ANN training 51

5.2.2 Number of Hidden Neurons

In this section we are interested in how the number of hidden neurons influence
the mapping result. We used the same training and test set, and varied the
number of hidden neurons. For each test, the difference for every position is
calculated according to equation 5.1 and the accumulation of them is used for
the graph comparison.

Figure 5.14: Posture error comparison between different number of hidden neu-
rons for Barrett hand training. Note that this graph starts at 2 neurons.

Figure 5.15: Posture error comparison between different number of hidden neu-
rons for DLR hand training. Note that this graph starts at 2 neurons.

For Barrett hand we used the network illustrated in Figure 5.4 . The training
algorithm used was Rear propagation. To shown the results in Figure 5.14 on
Page 51, we have plotted the accumulated error for the trained positions for the
different number of hidden neurons, from 2 to 6 neurons. Here, we see that our
assumption was correct; the best number of hidden neurons, four, is same as
the number of output neurons for this hand.

For DLR hand we used the network illustrated in Figure 5.4 . However, the
number of output neurons must be 12, because the number must be equal to the
number DoF to control. Because of this, it is obvious that the number of hidden

5.2. ANN training 52

Figure 5.16: Posture error comparison between different number of hidden neu-
rons for Robonaut hand training. Note that this graph starts at 3 neurons.

neurons must increase too. The differences between number of hidden network
is discused in the following graph Figure 5.15 . Here is shown the accumulated
error, that is obtained from equation 5.1 .

From the graph we see that eight neurons is enough for the direct mapping,
and when the number of hidden neurons increase above 12 (number of outputs),
the error starts to increase. We chose 8 hiddens neurons for our direct mapping,
because despite we could improve error using more neurons the change is not
appreciable in execution time. More hidden neurons increases the computational
costs and is not necessary for this mapping.

In the Robonaut hand case there are 14 output neurons. For this manipula-
tor the number of hidden neurons has to be larger. In Figure 5.16 , are shown
accumulated error difference from 3 to 16 hidden neurons. We can observe that
the error is quite stable, but it is smaller between 9 to 13 hidden neurons. For
all number of neurons within this interval, direct mapping functioned well. For
this reason we have decided to use 9 neurons in order to reduce computational
costs.

5.2.3 Number of Training Postures

In this experiment, we evaluated how many training postures were sufficient for
effective training of the ANN. Although performed this evaluation for all robot
hands, this section only provides results for the DLR hand, since the results for
the other robot hands were equivalent. First, we observed that our mapping
worked for each hand, but sometimes had problems for unseen hand postures.
For example, half-closed finger positions or moving two fingers simultaneously
sometimes caused problems. The solution to this problem is to add more train-
ing postures. One also has to be careful not to add too many training postures,
which may overfit the network.

In this study we test the network with new postures, not shown to the
network during training. The result is called a test error and is useful for
evaluating how well the network is able to generalize from the training examples.
These new postures are shown in Figure 5.17 . They are combination of different

5.2. ANN training 53

finger movements, which is more difficult for our network to recognize than single
finger movements. However, when grasping objects, several fingers always move
simultaneously.

Figure 5.17: Four new test positions for testing the DLR direct mapping net-
work. They are: index/little finger half closed, index/little fingers closed, thumb
and little fingers half closed and thumb and little fingers closed.

The error is calculated according to equation 5.2 and equation 5.3 . Hence,
we obtain the average error for each posture and we can compare ANNs trained
with different number of postures. Results are shown in Figure 5.18 .

PositionError =
numDoF∑

i=1

(ObtainedDoFi − ExpectedDoFi)2 (5.2)

AverageError =
∑numPositions

i=1 PositionError

numPositions
(5.3)

There are two different error graphs, the first, Figure 5.18(a) on Page 54,
shows the training error and the second, Figure 5.18(b) on Page 54, shows the
test error, the error for non-trained postures seen in Figure 5.17 on Page 53.
Here, the new training positions are new intermediate positions for each of the
fingers. Thus, for 13 postures, each finger has four training positions: open, a
little closed, almost closed, closed. There are three fingers and the final training
posture is the open hand.

From the figures, it is easy to observe that the training error increase with
number of positions, due to imprecision’s and more difficulties for training. Also,
training time and mean square error evolution gets worse with more training
postures.

On the other hand, the test error decreases with the number of training
postures. However, it is possible to see that above 7 postures test error be-
comes unstable. From Figure 5.18 on Page 54, we can conclude that 7 training
postures is the best training configuration for our network, because it is giving
adaptability for non-trained positions and we avoid problems like imprecision
between training postures and overfitted network.

5.2. ANN training 54

Figure 5.18: Comparison of posture error in DLR network for the number of
training postures, Note that starts with four basic postures. (a)Average posture
training error. (b) Average posture test error.

5.3. Intelligent mapping based on object shape 55

5.3 Intelligent mapping based on object shape

In an attempt to improve the grasp mapping when grasping objects, we provide
the neural network information about the object that is to be grasped. In order
to give this knowledge, we have added a new input neuron for object size in our
network. The new network topology is shown in Figure 5.19 .

Figure 5.19: New neural network for intelligent mapping implementation, in red
the new neuron added for object size.

We have studied this new network with different robotic hands, seen in
Figure 5.1 on Page 40, and for different common objects related to two basic
shapes, seen in Figure 5.2 . These objects can be releated to real objects with
either cylindric or cubic shape.

Chapter 6

Object Grasping Results

6.1 Object Grasping using Direct Mapping

This section shows the results when using direct mapping network to grasp
an object. The network was trained for direct mapping, according to the last
section, but with new specific training positions for the object grasp task. This
test was done for different robotic manipulators and objects. In this section
we show the results for the Barrett hand for three cylinders and the Precision
grasp. The grasps are shown in Figure 6.1 . For this mapping the network was
trained with 10 different positions, seven like direct mapping case and three new
positions for each object grasp.

Figure 6.1: Three test grasps towards objects. Precision grasp on three different
cylinders.

After training, a test with the same trained positions gives a higher error
than the previous test on direct mapping, presented in the last section. However,
it is not really comparable since we are not comparing the same postures. It
is generally harder to map a complex pose like a grasp, than mapping simple
changes for each finger.

In real time simulation on Graspit! this network shows good results. How-
ever, still not enough. This network is capable to perform grasps, but not with
sufficient precision required for object grasping.

In order to study real capability of this network we test with new data
from NoB, for every grasp position. In input acquisition human demonstrator
perform the same grasp. However, data acquired is changing lightly, for obvious
reason that human actions are not done always strictly equal. The ANN robotic
systems need adaptation skills for these changes.

56

6.1. Object Grasping using Direct Mapping 57

Figure 6.2 shows the network results for this new data. In Gray: same data
trained, and in Black: new acquired data. Is obvious the fact that for non trained
position error increases, giving more imprecision in real time performance.

Figure 6.2: Error difference for three different grasps, comparison between
trained data and new acquired data. Gray: trained data and Black: not trained
data.

Simulating on Graspit! trained data and not trained data, we can see com-
parison between expected and resulting position. Figure 6.3(a) is network posi-
tion for data trained, and Figure 6.3(b) is network position for not trained data,
in Barrett grasp case. In case of not trained data it is difficult to accomplish
the task at hand.

Figure 6.3: Comparison between trained and not trained positions, in grasping
with direct mapping network (a)Position with trained data (b) Position with
not trained data, from same human position.

We observe that network is capable to perform desired grasp. However,
not with desired precision. A new technique to solve the instability of grasp
positions is studied in next section.

6.2. Object Grasping Aided by Shape and Size Knowledge 58

6.2 Object Grasping Aided by Shape and Size
Knowledge

In this section we study a different kind of grasp mapping system: Training new
ANNs for grasp mapping targeted to different objects with different shape and
varying size. Note that the required number of training data postures increase
with number of objects, thereby increasing the comlexity of the system. In this
study an ANN for the DLR-hand is used.

6.2.1 Basic Shape: Cylinder

Figure 6.4: Examples of training postures given to the system.

For cylindric shapes, three different grasps have been studied: Circular
sphere grasp, Power wrap grasp and Precision wrap grasp, as shown in Fig-
ure 6.4 .

As for direct mapping, the 7 basic training postures is used. Three different
object sizes are used in training. In addition, three specific grasp positions are
used, one for each size. Figure 6.5 shows the comparison between training
and test error for the grasp mapping system. Compared to direct mapping,
the training error is higher, but more importantly, the test error is much lower.
This shows that knowing the object size aids the robot in the grasp mapping
process.

In a real system, it is unlikely that the robot will be estimate the size of
the object perfectly. To test real system capabilities, we introduced an error to
the estimated size of the object. As we can observe in Figure 6.6 , the system
recognize the grasp posture. However, it is not able to achieve precice fingertip
positions when this error is present.

6.2. Object Grasping Aided by Shape and Size Knowledge 59

Figure 6.5: Error difference for three different grasps, comparison between train-
ing and test error for the same postures.

6.2.2 Basic Shape: Cube

For the analyze of grasp mapping for different cube shapes, we used the Robo-
naut system. To train and test this system we used four different cubes, shown
in Figure 5.2 on Page 41.

Training data is composed for 32 different positions. Seven position like
direct mapping for each object size, and four specific grasp positions (as seen
above in grasp cylinder training). This training data structure, gives adaptation
capabilities for different input size.

After training with this data, the average position error is increasing. As for
the cylinder, the training error increases proportional to the number of training
positions. For not trained positions it is giving good results, again, better than
for the direct mapping network. A comparision between trained and test error
is shown in Figure 6.7 .

In this experiment we also test the system for an error in the object size.
Partial results are shown in Figure 6.8 . Figure 6.8(a) shows the trained robot
grasp posture. Figure 6.8(b) shows grasp posture when the human is grasping
a small cube (wood cube see table 5 on Page 42), and the system is told that

Figure 6.6: Position comparison for cylinder shape and sphere grasp with DLR
hand (a) Human position demonstration (b) Network position for trained data
(c) Network position for untrained data.

6.3. Object Grasping Comparison 60

Figure 6.7: Error position difference for three different grasps. Comparison
between training and test error for the same human posture.

same small cube is to be grasped. Figure 6.8(c) shows grasp posture when the
human is grasping a large cube (carton box see table 5 on Page 42), and the
system is still told that a small cube is to be grasped. As seen, this leads to
imprecise finger joint values.

Figure 6.8: Comparison of grasp postures for correct and wrong size in input:
(a) Robonaut grasp demonstration (b) Position obtained with correct size in
input(wood cube see table 5 on Page 42) (c) Position obtained with wrong size
in input (carton box see table 5 on Page 42).

6.3 Object Grasping Comparison

In last sections we have shown results from different grasp mappings. Note that
the results are shown for the Barrett hand, with few DOFs, in case of direct
mapping, and for the DLR and Robonaut, with many DOFs, for mapping aided
by shape and size knowledge. Even though a high number of DOFs would in
general give a larger error, we can see that the error is less with the intelligent
mapping.

For easier comparison of grasping results, Figure 6.9 shows the results with
direct mapping and mapping aided by shape and size knowledge using the Bar-
rett hand and small cube object (see table 5 on Page 42). Here, we can see the
differences between the results obtained when the size of object is know for each

6.3. Object Grasping Comparison 61

grasp type. The main difference is that the error decreses and the final grasp
position is more precise. This position allow contact with the target object, and
may be helped by a feedback system when contact occurs, from for example
touch sensors on the robot fingers. A real robotic platform should be capable
to perform this grasp.

Figure 6.9:

The system has been tested with different robotic hands for every mapping
and object. Figure 6.10 and Figure 6.11 show different results for the DLR
and Robonaut hand using mapping aided by shape and size knowledge. In these
cases two different objects are used: small cylinder and big cube (see table 5
on Page 42). Here, two examples of efficient mapping to allow contact between
object and manipulator in a grasp performance are shown.

6.3. Object Grasping Comparison 62

Figure 6.10: Position comparison for small cylinder shape and sphere grasp
with Robonaut hand (a) human position demonstration (b) demonstrated grasp
position (c) obtained grasp position with mapping aided by shape and size
knowledge.

Figure 6.11: Position comparison for big cube and wrap grasp with DLR hand
(a) human position demonstration (b) demonstrated grasp position (c) obtained
grasp position with mapping aided by shape and size knowledge.

Chapter 7

Conclusions and Future
Work

7.1 Conclusion

In this thesis, we have studied direct mapping and intelligent mapping for sev-
eral robotic manipulators, in order to facilitate robot grasping under human
control. The experiments have shown that ANN direct mapping between hu-
man demonstrator and robotic manipulator gives high movement freedom to
the operator, which is able to perform wide list of different postures with the
robotic manipulator.

However, for a grasp task we have seen that this mapping is not giving
enough precision. Using a new network, the grasp is evaluated and intelligent
mapping is performed, adapted for the object’s size and shape. This gives better
results and more precision in grasp tasks. But, we lose the freedom of the direct
mapping, since the mapping is constrained for grasping.

In programming by demonstration and concretely in the field of robotic
grasping, it is clear that the robots need a lot of environment information in
order to perform complicated tasks. The system can improve the execution if
they are able to know what they are doing, and how they should do it. They
can extract this information from human demonstrations if they have a good
sensor system and artificial intelligence.

7.2 Future Work

Our system is implemented with a data glove which has limitations in the num-
ber of sensors. Our techniques for grasp mapping from human demonstration
could be extended in case there are more sensors available. In case of a new
data glove which provides finger joint values for the human hand, more accu-
rate postures could be extracted. With such a new configuration system could
give better mapping results for robotic manipulators, especially when they have
large number of DOFs.

The next step is to test the grasp mappping and teleoperated grasping of
real objects, on a real robot platform. We have seen that grasp mapping using

63

7.2. Future Work 64

a neural network is working. We have also seen that more information to the
network increases performance. Even more information from the human demon-
stration could be extracted and fed to the network to increase the performance
even further.

Bibliography

[1] J. Suomela, From teleoperation to the cognitive human - robot interface,
Series A: Research Reports No. 26, Helsinki University of Technology, Au-
tomation Technology Laboratory (November 2004).

[2] P. Chang, J. Krumm, Object reconition with color cooccurrence his-
tograms, IEEE Conference on Computer Vision and Pattern Recognition.

[3] S. Ekvall, D. Kragic, Integrating object and grasp recognition for dynamic
scene interpretation, In IEEE/RSJ International Conference on Advanced
Robotics,ICAR’05, Seattle, USA.

[4] A. T. Miller, Graspit!: A versatile simulator for robotic grasping, Ph.D.
thesis, Department of Computer Science, Columbia University, ph.D. The-
sis (June 2001).

[5] H. Friedrich, R. Dillmann, O. Rogalla, Interactive robot programming
based on human demonstration and advice, Sensor Based Intelligent
Robots.

[6] S. Ekvall, D. Kragic, Grasp recognition for programming by demonstra-
tion, In IEEE/RSJ International Conference on Robotics and Automation,
ICRA’05, Barcelona, Spain.

[7] S. Kang, K. Ikeuchi, Toward automatic robot instruction from perception-
mapping human grasps to maniplator grasps, IEEE Transactions on
Robotics and Automation 13 (1).

[8] S. Ekvall, D. Kragic, Interactive grasp learning based on human demonstra-
tion, In IEEE/RSJ International Conference on Robotics and Automation,
ICRA’04, New Orleans, USA.

[9] M. Fischer, P. van der Smagt, G. Hirziger, Lerning techniques in a data-
glove based telemanipulation system for the dlr hand, IEEE International
Conference on Robotics and Automation 2 (1998) 1603–1608.

[10] M. Cabido-Lopes, J. Santos-Victor, Visual transformations in gesture imi-
tation: what you see is what you do, Proceedings of the 2003 IEEE, Inter-
national Conference on Robotics and Automation, Taipei, Taiwan.

[11] R. M. Voyles, P. K. Khosla, A multi-agent system for programming robotic
agents by human demonstration, american Association for Artificial Intel-
ligence.

65

Bibliography 66

[12] Z. Nichol, Y. Liu, P. Suchyta, M. Prokos, A. Goradia, N. Xi, Super-
media enhanced internet-based real-time teleoperation, Tech. rep., Robotics
and Automation Laboratory, Michigan State University, East Lansing, MI
(2000).

[13] A. Rastogi, P. Milgram, D. Drascic, J. J.Grodski, Virtual telerobotic con-
trol, DND Workshop Advanced Technologies in Knowledge Based Systems
and Robotics, Ottawa.

[14] I. Elhajj, N. Xi, W. K. Fung, Y.-H. Liu, Y. Hasegawa, T. Fukuda, Super-
media enhanced internet based telerobotics., Proceedings of the IEEE 91
(2003) 396–421.

[15] R. Olivares, C. Zhou, B. Bodenheimer, J. A.Adams, Interface evaluation
for mobile robot teleoperation, ACMSE’03.

[16] T. Sheridan, Telerobotics, automation, and human supervisory control, The
MIT Press.

[17] S. Tachi, H. Arai, T. Maeda, Development of anthromorphic tele-existence
slave robot, Proceedings of the Internacional Conference on Advanced
Mechatronics, Tokyo.

[18] T. Fong, C. Thorpe, C. Baur, Collaboration, dialogue, and human-robot
interaction, 10th International Symposium on Robotics Research, Lorne,
Victoria, Australia, London: Springer-Verlag.

[19] H. Huang, E. Messina, J. Albus, Autonomy level specification for intelligent
autonomous vehicles: Interim progress report, Proceedings of the Perfor-
mance Metrics for Intelligent Systems (PerMI) Workshop, Gaithersburg.

[20] M. Vainio, Intelligence througth interactions - underwater robot society for
distributed operations in closed aquatic environment, Tech. rep., Helsinky
University of Technology - Automation Technology Laboratory, series A:
Research Reports No. 21 (November 1999).

[21] http://www.airforce-technology.com/projects/predator, 10 sep 2006.

[22] http://www.usabilitynet.org/management/bwhat.htm 10 september 2006.

[23] T. Fong, C. Thorpe, Vehicle teleoperation interfaces, Autonomous Robots
vol.11 (1).

[24] J. Suomela, A. Halme, Cognitive human machine interface of workpartner
robot, Intelligent Autonomous Vehicles Conference (IAV2001), Sapporo,
Japan.

[25] R. Pulli, Kaivosautomaatio tnn - koneet ilman kuljettajaa, Automaatio 03
(Automation Days ’03), Helsinki, Finland.

[26] D. Spiliotopoulos, I. Androutsopoulos, C. Spyropoulos, Human-robot in-
teraction based on spoken natural language dialogue., Presented at the
European Workshop on Service and Humanoid Robots (Servicerob 2001),
Santorini, Greece.

Bibliography 67

[27] T.Fong, F. Conti, S. Grange, C. Baur, Novel interfaces for remote driving:
Gesture, haptic and pda, SPIE Telemanipulator and Telepresence Tech-
nologies VII, Boston, MA.

[28] O. Rogalla, M. Ehrenmann, R. Zoellner, R. Becher, R. Dillmann, Using
gesture and speech control for commanding a robot assistant, Proc. of the
11th IEEE Int. Workshop on Robot and Human interactive Communica-
tion, ROMAN2002, Berlin, Germany.

[29] W. Amai, J. Fahrenholtz, C. Leger, Hands-free operation of a small mobile
robot, Autonomous Robots vol.11 (1).

[30] R. Krauss, U. Hadar, The role of speech-related arm/hand gestures in word
retrieval, r. campbell and l. messing (eds.), gesture, speech, and sign., Tech.
rep., Oxford: Oxford University Press (1999).

[31] http://www.speechrecognition.philips.com/products/, 10 september 2006.

[32] T. Williams, One-muscle infant’s myoelectric control, Journal of Associa-
tion of Children’s Prosthetic Orthotic Clinics 24 (2).

[33] M. Ehrenmann, O. Rogalla, R. Zllner, R. Dillmann, Teaching service robots
complex tasks: Programming by Demonstration for workshop and house-
hold environments, Industrial Applications of Informatics and Microsys-
tems, Universitt Karlsuhe (TH), Germany.

[34] L. Petersson, P. Jensfelt, D. Tell, M. Strandberg, D. Kragic, H. Christensen,
Systems integration for real-world manipulation tasks., In IEEE Interna-
tional Conference on Robotics and Automation, ICRA 2002 vol. 3 (2002)
pages 2500–2505.

[35] M. Cutkosky, On grasp choice, grasp models and the desing of hands
for manufacturing tasks, IEEE Transactions on Robotics and Automation
(189) 269–279.

[36] H. Friedrich, V. Grossmann, M. Ehrenmann, R. Z. O. Rogalla, R. Dill-
mann, Towards cognitive elementary operators: grasp classification using
neural network classifiers, In IASTED International Conference on Intelli-
gent Systems and Control, Santa Barbara, USA.

[37] T. Wojtara, K. Nonami, H. Shao, R. Yuasa, S. Amano, Y. Nobumoto,
Master-slave hand system of different structures, grasp recognition by neu-
ral network and grasp mapping, Robotica volume 22 (2004) pages 449–454.

[38] T. Wojtara, K. Nonami, Hand posture detection by neural network and
grasp mapping for a master slave hand system, In IEEE/RSJ Intl Confer-
ence on Intelligent Robots and Systems(IROS), Sendai, Japan (2004) pages
866–871.

[39] S. Ekvall, F. Hoffmann, D. Kragic, Object recognition and pose estimation
for robotic manipulation using color cooccurrence histograms, in IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS’03.

Bibliography 68

[40] D. Stewart, P. Khosla, Chimera 3.1, the real-time prgramming operating
system for reconfigurable sensor-based control systems, Tech. rep., Carnegie
Mellon University, Pittsburgh (1993).

[41] D. Kragic, S. Ekvall, P. Jensfelt, D. Aarno, Sensor integration and task
planning for mobile maniplation, royal Institute of Technology, Stockholm,
Sweden.

[42] http://www.5dt.com 10 september 2006.

[43] http://www.vrealities.com/glove.html, 10 september 2006.

[44] http://www.geocities.com/mellott124/dataglove.htm, 10 september 2006.

[45] http://www.ascension-tech.com/products/nestofbirds.php., 15 oct 2006.

[46] I. S. Vicente, Human action recognitin based on linear and non-linear di-
mensionality reduction using pca and isomap, Master’s thesis, Center for
Autonomous Systems, Royal Institute of Technology, Stockholm, Sweden
(July 2006).

[47] M. H. Hassoun, Fundamentals of artificial neural networks, The MIT Press.

[48] M. Riedmiller, H. Braun, A direct adaptive method for faster backpropa-
gation learning: The rprop algorithm., In Proc. of the IEEE Intl. Conf. on
Neural Networks, San Francisco, CA. (1993) pages 586–591.

[49] S. E. Fahlman, Faster-learning variations on back-propagation: An emper-
ical study. (1988).

[50] J. Hertz, A. Krogh, R. G. Palmer, Introduction to the theory of neural
computing., Tech. rep., Addison-Wesley Publishing Company. (1991).

[51] http://fann.sourceforge.net/report/node4.html, 15 october 2006.

[52] http://fann.sf.net, 10 september 2006.

[53] A. T. Miller, H. I. Christensen, Implementation of multi-rigid-body dy-
namics within a robotic grasping simulator, In Proceedings of the IEEE
International Conference on Robotics and Automation (2003) 2262–2268.

[54] http://www.barrett.com/robot/handfram.htm, 20 oct 2006.

[55] http://www.dlr.de/rm/en/desktopdefault.aspx/tabid-398/, 20 oct 2006.

[56] http://robonaut.jsc.nasa.gov/, 20 october 2006.

