Energy Dispersive X-Ray Fluorescence: measuring elements in solid and liquid matrices

By Raquel Salamó Clapera

Karel de Grote-Hogeschool Antwerpen June 2006

Outline

- Energy Dispersive X-Ray Fluorescence (EDXRF)
- Measurement Requirements
- Advantages and Disadvantages
- Analysis of Samples (I)
- Analysis of Samples (II)
- Analysis of Samples (III)
- Conclusions

Energy Dispersive X-Ray Fluorescence (EDXRF)

- Multi-element technique for solids, liquids, loose powders, etc.
- Up to 89 elements of the periodic table (from Na to Es)

HYDROGEN 1.008						0	PTIMIZED FILT	ER				OPTIMIZED Na - Ti K line Br - Ba L line		TMOSPHERE Vacuum (solik Helium flush	ds only) (liquids)		HELUM 4.003
3 LITHIUM 6.941	4 Been		ATC	MIC NUMBER	47 K Sym ELEMENT 107.		LTERNATE FILT	T	Color Condition Code Name Low Z (Low Z (Low Z (Mid Z a Mid Z b	Material A None Cellulose Aluminum Thin Pd Med Pd		5 BORON 10.81	6 CARBOI 12.011	7 NITROGEN 14.01	8 OXYGEN 16.00	9 FLUORINE 19,00	10 Ne NEON 20.18
11 K K Na SODUM 22.99 1.041	12 K K Mg MAGNESIUM 1.254 24.31 1.303		και Kβn Kabsorbt	wtd. avg. (keV) wtd. avg. (keV) ion edge (keV)	24.987 25.517	2.504 3.151 3.528	αι(κev) β1 (keV) Πabsorbtion e	dge (keV)	Mid Z d High Z High Z	Thick Pd a Thin Cu b Thick Cu		13 K K ALUMINUM 26,98 1.497 1.659	14 K SiLICON 28.09 1.740 1.838 1.838	K 15 K PHOSPHORO 30.97 2016 2142 2142	K 16 K K SULFUR 2.307 2.458 2.470	17 K K CHLORINE 35,45 2,822 2,817 2,470	18 K K ARGON 38,96 2,967 3,191 3,203
19 K K POTASSIUM 39:10 3:509 3:607	20 K K CALCIUM 40.08 3.690 4.012 4.038	21 K SC SCANDIUM 44.96 4.459 4.459	22 K K TITANIUM 47.90 4.608 4.931 4.964	23 K K VANADIJM 60.94 4.949 5.427 5.453	24 K K CHROMIUM 52.00 5.411 5.947 5.988	25 K K MAN GANESE 54.94 5.895 6.492 6.537	26 K K Fe IBON 56.96 7.059 7.111	27 K COBALT 68.93 6.925 0. 7.849 0. 7.709 0.	28 K K NICKEL 58.70 000 8.255 000 8.331	29 K K COPPER 83,55 8,041 8,997 8,980	30 K K Zn Zinc 65.38 8.631 1.0 8.6572 1.0 8.660 1.0	Gallow Gallow 68,72 10,283 1,1 145 10,388 1,1	32 K GERMANI 72,59 66 9,876 21 10,984 34 11,103	K 33 K ARSENIC 74.92 1.186 10.652 1 1.216 11.729 1 1.248 11.953 1	K 34 K K SELENIUM 78.96 317 (12.50) 1.31 473 (12.562 1.47)	35 K K BROMINE 79.50 11.907 1.480 113.295 1.528 13.475 1.599	36 K K KRYPTON 12,630 1.587 14,120 1.638 14,323 1.727
		39 K YTTRIUM 88.91			42 K K MO MOLYBDENUM 96,94				46 K L Palladium Palladium		48 K Cd CADMIUM 112.41					53 K L	54 K L XENON 131.3
13.370 1.69 14.971 1.76 16.201 1.86	4 14.142 1.800 2 16.949 1.872 6 16.106 2.009	14,833 2 16,754 1, 3 17,037 2,	996 17.687 2.12 164 17.998 2.30	2 16.746 2.160 4 18.647 2.261 5 18.997 2.461	7 19.633 2.39 7 20.002 2.62	20.647 2.63 21.064 2.79	24 19.236 2.66 38 21.687 2.69 36 22.118 2.99	20,167 2 22,769 2 6 23,224 3	696 21.123 2.8 834 23.959 2.9 145 24.347 3.3	8 22.104 2.8 0 24.987 3.1 9 26.517 3.5	64 23,109 3,1 51 26,143 3,2 28 26,712 3,1	133 24,139 3.2 316 27,382 3.4 727 27,928 3.9	87 28.601 87 28.601 89 29.190	3.662 29.861 3 4.167 30.496 4	800 27,380 3.70 843 31,128 4,029 381 31,809 4,613	28.612 3.937 32.437 4.22 33.164 4.866	29,000 4,111 33,777 4,422 34,579 5,104
55 K L CS CESIUM 132.91	BARIUM		72 Hf HAFNIUM 178.49		74 UNGSTEN 183,95	75 C	76 CS	77 C	78 Pt	79 L Au GOLD 198,97	BO L L Hg MERCURY	. 81	82 L Pk LEAD 207,2	L 83 L BISMUTH 208.98	POLONIUM	85 L L Astatine (210)	86 LLL Rn RADON
30.854 4.29 35.149 4.62 35.959 5.35	6 32,065 4,467 0 36,553 4,828 8 37,410 5,623		55.392 7.999 63.562 9.021 65.313 10.734	8 57.106 8.148 1 65.556 9.341 4 67.400 11.130	5 58,964 8,390 1 67,596 9,67 0 69,508 11,530	8 60.655 8.65 0 69.659 10.00 5 71.682 11.95	51 62,482 8,91 98 71,775 10,35 55 73,980 12,39	0 64.346 9. 4 73.933 10. 3 76.097 12	173 66.246 9.44 706 76.131 11.06 819 78 379 13.26	1 68,195 9.7 9 78,372 11,4 8 90,713 13,7	11 70.160 ^{200.05} 9.9 39 90.656 11.8	987 72.178 10.2 123 92.995 12.3 12 95.517 14.6	66 74.228 1 10 85.357 1 87 88.001	0.549 76.321 10 2.611 87.774 13 5.207 90.521 15	836 78,460 11.125 021 90.243 13,441 716 93,112 16,24	90.636 11.424 92.754 13.873 95.740 16.784	82.855 11.724 95.315 14.316 98.418 17.337
⁸⁷ Fr	* Ra		57			60 E E		62 E	63	64	65	66	67	68 L	69	70	71
FRANCIUM (223) 95.124 12.02 97.930 14.77 101.147 17.90	HADIUM 228.03 9 87.437 12.338 0 100.593 15.223 4 103.927 18.481		LANTHANUM 138.91	CERIUM 140.12	PRASEO DYMIUN 140.91	NEODYMIUM	Pm PROMETHIUM (145)	SAMARIUM 160.4	EUROPIUM 161.98	GADOLINIUM 16726	Tb TERBIUM 158,93	Dysprosium 1825	HOLMIU HOLMIU 164.93	M ERBIUM	Tm THULIUM 168.93	Yb YTTERBIUM 173.04	LUTETIUM 174.96
			33.302 4.651 37.996 5.043 38.931 5.99	34,569 4,940 3 39,453 5,266 4 40,449 6,166	0 35.864 5.03 2 40.953 5.48 5 41.998 6.44	4 37.185 5.23 9 42.484 5.72 3 43.571 6.72	80 38,535 5,43 22 44,049 5,95 27 45,207 7,01	1 39.914 5. 6 45.649 6. 8 46.847 7.	836 41.323 5.84 206 47.283 6.45 281 48.515 7.62	6 42.761 6.0 6 48.949 6.7 4 50.229 7.9	59 44.229 6.2 14 50.650 6.9 40 51.998 8.2	276 45.728 6.4 979 52.384 7.2 268 53.789 8.6	96 47.267 49 54.155 21 55.615	6.720 48.818 6 7.528 55.963 7 8.920 57.483 9	948 60,410 7,181 810 67,806 8,103 263 69,336 9,628	62.035 7.414 69.687 8.401 61.303 9.977	63.693 7.654 61.607 8.708 63.304 10.345
			89 L L ACTINUM 83.790 (227) 12.651		91 L L PROTACTINIUM 231.04 94.64 13.29	92 L L URANIUM 238.09 197.14 13.61		94 L PLUTONIUM 5 102 30 (244) 14	95 L L AMERICIUM 2779 104.95 (243) 2791 104.95		97 L BERKELIUM BERKELIUM 81 11045	98 L L Cf CALIFORNIUM (261) 15.6	99 ES EINSTEINI (254)	UM B018	101 Mendelevium (258)	102 NOBELIUM (259)	103 LAWRENCIUM (260)

How is the X-ray signal produced?

- A source X-ray strikes an inner shell electron.
 If at high enough energy (above absorption edge of element), it is ejected it from the atom.
- Higher energy electrons cascade to fill vacancy, giving off characteristic fluorescent X-rays.

How does EDXRF works?

X-ray tube, sample excitation, detector

- Qualitative: wavelenght ↔ atomic number
- Quantitative: intensity ↔ concentration

Sample

t.ray source

Spectrometer

X-ray source is generally an X-ray tube

Quantitative Analysis

• XRF is a reference method, standards are required for quantitative results

• Standards are analysed, intensities obtained, and a calibration plot is generated (intensities vs. concentration)

• XRF instruments compare the spectral intensities of unknown samples to those of known standards

Measurement Requirements

• Air (usually)

because air absorbs low energy x-rays \rightarrow purges are often required

The two most common purge methods are:

- Vacuum \rightarrow for use with solids or pressed pellets
- **Helium** \rightarrow for use with liquids or powdered materials

Advantages of X-Ray Fluorescence

- Simple spectra
- Spectral positions are almost independent of the chemical state of the analyte
- Minimal sample preparation
- It is non-destructive
- Applicable over a wide range of concentrations
- Good precision and accuracy
- Qualitative analysis can be performed in 50 s, or so
- Can be used to measure solid, powdered and liquid samples

Disadvantages of X-Ray Fluorescence

- X-ray penetration of the sample is limited to the top 0.01 - 0.1 mm layer
- Light elements (below AI) have very limited sensitivity although C is possible on new instruments
- Inter element (MATRIX) effects may be substantial and require computer correction
- Limits of detection are only modest
- Instrumentation is fairly expensive

Analysis of Samples (I)

Powder

Received Sample	SIS Sample
<u>Purpose</u>	Determine unknown components (qualitative and quantitative)
Sample preparation	Not required
Analysis technique	Intensity correction (quantitative analysis)

Analytical Conditions used to analyse SIS sample

• Condition Name: Low Za \rightarrow Detected elements: Mg, Al, Si, P

Voltage	4 kV	Current	Auto
Livetime	50 seconds	Counts Limit	0
Filter	No Filter	Atmosphere	Helium
Maximum Energy:	10 keV	Count Rate	Medium

• Condition Name: Mid Za \rightarrow Detected elements: Ni, Fe

Voltage:	14 kV	Current	Auto
Livetime:	50 seconds	Counts Limit	0
Filter:	Pd Thin	Atmosphere	Air
Maximum Energy:	20 keV	Count Rate	Medium

Analytical Conditions used to analyse SIS sample (continued)

• Condition Name: Mid Zb \rightarrow Detected elements: Cu, Zn

Voltage	15 kV ; 17 kV	Current	Auto
Livetime	50 seconds	Counts Limit	0
Filter	Pd Medium	Atmosphere	Air
Maximum Energy:	20 keV	Count Rate	Medium

• Condition Name: Mid $Zc \rightarrow Detected elements: Mo$

Voltage:	35 kV	Current	Auto
Livetime:	50 seconds	Counts Limit	0
Filter:	Pd Thick	Atmosphere	Air
Maximum Energy:	40 keV	Count Rate	Medium

Overlap spectrum obtained

Overlap spectrum enlarged

Powder sample analysis results

Conclusions

- The analysis performed was quite good, because the total sum is nearly 100 %
- Mg = 0,00 % is maybe because the calibration line for Mg was not adjusted properly.

Analysis of Samples (II)

Liquid

<u>Sample</u>	Nitrates dissolved in water
Purpose	Determine detection limits of heavy metals in water
Sample preparation	Dissolutions prepared from Stock Solution 1,057 M
Analysis technique	Qualitative analysis

Liquid sample analysis results

Solution	ppm compound	\checkmark = detected	X = not detected
" A "	29.516,73 ppm Fe 34.553,33 ppm Zn 59.408,69 ppm Cd 109.505,20 ppm Pb	\checkmark	
"В"	2.951,67ppmFe3.455,33ppmZn5.940,87ppmCd10.950,52ppmPb	✓ ✓ ✓ ✓	
"C"	295,11 ppm Fe 345,53 ppm Zn 594,09 ppm Cd 1095,05 ppm Pb	✓ ✓ ✓ ✓	
"D"	29,52 ppm Fe 34,55 ppm Zn 59,41 ppm Cd 109,51 ppm Pb	✓ ✓	X X
"E"	2,95 ppm Fe 3,45 ppm Zn 5,94 ppm Cd 10,95 ppm Pb		X X X X X

Resulting spectra with all the compounds detected

Resulting spectra with no compounds detected

Conclusions

- Concentrations > 100 ppm \rightarrow peaks appear clearly
- Between $10 100 \text{ ppm} \rightarrow \text{limit of detection (critical zone)}$
- Concentrations < 10 ppm \rightarrow any peaks appearing

Analysis of Samples (III)

Oil

- Qualitative measurement of sunflower-oil and bolecht (lecithin)
- Detection limit for P by adding bolecht to sunflower oil

Qualitative measurements of sunflower-oil and lecithin

Conditions used :

Condition name	Low Za
Filter	No filter
Voltage	4 kV
Atmosphere	Air
Analyzed element	Р
Count Rate	Medium
Live Time	100 sec

Spectrum obtained performing qualitative analysis of sunflower oil

Spectrum obtained performing qualitative analysis of bolecht (lecithin)

Detection limit for P by adding bolecht to sunflower oil

Conclusions

- In concentrations lower than 10 ppm, phosphorus is almost impossible to detect.
- When concentrations are higher than 15 ppm, phosphorus is detected clearly.

THANK YOU FOR YOUR ATTENTION !