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Abstract

Brugada syndrome (BrS) is a life-threatening, inherited arrhythmogenic syndrome associated with autosomal dominant
mutations in SCN5A, the gene encoding the cardiac Na+ channel alpha subunit (Nav1.5). The aim of this work was to
characterize the functional alterations caused by a novel SCN5Amutation, I890T, and thus establish whether this mutation is
associated with BrS. The mutation was identified by direct sequencing of SCN5A from the proband’s DNA. Wild-type (WT) or
I890T Nav1.5 channels were heterologously expressed in human embryonic kidney cells. Sodium currents were studied
using standard whole cell patch-clamp protocols and immunodetection experiments were performed using an antibody
against human Nav1.5 channel. A marked decrease in current density was observed in cells expressing the I890T channel
(from 252.066.5 pA/pF, n= 15 to 235.963.4 pA/pF, n= 22, at 220 mV, WT and I890T, respectively). Moreover, a positive
shift of the activation curve was identified (V1/2 =232.060.3 mV, n= 18, and 227.360.3 mV, n= 22, WT and I890T,
respectively). No changes between WT and I890T currents were observed in steady-state inactivation, time course of
inactivation, slow inactivation or recovery from inactivation parameters. Cell surface protein biotinylation analyses
confirmed that Nav1.5 channel membrane expression levels were similar in WT and I890T cells. In summary, our data reveal
that the I890T mutation, located within the pore of Nav1.5, causes an evident loss-of-function of the channel. Thus, the BrS
phenotype observed in the proband is most likely due to this mutation.
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Introduction

Alterations of the sodium current (INa) in the human heart can

lead to diseases responsible for cardiac arrhythmias, such as

Brugada Syndrome (BrS) [1]. This syndrome, first described in

1992, is characterized by the presence of ST segment elevation in

the right precordial leads (V1–V3) of the electrocardiogram

(ECG), without major structural alterations in the heart [2]. The

prevalence of BrS is in the range of 1–5 in every 10,000 individuals

and is an important cause of Sudden Cardiac Death (SCD) [3].

Since the discovery of the first genetic variation in the cardiac

sodium channel gene, SCN5A, associated with BrS [4], many

studies have classified this syndrome as a genetic disease with

autosomal dominant inheritance and incomplete penetrance [5]. It

has been demonstrated that mutations in SCN5A associated with

BrS result in loss-of-function of the current carried by the cardiac

type sodium channel (Nav1.5) [6]. Different mechanisms are

known to produce channel loss-of-function, including reduced

expression of the channel in the plasma membrane, changes in the

voltage dependence of the channel activation or inactivation, or

altered channel kinetics [7]. In addition, mutations in genes other

than SCN5A have been identified in a low proportion of BrS

patients [8].

The Nav1.5 protein, with 2016 amino acids and a molecular

weight of 227 kDa, consists of four homologous domains (DI-DIV)

[9]. Each domain contains six transmembrane segments (S1–S6)

linked by intracellular and extracellular loops. S4 segments contain

5 positively charged residues (arginine or lysine) separated by 2

hydrophobic residues, and form the voltage sensor domain of the

channel. The pore region of the channel is formed by the

interaction among segments S5, S6 and loop S5–S6 of domains DI

to DIV [10]. The pore (P)-helices that stabilize the Na+ ion in the

central cavity are formed by the loops S5–S6 [11].

In the present study, we aimed to characterize the biophysical

properties of Nav1.5 channels carrying a novel mutation, I890T, in

the first P-helix of DII to establish whether this mutation is

associated with BrS. We show evidence of loss-of-function of the

mutant Nav1.5 channel, which is consistent with the patient’s

clinical manifestation of BrS.
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Methods

Ethics Statement
This study was approved by the Ethics Committee of Hospital

Josep Trueta (Girona, Spain) and conforms with the principles

outlined in the Declaration of Helsinki. All individuals signed

a written informed consent to participate in the study.

Reagents
All reagents were obtained from Sigma-Aldrich (St. Louis, MO,

USA), unless stated otherwise.

Genetic Analysis of SCN5A
Total genomic DNA was isolated from blood samples using the

Puregene DNA purification Kit (Gentra Systems, Minneapolis,

MI, USA). The exons and exon-intron boundaries of SCN5A were

amplified (Verities PCR, Applied Biosystems, Austin, TX, USA),

the PCR products were purified (Exosap-IT, USB, Isogen Life

Science, The Netherlands) and they were directly sequenced in

both directions (Big Dye Terminator v3.1 cycle sequencing Kit

and 3130XL Genetic Analyzer, both from Applied Biosystems).

The DNA sequence was compared with the reference sequence

NM000335 for SCN5A (OMIM601144) (UCSC Genome binfor-

matics [12]/NCBI-Mendelian Inheritance [13]). DNA samples

from 300 healthy Spanish individuals (600 alleles) were used as

control samples.

Site-directed Mutagenesis
The wild-type (WT) human SCN5A cDNA (Uniprot reference:

Q14524) cloned in pcDNA3.1 (a kind gift from Dr. Matteo Vatta,

Baylor College of Medicine, Houston, TX, USA.) was used as

template to engineer the mutation I890T using the QuikChange

Site-Directed Mutagenesis system (Stratagene, La Jolla, CA, USA)

and the following primers (mutation underlined):

59-GCCTTCCTCACCATCTTCCGCATCCTCTGTGGA-

GAGTGGATCG-39 and.

59–GCGGAAGATGGTGAGGAAGGCATGAAAGAAGTC-

CATCATGTGC-39.

The resultant construct was directly sequenced to verify the

presence of the desired mutation and the absence of additional

variations.

pcDNA3.1 included a FLAG tag (sequence: DYKDDDDK

between prolines P154 and P155 of SCN5A) which has been

previously shown not to alter the Nav1.5 current properties

[14,15]).

Cell Culture and Transfection
Human embryonic kidney (HEK) 293 cells, a kind gift from Dr.

Miguel Valverde [16], were used as experimental model. Cells

were maintained in Dulbecco’s Modified Eagle’s Medium

supplemented with 10% Fetal Bovine Serum, 1% antibiotic-

antimycotic and 1% Glutamax (all from Invitrogen, Carlsbad, CA,

USA) at 37uC and 5% CO2.

HEK cells were transiently transfected with 2.9 mg of the

SCN5A construct, either WT or I890T, using GeneCellinTM

Transfection Reagent (BioCellChallenge, Toulon Cedex, France)

following the manufacturer’s specifications. Co-transfection with

0.1 mg of a plasmid containing the green fluorescent protein (GFP)

gene (a kind gift from Dr. Kirstine Callø, University of

Copenhagen, Copenhagen, Denmark) allowed the identification

of transfected cells. All experiments were performed 48 hours after

transfection.

Electrophysiological Studies
Sodium currents were measured at room temperature using the

standard whole cell patch-clamp technique [17]. Voltage clamp

experiments were controlled and analyzed with an Axopatch 200B

amplifier and pClamp 10.2/Digidata 1440A acquisition system

(Molecular Devices, Sunnyvale, CA, USA) and OriginPro8

software (OriginLab Corporation, Northampton, MA, USA).

The bath solution contained (mM): 140 NaCl, 3 KCl, 10 N-2-

hydroxyethylpiperazine- N’ -2-ethanesulfonic acid (HEPES), 1.8

CaCl2 and 1.2 MgCl2 (pH 7.4, NaOH); and the pipette solution

(mM): 130 CsCl, 1 Ethylene glycol-bis(2-amino-ethylether)-N,N,

N’,N’-tetra-acetic acid (EGTA), 10 HEPES, 10 NaCl and 2 ATP

Mg2+ (pH 7.2, CsOH). Osmolality was adjusted by the addition of

glucose to 326 and 308 mOsm for bath and pipette solution,

respectively. Pipettes were pulled from glass capillaries (Brand

GMBH+CO KG, Wertheim, Germany) and their resistance

ranged from 2.5 to 3.2 MV when filled with the internal solution.

80–90% series resistance compensation was used during whole cell

measurements. Membrane potentials were not corrected for

junction potentials that arose between the pipette and bath

solution. Data were filtered at 5 kHz and sampled at 5–20 kHz.

Activation curve data were fitted to a Boltzmann equation, of

the form g= gmax/(1+ exp(V1/22Vm)/k), where g is the conduc-

tance, gmax the maximum conductance, Vm is the membrane

potential, V1/2 is the voltage at which half of the channels are

activated and k is the slope factor. Steady-state inactivation values

were fitted to a Boltzmann equation of the form I= Imax/(1+
exp(V1/22Vm)/k), where I is the peak current amplitude, Imax the

maximum peak current amplitude, Vm is the membrane potential,

V1/2 is the voltage at which half of the channels are inactivated,

and k is the slope factor. The sodium current decay after the peak

INa was fitted with a monoexponential function between 240 and

225 mV, and a bi-exponential function between 220 and

20 mV, from where t fast and t slow were obtained. Both the

slow inactivation and the recovery from inactivation data were

fitted to mono-exponential functions, to obtain their respective

time constants.

Cell Surface Protein Biotinylation
Cells were washed with Dulbecco’s Phosphate-Buffered Saline

(DPBS) supplemented with 0.9 mM CaCl2 and 0.49 mM MgCl2
(DPBS+) at pH 7.4. Membrane proteins were biotinylated by

incubating cells with 1.6–2.5 mg/ml of EZ-link sulfo-NHS-LC-

LC-biotin (Pierce, Thermo Scientific, Rockford, IL, USA) in

DPBS+ for 30 min at 4uC. Cells were then washed 3 times in

DPBS+ with 100 mM glycine, then with DPBS+ containing

20 mM glycine, and scrapped in Triton X-100 lysis buffer (1%

Triton X-100, 50 mM Tris/HCl pH 7.4, 150 mM NaCl, 1 mM

EDTA and Complete Protease Inhibitor Cocktail (Roche, Madrid,

Spain)). Lysates were obtained after 1 h rotating at 4uC. Insoluble

materials were removed by centrifugation. Supernatants were

incubated with Ultralink Immobilised NeutrAvidin beads (Pierce)

overnight at 4uC. The beads were precipitated and washed with

Triton X-100 lysis buffer, then in saline solution (5 mM EDTA,

350 mM NaCl and 0.1% TX-100 in DPBS+ pH 7.4) and finally in

10 mM Tris/HCl pH 7.4. Precipitated beads were resuspended in

SDS-PAGE loading buffer and heated for 5 min at 70uC. Proteins

were resolved in 4% SDS-PAGE gels and transferred to PVDF

membranes (Millipore, Billerica, MA, USA). Membranes were

probed with a rabbit anti-human Nav1.5 antibody (anti-hNav1.5;

Alomone Labs, Jerusalem, Israel) at a dilution of 1:1,000,

overnight at 4uC. A secondary horseradish peroxidase-conjugated

antibody (Thermo Scientific, Rockford, IL, USA) was used at

a dilution of 1:2,000 for 1 h at room temperature, and signals were
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detected with the SuperSignal West Femto Chemiluminiscent

substrate (Pierce). A mouse antibody against Na+/K+ ATPase was

used as biotinylation control. Protein markers for molecular

weights from 10 to 250 kDa (PageRulerTM Plus Prestained Protein

Ladder, Thermo Scientific, Rockford, IL, USA) were used as size

standards in protein electrophoresis (SDS-PAGE) and Western

blotting.

Expression of Nav1.5 was quantified using the ImageJ software

(National Institute of Health, NIH) available at http://rsb.info.

nih.gov/ij. Intensity values for each band were determined as the

integrated density (sum of pixel values) within a fixed area. To

account for differences of these values between WT and I890T

due to loading, I890T intensity values were normalized with the

ratio between WT and I890T Na+/K+ ATPases.

In silico Studies of I890T
The software tools ESyPred3D 1.0 [18], Modeller 9.9 [19] and

CPHmodels [20] were used to build a model of the pore module of

DII of Nav1.5, based on the structure of the bacterial voltage-gated

sodium channel (NavAb) ([11]). The model was constructed as

a chimera of NavAb and Nav1.5 as follows: the sequence of S1 to

S4, as well as the loop S4–S5, was that of NavAb; the sequence of

S5, loop S5–S6, and S6 was that of DII of Nav1.5. No further

constraints were defined.

Figure 1. Clinical and genetic characterization of the proband and his family. (A) Family pedigree with corresponding ECGs. Open symbols
indicate clinically normal subjects and filled symbols mark clinically affected individuals. Plus signs indicate the carriers of the mutation I890T and
minus signs, non-carriers. The arrow identifies the proband. Basal ECG of the proband and ECGs at the time of the ajmaline test of the family
members are presented. (B) Detail of the electropherograms obtained after SCN5A sequence analysis. The arrow indicates the nucleotide position
2669 of SCN5A, where a double peak (T to C heterozygote change, c.2669 T.C) was identified in the proband’s DNA.
doi:10.1371/journal.pone.0053220.g001

Figure 2. I890T markedly decreases peak INa. Voltage dependence of sodium currents measured from WT and I890T cells. Whole cell currents
were elicited by depolarizing potentials as shown in the inset. (A) Representative whole cell sodium current density traces recorded from WT and
I890T cells. (B) Current-voltage (I–V) relationship. INa amplitude was normalized to the cell capacitance to obtain current density (INa density) values.
Experimental points represent the peak-amplitude of current density at each given voltage, for WT (filled circles) and I890T (open circles). Values are
expressed as mean 6 SE.
doi:10.1371/journal.pone.0053220.g002

Novel Nav1.5 Pore Mutation I890T Causes BrS

PLOS ONE | www.plosone.org 4 January 2013 | Volume 8 | Issue 1 | e53220



Statistical Analyses
Results are presented as means 6 standard error (SE). Statistical

comparisons were performed using the unpaired Student’s t-test.

Results are considered statistically significant when p,0.05.

Results

Identification of I890T, a Novel Nav1.5 Channel Mutation
The proband, a 31-year-old Spanish male, was admitted to the

hospital due to the suspicion of BrS during a routine examination.

His baseline 12-lead ECG showed a ST segment elevation in leads

V1–V3 that strongly suggested BrS type I (Fig. 1A). He had

suffered an episode of syncope at the age of 12.

A heterozygous variation (thymine-to-cytosine) at position 2669

of the SCN5A gene (c.2669 T.C) was identified in the proband’s

DNA (Fig. 1B). This base transition leads to an isoleucine-to-

threonine substitution at position 890 (p.I890T) of the Nav1.5

channel. This genetic variation was absent in 600 control alleles of

the same ethnic background, and was not found in the Human

Gene Mutation Database (HGMD) [21], Ensembl [22], HapMap

[23], 1000 genomes project [24] and NHLBI Exome Sequencing

Project [25]. The I890T variation in Nav1.5 channel thus

represents a possible novel mutation causing BrS.

The genetic study of the proband’s family members revealed

that two sisters had the I890T mutation (Fig. 1A). A 34-year-old

sister presented several episodes of syncope, her baseline ECG was

normal, but a ST segment elevation in lead V2 characteristic of

BrS was unmasked upon ajmaline challenge, thus confirming BrS.

A 18-year-old sister was asymptomatic, had a normal baseline

ECG, and presented no alterations after challenge with either

flecainide or ajmaline. The proband’s third brother refused to

undergo genetic analysis despite having a previous history of

syncopes. The proband’s mother carried the I890T mutation. She

presented an episode of syncope at age 18, but showed a normal

ECG when subjected to drug challenge tests. The proband’s father

did not carry the mutation and was asymptomatic, and had

a normal ECG after drug provocation test.

To further explore the different clinical phenotypes found

among the carriers of the I890T mutation, we looked for other

genetic variations in the SCN5A gene in the family. We found that

the younger sister, who did not present any cardiac abnormalities,

carried a non-synonymous polymorphism, p.H558R, inherited

from the father. This variation was not found in any of the other

mutation carriers.

I890T Markedly Decreases Peak INa and Modifies Nav1.5
Channel Activation Kinetics

We conducted patch-clamp studies to assess the effect of the

mutation I890T on whole cell sodium currents. HEK cells were

transfected with either WT or I890T channel constructs (referred

to as WT cells and I890T cells, respectively, in the remaining text).

Current traces in Figure 2A show that INa is substantially reduced

by the mutation I890T. This reduction was confirmed by analysis

of peak INa density, which showed a significant decrease in the

current-voltage relationship (I–V) of I890T cells with respect to

WT cells (Fig 2B, Table 1).

In addition, we observed a positive shift of the activation curve

towards more positive potentials (Fig. 3), which further contributes

to the loss-of-function of I890T channels. Data fitting to

a Boltzmann equation revealed a significant 5 mV shift of V1/2

in I890T respect to WT cells, whereas no changes were observed

in the slope factor (Table 1).

Next, we assessed the voltage-dependence of steady-state

inactivation for WT and I890T cells. The mutation I890T did

not affect the voltage dependence of channel availability (Fig. 3,

Table 1).

Analysis of the time courses of inactivation, slow inactivation

and recovery from inactivation are illustrated in Figure 4.

Inactivation time constants were obtained from fitting the time

Table 1. Biophysical parameters of WT and I890T channels.

INa at 220 mV Activation Steady-state Inactivation Slow inactivation
Recovery from
inactivation

pA/pF n V1/2 (mV) k n V1/2 (mV) k n t (ms) n t (ms) n

WT 252.066.5 15 232.060.3 26.960.3 18 284.960.9 24.960.4 10 243.2639.9 5–14 3.960.1 11

I890T 235.963.4* 22 227.360.3** 26.760.2 22 284.260.4 24.960.4 15 224.2635.0 5–19 4.260.1 16

Activation and steady-state inactivation parameters were calculated by data fitting to Boltzmann functions (see Methods). V1/2 is the voltage for half-maximal activation
or steady-state inactivation and k is the slope factor. Slow inactivation and recovery from inactivation data were fitted to mono-exponential functions (see Methods) to
obtain the time constant t. Values are expressed mean 6 SE. *p,0.05; **p,0.01.
doi:10.1371/journal.pone.0053220.t001

Figure 3. I890T modifies Nav1.5 channel activation kinetics. INa
voltage-dependence of activation and steady-state inactivation for WT
and I890T cells. Conductance values for the activation curve were
obtained from the peak current values taken from Figure 2. Symbols
represent experimental data plotted against the given depolarizing
voltage values for WT (filled circles) and I890T (open circles). Steady-
state inactivation protocol is shown in the inset on the left. Relative
current values were determined using 500 ms pre-pulses to different
potentials followed by a test pulse to 220 mV. Symbols represent
experimental data plotted against preconditioning pulse values for WT
(filled squares) and I890T (open squares). Values are expressed as mean
6 SE. Solid lines represent the Boltzmann fit of the experimental points.
doi:10.1371/journal.pone.0053220.g003
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course of the currents elicited with the stimulation protocol used

for the I–V relationship, and plotted as a function of voltage

(Fig. 4A). The time constants for I890T and WT currents

remained similar at the voltage range analyzed. Double pulse

protocols were used to study INa slow inactivation and recovery

from inactivation. No differences were found either in the slow

inactivation or recovery from inactivation parameters obtained

from fitting of data from WT and I890T cells to mono-exponential

functions (Fig. 4B and 4C, respectively, and Table 1).

I890T does not Alter Membrane Expression of Nav1.5
Channel

I890T caused a significant decrease in INa (Fig. 2). Thus, we

tested whether this change in INa was caused by alterations in

Nav1.5 expression in the plasma membrane. Figure 5A shows

western blot bands obtained after cell surface protein biotinylation

from 6 independent experiments. Densitometry analysis of the

bands (Fig. 5B and C) did not reveal statistically significant

differences between WT and I890T cells (Nav1.5 I890T/WT was

1.1160.14, n = 6).

Taken collectively, our data indicate that the I890T mutation

causes a loss-of-function of Nav1.5 current by the modification of

the biophysical properties intrinsic to channel activity, rather than

by impaired expression at the plasma membrane.

In silico Models of the Pore Region of WT and I890T DII of
Nav1.5

We performed a sequence alignment between DII of Nav1.5

channel and the corresponding sequence of NavAb channel

(Fig. 6A, upper panel) and built models for the S5–S6 region of

the human channel using protein structure prediction models.

Figure 6B shows the prediction obtained using the CPHmodels

tool [20]. The loop S5–S6 in our model had a longer, flexible

turret loop before the P1-helix. I890 resided within the second

turn of the P1-helix, buried among the turret loop, the selectivity

filter and the P2-helix.The structure of the S5–S6 loop was not

apparently affected by the introduction of the I890T mutation (not

shown).

Discussion

In the present work we identified a novel SCN5A mutation in

a patient diagnosed with BrS. The same mutation was found in

three other family members, two of whom presented signs of

potential arrhythmogenicity. Complete genetic analysis of the

SCN5A gene revealed that the younger sister, who did not present

any cardiac abnormalities, carried a common polymorphism

(p.H558R), inherited from the father. This variation was not found

Figure 4. I890T does not affect the time course of inactivation,
slow inactivation, or recovery from inactivation. (A) Experimental
data obtained for the current-voltage relationship (Fig. 2) was used to
determine inactivation time constants in the voltage range between
240 and 20 mV. Current decay after the peak INa was fitted to a mono-
exponential function (from 240 to 225 mV) and a bi-exponential

function (from220 to 20 mV), and the resulting time constants (t) were
plotted versus the applied voltage for WT and I890T. (B) Voltage
dependence of slow inactivation for WT and I890T were studied by
applying the double protocol pulse shown in the inset. A 20–970 ms
conditioning pre-pulse to 220 (P1) was followed by a 20 ms
hyperpolarization to 2120 mV, to recover fast-inactivated channels,
and then a 20 ms test pulse to 220 mV (P2). The peak current ratio P2/
P1 was plotted against the P1 prepulse duration, and data was fitted to
mono-exponential functions (solid lines). (C) Recovery from inactivation
properties for WT and I890T were studied by applying the double pulse
protocol shown in the inset. A 50 ms depolarizing pulse to220 mV (P1)
was followed by a hyperpolarizing pulse to 2120 mV of increasing
duration (1–30 ms), that preceded a test pulse to 220 mV (P2). The P2/
P1 ratio values plotted against the recovery interval times were fitted to
mono-exponential functions (solid lines). A, B and C: Values are
expressed as mean 6 SE. Symbols represent values for WT (filled
symbols) and I890T (open symbols).
doi:10.1371/journal.pone.0053220.g004
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in any of the other mutation carriers. One of the most intriguing

features of BrS is the marked phenotypic variability. Clinical

phenotype of individuals that carry SCN5A mutations may range

from asymptomatic to SCD [26]. It has been postulated that

modifying factors, such as genetic background and environment,

influence the clinical phenotype of BrS patients [27,28]. Several

factors may explain the absence of symptoms in the younger sister.

Young age and being a female are factors that diminish risk of

arrhythmogenesis in BrS patients. In addition, the younger sister

carries the polymorphism p.H558R which has been identified as

a palliative factor in the pathological effects of BrS associated

mutations [29,30]. Still, this polymorphism was not found in the

mother who, despite having suffered syncope, was not diagnosed

with BrS. It is evident from these data that a combination of

modifying factors is determinant of the clinical phenotype,

especially when the functional effect of the pathogenic mutation

is mild.

The c.2669 T.C nucleotidic change produces an amino acidic

variation of an isoleucine-to-threonine in position 890

(p.Iso890Thr, p.I890T), localized in the P-loop of the domain II

of the Nav1.5 channel (Fig. 6C). Sequence alignment demonstrat-

ed that I890 is conserved within the members of the voltage-gated

sodium channel a-subunit family as well as in Nav1.5 channels of

Figure 5. Membrane expression of Nav1.5 channel is not affected by I890T. Western blot detection of Nav1.5 and Na+/K+ ATPase proteins
performed after cell surface biotinylation from WT and I890T cells. (A) Image shows the bands obtained for Nav1.5 and Na+/K+ ATPase, in 6
independent experiments from cells expressing either WT or I890T. Position of the markers is shown on the left side. Numbers correspond to each
experiment. (B) Bar graph depicts the Nav1.5 intensity values normalized by the Nav1.5 WT intensity values (n = 6). Nav1.5 I890T intensity values were
previously corrected by multiplying the raw integrated density values by the ratio between the WT and I890T Na+/K+ ATPase integrated density
values. Note that for experiment number 5, the ratio between I890T and WT was calculated from the average of the intensity values obtained for the
two samples of each condition. (C) Bar graph shows the average intensity values (expressed as mean 6 SE) obtained in (B).
doi:10.1371/journal.pone.0053220.g005
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other species (Fig. 6A, middle and lower panels), indicating that

a hydrophobic residue is essential at this position.

A correlation between the region of the Nav1.5 channel where

mutations are located and the severity of the clinical phenotype

has not been well established. Meregalli et al. [31] published

a systematic study showing a correlation between the type of

mutation and the changes produced in Nav1.5 currents. A broader

study would most likely give light to this intriguing subject.

Unfortunately, this type of study is difficult to achieve mainly due

to the fact that only a small percentage of BrS related mutations

are studied functionally. We have performed an exhaustive

compilation of reported mutations related to BrS located in the

pore regions of Nav1.5 channel (Table S1). Out of the 86

mutations identified in these regions, functional studies are

documented only for 18 of them. The present work is the first

reported functional study of a pore mutation in DII of Nav1.5

associated with BrS.

Our electrophysiological studies in transfected HEK cells

showed that the mutation caused a significant decrease in current

density compared to WT. In addition, the activation curve of the

Figure 6. I890 is a conserved aminoacid, located in the intramembrane pore region of Nav1.5 DII. (A) Sequence alignment of the pore
modules of human Nav1.5 channel (DII) and NavAb. Identical aminoacids are highlighted in grey. Isoleucine-890 is marked with a dark box. Similar
aminoacids are included inside light boxes and dots identify insertions (lower panel). Sequence alignment of human voltage-gated sodium channel
a-subunit family members and of Nav1.5 channels of different species, upper and middle panels, respectively. The position of the first amino acid of
each sequence is indicated on the left side, and the reference for each protein according to Uniprot is shown at the right side. (B) Partial view of the
CPHmodel showing the pore module of DII of Nav1.5 channel (in green), based on the coordinates of NavAb channel (in red). I890Nav1.5 and T169NavAb
are located in the middle of P1-helix and highlighted in blue and magenta, respectively. View from the interior side of the pore. (C) Nav1.5 channel
scheme. The relative position of the I890T mutation in the S5–S6 loop of domain II (DII) is indicated with an arrow.
doi:10.1371/journal.pone.0053220.g006
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I890T currents was shifted to more positive potentials. It has been

previously shown that mutations in the pore region may affect

voltage activation of Nav1.5 and other Nav channels [32–35]. The

hypothesis that mutations in the pore region of Nav channels can

lead to structural perturbation compromising activation has been

put forward [32]. In this context, our immunodetection experi-

ments indicated that the decrease in INa observed in I890T cells

could not be explained by a reduction in the membrane expression

of the channel. Collectively, our observations support the idea that

functional changes observed in the I890T currents are likely due to

altered intrinsic properties of the channel.

The advent of the crystal structure of NavAb [11] has provided

a structural framework to model mutations in sodium channels.

The homologous residue to I890Nav1.5 is T169NavAb (Fig. 6A,

upper panel). This Thr is conserved in the NaChBac bacterial

sodium channel (T187NaChBac) and in the sodium channel of

alphaproteobacteria HIMB114 (T172NavRh), the structure of

which has recently been solved [36]. In the available structure of

NavAb channel, T169NavAb is buried within the intramembrane

region of the pore. The polar group of T169NavAb is stabilized by

a hydrogen bond to R185NavAb of the adjacent subunit [11]. The

NavRh channel stabilizes T172 in a similar fashion: the alcohol

group of T172NavRh is within hydrogen bond distance (2.7–3.2 Å

depending on the subunit) of the carbonyl oxygens of R162 and

I168 of the same chain. Interestingly, the mutation I890T

recollects the bacterial residue at this position. However, in our

I890T Nav1.5 model, no hydrogen bond acceptor candidate lies in

the proximity of T890 and we cannot predict how the introduction

of this polar group might be stabilized. It is interesting to note that

isoleucine is the aminoacid present in position 890 in Nav1.5 as

well as in the homologous position of different sodium channels in

a wide variety of vertebrates (Figure S1). Thus, although the

precise role of I890 in Nav1.5 is unknown, its presence at this

position has been evolutionary favored.

In summary, we have identified a Nav1.5 pore mutation, I890T,

in a BrS patient. This novel mutation causes an evident reduction

in INa and a depolarizing shift in current voltage-dependent

activation. Both mutation-dependent effects create the conditions

for the observed pathophysiological manifestations of the patient.

Although the observed changes in channel function in the mutated

protein are mild, we cannot exclude that the effects of the

mutation I890T in native myocytes could be different from those

observed in our HEK cell experimental model, due to different

regulatory factors. In addition, our functional study is analyzed in

the context of the recently published crystal structure of the

bacterial NavAb and NavRh channels. The evident, although mild,

functional effect of the mutation correlates well with the lack of

major structural changes found in the in silico analysis. In this

sense, we believe that this type of studies hold the promise that

correlations among channel structure, functional effects of

mutations and clinical studies can lead to better understanding

of SCD-related channelopathies.

Limitations of the Structural Model
The most important limitation of our modelling approach was

the use of 2 bacterial sodium channel structures (NavAb and NavRh

resolution 2.7 and 3.05 Å, respectively) to model the pore domain

of DII in Nav1.5. Amino acid sequences were only moderately

conserved in S5–S6 of DII in Nav1.5 compared to NavRh (17%

identity and 25% homology) and NavAb (22% identity and 46%

homology). Consequently, at the resolution of the model, it was

not straight-forward to anticipate the precise structural role of I890

in Nav1.5. We have tentatively proposed that the observed

electrophysiological changes in I890T may be due to the

introduction of the polar group of T890. This speculation was

mostly based on the observation that T890 was stabilized by

hydrogen bonds in bacterial channels, an interaction that was

difficult to envision in I890T Nav1.5 models. We acknowledge that

this is an indirect argument. We believe, though, that our in silico

analyses as well as the alignment data presented here support the

idea that, in the absence of a neighboring hydrogen donor, an

isoleucine may be more appropriate at that position.

Supporting Information

Figure S1 I890 is a highy conserved aminoacid among
vertebrates. Sequence alignment of voltage-gated sodium

channel a-subunit family members of different species. Human

Nav1.5 I890 and its homologues are marked with a dark box.

Identical amimoacids are highlighted in grey. Similar aminoacids

are included inside light boxes.

(TIF)

Table S1 Reported SCN5A mutations related to Brugada

Syndrome in pore regions of Nav1.5. The table contains all

missense and nonsense mutations reported in the Human Gene

Mutation Database (HGMD) Professional (version 2012.1 from

30/03/2012) [21] and in the repository of genetic data on the

inherited arrhythmogenic diseases [61]. The mutation sites and

aminoacid changes are indicated, together with the Nav1.5 pore

domain where they are localized, and the main results of the

electrophysiological studies, when performed. Not performed (NP)

indicates that no functional studies have been reported.

(DOC)
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