
Climate Change or Land Use Dynamics: Do We Know
What Climate Change Indicators Indicate?
Miguel Clavero1,2*, Daniel Villero1, Lluı́s Brotons1,3
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Abstract

Different components of global change can have interacting effects on biodiversity and this may influence our ability to detect
the specific consequences of climate change through biodiversity indicators. Here, we analyze whether climate change
indicators can be affected by land use dynamics that are not directly determined by climate change. To this aim, we analyzed
three community-level indicators of climate change impacts that are based on the optimal thermal environment and average
latitude of the distribution of bird species present at local communities. We used multiple regression models to relate the
variation in climate change indicators to: i) environmental temperature; and ii) three landscape gradients reflecting important
current land use change processes (land abandonment, fire impacts and urbanization), all of them having forest areas at their
positive extremes. We found that, with few exceptions, landscape gradients determined the figures of climate change
indicators as strongly as temperature. Bird communities in forest habitats had colder-dwelling bird species with more northern
distributions than farmland, burnt or urban areas. Our results show that land use changes can reverse, hide or exacerbate our
perception of climate change impacts when measured through community-level climate change indicators. We stress the
need of an explicit incorporation of the interactions between climate change and land use dynamics to understand what are
current climate change indicators indicating and be able to isolate real climate change impacts.
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Introduction

Climate change is altering biological processes and having

important impacts on biodiversity at multiple scales [1,2].

However, the responses of species and biological communities to

climate change can also be influenced by the additive or synergistic

effects of other components of global change, such as land use

changes or biological invasions [3]. In fact, the magnitude of the

impacts of each one of the different components of global change,

and therefore their interactions, is subjected to variation among

systems and biomes [4,5,6].

Both scientists and policy practitioners are seeking valid

compound indicators to track the complex impacts of climate

change on biodiversity [7,8]. An appealing approach has been the

integration of information across species, including species’

distributions or abundances and their thermal optima, to

summarize responses to climate change at the local community

level. In this line, recent works have proposed indicators to describe

community changes associated with climate warming, reflecting a

generalized trend towards a higher representativeness of high-

temperature dwelling species [9]. However, climate change

indicators could also be influenced by other co-occurring global

change processes, such as land use changes or modified disturbance

regimes. If mean climatic envelope of species within communities

varied as a function of land uses, climate change indicator figures

would be affected by factors other than climate change in a

dynamic global change scenario. In spite of this, the potential

critical role of the interactions among components of global change

on our perception of climate change impacts through community

indicators has not yet been explicitly analyzed.

There have been multiple insights on the habitat associations of

the characteristics of the climatic niche of bird species in the

Mediterranean region, where land use changes are thought to be

one of the main drivers of biodiversity loss [4]. Results of these works

report that forest communities have species with more northern

distributions ranges [10,11] and are dominated by cold-dewelling

species [12]. Thus, it seems plausible that climate change indicators

based on the average characteristics of the climate niche within

communities would be related to habitat characteristics. Given the

dynamic nature of landscapes due to land use changes, to what

extent can we conclude that variation in community based climate

change indicators is entirely induced by climate change?

In this work, we use data on the composition of bird

communities to analyze the variation of different climate change

indicators along land use gradients while controlling for the

thermal environment. Our primary aim is to describe the influence

of the main current landscape dynamics on climate change

community indicators. This information should serve as a basis to

incorporate different components of global change in the design of

indicators of trends in biological diversity.
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Methods

Bird data and community indicators
This study was carried out in Catalonia, a Mediterranean-

climate area located in NE Iberian Peninsula. We obtained data

on the occurrence of 127 diurnal, terrestrial bird species from the

Catalan Breeding Birds Atlas [13], which reports information on

breeding bird distribution in Catalonia between 1999 and 2002

based on intensive surveys of 3077 161 km grid cells.

We estimated the optimal thermal environment of each species

through the species temperature index (STI). STI values report the

average mean temperature (in uC) experienced by each species

during the breeding season (March to August) across its

distribution range [9]. Although STI values produce a reliable

Figure 1. Relationships among climate change indicators at species and community levels. STIcat: species temperature index for
Catalonia; STIeur: species temperature index for Europe; AL: average latitude of species’ ranges; CTIcat: community temperature index for Catalonia;
CTIeur: community temperature index for Europe; CAL: community average latitude of species’ ranges. Correlation coefficients (Pearson’s r) are given
for each relationship. The positions of Zitting cisticola (Cisticola juncidis, Cju), great spotted cuckoo (Clamator glandarius, Cgl), bearded vulture
(Gypaetus barbatus, Gba) and chough (Phyrrocorax phyrrocorax, Pph), which are commented in the text, are marked in the species graphics.
doi:10.1371/journal.pone.0018581.g001
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ordination of the thermal environment of species in a given area,

they are scale-dependent and site-specific (e.g. they would be

larger in southern areas). Thus, we calculated STIs at two different

scales: regional (using data from Catalonia, henceforth STIcat)

and continental (using data from Europe, henceforth STIeur).

STIcat was based 161 km cells data from the Catalan Breeding

Birds Atlas [13], while STIeur used 50650 km cells data from the

EBCC Atlas of European Breeding Birds [14]. Information on

temperatures was derived from the Worldclim database (http://

www.worldclim.org). Furthermore, since the distribution range of

many of the species included in the analyses extents well beyond the

European borders, we used average latitude (AL) as an additional

indirect descriptor of climate niche of bird species. AL values were

compiled by Prodon [10], from which we used AL that were

calculated using only the Old World distribution of each species.

We averaged STI figures for species occurring in each 161 km

cell surveyed in Catalonia to obtain community temperature

indexes (CTIs). CTIs report the average breeding-season temper-

ature optimum of species in a given local community. The CTI

has been proposed as a climate change indicator to quantify trends

in the patterns of community composition in response to global

warming, both for birds [9] and butterflies [15]. We calculated

both regional and continental CTIs (CTIcat and CTIeur,

respectively). We also averaged AL of species occurring in

161 km cells, to obtain a community average latitude (CAL).

Larger CAL values would thus indicate communities dominated

by species with more northern distributions.

Landscape gradients
At each 161 km cell, we defined landscape characteristics

through four variables: the percentage cover of forests, agricultural

and urban uses (in %, from the 1997 Catalan land use map) and the

percentage of each cell burnt by wildfires in the period 1986–1999,

calculated from fire perimeters [16]. From these variables we

created three landscape gradients corresponding to land use changes

which have had stronger impacts in Mediterranean landscapes in

last decades: i) farmland to forest (land abandonment); ii) wildfire to

forest (fire impact); and iii) urban to forest (urbanization) [17,18,19].

To construct each of those gradients, we selected cells in which the

sum of the two variables involved in the gradient was $75%. For the

urban to forest gradient we further selected cells in which urban uses

cover was $25%. We derived final gradients by subtracting the

percentage cover of agricultural, burnt or urban areas to that of

forests, so the gradients varied from 2100 (completely agricultural,

burnt or urban cells) to 100 (completely forested cells) [12]. The land

abandonment and fire gradients included cells with elevations up to

1000 msl, while the altitude limits of the urbanization gradient was

700 msl. We set elevation limits attending to the representativeness

of both gradients’ extremes, in order to avoid confounding effects of

altitude and landscape gradients (see supporting information, Figure

S1). For example, since wildfires are rare at altitudes higher than

1000 m, if the landscape gradient included forests up to 2000 m,

there would be a strong relationship between altitude and the fire

gradient.

Data analyses
In a first step, we analyzed the relationships among the different

indicators, using simple correlation analyses. We run correlation

analyses both at the species (STIcat, STIeur and AL) and the

community (CTIcat, CTIeur and CAL) levels, using, respectively,

species and 161 km cell as samples.

Then, we analyzed the variation of the different community

indicators (CTIcat, CTIeur, CAL) along landscape and temper-

ature gradients, using linear regression models. For each indicator

and landscape gradient, we first run two simple regression models

alternatively using landscape gradient or breeding-season temper-

ature site values as predictors. In a second step we run a multiple

regression model including both predictors. Simple and multiple

regression models were compared by differences in the coefficient

of determination (R2) and through the Akaike information criteria

(AIC). We considered a specific regression model (whether simple

Table 1. Influence of thermal environment and landscape
gradients on climate change indicators.

CTIcat CTIeur CAL

Predictors df dir R2 dir R2 dir R2

Agricultural
gradient
N = 1431

Temperature 1 + 0.65 + 0.36 - 0.47

Gradient 1 - 0.59 - 0.36 + 0.49

Both (T, G) 2 +, - 0.80 +, - 0.46 -, + 0.62

Wildfire gradient
N = 551

Temperature 1 + 0.47 + 0.21 - 0.24

Gradient 1 - 0.30 - 0.43 + 0.42

Both (T, G) 2 +, - 0.64 +, - 0.54 -, + 0.55

Urban gradient
N = 439

Temperature 1 + 0.51 + 0.23 - 0.39

Gradient 1 - 0.62 - 0.16 + 0.46

Both (T, G) 2 +, - 0.72 +, - 0.25 -, + 0.54

Simple and multiple regression models analyzing the relationships between
community-level climate change indicators and: i) average temperature; ii)
landscape gradients; and iii) both independent variables. Coefficient of
determination (R2) values marked in bold are those of models having the
strongest support after the Akaike information criterion (AIC). The direction
(positive or negative) of relationships between independent variables and
climate change indicators are also given.
doi:10.1371/journal.pone.0018581.t001

Table 2. Slopes and effects’ strength of the relationships
between climate change indicators and temperature and
landscape gradients.

CTIcat CTIeur CAL

Predictors b gp
2 b gp

2 b gp
2

Agricultural
gradient
N = 1431

Intercept 13.044 11.886 53.491

Temperature 0.179 0.50 0.086 0.15 -0.472 0.24

Gradient -0.003 0.41 -0.002 0.16 0.011 0.27

Wildfire gradient
N = 551

Intercept 13.057 11.832 52.487

Temperature 0.175 0.48 0.096 0.19 -0.421 0.22

Gradient -0.002 0.32 -0.003 0.42 0.013 0.41

Urban gradient
N = 439

Intercept 13.682 11.826 52.574

Temperature 0.148 0.27 0.085 0.11 -0.422 0.15

Gradient -0.004 0.43 -0.001 0.03 0.011 0.25

Regression coefficients corresponding to the multiple regression models shown
in Table 1. Partial Eta squared values (gp

2) are given as a measure of the
strength of the effect of each model term.
doi:10.1371/journal.pone.0018581.t002
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or multiple) as the most adequate one if its AIC was at least 7

points lower than that of the other models run for a given

community indicator and landscape gradient. We assessed the

strength of the associations between the different indicators and

each model term (temperature and landscape gradients) through

the examination partial Eta squared (gp
2) [effect sum of squares

(SS)/(effect SS + error SS)] [20]. This statistic is a measure of the

size of the effects of model terms that is independent of the degrees

of freedom used in the analyses.

We estimated the predicted change in the values of community

indicators if a landscape changed from one extreme of a landscape

gradient to the other (e.g. a forest becomes a farmland area, is

burnt by a wildfire or is urbanized). To this aim we selected those

161 km cell placed at gradient extremes and classified them as: i)

farmland, wildfire or urban (when gradient values were smaller

than 275); or ii) forest (gradient values larger than 75). We used an

analysis of covariance (ANCOVA) approach to test and quantify

the influence of habitat (factor) on climate change indicators while

controlling by average temperature during the breeding season

(covariate). We first performed homogeneity of slopes analyses,

and whenever the factor 6 covariate interaction was not

significant (significance level set at P,0.01 due to large sample

sizes), it was deleted from the model. The variation in climate

change indicators values between the extremes of landscape

Figure 2. Linear relationships between landscape gradients and community-level climate change indicators. Indicators’ codes as in
Figure 1.
doi:10.1371/journal.pone.0018581.g002
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gradients was assessed through their estimated marginal means at

a given habitat, calculated at covariates’ means (i.e. average

thermal environments). Finally, we used regression equations from

Catalonia, based on 2824 161 km cells with elevations up to

2000 m, or those previously published by others [9] to find spatial

and temporal variations generating changes in climate change

indicators equivalent to those induced by landscape transforma-

tion. Regression coefficients employed in those analyses are

reproduced in Table S1.

Results

The different indicators were highly correlated, both at the

species and at the community levels (Figure 1). However, STI

values, whether regional or continental, tended to underestimate

the optimal thermal environment of species with distribution

ranges that extended southwards from European borders (e.g.

zitting cisticola, Cisticola juncidis, or great spotted cuckoo, Clamator

glandarius). Moreover, the regional STI (STIcat) of montane bird

species was often lower than that expected from the average

latitude of their distribution. This is the case of the bearded

vulture, Gypaetus barbatus, or the chough, Phyrrocorax phyrrocorax,

which occupy cold, mountainous environments in Catalonia while

having on average quite southern ranges (average latitude 34u and

41u N, respectively). In spite of these differences at the species

level, when information of species occurrences was pooled to

create different community indicators, these were more strongly

interrelated than species original data (Figure 1).

In eight out of nine groups of analyses (three indicators 6 three

landscape gradients) the multiple regression model worked better

than the simple regression ones (Table 1), differences in AIC with

the second-ranking model being larger than 65 (range 65.4–743.8)

in all eight cases. This implies that landscape gradients have a

significant influence on the values of the climate change indicators

once the effects of temperature have been taken into account.

Moreover, the effects of landscape gradients in the multiple

regression models (as measured by the gp
2) were of the same

magnitude, when not clearly larger, than those of temperature

(Table 2). The sole exception to this general pattern is the

variation of CTIeur along the urban gradient, which was better

explained by temperature alone, although the difference in AIC

with respect to the multiple regression model was only 2.8. Bird

communities at the forest end of the three landscape gradients

consistently tended to have colder-dwelling bird species as well as

species with more northern ranges (Figure 2).

As shown by marginal means given in Table 3, if an abandoned

farmland area became a forest climate change indicators would

indicate a trend towards colder-dwelling, more northerly distrib-

uted bird communities. On the other hand, if a forest was burnt

by a wildfire or urbanized, CTIcat and CTIeur would increase

and CAL values would decrease (Figure 3). Using regression

equations given in Table S1, we found that those changes in the

values of climate change indicators would be equivalent to

elevation changes of several hundred meters (up to more than

900 m) or to changes in temperature during breeding season

averaging 2.9uC (Table 4). The average change in CTIeur

between the extremes of landscape gradient extremes would also

be equivalent to moving forward or backward up to more than one

century of global warming effects on bird communities or to

changes in latitude of several hundred kilometers, according to the

patterns of variation recorded in France for the same community

indicator (Table 4).

Discussion

Our results clearly show that climate change indicators based on

the composition of bird communities are dependent on land use

characteristics. This is due to the variation in mean optimal

thermal conditions of bird communities occupying different

habitats. Thus, land use changes would likely produce increases

or reductions in climate change indicator figures even in a

theoretical, though unrealistic, constant thermal environment

scenario. These results imply that the progressive forest expansion

in abandoned agricultural lands widely recorded in European

Mediterranean environments [e.g. 21] and leading to colder-

dwelling communities (see Figure 2) would tend to compensate or

reverse the expected responses of biological communities to global

warming. For example, Gil-Tena et al. [22] show how large-scale

forest expansion and maturation in Catalonia has favored the

expansion of many forest bird species, most of which have on

average cold temperature niches and northern distribution ranges.

When assessing the impacts of climate change through community

indicators, it should be therefore crucial to account for land use

dynamics, especially in areas experiencing net forest gain [e.g. 23],

where consequences of climate disruption could be underestimat-

ed. On the other hand, the occurrence of a wildfire in a forest

environment, a temporally punctual event, would produce a

sudden increase in the average temperature niches and a decrease

in the average latitudinal ranges of bird communities. In these

cases, perceived climate change impacts may be overestimated in

areas strongly affected by altered fire perturbation regimes [24]. It

has already been suggested that bird species and communities may

respond more strongly to habitat than to climatic requirements

[25]. Here we report that these responses could result in biased

estimations of climate change-related impacts due to unforeseen

effects of land use changes.

The basic assumption of community-based climate change

indicators is that generalized warming causes non-random species

distribution shifts, with warm-climate species substituting colder-

climate species within local assemblages [2]. As shown in the

results with our European species pool, this species turnover can

be also anticipated, promoted or even reversed from changes in

land use. On the other hand, biodiversity indicators based in

trends of species with high habitat specialization, such as the

farmland bird indicator [26], could be affected not only by land

use dynamics but also by climate change, due to the complex

Table 3. Mean values of climate change indicators at the
extremes of landscape gradients (i.e. farmland, burnt or urban
areas and forest areas) at average temperature conditions.

CTIcat (6C) CTIeur (6C) CAL (6)

Habitat mean SE mean SE mean SE

Farmland 16.43 0.012 13.52 0.013 44.33 0.056

Forest 15.80 0.017 13.16 0.019 46.36 0.081

Wildfire 16.10* 0.031 13.71 0.030 44.48 0.118

Forest 15.62* 0.014 13.07 0.014 46.91 0.057

Urban 16.34 0.052 13.17 0.050 45.08 0.205

Forest 15.76 0.017 13.15 0.016 46.59 0.065

Values and their associated standard errors are marginal means derived from
analyses of covariance (ANCOVAs) of data shown in Figure 3.
*denotes ANCOVAs in which the interaction term (habitat 6 temperature) was
significant; otherwise the interaction was removed from the final ANCOVA
model. Numbers in bold denote analyses in which the factor ‘‘habitat’’ did not
have a significant effect on a climate change indicator.
doi:10.1371/journal.pone.0018581.t003

Land Uses and Climate Change Indicators

PLoS ONE | www.plosone.org 5 April 2011 | Volume 6 | Issue 4 | e18581



interactions between climate and land uses [27,28]. An interesting

issue that remains to be tested is whether climate change indicators

based in the integration of large-scale species trends, such as the

Climatic Impact Indicator [8], are also dependent on land use

dynamics. Due to its integrative formulation, using data on species

trends from many countries, the index proposed by Gregory et al.

[8] would probably be less sensitive to landscape changes than

indexes based on the composition or structure of local commu-

nities. However, if land use dynamics affected large areas within a

specific territory (e.g. Europe in the case of [8]) or followed

Figure 3. Linear relationships between average temperature during breeding season and community-level climate change
indicators, shown separately for landscape gradient extremes. Indicators’ codes as in Figure 1.
doi:10.1371/journal.pone.0018581.g003
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different trends among different portions of that territory (e.g.

Northern and Southern Europe) the sensitivity of trends-based

indexes to detect impacts related to climate change could also be

hindered. For example, if, as happens in Catalonia [e.g. 22], forest,

cold-dwelling bird species tend to have positive trends due to forest

expansion and maturation, indexes integrating species trends

would tend to underestimate the impacts of climate change.

We have shown that mean climatic envelope of species can be

largely dependent on land uses and disturbance regimes and that

this can have important effects in our ability to detect the effects of

climate change through community indicators. Our results come

from an area with specific climatic, biological and socioeconomic

contexts, but previous works suggest that they could be

extrapolated to the whole Mediterranean Basin. Prodon [10] gave

a first example on the habitat-dependant variation in the climatic

niche of birds in Europe, showing that bird species occupying

holm-oak (Quercus ilex) woodlands in France had more northerly

distributions (6u on average) than those occupying adjacent grassy

and stony habitats. Covas & Blondel [29] further showed that

Mediterranean open-habitat bird species (including steppe, shrub

and saxicolous species) tended to have more southern distribution

barycentres than forest birds, which tend to be widely distributed

throughout Palearctic forests. Suárez-Seoane et al. [11] found that

bird species with a Eurosiberian distribution tended to prefer

wooded areas, while Mediterranean species favored open and

shrubland habitats. Moreover, it seems likely that similar

interactive effects of different components of global change on

climate change indicators (or on biodiversity indicators in general)

could be a generalized phenomenon. In fact, the possible

confounding effects of anthropogenic habitat changes on processes

supposedly linked to climate change impacts have been also

highlighted in other areas, e.g. the poleward shifts of the ranges of

North American birds [30] or the upward elevational shift of birds

in the Italian Alps [25].

Popy et al. [25] claimed that predictions of climate change

impacts based on the climate envelopes of species should be

treated with caution until the mechanisms underlying the observed

patterns are better understood. Our results highlight the need to

explicitly account for the interactive nature of different global

change processes in order to obtain ecologically meaningful

indicators of their effects on communities. This could be achieved

by the integration of land use dynamics in the interpretation of the

temporal variation of climate change indicators at the local

community level. In this sense it would be useful to analyze the

long-term trends of community climate-related indicators in areas

with known trajectories of habitat characteristics. The most stable

areas, those where land uses follow minimal or no changes, would

probably give the best possible account of climate change impacts,

offering a baseline to analyze the variation of climate change

indicators in more dynamic areas. We suggest that the relative

effects of climate and land use changes in a given area would be

best described by reporting the variation of climate change

indicators together with explicit assessments of the magnitude of

land use and climatic changes. More work is needed to understand

what current climate change indicators are indicating and to

isolate real climate change impacts.

Supporting Information

Figure S1 Relationships between altitude and land-
scape gradients. Relationships between altitude (up to 2000

m) and the three landscape gradients analyzed in this study.

Vertical dotted lines indicate the upper altitude limit used in each

case to avoid confounding effects of gradients and altitude on

dependent variables of interest, due accumulation of forest of

forested 161 km grid cells at high altitudes.

(DOC)

Table S1 Regression coefficients describing the varia-
tion of climate change indicators along environmental
and temporal gradients in Catalonia and France.
Equations from Catalonia derive from linear relationships

observed using a dataset of 2824 161 km cells up to 2000 m

above sea level. Regression coefficients corresponding to French

data are those calculated by Devictor et al. [9] for presence-

absence data (and thus comparable to those in the Catalonian

dataset). Intercepts, coefficients of determination and associated P-

values are also given whenever available.

(DOC)

Table 4. Spatial and temporal variations producing changes in climate change indicators equivalent to those observed between
the extremes of landscape gradients.

Equivalent to the following changes
as measured by climate change community indicators

Process Habitat change under analysis Indicator
Altitude
Catalonia (m)

Temperature

Catalonia (6C)
Years
France

Latitude
France (km)

Land abandonment From farmland to forest CTIcat +386.6 -2.33

CTIeur +522.1 -2.96 -81.8 +352.9

CAL +676.6 -3.87

Fire impact From forest to open areas/shrubland CTIcat -294.5 +1.77

CTIeur -928.2 +5.25 +145.5 -627.5

CAL -809.9 +4.63

Urbanization From forest to urban areas CTIcat -355.9 +2.14

CTIeur -29.0 +0.16 +4.5 -19.6

CAL -536.6 +3.07

The variation of climate change indicators (from mean values given in Table 3) are here related to the main processes of land use changes occurring in Mediterranean
landscapes in last decades: i) land abandonment; ii) fire impact; and iii) urbanization. Regression coefficients used to calculate spatial and temporal variations producing
equivalent changes in climate change indicators are given in Table S1.
doi:10.1371/journal.pone.0018581.t004
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