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Sexual dimorphism of sonic apparatus and
extreme intersexual variation of sounds in
Ophidion rochei (Ophidiidae): first evidence of a
tight relationship between morphology and
sound characteristics in Ophidiidae
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Abstract

Background: Many Ophidiidae are active in dark environments and display complex sonic apparatus morphologies.
However, sound recordings are scarce and little is known about acoustic communication in this family. This paper
focuses on Ophidion rochei which is known to display an important sexual dimorphism in swimbladder and anterior
skeleton. The aims of this study were to compare the sound producing morphology, and the resulting sounds in
juveniles, females and males of O. rochei.

Results: Males, females, and juveniles possessed different morphotypes. Females and juveniles contrasted with
males because they possessed dramatic differences in morphology of their sonic muscles, swimbladder,
supraoccipital crest, and first vertebrae and associated ribs. Further, they lacked the ‘rocker bone’ typically found in
males. Sounds from each morphotype were highly divergent. Males generally produced non harmonic,
multiple-pulsed sounds that lasted for several seconds (3.5 ± 1.3 s) with a pulse period of ca. 100 ms. Juvenile and
female sounds were recorded for the first time in ophidiids. Female sounds were harmonic, had shorter pulse
period (±3.7 ms), and never exceeded a few dozen milliseconds (18 ± 11 ms). Moreover, unlike male sounds, female
sounds did not have alternating long and short pulse periods. Juvenile sounds were weaker but appear to be
similar to female sounds.

Conclusions: Although it is not possible to distinguish externally male from female in O. rochei, they show a sonic
apparatus and sounds that are dramatically different. This difference is likely due to their nocturnal habits that may
have favored the evolution of internal secondary sexual characters that help to distinguish males from females and
that could facilitate mate choice by females. Moreover, the comparison of different morphotypes in this study
shows that these morphological differences result from a peramorphosis that takes place during the development
of the gonads.
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Background
Acoustic communication in the Teleostei has been
studied extensively over the last six decades [1-5]. By
1981, Myrberg [6] had documented sound production
in more than 30 families, including: Batrachoididae,
Carangidae, Scianidae, Holocentridae, and Serranidae.
More recently, sounds were recorded in additional taxa,
such as Carapidae [7], Ophidiidae [8,9], Chaetodontidae
[10,11], Oplegnathidae [12], and Sebastidae [13]. Com-
munication sounds are now estimated to occur in as
many as 109 teleost families [14]. Of note, these dis-
coveries of fish acoustic communication have provided
new examples of an increasing diversity of fish sound-
producing mechanisms [15,16] that contrast with the
relatively conserved mechanisms of sound emission in
other vertebrate classes [17].
In addition to descriptions and identification of fish

calls, several studies have examined how abiotic and bi-
otic factors influence sound characteristics. Temperature
affects sound production in many species, increasing the
contraction rate of sound-producing muscles [18,19]. In
Cynoscion regalis, higher temperatures increase pulse
rate, call intensity, and the dominant frequency of the
sound [20]. Similar effects on sound were also demon-
strated in Opsanus tau [21] and Ophidion marginatum
[22]. In the catfish Platydoras armatulus, the dominant
frequency and, to a lesser extent, pulse period of drum-
ming sounds were affected in a comparable manner [23].
Muscle features can influence sound characteristics as
well. Differences in muscle length can cause changes in
sound characteristics between juveniles and adults be-
cause of a body size-related scaling effect [24,25]. The
twitch contraction time was found to rise with increas-
ing body size in a salamander [26], lizard [24], and fish
[25]. Besides size effects, the sound-generating mechan-
ism of many fishes, especially the sonic muscles, is also
sexually dimorphic [15]. In sciaenid species such as
Micropogonias undulatus, the sonic muscles and asso-
ciated swimbladder are larger in males [27,28]. In other
species of the family, however, drumming muscles are
completely lacking in females [27,28]. In three sciaenid
species investigated by Hill, sonic muscles form before
or during puberty depending on the species [27]. In the
Batrachoididae, Opsanus tau [29] and Porichthys notatus
[30,31], sexual dimorphism of sonic muscles is quite
pronounced. In both species, sonic muscles are present
in small juveniles [31,32] and differences observed in
adult morphotypes are caused by differences in fiber
growth rates and proliferation [29,31]: sonic muscles be-
come bigger in males [29,31]. In addition, some fish spe-
cies display a hypertrophy of sonic muscles during
breeding season [33,34]. In weakfish, this hypertrophy
results in the emission of sounds with higher intensities,
lower frequencies, and longer pulse durations [20].
According to Nielsen et al. [35], Ophidiiformes com-
prises four families: Ophidiidae, Carapidae, Bythitidae,
and Aphyonidae. Ophidiidae [36,37], Carapidae [2] and
Bythitidae [38,39] are hypothesized to be soniferous fish
based mainly on their morphology. Sounds were, how-
ever, recorded in five carapid species [7,40,41] and in
two species of Ophidiidae [8,9,22].
Ophidiiformes present an extraordinary variety of

highly specialized structures associated with sound pro-
duction [2,9,37,42-45]. Moreover, the sonic mechanisms
of Ophidiidae are characterized by pronounced sexual
dimorphisms [36,37,42,45,46]. They are generally com-
posed of modified thoracic vertebrae, one to three pairs
of sonic muscles, and a highly modified swimbladder. In
some species, the anterior part of the swimbladder forms
a so-called ‘rocker bone’ [42,43,46,47] on which sonic
muscles insert [9,16,42,43]. This structure is likely
involved directly with sound production, as its move-
ment deforms the swimbladder wall [2,9,16]. It is present
in adult males of some Ophidion but not in females or
in juveniles [42,46]. A rocker bone was also reported in
carapids of the genus Onuxodon [2,48], but its presence
in both sexes was not investigated. Sexual dimorphisms
of sonic mechanism have been documented in many
Ophidiidae, but sounds have only been recorded from
males of two species. Thus, the associated influence of
sex specific morphology on sound emission has not been
determined.
The present work focuses on Ophidion rochei, an en-

demic species living in Mediterranean and Black Seas
[49]. This species inhabits coastal shallow waters [35]
but little is known about its biology because it is noctur-
nal and hides during daylight hours in the sand [50-52].
Because of its nocturnal habits, Ophidion rochei may

provide insight on the evolution of acoustic communica-
tion in environments where available light limits visual
communication. Moreover, most ophidiiform species in-
habit deep seas [35] and thus may experience similar
evolutionary selection pressures associated with living in
a dark environment. Consequently, an understanding of
the biology of sound production in O. rochei may pro-
vide important framework for hypotheses in future stud-
ies on acoustic communication in deep sea species.
The aims of this paper are: 1) to determine the differ-

ent sonic apparatus morphotypes in this species 2) to
obtain and describe sounds for each morphotype, and 3)
to investigate the relationship between morphology,
sound characteristics, and ecological niche in O. rochei.

Results
Gross morphology of the sonic apparatus
The sonic apparatus of male Ophidion rochei was
described by Parmentier et al. [9]. The following de-
scription focuses on the differences between males,
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females, and juveniles. The terms given to the female
and juvenile structures are based on their homology with
male structures.

Anterior skeleton
In Ophidion rochei, skeletal structures involved in sound
production are located at the level of the head and the
first five vertebrae (Figure 1).
The main differences between males and females are

the following:

1. The occipital region is proportionally less developed
in females than in males: the supraoccipital crest is
thinner and lower, exoccipital and epiotic are smaller
(Figure 1).

2. The sexual dimorphism of bony structures also
appears at the level of the first vertebrae and
associated ribs.
Figure 1 Morphology of hard tissues in sonic apparatus of Ophidion roche
(modified from [9]), (b) female and (c) juvenile Ophidion rochei. The skull, first six
bone, EN: epineural, EO: epiotic bone, EX: exoccipital bone, IC: intercalarium bon
RB: rocker bone, SBP: swimbladder plate, SC: supraoccipital crest, S: supraoccipita
a) In all specimens, the first neural arch (or neural
rocker) does not have a neural spine (Figure 1),
and is horseshoe shaped. Both branches of this
structure articulate with the vertebral body so that
it is capable of pivoting in the antero-posterior
plane. It has two large transverse plates that are
firmly attached by connective fibers to the first
epineural (called the wing-like process). In males,
the rostral face and lateral sides of the neural
rocker are higher and wider than in females. In
both sexes, articulations of the first epineural on
the vertebral body are hidden by the lateral parts
of the neural rocker. The first epineurals point in
the same direction in both sexes but their
proximal parts are wider in females (Figure 1).

b) No difference was observed at the level of the
second vertebra and associated epineurals
(Figure 1). However, the distal tip of the 2nd
i. Left lateral view of the sound-production apparatus of (a) male
vertebrae and their associated ribs are shown. BO: basioccipital
e, NR: neural rocker, P: parietal bone, PL: plate, PT: pterotic bone,
l bone.
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epineural reaches the swimbladder plate only in
males.

c) In males, the third epineural shows an osseous
stem that articulates with the vertebral body
proximally and a distal part that expands into a
widespread convex bony plate (the swimbladder
plate) associated with the tissues of the
swimbladder. In females, the plate has a
rectangular shape and is much smaller than in
males. In males, the ventral plates of vertebrae 4
and 5 form a functional extension of the
swimbladder plate. These ventral plates are absent
in females (Figure 1).

d) Epineurals 4 and 5 are quite similar in both sexes
(Figure 1).
Figure 2 Morphotypes observed on X-ray photographs of
Ophidion rochei. Photographs highlight the swimbladder and
mineralized structures (as the skeleton, rocker bone, otoliths).
Negatives of photographs are displayed to facilitate observation.
(a-c) Typical morphotype of (a) male, (b) female, and (c) juvenile
Ophidion rochei. (d) Intermediary morphotype hypothesized to be a
young male O. rochei. Modifications of the swimbladder are evident
in photographs of males: the rocker bone (RB), the internal tube (IT),
the neck (N), and the gelatinous substance (GS). Radiographed
specimens measured (a) 206 mm, (b) 197 mm, (c) 116 mm, and
(d) 153 mm in TL.
The skeleton of the juvenile sonic apparatus is roughly
similar to the females (Figure 1). The distal swimbladder
plate at the level of the third epineural, however, is not
yet developed at this stage. The contact between the
third epineural and the swimbladder is restricted to the
distal tip of the epineural. Though the neural rocker is
present, its anterior and lateral parts are very thin and
do not cover the proximal part of wing-like process
(Figure 1).

Swimbladder
Male and female morphotypes could be distinguished
clearly by X-ray photographs (Figures 2 and 3). Radio-
graphs also allowed for an investigation of sonic appar-
atus development from juvenile to adult stages.
The swimbladder of males can be divided into two

regions: anterior and posterior. The anterior region
forms a neck and possesses a rocker bone at the rostral
end. The posterior region is large and typically bears an
internal tube (Figure 3) at its caudal end (see also, [9,46]).
Furthermore, the anterior and posterior chambers of big-
gest males are filled with a gelatinous substance visible
on radiographs (Figure 2 and 3). Female and juvenile
swimbladders are ovoid-shaped, do not possess an anter-
ior neck, internal structure, or rocker bone (Figure 2).
X-ray photographs taken in August 2010 on all speci-

mens (juveniles and adults) from Croatia did not display
typical male swimbladder structures. However, X-rays
performed on the same fish in May 2011 displayed sexu-
ally dimorphic morphologies: 6 fish, 13.3 to 20.5 cm TL
(total length), with male characteristics and 5 fish, 11.4
to 21.1 cm TL, with female morphology. Follow up ob-
servation of a specimen growing over a complete year
revealed the development of the rocker bone, the neck,
the internal tube, and the appearance of the gelatinous
substance (Figure 3).
The study of swimbladders from fish caught along

Costa Brava confirmed that adult females (153 to
265 mm TL, N = 20) are devoid of the internal tube as
shown in Casadevall [46]. In males, the internal tube
length is highly correlated (r2 = 0.83 (N = 68), p < 0.0001)
with fish total length (Figure 4). The x axis intercept
from the regression indicated an estimated total length
of 160 mm (Figure 4) for the size at which the internal
tube is expected to begin development.
Compilation of these data confirmed that male sonic

apparatus characteristics are absent in juveniles and
developed during maturation.
Muscles and ligaments
Three pairs of sonic muscles were observed in each
group (Figure 5). Precise descriptions of the male



Figure 3 Ontogenetic swimbladder modifications of a young
male Ophidion rochei. X-ray photographs from a growing male
over the period of October 2010 to September 2011. Negatives
of photographs are displayed to facilitate observation. The
development of the rocker bone (RB), the internal tube (IT), and
the neck (N) are indicated on the photographs. The gelatinous
substance (GS) is clearly apparent in last picture (d). The specimen
measured (a) 162 mm TL in October 2010, (b) 166 mm in March
2011, (c) 168 mm in May 2011, and (d) 170 mm in September 2011.

Figure 4 Relationship between swimbladder internal tube
length and body size in male Ophidion rochei. There was a high
correlation (r2 = 0.83 (N = 68), p < 0.0001) between the internal tube
length and the total length of the fish. Black dots: observations for
the 68 males Ophidion rochei from Costa Brava. Grey line: regression
line (y = 0.1944x – 31.14) calculated for the 68 male swimbladders.
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muscular system are given in Parmentier et al. [9] and
are briefly provided here.
In males and females, the dorsal sonic muscle (DM)

originates on the neurocranium and inserts on the
neural rocker of the first vertebra. DM, however, was
larger in males than in females (Figure 5). Furthermore,
the supraoccipital crest and the anterior side of the
horseshoe-shaped neural rocker are more developed in
males (Figure 1). Ventral sonic muscles (VM) of males
originate on a wider area of the skull and extend more
rostrally compared to VM of females (Figure 5). In both
sexes, they originate principally on the basioccipital
and to a lesser extent on the intercalarium and the
exoccipital. The posterior insertions of the VM are
tendinous in both sexes. In males, VM insert on the pos-
teroventral areas of rocker bone. In females, they insert
on anterior parts of the swimbladder (Figure 5). Regard-
ing intermediate sonic muscles (IM), they extend from the
exoccipital bone to the wing-like processes in females,
whereas they originate both on exoccipital and inter-
calarium bones in males (Figures 1 and 5). In addition,
IM are fixed on the anterior proximal part of the wing-
like processes in both sexes but the insertion areas are
longer in females (Figure 5). Distal extremities of these
epineurals are connected by a ligament to the rocker
bone or to the swimbladder wall in males and females,
respectively (Figure 5). Additional ligaments are present
in females: ligament 2 connects the second epineural
to the swimbladder wall and ligament 3 connects the
1st epineural to the 2nd epineural (Figure 5).
Juvenile morphology is similar to females (Figure 5).

However, sonic muscles are much thinner in juveniles
than in females (Figure 5).

Sound recordings
Male sounds
Multiple-pulsed sounds (Figure 6) were isolated from
tank and field recordings. In both cases, the mean call
duration was between 3.5 s and 4 s (Table 1), and was
significantly (p < 0.05) correlated to pulse number (r2 =
0.86 and r2 = 0.59, respectively). The pulse period dur-
ation increased progressively in the first part of the
sound before alternating between long and short dura-
tions. The alternation started at the 15th ± 3 (N = 26)
pulse in captivity and 14th ± 2 (N = 20) in the field. In
tank recordings, the number of pulses in a call fluctu-
ated between 3 and 55 (median: 31 ± 10.3, N = 29) and
field recordings varied from 31 to 53 (median: 40.5 ± 6.3,
N = 20). Call duration and alternation start were not



Figure 5 Morphology of hard and soft tissues in sonic apparatus of Ophidion rochei. Left lateral view of the sonic apparatus of (a) male,
(b) female and (c) juvenile Ophidion rochei. The skull, the first modified vertebrae and ribs, and the 3 pairs of sonic muscles are shown. DM: dorsal
sonic muscle, EN: epineural, IM: intermediate sonic muscle, L1-3: ligament 1–3, LB: ligament of Baudelot, RB: rocker bone, SB: swimbladder, SBP:
swimbladder plate, SC: supraoccipital crest, VM: ventral sonic muscle.
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significantly different (p > 0.05) between the field and the
tank sounds but pulse number, pulse period, and pulse
duration were (Table 2). However, means and standard
deviations of all temporal variables were similar in both
recording situations (Table 1).
Power spectra of male multiple-pulsed sounds revealed

no harmonic patterns (Figure 7) as evidenced by sound
energy that was generally concentrated in two peaks
with no consistent mathematical relationship between
them. In captivity, the means were 541 ± 493 Hz (N =
27) and 884 ± 570 Hz (N = 28). It was 191 ± 7 Hz (N =
19) and 355 ± 59 Hz (N = 19) in the field. Despite the
higher frequencies present in some sounds recorded in
captivity, shapes of power spectra from field and tank
sounds are quite similar (Figure 7). In captivity, peaks
present at high frequencies could be due to tank reson-
ance. The calculated resonance for glass aquaria of the
size used in this study is greater than 1.7 kHz, however,
our aquaria were made of plastic. Thus it is possible that
the difference in materials may contribute to high fre-
quency resonance. Some sounds (blue ellipses in Fig-
ure 8) recorded in aquaria possessed high frequency
peaks (>500 Hz). The remaining sounds, however, pos-
sessed a similar distribution of frequency peaks as
sounds in the field: 1st main frequency 195 ± 40 Hz
(N = 17) and 2nd main frequency 347 ± 55 Hz (N = 14).
Single pulse sounds (Figure 6 and 9) were recorded in

captivity but not in the field. Their waveform was similar
to the waveform of pulses isolated from multiple-pulsed
sounds (Figure 9). In addition, the pulse duration was
12.4 ± 6.3 ms (N = 17) in single pulse sounds while it
was 16 ± 13 ms (N = 921) for multiple-pulsed sounds in
captivity. Spectral data showed high variability for 2nd
main frequency (1068 ± 417 Hz, N = 17). However, the
1st main frequency (180 ± 48 Hz, N = 17) was less vari-
able and closer to the 1st main frequency in the field
(191 ± 7 Hz, N = 19). The power spectrum of a single
pulse sound was shown in Figure 7.



Figure 6 Waveforms of male, female, and juvenile sounds in Ophidion rochei. (a) 37 pulse sound of male in captivity, (b) 7 pulse female
sound in captivity, (c) single pulse sound of male in captivity, (d) juvenile 8 pulse sound in captivity, (e) 44 pulse sound of male in the field, (f) 8
pulse female sound in the field. Grey dotted lines in (a) and (b) delimit the sound or call duration. Blue zones highlight a pulse (a) in a male
sound and (b) in a female sound. Red zones highlight an inter-pulse (a) in a male and (b) in a female sound.
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Female sounds
Sounds produced by 4 adult females were first identified
in tanks (Figure 6). They were produced spontaneously
during nighttime but associated fish behaviors remain
unknown. Temporal and spectral data of these sounds
(Table 3) were used to identify female sounds in field
recordings (Figure 6).
Females emitted shorter calls (18 ± 11 ms, N = 56 in

captivity and 20 ± 10 ms, N = 20 in the field) than males.
Mean call duration of female sounds was similar to the



Table 1 Principal characteristics of multiple-pulsed
sounds of male Ophidion rochei

N Mean SD

Pulse number Capt. 29 32 10

Field 20 41 6

Alternation start Capt. 26 15 3

Field 20 14 2

Call duration (ms) Capt. 29 3518 1277

Field 20 3888 762

Short pulse period (ms) Capt. 261 112 10

Field 278 97 11

Long pulse period (ms) Capt. 254 143 18

Field 276 118 10

Pulse duration (ms) Capt. 921 16 13

Field 821 20 8
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mean duration of individual pulses from male calls.
However, female sounds were described as multiple-
pulsed sounds because they were composed of a highly
variable number of repeated units that had a relatively
stereotyped waveform (Figure 6). This was not observed
in male pulses (Figure 9). The number of pulses in fe-
male sounds varied from 2 to 12 in captivity and from 3
to 13 in the field. In captivity, the pulse period was 4 ±
1.2 ms (N = 249) and the pulse duration was 0.7 ± 0.2 ms
(N = 310). These variables were similar in the field: 3.7 ±
0.7 ms (N = 105) and 0.8 ± 0.4 ms (N = 121), respectively.
Spectral characteristics of female sounds strongly sug-
gested that they were harmonic (Figure 7). The funda-
mental frequency was 246 ± 28 Hz (N = 50) in captivity
and 249 ± 23 Hz (N = 18) in the field. There is a direct
relationship between the fundamental frequency and the
pulse period. Indeed pulse period is close to the inverse
of fundamental frequency (Table 4). Moreover, in each
case, these sounds presented at least a first and a second
harmonic (Table 3 and Figure 7).
Table 2 Statistical comparisons between field and
laboratory recordings for male multiple-pulsed sounds
from O. rochei

Variables Methods Results

Pulse number t-test N = 49, t(47) = 3.57, p < 0.05

Alternation start t-test N = 46, t(44) = −1.4, p > 0.05

Call duration t-test N = 49, t(47) = −1.15, p > 0.05

Short pulse period M-W U test N = 564, z = −14.98, p < 0.05

Long pulse period M-W U test N = 555, z = −15.19, p < 0.05

Pulse duration M-W U test N = 1742, z = −16.74, p < 0.05

1st main frequency M-W U test N = 46, z = −2.52, p < 0.05

2nd main frequency M-W U test N = 47, z = −2.67, p < 0.05

T-test: the t-test of Student. M-W U test: U test of Mann–Whitney. Significance
level is determined at p < 0.05.
Call duration, pulse number, pulse period, fundamen-
tal frequency, and 1st harmonic did not differ signifi-
cantly between calls from the field and captivity but
pulse duration and 2nd harmonic did (Table 5). These
results tend to confirm the identification of female
sounds on field recordings. The observed differences in
pulse duration should be considered with caution be-
cause of the extremely short pulse duration in calls from
both environments. Further, the differences between
pulse duration are about 10-4 second (Table 3) and the
methods employed to measure pulse duration have lim-
ited precision at this scale.

Juvenile recordings
Juveniles were found to emit spontaneous sounds which
waveforms were similar to female calls (Figure 6). How-
ever, the signal to noise ratio was not high enough in most
of the files to permit a quantitative comparison with calls
from adults. For a few of the loudest sounds it was pos-
sible to perform an analysis. Call duration (27.3 ± 15.6 ms,
N = 4), pulse number (5.5 ± 1.7 ms, N = 4), pulse period
(5.9 ± 2 ms, N = 18), and pulse duration (0.9 ± 0.5 ms,
N = 22) were measured. Juvenile calls were found to
have longer pulse period durations than female calls
recorded in captivity (Mann–Whitney U test, p < 0.05).
No differences were observed for the other three vari-
ables (p > 0.05). The sounds contained harmonics and
fundamental frequency was situated between 162 Hz
and 352 Hz. Additional data are required for a precise
description of spectral characteristics.

Discussion
In the present study, three morphotypes were described
for O. rochei on the basis of sonic apparatus morph-
ology. Sounds were recorded for each morphotype: juve-
niles, females, and males. The latter generally emit long
calls that differ dramatically from female and juvenile
sounds. It is the first time that female and juvenile
sounds are described in Ophidiidae. These new data pro-
vide first evidence of the tight relationship between
morphology of sonic apparatus and sound characteristics
in this family.

Sonic apparatus morphology
Casadevall investigated the relationship between gonadal
maturation and size in O. rochei [53]. The smallest
female that displayed mature gonads measured 136 mm
in TL. When female total length exceeded 155 mm,
gonads were always fully mature. In males, gonads
reached complete maturation between 166 and 176 mm.
The parallel between sonic apparatus ontogeny and
gonadal maturation [53] strongly indicates that the com-
plex male sonic apparatus morphology is a secondary
sexual character that develops during puberty. The



Figure 7 Power spectra of male, female, and juvenile sounds in Ophidion rochei. Grey lines: logarithmic power spectra of background noise.
Black lines: logarithmic power spectra of (a) a multiple-pulsed sound of male in captivity (smoothed: average over 41 points), (b) a female sound
in captivity, (c) a single pulse sound of male in captivity, (d) a juvenile sound in captivity, (e) a multiple-pulsed sound of male in the field
(smoothed: average over 41 points), and (f) a female sound in the field. In power spectra that suggested a harmonic pattern (*) the fundamental,
(**) the 1st harmonic, and (***) the 2nd harmonic were marked. In other power spectra the two arrows indicate the two main frequencies.
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juvenile morphotype of O. rochei has the simplest sonic
apparatus: three pairs of sonic muscles, neural rocker
on the first vertebrae and slight modifications of the
first and third epineurals. During gonadal maturation,
the sonic apparatus undergoes weak transformation in
females and extraordinary modifications in males that
include differentiation of novel structures. X-ray photo-
graphs revealed the development of the ‘rocker bone’,
the internal tube, the neck of the swimbladder, and the
appearance of the gelatinous substance. Casadevall [46]
did not find a rocker bone in individuals under 130 mm
in TL. On X-ray photographs, the smallest fish with a



Figure 8 Distribution of male Ophidion rochei sounds based on
their spectral data. These graphs represent the distribution of male
(a) 1st and (b) 2nd main frequencies in captivity (capt.) and in the
field. Red lines: illustrated mean values. Blue ellipses: encircled
observations that displayed unusually high frequencies.

Figure 9 Waveforms of Ophidion rochei individual male pulses.
Detail of a pulse from (a) a multiple-pulsed sound of male Ophidion
rochei recorded in captivity, (b) a multiple-pulsed sound of male
Ophidion rochei recorded in the field, and (c) a single pulse sound of
male Ophidion rochei recorded in captivity.
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rocker bone was 133 mm in TL, and was visible only as
a small white dot. This fish also had a slight bump in the
posterior part of the swimbladder, which indicates that
the internal tube can develop earlier than suggested by
the regression of Figure 4 (around 160 mm in TL).
Males display also a more dramatic development of the
first vertebrae (neural rocker) and associated bones
(wing-like epineurals, swimbladder plate), the occipital
region, and the sonic muscles. During adult stages no
additional structures are observed but size-correlated
variation in internal tube length indicates that this struc-
ture grows beyond sexual maturity. Observations of the
sonic morphology of O. rochei are in agreement with
previous studies on the ontogeny of sonic apparatus in
fishes. In juveniles sonic muscles are absent [27] or
monomorphic [27,29,31,32] and morphological differ-
ences between adult males and females appear related to
sexual maturation [27,29,31,32]. Such changes are prob-
ably mediated by androgen hormones (see: [54]). In
most fish taxa, however, sonic muscle changes are
usually restricted to hypertrophy and ultrastructural
modifications. However, in Ophidiiformes, the sexual di-
morphism can also involve swimbladder shape and the
ligaments and bony elements of the sonic apparatus
[36,37,42,45,55]. Ophidion rochei represents an add-
itional, and particularly extreme example of sexual di-
morphism among Ophidiidae [36,37,42,45].
According to the parsimony principle, the fact that the

rocker bone in males is a highly derived character and
that the sonic apparatus morphotypes of female and ju-
venile O. rochei are similar and less complex, the sound
producing apparatus of the male seems correspond to a
case of peramorphosis. The ontogenetic trajectory of the
male takes on hitherto unseen traits with the develop-
ment of the rocker bone, the swimbladder and asso-
ciated vertebral components.
With the exception of sonic muscles in some Sciaeni-
dae species [27], the appearance of new structures of the
sonic apparatus during sexual maturation had never
been reported in fish. However, secondary sexual charac-
ters are common in vertebrates as external features. A
very well-known example is the mane of lions which is
only present in adult males [56]. Many examples have
been documented in teleosts. In Poecilia reticulata



Table 3 Principal characteristics of female sounds from
Ophidion rochei

N Mean SD

Pulse number Capt. 56 5 3

Field 20 6 3

Call duration (ms) Capt. 56 18 11

Field 20 20 10

Pulse period (ms) Capt. 249 4,0 1,2

Field 105 3.7 0.7

Pulse dur. (ms) Capt. 310 0.7 0.2

Field 121 0.8 0.4

Fundamental (Hz) Capt. 50 246 28

Field 18 249 23

1st harmonic (Hz) Capt. 57 506 83

Field 19 494 45

2nd harmonic (Hz) Capt. 58 779 114

Field 19 763 81

Table 5 Statistical comparisons between field and
laboratory recordings for female sounds from Ophidion
rochei

Variables Methods Results

Pulse number M-W U test N = 76, U = −1.27, p > 0.05

Call duration M-W U test N = 76, U = −1.07, p > 0.05

Pulse period M-W U test N = 354, U = 0.48, p > 0.05

Pulse duration M-W U test N = 431, U = −4.37, p < 0.05

Fundamental M-W U test N = 68, U = −0.37, p > 0.05

1st harmonic M-W U test N = 76, U = 77, p > 0.05

2nd harmonic M-W U test N = 77, U = −0.82, p < 0.05

M-W U test: U test of Mann-Whitney. Significance level is determined at p <
0.05.
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(guppy), all juveniles display the same color pattern and
shape [57,58]. In late juvenile stages, future males start
to display conspicuous colors, a more developed tail and
a gonopodium [57-59]. In nursery fish, Kurtus gulliveri,
only adult males have a hook on the head that, after
mating, holds gelatinous egg [60]. Note that secondary
sexual characters of males are not always irreversible.
The sexual dichromatism in fish can be permanent, sea-
sonal, or ephemeral [61]. Seasonal variations in male
morphology were also reported. For example, the head
crest of male Salaria pavo increases in size during
breeding season [62]. The nuptial tubercles of many
male fish also disappear a few weeks after the breeding
season [63]. In O. rochei, the sonic apparatus underwent
very dramatic modifications (mineralized structures)
observed during a complete year. Moreover, the internal
tube size of adult males was correlated with fish total
length. All evidence thus far indicates that the sexual di-
morphism is permanent. However, an additional, more
subtle effect of season on male sonic muscles cannot be
excluded because a seasonal hypertrophy of sonic mus-
cles was reported in the ophidiid Lepophidium profon-
durum [34].

Sound production
Male sounds from both the field and captivity lasted a
few seconds and showed an original acoustic signature
in the pattern of pulse period [9]. This should allow
Table 4 Measured and calculated pulse periods of female sou

Pulse period (ms) Measured (automatically during sou

Calculated (1/fundamental frequen
female fish to consistently and easily identify male fish
despite the abundance of physical and biological sounds
in natural environments. Some differences, however,
were noted between sounds in captivity and in the field.
These differences could be attributed to environmental
factors, such as seawater temperature, or intrinsic causes
such as fish size [20-23]. A trend between pulse period
and temperature is evident among existing datasets (14
to 21°C in captivity, 21.5°C in the field, and 23.5°C from
Parmentier et al. [9]): shorter pulse periods were
recorded at higher temperatures. Temperature-related
variation in sound frequency spectra is less apparent be-
cause of the large variability observed in sounds
recorded in captivity. High frequency sounds obtained in
aquaria could be due to artifacts related to recording
conditions in tanks (resonance). Despite the presence of
these high pitched sounds, many male calls recorded in
tanks had a frequency pattern very close to calls from
the field (Figure 8). However, 1st and 2nd main frequen-
cies described by Parmentier et al. [9] in September
2008 were 226 ± 1 Hz and 410 ± 1 Hz, which is slightly
higher than data from July 2010 (191 ± 7 Hz, N = 19 and
355 ± 59 Hz, N = 19). This is in agreement with the ten-
dency of fish sounds to increase in frequency with
higher temperature [21].
The strongly dimorphic sound production anatomy of

males and females corresponds to dramatic differences
in sound waveforms and in frequency characteristics.
Temporal and spectral characteristics from female
sounds recorded in the laboratory were highly similar to
sounds recorded from putative females in the field, with
no discernible differences in call duration, pulse number,
pulse period, fundamental frequency, and 1st harmonic
nds from Ophidion rochei

Captivity Field

nd analysis) 4.0 3.7

cy) 4.1 4.0
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as shown in table 5. These field recordings indicate that
females may also produce nocturnal vocalizations.
Juveniles were recorded at water temperatures of 13-

14°C and the period of their sounds was significantly
longer than in females. Temperature may affect sound
characteristics and partially explain differences between
females and juveniles. Because of the small sample of ju-
venile sounds, however, interpretations of these data
must be considered with caution. Though notably the
very similar characteristics between most features of ju-
venile and female sounds, and the common dissimilarity
of these sounds compared to male calls support the im-
portant relationship between morphology and sound
characteristics.

Implications for sound mechanisms
In many respects, the sonic apparatus of male O. rochei
is more different from the sonic apparatus of female
O. rochei than it is from males of many other Ophidion
species. The male sound production apparatus shows
more morphological modifications that may reflect a
greater specialization for sound production. Compared
with females, males show more development of the oc-
cipital region and neural rocker for the insertion of mus-
cles powerful enough to move heavy rocker bone back
and forth [47] and to counterbalance the suction engen-
dered in the swimbladder. The constraint posed by rapid
pressure changes may explain the development of thick
elastic layers into the internal tube acting as a pressure-
release valve at the back of the swimbladder [9]. Females
lack a rocker bone: less developed muscles insert on
smaller surfaces and the swimbladder lacks a pressure-
release valve. As a whole, it is easier to vibrate the swim-
bladder in females. Thus, inertial considerations derived
from morphological data, together with sound character-
istics, indicate substantial differences in the sound pro-
duction mechanism of male and female.
Mainly because of the long pulse period of their

sounds, Ophidiiformes (carapids and ophidiids) are
thought to use slow sonic muscles [9,44]. In Carapus
acus, the sonic muscle was shown to tetanize in the
vicinity of 10 Hz [44]. However, the pulse period, pres-
ence of harmonics, and shape of the oscillogram of
sounds produced by female O. rochei are characteristics
that are typical of fish sounds produced by high-speed
muscles [21,64-68]. These sound data suggest that the call
fundamental frequency corresponds to the contraction
rate of sonic muscle. In female O. rochei, fundamental fre-
quency was around 250 Hz, which would correspond to a
very fast sonic muscle contraction rate. In Prionotus caro-
linus (Triglidae), bilateral alternation in the contraction of
paired muscles allows each muscle to contract at half the
fundamental frequency of a voluntarily calling fish [69].
Based on sonic characteristics, the muscle physiology
between males and females is expected to be vastly differ-
ent. However, despite the relatively modest pulse rate of
Cynoscion regalis sounds (ca. 20 Hz), Connaughton et al.
[70] suggested that each pulse results from a very fast con-
traction of sonic muscles. Thus, it is possible that male
O. rochei are capable of fast contractions but this ability
cannot be deduced from sound production. Electro-
physiological data are definitely needed to test this
hypothesis.

Evolutionary concerns
The sonic apparatus of male O. rochei undergoes sub-
stantial modification during ontogeny, resulting in dra-
matic sexual dimorphism. Sexual dimorphism and
dichromatism are common in vertebrates (e.g., [61,71-73])
and secondary sexual characters can play a role in sex rec-
ognition, mate choice, or both. For example, male colors
are involved in female mate choice in several fish clades
[61]. In Poecilia reticulata, morphological traits, such as
tail size, were also demonstrated to influence female
choice [59].
In mammals [71], secondary sexual characters are gen-

erally more pronounced in diurnal species. Dimorphism
in characters, such as canine teeth, is more important in
diurnal than nocturnal species because these characters
are more easily detected in daylight [71], while dark
environments restrict the efficiency of visual communi-
cation for species and sex recognition. As a result, many
marine species have evolved bioluminescent organs
(photophores) [74]. In fish, photophore distribution has
species-specific patterns that are often sexually di-
morphic [74]. Many fish clades acquired alternative
communication cues (electric, acoustic, and chemical
signals) [75] effective even in dark environments.
Like many Ophidiidae [35], O. rochei is mainly active

in the dark, yet has no photophores and displays no
striking external dimorphism. Conspicuous color dichro-
matism is also absent in both sexes. Thus external fea-
tures are expected to have little effect on mate choice
and sex recognition. Sound characteristics in this spe-
cies, however, could be used for species and sex recogni-
tion. The call of male O. rochei is conspicuous because
of its long duration and the unique pattern observed in
its pulse period. Long signals with highly repetitive
sounds are more likely detected. They also favor the
localization of the sound source because targeted fish
may evaluate variation in sound intensity as they are
moving. Pulse period could be a key for species recogni-
tion because several studies suggest that temporal char-
acteristics of sounds are more informative and reliable
for fish communication than spectral features [76,77].
Moreover, pulse period seems to be the less distorted
sound characteristic during propagation in shallow water
[78]. Hence species-specific patterns of male calls should



Kéver et al. Frontiers in Zoology 2012, 9:34 Page 13 of 16
http://www.frontiersinzoology.com/content/9/1/34
be preserved during sound propagation in comparison
to other characteristics like frequency and pulse
duration.
For these reasons, the acoustic sexual dimorphism of

O. rochei may be of major importance for sex recogni-
tion and mate localization in the dark active environ-
ment of this species. Behaviors associated with sound
production of this fish remain unknown. Since male calls
in Ophidion marginatum are related to reproduction [8],
we hypothesize that acoustic communication favors the
reproductive success of O. rochei. Variations in second-
ary sexual characters [79] and communication cues [80]
are thought to promote speciation and thus it is likely
that acoustic communication is involved in the evolu-
tionary success and the important radiation of the
family.

Conclusions
Males of O. rochei are able to produce sounds that differ
greatly from female and juvenile calls. This dichotomy in
sound characteristics is related to major differences in
sonic apparatus morphology. During male sexual matur-
ation, new structures (rocker bone, internal tube, swim-
bladder plate) involved in the sonic apparatus appear
and develop continuously. This peramorphosis corre-
sponds to the development of secondary sexual charac-
ters that have to be advantageous in species living in a
dark environment.

Methods
Fish collection
Twenty-four Fish, 67 to 217 mm TL (total length), were
caught during May and July 2010 near the Cetina estu-
ary in Dùlce-Glàva, Croatia (43°26 N, 16°40 E). They
were trapped with a beach seine (22 m long, mesh size
of 4 mm at the outer wing and 2 mm at the central part)
in shallow water (<2 m depth) from 21:00 to 02:00.
Then, they were held for one week in a 250 l tank at
the Institute of Oceanography and Fisheries in Split
(Croatia). Finally, they were transported to Liège (Belgium)
and kept in a 1000 l tank with a 0.1 m high sandy bottom.
In August 2010, an additional specimen was caught with a
small hand net during a scuba dive at Banyuls-sur-mer,
France (42°28 N, 3°08 E).
Eighty-nine additional swimbladders from O. rochei

sampled between 1986 and 1988 along the Costa Brava
(Spain) were utilized. Specimens were measured, dis-
sected, and sexed by Casadevall [53] and their swim-
bladder were fixed in formaldehyde (7%) and kept in
ethyl-alcohol (70%).
Casadevall [53] studied the gonads of 223 specimens

of Ophidion rochei. These gonads were never mature be-
fore individuals reach a total length of 136 mm in
females and 166 mm in males. Specimens with a TL
under these thresholds were thus considered immature.
However, traces of the future rocker bone were already
observed in males just over 130 mm in TL [53]. Conse-
quently, the samples were divided in 3 classes: juveniles
(<130 mm in TL), females (>130 mm in TL and no
rocker bone), immature and mature males (>130 mm in
TL and first evidence or presence of a rocker bone).

Gross morphology of the sonic apparatus
Twelve individuals were euthanized with an overdose of
MS 222, fixed in formaldehyde (7%) during 15 days and
transferred in norvanol. Three females (154 mm,
175 mm and 187 mm in TL) and two juveniles (77 mm
and 98 mm in TL) were stained with Alizarin Red to
visualize osseous structures [81]. The other individuals
were carefully dissected to study the swimbladder, the
ligaments, and the muscles of the sound production
apparatus. The general morphology of the sonic appar-
atus of females and juveniles was examined with a bin-
ocular microscope (Leica, Wild M10) coupled to a
camera lucida and compared with previously described
males [9].
The anterior part of swimbladders from Costa Brava

had previously been removed for studies on the ‘rocker
bone’. However, the posterior part remained well pre-
served and allowed the measurement of the internal
tube [see: [46]] present in male swimbladders.
Living fish collected from Croatia were X-ray photo-

graphed in July 2010 (adults, N = 14 and juveniles,
N = 10) and the eleven surviving fish were X-rayed again
in May 2011 (adults, N = 10 and juvenile, N = 1). The fish
collected from France was X-ray photographed regularly
(±each month) from August 2010 to September 2011.
X-ray photographs were performed at the Veterinary
Institute of the University of Liège with a DigiVeX
FP (MEDEX Loncin S.A., Belgium) under 43 kV and
10 mAs-1. All fish were anesthetized with MS 222
(150 mg/l) to prevent them for moving during the X-ray
sessions. The skeleton, the swimbladder, and the position
and size of the rocker bone (in morphotypes where
present) were observed on X-ray photographs. All experi-
mental procedures were approved by the University of
Liège Institutional Animal Care and Use Committee.

Sound recordings
Male recordings
Two immature males (133 and 163 mm TL) and four
mature males (168, 169, 191, and 206 mm TL) were
placed with three females in a rectangular plastic tank of
900 l. From January to April 2011, seawater temperature
was kept at 14°C and the light period was lengthened
gradually (from 8:00 to 10:45 h of daylight) to mimic
winter conditions in Adriatic Sea. Temperature was
increased from 14°C in April to 19.5°C in June and light
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periods were lengthened from 10:45 to 15:00 h to simu-
late the spring. Because these calls are thought to play a
role in female attraction, nets were placed into the tank
from May to June to separate males from females.
Sounds were recorded with a Digital Spectrogram Long-
Term Acoustic Recorder (DSG, Loggerhead Instru-
ments, Sarasota, FL, USA). This apparatus is composed
of a hydrophone (186 dB re 1 V/μPa) coupled to a digital
acquisition board. It recorded ten minutes each half
hour during night time. Recordings investigated in this
study were all performed at a sample rate of 20,000 Hz.

Female recordings
Four females (198, 200, 205, and 209 mm TL) were
free to swim in a tank of 700 l. Sounds were
recorded with the DSG from 21 September 2010 to
19 October 2010. Only females were present in the
tank during recording periods. The DSG hydrophone
recorded periods of ten minutes each half hour from
19:00 to 07:00, UTC + 1. During the recording period
(21 September to 19 October) water temperature var-
ied between 18°C and 25°C.

Juvenile recordings
Three juveniles (67, 78, and 87 mm TL) were recorded in
a 250 l tank in Croatia. Temperature averaged 13-14°C.
The same hydrophone and recording conditions previ-
ously described were used.

Field recordings
In July 2010, the DSG was used mainly during night
time (21:30 to 04:30, UTC + 1) and recorded 10 min
each 30 min. It was placed 70 m from the beach of
Dùlce-Glàva at a depth of 2 m. These recordings were
investigated for sounds produced by O. rochei.

Sound analyses
Sounds were digitized at 20 kHz (16 bit resolution)
and analyzed using Avisoft SAS-Lab Pro 4.5. Based on
Akamatsu et al. [82], the minimum resonant frequency
calculated for recording tanks from Liège was greater
than 1.7 kHz. The minimum resonant frequency was
higher in the tank from Croatia. To avoid resonant
effects and reduce low frequency background noise, a
band pass filter that kept frequencies between 0.05 and
1.7 kHz was applied prior to each analysis. This step was
achieved thanks to the FIR (Finite Impulse Response)
band pass filter of Avisoft software.
Spectral analyses were performed in Avisoft with the

power spectrum logarithmic function (Hamming win-
dow). The power spectrum graphs obtained displayed
the distribution of sound energy across frequencies. Har-
monic sounds are indicated by the presence of several
regular spaced peaks on the power spectrum, in which
the harmonic peaks are multiples of the lowest peak
(fundamental frequency). Non harmonic sounds are
dominated by one or several frequencies with no con-
served mathematical relationship between them. The
highest frequency peak or peaks of non-harmonic
sounds were categorized as main frequencies. Because of
the relatively long duration of male calls, the results of
the FFT function were averaged over 41 points to clarify
graphical illustration.
A semi-automated method with Avisoft software was

used to measure call duration, number of pulses in a
call, pulse period duration, and pulse duration. Sounds
were defined as a series of one or more pulses (Figure 6).
Inter-pulse interval (data not shown in the results) is the
duration of time between a pulse offset and the onset of
the next pulse (Figure 6). Pulse period is the duration of
time between successive pulse onsets. Thus, pulse period
is the repeated unit that constitutes the multiple-pulsed
sounds. All analyses were performed on the root mean
squared signal (function ‘RMS with exponential moving
average + decimation’ in Avisoft software) with the peak
search with hysteresis function (15 dB in males with
start/stop threshold at -15 dB and 1 dB in females and
juveniles with a start/stop threshold at -1 dB). The hys-
teresis was lower for female and juvenile sounds because
the pulse amplitude to inter-pulse amplitude ratio was
lower, which could affect pulse duration accuracy
slightly, but increased the accuracy of call duration,
pulse period, and pulse number provided by the pro-
gram. The original waveform was transformed in RMS
signal because it allowed a better detection of peak
boundaries: the onsets and offsets of pulses were sharper
and thus easier to detect and define. The application of
thresholds based on the mean RMS of background noise
highly reduced the number of missed detections. In a
few cases, peaks from background noise were automatic-
ally selected and needed to be removed manually. How-
ever, pulse and pulse period durations displayed by the
program were never modified manually to avoid subject-
ive modifications. For male sounds, additional variables
were deducted from analysis output. As described in
Parmentier et al. [9], pulse period in male sounds shows
a cyclic variation. Its duration rises before alternating
between long and short pulse period durations. ‘Long
pulse period’ and ‘short pulse period’ were considered as
two additional variables. The variable ‘alternation start’
corresponded to the pulse number when the pulse
period alternation pattern was initiated. This variable
was objectively defined as the first pulse period that 1)
decreased by 5 ms from the preceding pulse period, and
2) was followed by a series of alternating long and short
pulse periods that continued until the end of the sound.
Thus ‘alternation start’ refers to the number of the pulse
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just after the first shortened pulse period. For a graph-
ical illustration of alternation in male call O. rochei see
Parmentier et al. [9].
Statistical analyses were performed with STATISTICA

9.1 and Graphpad Prism 5 (Graphpad Software, Inc.).
The latter was also employed for graphical illustration.
In addition to elementary statistics, the normality of data
was tested with Kolmogorov-Smirnov and Shapiro-Wilk
tests to determine whether parametric tests were appro-
priate. Variables that did not violate assumptions of nor-
mality were compared with a Student’s t-test, while
variables with a non-normal distribution were tested
with a Mann-Whitney U test.
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