

FINAL DEGREE PROJECT

Title: Dynamics modelling of an

Under Water Vehicle

Study: Industrial Engineering

Document: Memory and Annexes

Student: Anna Tibau Ragolta

Tutor: David Lane and Yvan Petillot

Department: Computing and Electrical Engineering

Date: February-July 2006

1. INTRODUCTION

1.1 Antecedents

Heriot Watt University of Edinburgh is going to take part on the Student Autonomous

Underwater Competition – Europe (SAUC-E) in August 2006. A team of students from

different disciplines has been building and developing a robot called Nessie during this

and last year. At this time, the structure and hardware of the robot are almost finished

and the team is entering in the mission-planning period. It means that they are working

altogether using the software they have developed to resolve the missions of the

competition. Simplifying, the mechanism consists in get environment information as

position of the robot and the target, to process it and send movement information to the

propulsion system. In February 2006, I joined the team to help with the control system

by studying the robot’s dynamic and finding the mathematic model of movement as it

can be use to set the PID parameters more accurately.

1.2 Objective

The main objective of the project is to find the dynamic equation of the robot, dynamic

model, by using the present knowledge on this area. With it, the behaviour of the robot

will be easier to understand and movement tests will be available by computer without

the need of the robot, what is a way to save time, batteries, money and the robot from

water inside itself. Because the competition day is approaching, if there is time

enough, a second part in this project will be setting a control system for Nessie by

using the model.

1.3 Specifications

The robot can move in four degrees of freedom (surge, heave, pitch and yaw) through

the four propellers it has. Roll and Sway movements are not wanted but also not

accessible to control, as it does not have propellers for them. However, the robot

structure guaranties the stability in these two degrees of freedom. Pitch movement is

also not wanted, so I will not consider it for the equation as well.

By simplifying it, it is easy to see that there are only 3 degrees of freedom to take into

account, so the model becomes simpler. These three DOF’s are totally controllable by

the propulsion system, that consist in two propellers to move in surge direction and two

more to move in the heave. The robot will be moving on a tank without water currents.

2. DESCRIPTION OF NESSIE

Nessie is an Autonomous Underwater Vehicle (AUV) that is created by a team of

students in the Heriot Watt University to compete in the Student Autonomous

Underwater Competition, Europe (SAUC-E) in August 2006.

There are several missions to achieve, an all them need an accurate control of the

movement.

For instance, one of the missions consists in to locate a mid-water target and contact it

with the nose of the vehicle as shown below:

This task requires a very good control of the vehicle, since the vehicle is autonomous,

he positions himself and the targets by reading the information from his sensors, and

he moves by giving the quantity he “thinks” necessary to his motion system.

For the motion system, Nessie dispose of four thrusters, one on the front and one on

the back for immersion and surfacing, and one on the left and one on the right for move

forward, backward and turn in yaw.

An Insertion Navigation System (INS), a Sound Navigation and Ranging (SONAR), two

webcams and an altimeter, compose the environment information system.

Target

Front Back

Left

Right

3. DESCRIPTION OF THE DYNAMIC EQUATION FOR AN AUV

This equation represents the fundamental principle of dynamics; witch says that the

force applied to a body is proportional to the acceleration the body gets. The

proportional constant is the mass of the body, and it can be expressed as the following

way:

F = m · a (Eq. 1)

But the robot is moving in a environment that dissipates energy because is causing a

resistance to the movement. This is the principle of action-reaction, also known as

Newton’s third low. The water is making forces against the movement of the robot.

Then we have to rest these forces to the thrusters force, and if it is still positive, there

will be acceleration and the robot will move.

Because the robot is submerged in the water, an other factor is making forces to the

robot, is the principle of Archimedes, which states that a body immersed in a fluid is

buoyed up by a force equal to the weight of the displaced fluid. Therefore, it will affect

the heave degree of freedom.

Once we have a mass with acceleration, the principle of Galileo states that every

system that is put under a force, it tends to get acceleration and change his velocity

offering a resistance or inertia to it.

An other thing to take into account is that when the movement is linear, the variables

are force and linear acceleration, and the constant is mass. But when the movement is

angular, then the variables are torque force and angular acceleration, and the constant

is the moment of inertia.

Thee degrees of freedom are linear and the tree left are angular.

With all this knowledge is time to write the equation of movement.

() τη =+⋅+⋅⋅+⋅+⋅ gvvCvvBvDvM)(& (Eq.2)

 Where M is a 6x6 matrix than contains masses and moments of inertia.

D is a matrix that contains the values of the linear drag coefficients. It is the reaction

against the movement that the water does. B is a matrix that contains the values of the

quadratic drag coefficients, that represents the reaction against the movement that the

water does due to the viscosity. C is a matrix that contains the values of the centripetal

terms due a mass being in movement. g is a matrix with the values of the gravity and

buoyancy terms, and τ is a vector that contains the force and torques that the

propellers give.

Once we have all these values, we will obtain the model of the system (Nessie under

the water) that will represent exactly the real behaviour of it.

The main task of this project is to find these values. For this, it is needed to do tests to

get data, and through them, identify each value. It all is explained and done in the

ANNEXES.

4. DESCRIPTION OF THE IDENTIFICATION METHOD

To find the parameters of the equation, I will use an identification method. As I said,

these parameters are the result of physic laws and are difficult to calculate by following

physical rules.

An identification method consists of finding the values of the matrices by studying the

system as a black box from which we know the input and output values at any time.

If we know the behaviour of the robot, the outputs agreed with the inputs, we can also

find a model that behaves the same way.

There are several identification methods to use, but the one I will use is a method

created by Antonio Tiano, from the University of Pavia (Italy), that has been used to

find the dynamic equation of other robots with good results.

This method uses the mathematic concept of the Least Square (LS) algorithm.

To do the identification, the data we need to know from the robot is the velocity and the

force of the thrusters at any time. With this two data, the method will give the values of

the matrices from the model.

To get these data we have to do some tests in the tank. These tests have to be

uncoupled, that means that in each tests there is just one degree of freedom with

movement.

The identification method it is all explained in the ANNEX 2

5. DESCRIPTION OF THE EXPERIMENTS

Identification of the thrusters

This test consists in to find the relation between the angular speed of the thrusters and

the force they give.

The methodology used is very simple. The robot has to be stopped in the water, which

means without speed, to be able to neglect the drags and inertias. Then, with a

dynamometer and a rope, we can measure the force that the robot gives when

increasing the angular speed of the thrusters.

This simple drawing illustrates how the test is.

Fig.1 Thrusters identification

These tests were done on the small tank of the Ocean Laboratory in Heriot Watt.

The results of these tests can be found in the ANNEX 4.

Identification of the parameters of the equation

The objective of there tests is to find the values of the equation matrices. To use the

identification algorithm it is needed to know the speed of the robot and the angular

speed of the thrusters at any time.

These tests need a big pool, since we want to reach the maximum speed of the

thrusters and robot.

A small program in C++ has been done to store these values while the robot is moving,

since the robot uses a Linux operating system. It can be found in the ANNEX 11, but to

be understood it is need to see the programs of the other members of the team that

have to run at the same time.

Pictures from the tests day in the pool can be found in ANNEX 12.

6. DESCRIPTION OF THE RESULT

Finally and after 5-month study, the mathematic equations of Nessie obtained in each

uncoupled degree of freedom are the following:

Surge forward:

21 0179,00179,072497,33 UUuuuu ⋅+⋅=⋅⋅+⋅+⋅ & (Eq.3)

Surge backward:

21 0016,00016,072497,33 UUuuuu ⋅+⋅=⋅⋅+⋅+⋅ & (Eq.4)

Heave up:

43 0042,00042,044,388 UUww ⋅+⋅=⋅+⋅− & (Eq.5)

Heave down:

43 018,0018,044,388 UUww ⋅+⋅=⋅+⋅− & (Eq.6)

Yaw right:

21 225,00016,0225,00179,01707,723 UUrr ⋅⋅+⋅⋅=⋅+⋅− & (Eq.7)

Yaw left:

21 225,00179,0225,00016,01707,723 UUrr ⋅⋅+⋅⋅=⋅+⋅− & (Eq.8)

Where the inputs U, are the square of the speed in revolutions per second (rps) on

each thruster.

8. CONCLUSIONS

After applying the identification algorithm to the data and transform the parameters to

the real constants of the equations, is easy to see that most of them are incoherent.

The sum of the mass and the added mass cannot be negative, as it happens in

equations 5, 6, 7 and 8. In addition, the linear speed constants in equations 7 and 8

seam too big. Nevertheless, I did not have time to compare to model with the real

robot to assure that the equation is incoherent.

If they are, one of the main reasons is that the sensors in Nessie aren’t very good and

accurate. The INS has been used to measure the yaw, and through this, calculate the

yaw speed. For surge and heave, I had to use the altimeter and integrate the data to

find the speed, because with the INS there was a very big error between the real speed

and the measured.

The altimeter was also giving wrong measurements sometimes, and the data are

distorted because of this.

I could probably solve this problem by doing several tests and making an average, but

unfortunately, a place to do the tests was not available since few days before having to

present this project, so there was no time.

If with better data, the results are still incoherent, then the problem is in the

identification algorithm program. The method have been used before with satisfactory

results, so it have to work for Nesse as well.

Although I’m not happy with the results, I’m happy with all the knowledge I have leaned

working on this project. I have helped the AUV team with the buoyancy, the suitable

centre of gravity to turn about and do not lose the target location while moving. In

addition, the identification of the thrusters has been useful to be able to turn about the

centre of gravity. Moreover, I hope the new team will be able to find a good model of

the new Heriot Watt AUV from the information of this project.

8. LIST OF CONTENTS

MEMORY

1. INTRODUCTION

 1.1 Antecedents

 1.2 Objective

 1.3 Specifications

2. DESCRIPTION OF NESSIE

3. DESCRIPTION OF THE DYNAMIC EQUATION FOR AN AUV

4. DESCRIPTION OF THE IDENTIFICATION METHOD

5. DESCRIPTION OF THE EXPERIMENTS

6. DESCRIPTION OF THE RESULT

7. CONCLUSIONS

8. LIST OF CONTENTS

9. BIBLIOGRAPHY

10. GLOSSARY

 ANNEXES

 1. VECTOR NOTATION

 2. IDENTIFICATION METHOD THEORY

 3. THE DYNAMIC EQUATION IN THE MATRIX FORM

 4. IDENTIFICATION OF THE THRUSTERS

 5. CALCULATION OF MASSES AND INERTIAS

 6. CALCULATION OF COG AND COB

 7. IDENTIFICATION OF THE PARAMETERS

 8. THE RESULTS

 9. CONTROL SYSTEM

 10. PROGRAMS WITH MATLAB

 11. PROGRAM WITH C++ TO STORE DATA

 12. IMAGES FROM THE TESTS DAY

9. BIBLIOGRAPHY

M.Carreras, A.Tiano, A.El-Fakdi, P.Ridao. On the identification of non linear models

of unmanned underwater vehicles (2002).

Giovanni Indiveri. Modelling and Identification of Underwater Robotic Systems.

(1998).

Thor I. Fossen. Guidance and Control of Ocean Vehicles (1994).

A. Meystel. Autonomous Mobile Robots (1991)

Benjamin C.Kuo. Digital Control Systems (1992)

Katsuhiko Ogata. Modern Control Engineering (1997)

Gene F. Franklin. Digital Control of Dynamic Systems (1998)

10. GLOSSARY

AUV: Autonomous Underwater Vehicle

OSL: Ocean Laboratory of Heriot Watt University

DOF: Degree of Freedom

COG: Centre of Gravity

COB: Centre of Buoyancy

PID: Proportional, Integrative, Derivative

ANNEXES

ANNEX.1 VECTORS NOTATION

To make it easier to understand, I will use the known Notation for marine vehicles by

the Society of Naval Architects and Marine Engineers (SNAME):

U : Thrusters angular speed

τ : Thrusters torque

F : Thrusters force

Thruster 1: Left Thruster 3: Front

Thruster 2: Right Thruster 4: Back

Where X, Y and Z axes of the robot coordinate frame are the ones shown in the picture

bellow:

Fig.2 Axes of the robot

DOF Description Name
Forces &
Moments

Linear &
angular v.

Position & Euler
angles

1 Motion in x-direction Surge X u x
2 Motion in y-direction Sway Y v y
3 Motion in z-direction Heave Z w z
4 Rotation about the x-axis Roll K p Ø
5 Rotation about the y-axis Pitch M q θ

6 Rotation about the z-axis Yaw N r ψ

X

Z

Y

ANNEX.2 THE IDENTIFICATION METHOD’S THEORY

2.1 Introduction

To use this method we need the equation of movement written for each single degree

of freedom. The tests will be uncoupled, that means that when we study the surge, we

will just have surge movement, and there will be many simplifications in each single

equation.

In the following equations, v means linear speed (for surge, heave and sway) and w

angular speed (for roll, pitch and yaw).

Surge:

FvBvDvm =⋅+⋅+⋅ 2
& (Eq.9)

Sway:

FvBvDvm =⋅+⋅+⋅ 2
& (Eq10)

Heave:

FvBvDvm =⋅+⋅+⋅ 2
& (Eq.11)

Roll:

τηωωωωω =+⋅+⋅+⋅+⋅)()(2
gCBDI & (Eq.12)

Pitch:

τηωωωωω =+⋅+⋅+⋅+⋅)()(2
gCBDI & (Eq.13)

Yaw:

τωωωωω =⋅+⋅+⋅+⋅)(2
CBDI & (Eq.14)

I have just taken into account the gravity and buoyancy term only in the DOF where it

affects.

In addition, the centripetal terms in some cases are zero as well because there is no

movement in the other degrees of freedom.

As I said before, because of Nessie’s kind of movement, the only degrees of freedom

that have to be studied are surge, heave and pitch. Therefore, let us study these tree

ones.

2.2 Identification of surge parameters

I will describe here all the method for the surge. The other movements will be the same

but with its characteristics. Let us write the equation (Eq.3) again:

FvBvDvm =⋅+⋅+⋅ 2
& (Eq.3)

We can write it as:

v
m

vB
v

m

D

m

F
v ⋅

⋅
−⋅−=& (Eq.15)

Then simplify it as:

vvvFv ⋅⋅−⋅−⋅= δβα& (Eq.16)

Where:

m

1
=α

m

D
=β

m

B
=δ (Eq.17) (Eq.18) (Eq.19)

Then we see that the acceleration is function of two variables, the velocity and the

force, and it can be written as:

ΘΦ=))(),((tFtvv& (Eq.20)

Where:

 Φ A matrix contains values that only depend on the state and control vectors.

 Θ (α β γ δ)T A constant vector with the parameters that characterized the dynamic of

the system.

We can estimate the value of the Θ by minimizing the scalar cost of the J (Θ) function

expressed as shown below:

)()()(
1

)(
1

1

kkk

N

k

T
ttWt

N
J εε ⋅⋅=Θ −

=

∑ (Eq.21)

)(1

ktW
− A weight matrix that takes into account the fidelity of the measures

)(ktε The estimation error

Where the estimation error is the difference between the real velocity value and the

estimated velocity value.

)(~)()(kkk tvtvt −=ε (Eq.22)

The interesting thing remains on the predicted error, because to predict the speed one-

step forward, we need to find a model of the movement.

Then, minimizing the cost function, we will minimize the predicted error as well, and

this will let us find the more accurate model of the movement.

For the predicted speed, one-step forward we use the integral between now and one-

step backward of the Eq.20 as shown bellow:

Θ⋅=Θ⋅

Φ=− ∫

−

− FdssFsvtvtv
k

k

t

t

kk

1

)).(),()()(1 (Eq.23)

Then the predicted velocity is given by the expression:

Θ+= − Ftvtv kk)()(~
1 (Eq.24)

And we can rewrite the error as:

 Θ−−= − Ftvtvt kkk)()()(1ε (Eq.25)

We can see that the only data we need to measure is time, velocity and force at every

time instant.

Once we have the expression of the prediction error, we can apply the LS algorithm to

minimize the function cost.

The cost function for N experiments is written in a matrix form as:

)()()())()()(()(111
NYNWNFNFNWNFN

TT ⋅⋅⋅⋅⋅=Θ −−− (Eq.26)

Where F will contains all the integrals, Y will contains all the rest ()()(1−− kk tvtv), and

W will contains all the weights according to the test values fidelity.

2.3 Identification of heave parameters

Let us do the same with the heave. This time the gravity and buoyancy terms have to

be taken into account

Let us rewrite the equation 9.

FvBvDvm =⋅+⋅+⋅ 2
& (Eq.9)

We can simplify it as we did with the surge:

 vvvFv ⋅⋅−⋅−⋅= δβα& (Eq.27)

It is again the same equation as equation 10, so the identification method will be

applied exactly as we did with surge.

2.4 Identification of yaw parameters

Now let us do the same with the equation for yaw. If we write the equation 14 again:

τωωωωω =⋅+⋅+⋅+⋅)(2
CBDI & (Eq.14)

And we simplify it:

ωωδωβταω ⋅⋅−⋅−⋅=& (Eq.28)

Where now the parameters are:

I

1
=α

I

CD)(ω
β

+
=

I

B
=δ (Eq.29) (Eq.30) (Eq.31)

Applying the identification method the same way and taking into account the

transformations, we will obtain the parameters for yaw.

ANNEX.3 THE DYNAMIC EQUATION IN THE MATRIX FORM

3.1 The entire equation

After explaining all the physics, we know how the dynamic equation of Nessie is.

() τη =+⋅+⋅⋅+⋅+⋅ gvvCvvBvDvM)(&

Let us develop it for the six degrees of freedom and see what is inside each matrix.

+

⋅

+

⋅

−

−

−

−

−

−

+

−−

−−

−−

r

q

p

w

v

u

N

M

K

Z

Y

X

r

q

p

w

v

u

N

M

K

Z

Y

X

III

III

III

m

m

m

D

D

D

D

D

D

m

m

m

m

m

m

ZZYZX

YZYYX

XZXYX

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

000

000

000

00000

00000

00000

&

&

&

&

&

&

+

⋅−⋅+⋅⋅+⋅−⋅−−

⋅+⋅−⋅−⋅−⋅+⋅−

⋅−⋅+⋅⋅+⋅−⋅−−

⋅−

⋅−

⋅−⋅

+

⋅

⋅

⋅

⋅

⋅

⋅

⋅

00

00

00

0000

0000

0000

00000

00000

00000

00000

00000

00000

pIqIrIqIpIrImumv

pIqIrIrIpIqImumw

qIpIrIrIpIqImvmw

ummv

ummw

vmwm

r

q

p

w

v

u

rN

qM

pK

wZ

vY

uX

XXYXZYXZYZ

XXYXZZXZYZ

YXZYZZXZYZ

B

B

B

B

B

B

=

⋅⋅+⋅⋅

⋅⋅−⋅⋅−

⋅⋅−⋅⋅+

⋅−⋅+

⋅−⋅+

⋅+⋅−

+

⋅

⋅⋅−⋅⋅−

⋅−⋅⋅−⋅

⋅⋅−⋅⋅−

⋅⋅−

⋅−⋅

⋅⋅−

BsyBscx

BccxBsz

BsczBccy

WscBsc

WscBsc

WsBs

r

q

p

w

v

u

pKqMuXvY

pKrNuXwZ

qMrNvYwZ

uXvY

uXwZ

vYwZ

bb

bb

bb

mmmm

mmmm

mmmm

mm

mm

mm

θφθ

φφθ

φθφθ

φθφθ

φθφθ

θθ

00

00

00

0000

0000

0000

⋅

⋅⋅

⋅−⋅− 4

3

2

1

00

00

0000

00

0000

00

2211

4433

43

21

u

u

u

u

CrCr

CrCr

CC

CC

TYTY

TXTX

TT

TT

We can see that the matrix M is the sum of two matrices. The first one contains the

values of the masses and inertias of the robot, and the second one contains the values

of the mass and inertia of the added mass.

The added mass is the effect of the water that goes together with the robot while it is

moving. It makes a half sphere of water above the area of the robot that is in the front

face of the movement.

The same happens with the C matrix. One of the matrices contains the centripetal

terms due the masses and inertias of the robot, and the other contains the ones due

the added masses.

3.2 The simplified equation for Nessie

Due his structure, Nessie only moves in surge, heave and yaw. So all the values from

sway, roll and pitch can be simplified, and also the values that are multiplied by sway,

roll and pitch velocities and accelerations.

In the gravity and buoyancy matrix, we can simplify all the components that have sine

of a roll or pitch angle.

Nessie has neutral buoyancy, so the buoyancy terms can be also eliminated.

Let us write the simplified equation.

+

⋅

+

⋅

−

−

−

+

r

q

p

w

v

u

N

Z

X

r

q

p

w

v

u

N

Z

X

I

m

m

D

D

D

m

m

m

Z 00000

000000

000000

00000

000000

00000

00000

000000

000000

00000

000000

00000

00000

000000

000000

00000

000000

00000

&

&

&

&

&

&

=

+

⋅

+

+

⋅

⋅

⋅

⋅

0

0

0

0

0

0

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

00000

000000

000000

00000

000000

00000

r

q

p

w

v

u

r

q

p

w

v

u

rN

wZ

uX

B

B

B

⋅

⋅⋅

4

3

2

1

00

0000

0000

00

0000

00

2211

43

21

u

u

u

u

CrCr

CC

CC

TYTY

TT

TT

It is much simple than before…

3.3 The equation for each single degree of freedom

Surge:

2211)(UCUCuuXuXuXm TTBDm ⋅+⋅=⋅⋅+⋅+⋅− & (Eq.32)

Heave:

4433)(UCUCwwZwZwZm TTBDm ⋅+⋅=⋅⋅+⋅+⋅− & (Eq.33)

Yaw:

222111)(UrCUrCrrNrNrNI TTBDmz ⋅⋅+⋅⋅=⋅⋅+⋅+⋅− & (Eq.34)

ANNEX.4 IDENTIFICATION OF THE THRUSTERS

4.1 Introduction

For the identification method, we need to know the force that the thrusters give. Each

thruster has an angular speed sensor. It is known that de relation between the square

of the angular speed of the thuster and the force it gives is linear:

2
UCF ⋅= (Eq.35)

Finding the C constant of each thruster, we will be able to control the force that they

give. These tests are done with dynamometers. We have to ensure that the vehicle

don’t move to discard any drag coefficient.

As we can see in the equation below, without acceleration and speed, and neglecting

the buoyancy terms, the only forces we have are the ones from the thusters:

 () τη =+⋅+⋅⋅+⋅+⋅ gvvCvvBvDvM)(& (Eq.36)

4.2 Identification results

Identification of Thrusters 1 and 2 Identification of Thrusters 1 and 2

forward: backward:

Fig.1 Square of the angular speed vs. N Fig.2 Square of angular speed vs. N

 of force of force

 In blue, the data from the tests In blue, the data from the tests

 In red, the linear regression In red, the linear regression

CfT1= 0.0179 CbT1: 0.0016

CfT2= 0.0179 CbT2: 0.0016

2

21 0.0179 UF forwardandT ⋅= 2

21 0.0016 UF backwardandTT ⋅=

(U in revolutions per second) (U in revolutions per second)

Identification of Thrusters 3 and 4 up: Identification of Thrusters 3 and 4 down:

Fig.3 Square of the angular speed vs. N Fig.4 Square of angular speed vs. N

 of force of force

 In blue, the data from the tests In blue, the data from the tests

 In red, the linear regression In red, the linear regression

CdT3=0.0042 CuT3=0.0180

CdT4=0.0042 CuT4=0.0180

2

43 0.0042 UF downandT ⋅= 2

43 0.0180 UF downandT ⋅=

(U in revolutions per second) (U in revolutions per second)

To know the torques that the thrusters 1 and 2 do, we only have to multiply the force by

the distance to the COG.

cmry 5,221 = cmry 5,222 =

4.3 Table to turn the robot around the centre of gravity

To turn around the COG, the force that the two thrusters give, have to be the same but

opposed.

 22 0.00160.0179 UU ⋅−=⋅

Table of the speed on each thruster in rps

U1 U2 theoric U2

1 3,365939 3

2 6,731878 7

3 10,09782 10

4 13,46376 13

5 16,8297 17

6 20,19563 20

7 23,56157 No possible

The one that turns backward limits the angular speed of the other motor.

Full speed turning will be 6rps on the motor that turns forward and 20rps on the motor

that turns backward.

A
N

N
E

X
.5

 C
A

L
C

U
L

U
S

 O
F

 C
O

G
 A

N
D

 C
O

B

 C
e
n

tr
e
 o

f
G

ra
v
it

y

P
ro

p
e
lle

r
L

e
ft

S
u
p
p

o
rt

P

L

fr
a
m

e

M
T

S

u
u
p

o
rt

M

T
1

S

u
u
p

o
rt

M

T
2

B

T

S
u
p
p

o
rt

B

T
1

S
u
p
p

o
rt

B

T
2

P
ro

p
e

lle
r

F
ro

n
t

S
u

p
p
o

rt

P
F

P

ro
p
e
lle

r
B

a
c
k

S
u
p
p

o
rt

P

B

S
o
n
a

r
S

u
p

p
o
rt

s
o
n
a

r
P

ro
p

e
lle

r
R

ig
h
t

S
u
p
o

rt

P
R

A

lt
im

e
te

r
w

e
b
c
a

m
F

w

e
b
c
a
m

B

D
ro

p
1

D
ro

p
2

T
O

T
A

L

M

O
M

E
N

T

D
is

ta
n

c
e

W

e
ig

h
t

7
3

7
5

6
8

7
0

6
3

9
3

7
9

6
3

9
3

2
5

2
5

1

4
9

1
4

9

8
,5

8
,5

7

3

7
5

9
7

1
4

1
3
2

1
2

4

1
2
4

1
6

8
1

P
ro

p
e
lle

r
L

e
ft

1
,5

1
0
9

,5

S
u

p
p
o

rt

P
L

e
ft

0
,4

3
0

fr
a

m
e

7
,9

5
3
7

,2

M
T

9
,2

2

6
4
5

,4

S
u

u
p
o

rt
 M

T
1

0
,1

3
5

8
,5

0
5

S
u

u
p
o

rt
 M

T
2

0
,1

3
5

1
2
,5

5
5

B
T

1

1
,1

3

8
7
9
,2

7

S
u

p
p
o

rt
 B

T
1

0
,1

1

6
,9

3

S
u

p
p
o

rt
 B

T
2

0
,1

1

1
0
,2

3

P
ro

p
e
lle

r
F

ro
n
t

1
,5

3
7
,5

S
u

p
p
o

rt

P
F

ro
n
t

0
,1

4

3
,5

P

ro
p
e
lle

r
B

a
c
k

1
,5

2
2
3

,5

S

u
p
p
o

rt

P
B

a
c
k

0
,1

4

2
0
,8

6

S
o

n
a
r

3
,2

2
7
,2

S
u

p
p
o

rt

s
o
n
a

r
0
,3

8

3
,2

3

P
ro

p
e
lle

r
R

ig
h
t

1
,5

1
0
9

,5

S

u
p
o
rt

P

R
ig

h
t

0
,4

3

0

A
lt
im

e
te

r
1
,1

1
0
6
,7

w
e
b

c
a

m
 F

0

,3
7
5

5
,2

5

w
e
b

c
a

m
 B

0

,3
7
5

4
9
,5

D
ro

p
1

0
,3

3
7
,2

D
ro

p
2

0
,3

3
7

,2

2
9

3
0
,7

3

T
O

T
A

L

4
1
,8

5

D
is

ta
n
c
e

to
 C

O
G

-2

,9
7

0
6

-4
,9

7
0
6

2
,0

2
9

3
9

0
,0

2
9

3
9

7
,0

2
9

3
9

-2
2
,9

7
1

-8
,9

7
0
6

7
,0

2
9

3
9

-2
2
,9

7
1

4
5
,0

2
9
4

4
5
,0

2
9
4

-7

8
,9

7
1

-7
8
,9

7
1

6
1

,5
3

6
1
,5

2
9
4

-2

,9
7
0

6

-4
,9

7
0

6

-2
6

,9
7
1

5

6
,0

2
9
4

-6
1
,9

7
1

-5

4

-5
4

 M
a
s
s
 =

 4
1
,8

5
 K

g

C
O

G
 =

 7
0
,0

2
9
4
 c

m
 f
ro

m
 t
h
e
 f
ro

n
t
o
f

th
e
 r

o
b
o
t.

C
e
n

tr
e
 o

f
B

u
o

y
a
n

c
y

P
ro

p
e

lle
r

L
e
ft

S

u
p
p
o

rt

P
L

fr

a
m

e

M
T

S

u
u
p
o

rt

M
T

1

S
u

u
p
o

rt

M
T

2

B
T

S

u
p
p
o

rt

B
T

1

S
u

p
p
o

rt

B
T

2

P
ro

p
e
lle

r
F

ro
n
t

S
u
p
p

o
rt

P

F

P
ro

p
e

lle
r

B
a
c
k

S
u

p
p
o

rt

P
B

S

o
n
a
r

S
u
p
p

o
rt

s
o
n
a
r

P
ro

p
e

lle
r

R
ig

h
t

S
u

p
o
rt

P

R

A
lt
im

e
te

r
w

e
b
c
a
m

F

w
e

b
c
a

m
B

D

ro
p
1

D
ro

p
2

T
O

T
A

L

M

O
M

E
N

T

D
is

ta
n

c
e

V

o
lu

m
n

(L

)
7

3

7
5

6
8

7
0

6
3

9
3

7
9

6
3

9
3

2
5

2
5

1
4
9

1
4
9

8

,5

8
,5

7
3

7
5

9
7

1
4

1
3

2

1
2
4

1
2

4

1
6
8
1

P
ro

p
e
lle

r
L

1
,4

1

0
2
,2

S
u

p
p
o

rt
 P

L

0
,4

3
0

fr
a

m
e

1
,6

1

0
8
,8

M
T

1
6
,1

4
3

1
1
3

0
,0

1

S
u

u
p
o

rt
 M

T
1

0
,1

6
,3

S
u

u
p
o

rt
 M

T
2

0
,1

9
,3

B
T

7
,8

8
7

6
2
3

,0
7
3

S
u

p
p
o

rt
 B

T
1

0
,1

5

9
,4

5

S
u

p
p
o

rt
 B

T
2

0
,1

5

1
3
,9

5

P
ro

p
e
lle

r
F

1
,4

3
5

S
u

p
p
o

rt
 P

F

0
,1

2

,5

P
ro

p
e
lle

r
B

1
,4

2
0
8
,6

S
u

p
p
o

rt
 P

B

0
,1

1
4
,9

S
o

n
a
r

1
,4

1
1

,9

S
u

p
p
o

rt
 s

o
n
a
r

0
,3

2
5

2
,7

6
2
5

P
ro

p
e
lle

r
R

1
,4

1
0
2
,2

S
u

p
o
rt

 P
R

0
,4

3
0

A
lt
im

e
te

r
0
,3

9
2
7

3

8
,0

9
1
9

w
e
b

c
a

m
 F

0
,6

8
,4

W
e

b
c
a

m
 B

0
,6

7
9

,2

D
ro

p
1

0
,0

8

9
,9

2

D
ro

p
2

0
,0

8

9
,9

2

2
4
8
7

T
O

T
A

L

3
6
,2

0
7
7

D
is

ta
n
c
e

to
 C

O
B

-4

,3
0
0

9

-6
,3

0
0
9

0
,6

9
9
1
3

-1

,3
0
0
9

5
,6

9
9
1
3

-2

4
,3

0
1

-1

0
,3

0
1

5
,6

9
9
1
3

-2

4
,3

0
1

4

3
,6

9
9
1

4
3
,6

9
9
1

-8
0

,3
0
1

-8

0
,3

0
1

6
0

,2

6
0

,1
9

9
1

-4
,3

0
0
9

-6

,3
0
0
9

-2

8
,3

0
1

5
4
,6

9
9

1

-6
3
,3

0
1

-5
5
,3

-5

5
,3

 V
o
lu

m
e
 =

 3
6
,2

0
7
7
 L

C
O

G
 =

 6
8
,6

9
9
1
 c

m
 f
ro

m
 t
h
e
 f
ro

n
t
o
f

th
e
 r

o
b
o
t.

L
o

c
a
ti

o
n

 o
f

a
ll
 N

e
s
s
ie

 e
le

m
e
n

ts

 In
 y

e
llo

w
,

th
e
 f

o
u
r

th
ru

s
te

rs

In
 p

in
k
,
th

e
 t
w

o
 c

a
m

e
ra

s

In
 p

u
rp

le
,
th

e
 s

o
n
a
r

In
 o

ra
n
g
e
,
th

e
 b

a
tt
e
ry

 t
u
b
e

In
 g

re
y,

 t
h
e
 f
ra

m
e

In
 b

lu
e
,
th

e
 a

lt
im

e
te

r

In
 l
ig

h
t

g
ra

y,
 t

h
e
 m

a
in

 t
u
b
e

ANNEX.6 CALCULUS OF THE INERTIA IZ

6.1 Theory

Inertia of a cylinder:

+=

124

22
hR

MI x

+=

124

22
hR

MI y

=

2

2
R

MI z

Inertia of a box:

()22

bhMI x +=

()22 haMI y +=
 ()22

baMI z +=

Steiner’s theorem:

2
dMIIo ⋅+=

6.2 Calculus of the inertia

COMPONENT Weight (Kg) Form R h a b Iz dx Izo

Propeller 1 1,9 cilinder 0,0564 0,18 0,006640956 -2,971 16,773228

frame 7,9 box 0,01 0,5 0,32 2,78396 2,0294 35,31953

MT 9,49 cilinder 0,083 0,755 0,467138923 0,0294 0,4753365

BT 11,35 cilinder 0,056 0,83 0,660482983 -8,971 914,01577

Propeller 2 1,64 cilinder 0,0515 0,18 0,005515423 45,029 3325,345

Propeller 4 1,64 cilinder 0,0515 0,18 0,005515423 -78,97 10227,631

Sonar 3,58 cilinder 0,055 0,18 0,012373375 61,529 13553,412

Propeller 3 1,9 cilinder 0,0564 0,18 0,006640956 -2,971 16,773228

Altimeter 1,1 cilinder 0,025 0,2 0,003838542 -26,97 800,15898

webcam F 0,375 box 0,05 0,15 0,08 0,0108375 56,029 1177,2456

Webcam R 0,375 box 0,05 0,15 0,08 0,0108375 -61,97 1440,1445

Drop1 0,21 cilinder 0,0175 0,07 0,000101828 -53,97 611,6937

Drop2 0,21 cilinder 0,0175 0,07 0,000101828 -53,97 611,6937

2Kg/m 3,273068=ZI

ANNEX.7 IDENTIFICATION OF THE PARAMETERS

7.1 Identification of surge parameters

-Taking into account the quadratic drag term:

With the equations 17, 18 and 19 we can transform the parameters to the real values of

the equation:

 0.0294
1

=
−

=
mXm

α 0.7058=
−

=
m

D

Xm

X
β 0.2222=

−
=

m

B

Xm

X
δ

2/
7

/
24

83,7

sm

N
X

sm

N
X

KgX

B

D

m

=

=

=

-Neglecting the quadratic drag term:

sm

N
X

KgX

D

m

/
135

67.65

=

−=

7.2 Identification of yaw parameters

-Taking into account the quadratic drag term:

-1.0291

0.3054

0.0458

=

=

=

δ

β

α

2/
46.22

/
66.6

20

sm

N
N

sm

N
N

KgN

B

D

m

−=

=

=

0.2222

0.7058

0.0294

=

=

=

δ

β

α

1.2549

0.0093

=

=

β

α

-Neglecting the quadratic drag terms

0.0389

-0.0113

=

=

β

α

sm

N
N

KgN

D

m

/
44.3

130

=

=

7.3 Identification of heave parameters

-Taking into account the quadratic drag term:

0.3006

-0.0018

0.0013

=

=

=

δ

β

α

2

2

/
230

/
38.1

766

srad

N
Z

srad

N
Z

m

Kg
Z

B

D

m

=

−=

=

-Neglecting the quadratic drag terms

0.2220

0.0013

=

=

β

α

srad

N
Z

m

Kg
Z

D

m

/
170

727
2

=

=

ANNEX.8 THE RESULTS

Since it moves at high speed in surge, I will consider the quadratic term in this degree

of freedom.

For yaw and heave, I will neglect it.

Results of the identification:

243

243

221

221

2

2

0042.0

018.0

0016.0

0179.0

/
7

/
170

/
44.3

/
24

727

130

83.7

rps

N
andCC

rps

N
andCC

rps

N
andCC

rps

N
andCC

sm

N
X

srad

N
N

sm

N
Z

sm

N
X

m

Kg
N

KgZ

KgX

backwardTT

forwardTT

backwardTT

forwardTT

B

D

D

D

m

m

m

=

=

=

=

=

=

=

=

=

=

=

The final matrix equation:

+

⋅

+

⋅

−

−

−

+

r

q

p

w

v

u

r

q

p

w

v

u

17000000

000000

000000

00044,300

000000

0000024

72700000

000000

000000

00013000

000000

0000083,7

273,300000

000000

000000

0008,4100

000000

000008,41

&

&

&

&

&

&

=

+

⋅

+

+

⋅

 ⋅

0

0

0

0

0

0

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000007

r

q

p

w

v

u

r

q

p

w

v

uu

⋅

⋅⋅

4

3

2

1

00225,0225,0

0000

0000

00

0000

00

21

43

21

u

u

u

u

CC

CC

CC

TT

TT

TT

Where CT3=CT4=C forward or backward depending if the robot moves forward or

backward.

To turn right: CT1 � forward and CT2 � backward

To turn left: CT1 � backward and CT2 � forward

The final equations for each degree of freedom:

Surge forward:

21 0179,00179,072497,33 UUuuuu ⋅+⋅=⋅⋅+⋅+⋅ & (Eq.36)

Surge backward:

21 0016,00016,072497,33 UUuuuu ⋅+⋅=⋅⋅+⋅+⋅ & (Eq.37)

Heave up:

43 0042,00042,044,388 UUww ⋅+⋅=⋅+⋅− & (Eq.38)

Heave down:

43 018,0018,044,388 UUww ⋅+⋅=⋅+⋅− & (Eq.39)

Yaw right:

21 225,00016,0225,00179,01707,723 UUrr ⋅⋅+⋅⋅=⋅+⋅− & (Eq.40)

Yaw left:

21 225,00179,0225,00016,01707,723 UUrr ⋅⋅+⋅⋅=⋅+⋅− & (Eq.41)

ANNEX.9 CONTROL SYSTEM

9.1 Introduction

The dynamic of Nessie inside the water is a nonlinear system. It means that the

principle of superposition can’t be applied. The PID controllers are to control linear

systems.

Actually, it is studied that most linear systems are only linear in a limited operating

range. Dynamic systems can normally be treated as linear systems at low speed.

Therefore, we can find an equivalent linear system in place of the nonlinear for

Nessie’s normal operating range to be able to calculate his control. For this, we have to

see if the system operates around an equilibrium point. If it is, and the signals involved

are small signals, then it is possible to approximate the nonlinear system by a linear

system.

9.2 Linearization of the nonlinear Nessie’s mathematic model

The real equation of Nessie’s dynamic is differential, quadratic. To find the equivalent

linear system is not an easy task.

Let us assume that at low speed, the quadratic drag terms can be neglected, so I can

use the simplified equations.

9.3 Control for yaw

9.3.1. Continuous control for yow theory

We can control the yaw with a PID feedback control since we can get the yaw at any

time from the INS.

The feedback loop control will be something like the following, but with the

corresponding Controller and Process Functions.

The equation of the system for yaw degree of freedom and neglecting the quadratic

terms was:

222111)(UrCUrCrNrNI TTDmz ⋅⋅+⋅⋅=⋅+⋅− &

To make it easier to understand let us write it like the following:

)()()(txBtxAty &&& ⋅+⋅=

 111222111)2()(UrCUrCUrCty TTT ⋅⋅⋅=⋅⋅+⋅⋅=

)2(11 rC

N
A

T

D

⋅⋅
=

)2(

)(

11 rC

NI
B

T

mz

⋅⋅

−
=

ThusterRpsty

positiontx

:)(

:)(

The Laplace transformation for this equation is:

)()()(2
sXSBsXSAsY ⋅⋅+⋅⋅=

The system or process transfer function P:

)(

1

)(

)(
)(

2
SASBsY

sX
sP

⋅+⋅
==

Then, calling the transfer function of the PID controler as C, the transfer function of the

feedback loop is:

)()(1

)()(
)(

sPsC

sPsC
sH

⋅+

⋅
=

If we know witch behaviour we want our robot to have in front a consigned yaw position

(H(s)), we can find the suitable controller with the direct method, where:

)(1

)(

)(

1
)(

sH

sH

sP
sC

−
⋅=

In annex 10 I have done a program with Matlab that returns the transfer function of the

Controller by entering the Process transfer function and the desired transfer function of

the loop. Where H have the following form:

22

2

2
)(

nn

n

SS
sH

ωωξ

ω

+⋅⋅⋅+
=

And we can model it as we want by entering witch overshoot (Mp) and settling time (ts)

we desire, where:

Mp (overshoot) is the difference between the consign and the maxim value of the

output

ts (settling time) is the time that the system takes to get the consign value with a error

of the 2%.

9.3.2. Discrete control for yow theory

When the system to control is a digital system, it is more efficient to use discrete PID

controllers.

Now the feedback loop will be as the following:

The sampling time is 0.1 s

The D/A used is a zero order hold

ts

Mp

Using the same method as before, the equation of the controller D will be:

)(1

)(

)(

1
)(

zF

zF

zP
zD

−
⋅=

)(zP Is the discrete transfer function of the process

)(zF Is the transfer function of the closed loop, and have to be chosen according to

the behaviour we want it to have

To have zero error in front a step input, F(z) can be chosen as:

z
zF

1
)(=

9.4 Control for heave

9.4.1 Control for heave theory

The same theory as for yaw (9.3.1, 9.3.2) can be applied.

9.5 Control for surge

9.5 Control for surge theory

There in no sensor to know the position in surge

To control this movement we will do the following:

1. We know the initial distance (d) between the robot and the target by the

sonar.

 It means � The integral of the velocity respect to time have to be d

2. The initial velocity of the robot is zero.

3. We want the robot to arrive to the target at zero velocity.

4. If the robot moves at constant velocity, the graphic of the velocity versus time

is like the following:

 Image 1

5. To move at a wanted velocity, we need to know witch force give to the

thrusters, or what is the same, how many revolutions per second.

6. The relation between the thrusters force and the velocity of the robot is not

linear at all, but we can try to find an equivalent linear system for a limited

operating range where the Force and the velocity have a linear dependency.

 FCv ⋅=

7. If the velocity that the robot moves is significantly low and constant, we can

neglect the two ramps in figure 1. Integrating the equation and making it be

equal to d, we will know how many time we have to apply F force to the

thrusters to arrive to the target.

∫ ∫ ==
t t

const dVtv
0 0

)(�
constV

d
t =

We will have to apply constant revolutions per second during t seconds

ANNEX.10 PROGRAMS WITH MATLAB

10.1 Program to find the thrusters constants

load thrusters;

Cf=regress(FfN',rps1q');
Cb=regress(FbN',rps2q');
Cu=regress(FuN',rps3q');
Cd=regress(FdN',rps1q');

x=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22]
y1=Cf.*x;
y2=Cb.*x;
y3=Cu.*x;
y4=Cd.*x;

fig
plot(rps1q,FfN);
hold
plot(x,y1);

fig
plot(rps2q,FbN);
hold
plot(x,y2);

fig
plot(rps3q,FuN);
hold
plot(x,y3);

fig
plot(rps1q,FdN);
hold
plot(x,y4);

10.2 Program to read the data for surge

function [time,y,u]=read_data;

% position and time;

load forward;

surgedata=forward(:,11);
T=length(surgedata);

%filter for surge, median every 3 data

R=fix(T/3);

for p=1:R;

 surgefilted(p)=(surgedata((3*p))+surgedata((3*p)-1)+surgedata((3*p)-2))/3;
 p=p+1;

end

T1=length(surgefilted);
t=[0:0.3:(T-1)/10];

% surge speed;

k=2;

for k=2:R;

 surgerate(k)=(surgefilted(k)-surgefilted(k-1))/0.6;
 k=k+1;
end

%force

pRdata=(forward(:,1))/10; %angular speed of right thuster
pLdata=(forward(:,2)/10); %angular speed of left thuster

CR=0.0179 %constant of propeller right going forward
CL=0.0179 %constant of propeller left going forward

f=(2*CR*(pRdata.*pRdata)); %force of the 2 thusters

%filter for force

T=length(f);
R=fix(T/3);

for p=1:R;

 forcefilted(p)=(f((3*p))+f((3*p)-1)+f((3*p)-2))/3;
 p=p+1;
end

10.3 Program to find the controllers for yaw, surge and heave

% DIRECT METHOD TO FIND THE PID CONTROLER

function[C]=set_controler;
%Desired behaviour

ts=input('Settling time (ts)=>');

xi=0.7;
wn=4/(ts*xi);
num=[wn^2];
den=[1 2*wn*xi wn^2];
H=tf(num,den);
denp=[10 23];
nump=[1];
P=tf(nump,denp);
Cc=(1/P)*(H/(1-H));

C=minreal(Cc);

ANNEX.11 PROGRAMS WITH C++ TO STORE DATA

/**STORE DATA --->RECIEVES OCEANSHELL MESSAGES FROM INS AND AUTOPILOT

*/

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <pthread.h>
#include <fstream>

// OceanLIB include
#include <OceanLIB/Accessing/olibINIFile.h>
#include <OceanLIB/Conversion/olibScreenCoordConverter.h>

// OceanSHELL includes
#include <OceanSHELL/oshGlobals.h>
#include <OceanSHELL/oshMsg.h>
#include <OceanSHELL/oshMsg_Generic.h>
#include <OceanSHELL/oshMsgQ.h>

// Messages includes

#include "../MissionPlanning/Messages.h"
//#include "../Navigation/INSMsg.h"

using namespace std;

int32 port; //port for OceanSHELL messages

// Motor encoders data
float speedMotorRight;
float speedMotorLeft;
float speedMotorFront;
float speedMotorBack;

//INS Data
float speedx=0.0;
float speedy=0.0;
float speedz=0.0;
float speedroll=0.0;
float speedpitch=0.0;
float speedyaw=0.0;
float altitude=0.0;
float yaw=0.0;

void *Input(void *parameter){

 oshMsgQ msgQ(port,port);

 oshMsg_Generic receivedMsg;
 DATAACQUISITIONMsg insMessage;
 AutopilotMsg autopilot;

 while(1)
 {
 cout<<"Waiting"<<endl;
 msgQ.Recv(receivedMsg);

 switch(receivedMsg.GetMsgID())
 {
 case DATAACQUISITION_MSG:
 insMessage <= receivedMsg;

 speedx=insMessage.GetvelX();
 speedy=insMessage.GetvelY();
 speedz=insMessage.GetvelZ();
 speedroll=insMessage.GetgyrX();
 speedpitch=insMessage.GetgyrY();
 speedyaw=insMessage.GetgyrZ();
 yaw=insMessage.GetYawNow();
 altitude=insMessage.GetAltitudeNow();
 break;

 case AUTOPILOT_MSG:
 autopilot <= receivedMsg;

 speedMotorRight=autopilot.GetSpeedRight();
 speedMotorLeft=autopilot.GetSpeedLeft();
 speedMotorFront=autopilot.GetSpeedFront();
 speedMotorBack=autopilot.GetSpeedBack();

 break;

 default:;

 }
 }
}

int main(int argc, char *argv[])
{

 pthread_t threaddata;

 ofstream store;
 char *returnvalue = NULL;
 int error;
 int finish=0;
 int i=0;
 int j=0;

 if (argc != 2)
 {
 cout << "Use: ./StoreData <port>" << endl;
 exit(1);
 }

 // Port number

 port = atoi(argv[1]);

 error = pthread_create (&threaddata, NULL,Input, NULL); /**MISSIONMANAGER IS
WORKING WITH WORLDMODEL*/

 if (error != 0)
 {
 perror ("We can't create thread underwebcam");
 exit (-1);
 }

 oshMsgQ msgQ(port,port);

 store.open("Data.txt");
 store << "rps MR" << "\t";
 store << "rps ML" << "\t";
 store << "rps MF" << "\t";
 store << "rps MB" << "\t";
 store << "speedx" << "\t";
 store << "speedy" << "\t";
 store << "speedz" << "\t";
 store << "spRoll" << "\t";
 store << "spPitch" << "\t";
 store << "spYaw" << "\t";
 store << "alti" << "\t";
 store << "yaw" << "\t";
 store<<endl;

 while(i<100000){ /**--------------------------------------MISSION---------------------------------*/
 usleep(100000);

 store << speedMotorRight << "\t";
 store << speedMotorLeft << "\t";
 store << speedMotorFront << "\t";
 store << speedMotorBack << "\t";
 store << speedx << "\t";
 store<< speedy << "\t";
 store<< speedz << "\t";
 store<< speedroll << "\t";
 store<<speedpitch << "\t";
 store<<speedyaw << "\t";
 store<<altitude << "\t";
 store<< yaw << "\t";
 store<<endl;

 cout<<"Row stored"<<endl;

 i++;

 }

 store.close();

 return EXIT_SUCCESS;
}

ANNEX.12 IMAGES FROM THE TESTS DAY

Image of the pool where we where testing the robot and doing the first missions

Image of the team running a mission in Nessie.

