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1. INTRODUCTION 

 

1.1 Antecedents 

Heriot Watt University of Edinburgh is going to take part on the Student Autonomous 

Underwater Competition – Europe (SAUC-E) in August 2006. A team of students from 

different disciplines has been building and developing a robot called Nessie during this 

and last year. At this time, the structure and hardware of the robot are almost finished 

and the team is entering in the mission-planning period. It means that they are working 

altogether using the software they have developed to resolve the missions of the 

competition. Simplifying, the mechanism consists in get environment information as 

position of the robot and the target, to process it and send movement information to the 

propulsion system. In February 2006, I joined the team to help with the control system 

by studying the robot’s dynamic and finding the mathematic model of movement as it 

can be use to set the PID parameters more accurately.         

 

1.2 Objective 

The main objective of the project is to find the dynamic equation of the robot, dynamic 

model, by using the present knowledge on this area. With it, the behaviour of the robot 

will be easier to understand and movement tests will be available by computer without 

the need of the robot, what is a way to save time, batteries, money and the robot from 

water inside itself.  Because the competition day is approaching, if there is time 

enough, a second part in this project will be setting a control system for Nessie by 

using the model.  

 

1.3 Specifications 

The robot can move in four degrees of freedom (surge, heave, pitch and yaw) through 

the four propellers it has. Roll and Sway movements are not wanted but also not 

accessible to control, as it does not have propellers for them. However, the robot 

structure guaranties the stability in these two degrees of freedom. Pitch movement is 

also not wanted, so I will not consider it for the equation as well.  

By simplifying it, it is easy to see that there are only 3 degrees of freedom to take into 

account, so the model becomes simpler. These three DOF’s are totally controllable by 

the propulsion system, that consist in two propellers to move in surge direction and two 

more to move in the heave. The robot will be moving on a tank without water currents.  

 

 

 



2. DESCRIPTION OF NESSIE 

 

Nessie is an Autonomous Underwater Vehicle (AUV) that is created by a team of 

students in the Heriot Watt University to compete in the Student Autonomous 

Underwater Competition, Europe (SAUC-E) in August 2006. 

There are several missions to achieve, an all them need an accurate control of the 

movement. 

For instance, one of the missions consists in to locate a mid-water target and contact it 

with the nose of the vehicle as shown below:    

 

 

 

This task requires a very good control of the vehicle, since the vehicle is autonomous, 

he positions himself and the targets by reading the information from his sensors, and 

he moves by giving the quantity he “thinks” necessary to his motion system. 

For the motion system, Nessie dispose of four thrusters, one on the front and one on 

the back for immersion and surfacing, and one on the left and one on the right for move 

forward, backward and turn in yaw. 

 

 

An Insertion Navigation System (INS), a Sound Navigation and Ranging (SONAR), two 

webcams and an altimeter, compose the environment information system. 

Target 

Front Back 

Left 

Right 



3. DESCRIPTION OF THE DYNAMIC EQUATION FOR AN AUV 

 

This equation represents the fundamental principle of dynamics; witch says that the 

force applied to a body is proportional to the acceleration the body gets. The 

proportional constant is the mass of the body, and it can be expressed as the following 

way: 

F = m · a      (Eq. 1) 

 

But the robot is moving in a environment that dissipates energy because is causing a 

resistance to the movement. This is the principle of action-reaction, also known as 

Newton’s third low. The water is making forces against the movement of the robot. 

Then we have to rest these forces to the thrusters force, and if it is still positive, there 

will be acceleration and the robot will move. 

 

Because the robot is submerged in the water, an other factor is making forces to the 

robot, is the principle of Archimedes, which states that a body immersed in a fluid is 

buoyed up by a force equal to the weight of the displaced fluid. Therefore, it will affect 

the heave degree of freedom. 

 

Once we have a mass with acceleration, the principle of Galileo states that every 

system that is put under a force, it tends to get acceleration and change his velocity 

offering a resistance or inertia to it. 

 

An other thing to take into account is that when the movement is linear, the variables 

are force and linear acceleration, and the constant is mass. But when the movement is 

angular, then the variables are torque force and angular acceleration, and the constant 

is the moment of inertia. 

Thee degrees of freedom are linear and the tree left are angular. 

 

With all this knowledge is time to write the equation of movement. 

 

( ) τη =+⋅+⋅⋅+⋅+⋅ gvvCvvBvDvM )(&      (Eq.2) 

  

 Where M is a 6x6 matrix than contains masses and moments of inertia. 

D is a matrix that contains the values of the linear drag coefficients. It is the reaction 

against the movement that the water does. B is a matrix that contains the values of the 



quadratic drag coefficients, that represents the reaction against the movement that the 

water does due to the viscosity. C is a matrix that contains the values of the centripetal 

terms due a mass being in movement.  g is a matrix with the values of the gravity and 

buoyancy terms, and τ is a vector that contains the force and torques that the 

propellers give. 

 

Once we have all these values, we will obtain the model of the system (Nessie under 

the water) that will represent exactly the real behaviour of it. 

 

The main task of this project is to find these values. For this, it is needed to do tests to 

get data, and through them, identify each value. It all is explained and done in the 

ANNEXES.  

 

 

4. DESCRIPTION OF THE IDENTIFICATION METHOD 

 

To find the parameters of the equation, I will use an identification method. As I said, 

these parameters are the result of physic laws and are difficult to calculate by following 

physical rules. 

An identification method consists of finding the values of the matrices by studying the 

system as a black box from which we know the input and output values at any time.  

If we know the behaviour of the robot, the outputs agreed with the inputs, we can also 

find a model that behaves the same way.  

There are several identification methods to use, but the one I will use is a method 

created by Antonio Tiano, from the University of Pavia (Italy), that has been used to 

find the dynamic equation of other robots with good results. 

This method uses the mathematic concept of the Least Square (LS) algorithm.  

 

To do the identification, the data we need to know from the robot is the velocity and the 

force of the thrusters at any time. With this two data, the method will give the values of 

the matrices from the model. 

 

To get these data we have to do some tests in the tank. These tests have to be 

uncoupled, that means that in each tests there is just one degree of freedom with 

movement. 

 

The identification method it is all explained in the ANNEX 2 



5. DESCRIPTION OF THE EXPERIMENTS 

 

Identification of the thrusters 

 

This test consists in to find the relation between the angular speed of the thrusters and 

the force they give. 

The methodology used is very simple. The robot has to be stopped in the water, which 

means without speed, to be able to neglect the drags and inertias. Then, with a 

dynamometer and a rope, we can measure the force that the robot gives when 

increasing the angular speed of the thrusters. 

 

This simple drawing illustrates how the test is.  

 

  

Fig.1 Thrusters identification    

 

These tests were done on the small tank of the Ocean Laboratory in Heriot Watt. 

The results of these tests can be found in the ANNEX 4. 

 

 

Identification of the parameters of the equation 

 

The objective of there tests is to find the values of the equation matrices. To use the 

identification algorithm it is needed to know the speed of the robot and the angular 

speed of the thrusters at any time. 

These tests need a big pool, since we want to reach the maximum speed of the 

thrusters and robot. 

A small program in C++ has been done to store these values while the robot is moving, 

since the robot uses a Linux operating system. It can be found in the ANNEX 11, but to 

be understood it is need to see the programs of the other members of the team that 

have to run at the same time. 

 

Pictures from the tests day in the pool can be found in ANNEX 12.    

 



6. DESCRIPTION OF THE RESULT 

 

Finally and after 5-month study, the mathematic equations of Nessie obtained in each 

uncoupled degree of freedom are the following: 

 

Surge forward: 

21 0179,00179,072497,33 UUuuuu ⋅+⋅=⋅⋅+⋅+⋅ &      (Eq.3)  

Surge backward: 

21 0016,00016,072497,33 UUuuuu ⋅+⋅=⋅⋅+⋅+⋅ &     (Eq.4)  

Heave up: 

43 0042,00042,044,388 UUww ⋅+⋅=⋅+⋅− &       (Eq.5) 

Heave down: 

43 018,0018,044,388 UUww ⋅+⋅=⋅+⋅− &       (Eq.6) 

Yaw right: 

21 225,00016,0225,00179,01707,723 UUrr ⋅⋅+⋅⋅=⋅+⋅− &    (Eq.7)  

Yaw left: 

21 225,00179,0225,00016,01707,723 UUrr ⋅⋅+⋅⋅=⋅+⋅− &    (Eq.8) 

 

Where the inputs U, are the square of the speed in revolutions per second (rps) on 

each thruster. 

 

 

8. CONCLUSIONS 

 

After applying the identification algorithm to the data and transform the parameters to 

the real constants of the equations, is easy to see that most of them are incoherent. 

The sum of the mass and the added mass cannot be negative, as it happens in 

equations 5, 6, 7 and 8. In addition, the linear speed constants in equations 7 and 8 

seam too big.  Nevertheless, I did not have time to compare to model with the real 

robot to assure that the equation is incoherent. 

If they are, one of the main reasons is that the sensors in Nessie aren’t very good and 

accurate. The INS has been used to measure the yaw, and through this, calculate the 

yaw speed. For surge and heave, I had to use the altimeter and integrate the data to 

find the speed, because with the INS there was a very big error between the real speed 

and the measured.  



The altimeter was also giving wrong measurements sometimes, and the data are 

distorted because of this. 

I could probably solve this problem by doing several tests and making an average, but 

unfortunately, a place to do the tests was not available since few days before having to 

present this project, so there was no time. 

 

If with better data, the results are still incoherent, then the problem is in the 

identification algorithm program. The method have been used before with satisfactory 

results, so it have to work for Nesse as well. 

 

Although I’m not happy with the results, I’m happy with all the knowledge I have leaned 

working on this project. I have helped the AUV team with the buoyancy, the suitable 

centre of gravity to turn about and do not lose the target location while moving. In 

addition, the identification of the thrusters has been useful to be able to turn about the 

centre of gravity. Moreover, I hope the new team will be able to find a good model of 

the new Heriot Watt AUV from the information of this project. 
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ANNEXES 



ANNEX.1 VECTORS NOTATION 

 

To make it easier to understand, I will use the known Notation for marine vehicles by 

the Society of Naval Architects and Marine Engineers (SNAME): 

 

 

 

 

 

 

 

 

 

U : Thrusters angular speed 

τ :  Thrusters torque 

F : Thrusters force 

Thruster 1: Left  Thruster 3: Front 

Thruster 2: Right Thruster 4: Back 

 

Where X, Y and Z axes of the robot coordinate frame are the ones shown in the picture 

bellow: 

 

 

 

 

Fig.2 Axes of the robot 

DOF Description Name 
Forces & 
Moments 

Linear & 
angular v. 

Position & Euler 
angles 

1 Motion in x-direction  Surge X u x 
2 Motion in y-direction Sway Y v y 
3 Motion in z-direction Heave Z w z 
4 Rotation about the x-axis Roll K p Ø 
5 Rotation about the y-axis Pitch M q θ 

6 Rotation about the z-axis Yaw N r ψ 

X 

Z 

Y 



ANNEX.2 THE IDENTIFICATION METHOD’S THEORY 

 

2.1 Introduction 

To use this method we need the equation of movement written for each single degree 

of freedom. The tests will be uncoupled, that means that when we study the surge, we 

will just have surge movement, and there will be many simplifications in each single 

equation. 

 

In the following equations, v means linear speed (for surge, heave and sway) and w 

angular speed (for roll, pitch and yaw). 

 

Surge: 

FvBvDvm =⋅+⋅+⋅ 2
&         (Eq.9) 

Sway: 

FvBvDvm =⋅+⋅+⋅ 2
&         (Eq10) 

Heave: 

FvBvDvm =⋅+⋅+⋅ 2
&                   (Eq.11) 

Roll: 

τηωωωωω =+⋅+⋅+⋅+⋅ )()(2
gCBDI &                 (Eq.12) 

Pitch: 

τηωωωωω =+⋅+⋅+⋅+⋅ )()(2
gCBDI &                 (Eq.13) 

Yaw: 

τωωωωω =⋅+⋅+⋅+⋅ )(2
CBDI &                  (Eq.14) 

 

I have just taken into account the gravity and buoyancy term only in the DOF where it 

affects. 

In addition, the centripetal terms in some cases are zero as well because there is no 

movement in the other degrees of freedom. 

 

As I said before, because of Nessie’s kind of movement, the only degrees of freedom 

that have to be studied are surge, heave and pitch. Therefore, let us study these tree 

ones. 

 

 

 



2.2 Identification of surge parameters 

I will describe here all the method for the surge. The other movements will be the same 

but with its characteristics. Let us write the equation (Eq.3) again: 

 

FvBvDvm =⋅+⋅+⋅ 2
&       (Eq.3) 

 

We can write it as: 

 

v
m

vB
v

m

D

m

F
v ⋅

⋅
−⋅−=&                 (Eq.15) 

 

Then simplify it as: 

 

vvvFv ⋅⋅−⋅−⋅= δβα&                 (Eq.16) 

Where: 

m

1
=α   

m

D
=β  

m

B
=δ              (Eq.17) (Eq.18) (Eq.19) 

 

Then we see that the acceleration is function of two variables, the velocity and the 

force, and it can be written as: 

 

ΘΦ= ))(),(( tFtvv&                  (Eq.20) 

    

Where: 

 Φ A matrix contains values that only depend on the state and control vectors. 

 Θ (α β γ δ)T A constant vector with the parameters that characterized the dynamic of 

the system. 

 

We can estimate the value of the Θ by minimizing the scalar cost of the J (Θ) function 

expressed as shown below: 

 

)()()(
1

)(
1

1

kkk

N

k

T
ttWt

N
J εε ⋅⋅=Θ −

=

∑                (Eq.21) 

)(1

ktW
−  A weight matrix that takes into account the fidelity of the measures 

)( ktε The estimation error 



Where the estimation error is the difference between the real velocity value and the 

estimated velocity value. 

 

)(~)()( kkk tvtvt −=ε                  (Eq.22) 

The interesting thing remains on the predicted error, because to predict the speed one-

step forward, we need to find a model of the movement.  

Then, minimizing the cost function, we will minimize the predicted error as well, and 

this will let us find the more accurate model of the movement. 

 

For the predicted speed, one-step forward we use the integral between now and one-

step backward of the Eq.20 as shown bellow: 

 

Θ⋅=Θ⋅











Φ=− ∫

−

− FdssFsvtvtv
k

k

t

t

kk

1

)).(),()()( 1              (Eq.23) 

   

Then the predicted velocity is given by the expression: 

 

Θ+= − Ftvtv kk )()(~
1                  (Eq.24) 

 

And we can rewrite the error as: 

 

  Θ−−= − Ftvtvt kkk )()()( 1ε                 (Eq.25) 

   

We can see that the only data we need to measure is time, velocity and force at every 

time instant. 

Once we have the expression of the prediction error, we can apply the LS algorithm to 

minimize the function cost. 

 

The cost function for N experiments is written in a matrix form as: 

 

)()()())()()(()( 111
NYNWNFNFNWNFN

TT ⋅⋅⋅⋅⋅=Θ −−−           (Eq.26) 

 

Where F will contains all the integrals, Y will contains all the rest ( )()( 1−− kk tvtv ), and 

W will contains all the weights according to the test values fidelity.  

 



2.3 Identification of heave parameters 

Let us do the same with the heave. This time the gravity and buoyancy terms have to 

be taken into account 

 

Let us rewrite the equation 9. 

 

FvBvDvm =⋅+⋅+⋅ 2
&       (Eq.9) 

 

We can simplify it as we did with the surge: 

 

  vvvFv ⋅⋅−⋅−⋅= δβα&                 (Eq.27) 

It is again the same equation as equation 10, so the identification method will be 

applied exactly as we did with surge. 

 

 

2.4 Identification of yaw parameters 

Now let us do the same with the equation for yaw. If we write the equation 14 again: 

 

τωωωωω =⋅+⋅+⋅+⋅ )(2
CBDI &               (Eq.14) 

 

And we simplify it: 

 

ωωδωβταω ⋅⋅−⋅−⋅=&                 (Eq.28) 

 

Where now the parameters are: 

 

I

1
=α   

I

CD )(ω
β

+
=  

I

B
=δ             (Eq.29) (Eq.30) (Eq.31) 

 

Applying the identification method the same way and taking into account the 

transformations, we will obtain the parameters for yaw. 



ANNEX.3 THE DYNAMIC EQUATION IN THE MATRIX FORM 

 

3.1 The entire equation 

After explaining all the physics, we know how the dynamic equation of Nessie is. 

 

( ) τη =+⋅+⋅⋅+⋅+⋅ gvvCvvBvDvM )(&  

 

Let us develop it for the six degrees of freedom and see what is inside each matrix. 
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We can see that the matrix M is the sum of two matrices. The first one contains the 

values of the masses and inertias of the robot, and the second one contains the values 

of the mass and inertia of the added mass. 

The added mass is the effect of the water that goes together with the robot while it is 

moving. It makes a half sphere of water above the area of the robot that is in the front 

face of the movement. 

 



The same happens with the C matrix. One of the matrices contains the centripetal 

terms due the masses and inertias of the robot, and the other contains the ones due 

the added masses. 

 

3.2 The simplified equation for Nessie 

Due his structure, Nessie only moves in surge, heave and yaw. So all the values from 

sway, roll and pitch can be simplified, and also the values that are multiplied by sway, 

roll and pitch velocities and accelerations.  

In the gravity and buoyancy matrix, we can simplify all the components that have sine 

of a roll or pitch angle.  

Nessie has neutral buoyancy, so the buoyancy terms can be also eliminated.  

 

Let us write the simplified equation. 
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It is much simple than before… 

 

3.3 The equation for each single degree of freedom 

Surge: 

2211)( UCUCuuXuXuXm TTBDm ⋅+⋅=⋅⋅+⋅+⋅− &               (Eq.32) 

Heave: 

4433)( UCUCwwZwZwZm TTBDm ⋅+⋅=⋅⋅+⋅+⋅− &               (Eq.33) 

Yaw: 

222111)( UrCUrCrrNrNrNI TTBDmz ⋅⋅+⋅⋅=⋅⋅+⋅+⋅− &               (Eq.34) 



ANNEX.4 IDENTIFICATION OF THE THRUSTERS 

 

4.1 Introduction 

For the identification method, we need to know the force that the thrusters give. Each 

thruster has an angular speed sensor. It is known that de relation between the square 

of the angular speed of the thuster and the force it gives is linear: 

 

2
UCF ⋅=                   (Eq.35) 

 

Finding the C constant of each thruster, we will be able to control the force that they 

give. These tests are done with dynamometers. We have to ensure that the vehicle 

don’t move to discard any drag coefficient. 

As we can see in the equation below, without acceleration and speed, and neglecting 

the buoyancy terms, the only forces we have are the ones from the thusters: 

 

  ( ) τη =+⋅+⋅⋅+⋅+⋅ gvvCvvBvDvM )(&                 (Eq.36) 

 

4.2 Identification results 

Identification of Thrusters 1 and 2       Identification of Thrusters 1 and 2  

forward:         backward: 

         

Fig.1 Square of the angular speed vs. N                     Fig.2 Square of angular speed vs. N 

         of force                                                                     of force 

         In blue, the data from the tests                    In blue, the data from the tests                        

         In red, the linear regression                                     In red, the linear regression 

 

CfT1= 0.0179                    CbT1: 0.0016 

CfT2= 0.0179         CbT2: 0.0016 

2

21 0.0179 UF forwardandT ⋅=        2

21 0.0016 UF backwardandTT ⋅=  

( U in  revolutions per second)        ( U in revolutions per second) 



Identification of Thrusters 3 and 4 up:     Identification of Thrusters 3 and 4 down: 

         

Fig.3 Square of the angular speed vs. N                     Fig.4 Square of angular speed vs. N 

         of force                                                                     of force 

         In blue, the data from the tests                    In blue, the data from the tests                        

         In red, the linear regression                                     In red, the linear regression 

 

CdT3=0.0042             CuT3=0.0180 

CdT4=0.0042         CuT4=0.0180 

2

43 0.0042 UF downandT ⋅=        2

43 0.0180 UF downandT ⋅=  

(U in revolutions per second)        (U in revolutions per second) 

 

To know the torques that the thrusters 1 and 2 do, we only have to multiply the force by 

the distance to the COG. 

cmry 5,221 =  cmry 5,222 =    

 

4.3 Table to turn the robot around the centre of gravity 

To turn around the COG, the force that the two thrusters give, have to be the same but 

opposed. 

 22 0.00160.0179 UU ⋅−=⋅   

 

Table of the speed on each thruster in rps 

U1 U2 theoric U2 

1 3,365939 3 

2 6,731878 7 

3 10,09782 10 

4 13,46376 13 

5 16,8297 17 

6 20,19563 20 

7 23,56157      No possible 

 

The one that turns backward limits the angular speed of the other motor. 

Full speed turning will be 6rps on the motor that turns forward and 20rps on the motor 

that turns backward.
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ANNEX.6 CALCULUS OF THE INERTIA IZ 

 

6.1 Theory 

 

Inertia of a cylinder:  

  








+=
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22
hR

MI x
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22
hR

MI y
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2

2
R

MI z

 

 

Inertia of a box: 

 
( )22

bhMI x +=
 

( )22 haMI y +=
 ( )22

baMI z +=  

 

Steiner’s theorem: 

2
dMIIo ⋅+=

 

 

 

6.2 Calculus of the inertia 

 

COMPONENT Weight (Kg) Form R h a b Iz dx Izo 

Propeller 1 1,9 cilinder 0,0564 0,18   0,006640956 -2,971 16,773228 

frame 7,9 box  0,01 0,5 0,32 2,78396 2,0294 35,31953 

MT 9,49 cilinder 0,083 0,755   0,467138923 0,0294 0,4753365 

BT 11,35 cilinder 0,056 0,83   0,660482983 -8,971 914,01577 

Propeller 2 1,64 cilinder 0,0515 0,18   0,005515423 45,029 3325,345 

Propeller 4 1,64 cilinder 0,0515 0,18   0,005515423 -78,97 10227,631 

Sonar 3,58 cilinder 0,055 0,18   0,012373375 61,529 13553,412 

Propeller 3 1,9 cilinder 0,0564 0,18   0,006640956 -2,971 16,773228 

Altimeter 1,1 cilinder 0,025 0,2   0,003838542 -26,97 800,15898 

webcam F 0,375 box  0,05 0,15 0,08 0,0108375 56,029 1177,2456 

Webcam R 0,375 box  0,05 0,15 0,08 0,0108375 -61,97 1440,1445 

Drop1 0,21 cilinder 0,0175 0,07   0,000101828 -53,97 611,6937 

Drop2 0,21 cilinder 0,0175 0,07   0,000101828 -53,97 611,6937 

 

 

2Kg/m 3,273068=ZI  

 

 



ANNEX.7 IDENTIFICATION OF THE PARAMETERS 

 

7.1 Identification of surge parameters 

-Taking into account the quadratic drag term: 

 

  

With the equations 17, 18 and 19 we can transform the parameters to the real values of 

the equation: 
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-Neglecting the quadratic drag term: 
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7.2 Identification of yaw parameters 

-Taking into account the quadratic drag term: 
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-Neglecting the quadratic drag terms 
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7.3 Identification of heave parameters 

-Taking into account the quadratic drag term: 

0.3006

-0.0018

0.0013

=

=

=

δ

β

α

 

 

2

2

/
230

/
38.1

766

srad

N
Z

srad

N
Z

m

Kg
Z

B

D

m

=

−=

=

 

-Neglecting the quadratic drag terms 
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ANNEX.8 THE RESULTS 

Since it moves at high speed in surge, I will consider the quadratic term in this degree 

of freedom. 

For yaw and heave, I will neglect it.    

 
Results of the identification: 
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The final matrix equation: 
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Where CT3=CT4=C forward or backward depending if the robot moves forward or 

backward. 

To turn right: CT1 � forward and CT2 � backward 

To turn left: CT1 � backward and CT2 � forward 

 

The final equations for each degree of freedom: 

 

Surge forward: 

21 0179,00179,072497,33 UUuuuu ⋅+⋅=⋅⋅+⋅+⋅ &                (Eq.36) 

Surge backward: 

21 0016,00016,072497,33 UUuuuu ⋅+⋅=⋅⋅+⋅+⋅ &               (Eq.37) 

Heave up: 

43 0042,00042,044,388 UUww ⋅+⋅=⋅+⋅− &                 (Eq.38) 

Heave down: 

43 018,0018,044,388 UUww ⋅+⋅=⋅+⋅− &                 (Eq.39) 

Yaw right: 

21 225,00016,0225,00179,01707,723 UUrr ⋅⋅+⋅⋅=⋅+⋅− &              (Eq.40) 

Yaw left: 

21 225,00179,0225,00016,01707,723 UUrr ⋅⋅+⋅⋅=⋅+⋅− &              (Eq.41) 

 

 

 

 

 

 

 

 

 

 

 



ANNEX.9 CONTROL SYSTEM 

 

9.1 Introduction 

 

The dynamic of Nessie inside the water is a nonlinear system. It means that the 

principle of superposition can’t be applied. The PID controllers are to control linear 

systems.   

Actually, it is studied that most linear systems are only linear in a limited operating 

range. Dynamic systems can normally be treated as linear systems at low speed. 

Therefore, we can find an equivalent linear system in place of the nonlinear for 

Nessie’s normal operating range to be able to calculate his control. For this, we have to 

see if the system operates around an equilibrium point. If it is, and the signals involved 

are small signals, then it is possible to approximate the nonlinear system by a linear 

system. 

  

9.2 Linearization of the nonlinear Nessie’s mathematic model 

 

The real equation of Nessie’s dynamic is differential, quadratic. To find the equivalent 

linear system is not an easy task. 

 

Let us assume that at low speed, the quadratic drag terms can be neglected, so I can 

use the simplified equations. 

 

 

9.3 Control for yaw 

 

9.3.1. Continuous control for yow theory 

We can control the yaw with a PID feedback control since we can get the yaw at any 

time from the INS. 

 

The feedback loop control will be something like the following, but with the 

corresponding Controller and Process Functions. 

 



The equation of the system for yaw degree of freedom and neglecting the quadratic 

terms was: 

 

222111)( UrCUrCrNrNI TTDmz ⋅⋅+⋅⋅=⋅+⋅− &     

 

To make it easier to understand let us write it like the following: 
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The Laplace transformation for this equation is: 
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The system or process transfer function P: 
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Then, calling the transfer function of the PID controler as C, the transfer function of the 

feedback loop is: 
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If we know witch behaviour we want our robot to have in front a consigned yaw position 

(H(s)), we can find the suitable controller with the direct method, where: 
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In annex 10 I have done a program with Matlab that returns the transfer function of the 

Controller by entering the Process transfer function and the desired transfer function of 

the loop. Where H have the following form: 
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And we can model it as we want by entering witch overshoot (Mp) and settling time (ts) 

we desire, where: 

 

   

  

 

Mp (overshoot) is the difference between the consign and the maxim value of the 

output 

ts (settling time) is the time that the system takes to get the consign value with a error 

of the 2%. 

 

9.3.2. Discrete control for yow theory 

When the system to control is a digital system, it is more efficient to use discrete PID 

controllers. 

Now the feedback loop will be as the following: 

 

The sampling time is 0.1 s 

The D/A used is a zero order hold 

 

ts 

Mp 



Using the same method as before, the equation of the controller D will be: 
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)(zP  Is the discrete transfer function of the process 

)(zF  Is the transfer function of the closed loop, and have to be chosen according to 

the behaviour we want it to have 

 

To have zero error in front a step input, F(z) can be chosen as: 
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9.4 Control for heave 

 

9.4.1 Control for heave theory 

The same theory as for yaw (9.3.1, 9.3.2) can be applied. 

 

 

9.5 Control for surge 

 

9.5 Control for surge theory 

There in no sensor to know the position in surge  

 

 

 

To control this movement we will do the following: 

 

1. We know the initial distance (d) between the robot and the target by the 

sonar. 

 

 It means � The integral of the velocity respect to time have to be d 



 

2. The initial velocity of the robot is zero. 

 

3. We want the robot to arrive to the target at zero velocity. 

 

4. If the robot moves at constant velocity, the graphic of the velocity versus time 

is like the following: 

 

     

   Image 1  

 

5. To move at a wanted velocity, we need to know witch force give to the 

thrusters, or what is the same, how many revolutions per second. 

 

6. The relation between the thrusters force and the velocity of the robot is not 

linear at all, but we can try to find an equivalent linear system for a limited 

operating range where the Force and the velocity have a linear dependency. 

 

   FCv ⋅=  

 

7. If the velocity that the robot moves is significantly low and constant, we can 

neglect the two ramps in figure 1. Integrating the equation and making it be 

equal to d, we will know how many time we have to apply F force to the 

thrusters to arrive to the target. 
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We will have to apply constant revolutions per second during t seconds 

 

 



  

ANNEX.10 PROGRAMS WITH MATLAB 

 

10.1 Program to find the thrusters constants 

load thrusters; 
 
Cf=regress(FfN',rps1q'); 
Cb=regress(FbN',rps2q'); 
Cu=regress(FuN',rps3q'); 
Cd=regress(FdN',rps1q'); 
 
x=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22] 
y1=Cf.*x; 
y2=Cb.*x; 
y3=Cu.*x; 
y4=Cd.*x; 
 
fig 
plot(rps1q,FfN); 
hold 
plot(x,y1); 
 
fig 
plot(rps2q,FbN); 
hold 
plot(x,y2); 
 
fig 
plot(rps3q,FuN); 
hold 
plot(x,y3); 
 
fig 
plot(rps1q,FdN); 
hold 
plot(x,y4); 

 

 

10.2 Program to read the data for surge 

function [time,y,u]=read_data; 
 
% position and time; 
 
load forward; 
 
surgedata=forward(:,11); 
T=length(surgedata); 
 
%filter for surge, median every 3 data 
 
R=fix(T/3); 
 
for p=1:R; 
     
    surgefilted(p)=(surgedata((3*p))+surgedata((3*p)-1)+surgedata((3*p)-2))/3; 
    p=p+1; 



end 
 
T1=length(surgefilted); 
t=[0:0.3:(T-1)/10]; 
 
% surge speed; 
 
 
k=2; 
 
for k=2:R; 
     
    surgerate(k)=(surgefilted(k)-surgefilted(k-1))/0.6; 
    k=k+1; 
end 
 
%force 
 
 
pRdata=(forward(:,1))/10;  %angular speed of right thuster 
pLdata=(forward(:,2)/10);  %angular speed of left thuster 
 
CR=0.0179  %constant of propeller right going forward 
CL=0.0179 %constant of propeller left going forward 
 
 
f=(2*CR*(pRdata.*pRdata)); %force of the 2 thusters 
 
%filter for force 
 
T=length(f); 
R=fix(T/3); 
 
for p=1:R; 
     
    forcefilted(p)=(f((3*p))+f((3*p)-1)+f((3*p)-2))/3; 
    p=p+1; 
end 

 

10.3 Program to find the controllers for yaw, surge and heave 

 

% DIRECT METHOD TO FIND THE PID CONTROLER 

function[C]=set_controler; 
%Desired behaviour 
 
ts=input('Settling time (ts)=>'); 
 
xi=0.7; 
wn=4/(ts*xi); 
num=[wn^2]; 
den=[1 2*wn*xi wn^2]; 
H=tf(num,den); 
denp=[10 23]; 
nump=[1]; 
P=tf(nump,denp); 
Cc=(1/P)*(H/(1-H)); 
 
C=minreal(Cc); 



 
ANNEX.11 PROGRAMS WITH C++ TO STORE DATA 

 

/**STORE DATA --->RECIEVES OCEANSHELL MESSAGES FROM INS AND AUTOPILOT  
            
*/ 
 
#include <math.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <iostream> 
#include <pthread.h> 
#include <fstream> 
 
 
// OceanLIB include 
#include <OceanLIB/Accessing/olibINIFile.h> 
#include <OceanLIB/Conversion/olibScreenCoordConverter.h> 
 
// OceanSHELL includes 
#include <OceanSHELL/oshGlobals.h> 
#include <OceanSHELL/oshMsg.h> 
#include <OceanSHELL/oshMsg_Generic.h> 
#include <OceanSHELL/oshMsgQ.h> 
 
 
// Messages includes 
 
#include "../MissionPlanning/Messages.h" 
//#include "../Navigation/INSMsg.h" 
 
using namespace std; 
 
int32 port;  //port for OceanSHELL messages 
 
// Motor encoders data 
float speedMotorRight; 
float speedMotorLeft; 
float speedMotorFront; 
float speedMotorBack; 
 
//INS Data 
float speedx=0.0; 
float speedy=0.0; 
float speedz=0.0; 
float speedroll=0.0; 
float speedpitch=0.0; 
float speedyaw=0.0; 
float altitude=0.0; 
float yaw=0.0; 
 
void *Input(void *parameter){ 
  
 oshMsgQ msgQ(port,port);   
  
   oshMsg_Generic receivedMsg;  
 DATAACQUISITIONMsg insMessage; 
 AutopilotMsg autopilot; 
  



 while(1) 
 {  
  cout<<"Waiting"<<endl;   
  msgQ.Recv(receivedMsg); 
   
  switch(receivedMsg.GetMsgID()) 
  { 
   case DATAACQUISITION_MSG: 
    insMessage <= receivedMsg; 
     
     
    speedx=insMessage.GetvelX();     
    speedy=insMessage.GetvelY(); 
    speedz=insMessage.GetvelZ(); 
    speedroll=insMessage.GetgyrX(); 
    speedpitch=insMessage.GetgyrY(); 
    speedyaw=insMessage.GetgyrZ();     
    yaw=insMessage.GetYawNow(); 
    altitude=insMessage.GetAltitudeNow(); 
    break; 
     
   case AUTOPILOT_MSG:  
    autopilot <= receivedMsg; 
       
    speedMotorRight=autopilot.GetSpeedRight();     
    speedMotorLeft=autopilot.GetSpeedLeft(); 
    speedMotorFront=autopilot.GetSpeedFront(); 
    speedMotorBack=autopilot.GetSpeedBack(); 
     
     
    break; 
     
     
   default:; 
        
             } 
 } 
} 
 
 
int main(int argc, char *argv[]) 
{ 
  
 pthread_t threaddata; 
  
 ofstream store; 
 char *returnvalue = NULL; 
 int error; 
 int finish=0; 
 int i=0; 
 int j=0; 
  
  
 if (argc != 2) 
 { 
  cout << "Use: ./StoreData <port>" << endl; 
  exit(1); 
 } 
   
 // Port number 



 port = atoi(argv[1]); 
 
 error = pthread_create (&threaddata, NULL,Input, NULL); /**MISSIONMANAGER IS 
WORKING WITH WORLDMODEL*/ 
 
 if (error != 0) 
 { 
  perror ("We can't create thread underwebcam"); 
  exit (-1); 
 } 
   
 oshMsgQ msgQ(port,port);   
  
 store.open("Data.txt"); 
  store << "rps MR"  << "\t"; 
  store << "rps ML"  << "\t"; 
  store << "rps MF"  << "\t"; 
  store << "rps MB"  << "\t"; 
  store << "speedx"  << "\t"; 
  store << "speedy"  << "\t"; 
  store << "speedz"  << "\t"; 
  store << "spRoll" << "\t"; 
  store << "spPitch"  << "\t"; 
  store << "spYaw"  << "\t"; 
  store << "alti"  << "\t"; 
  store << "yaw"  << "\t"; 
  store<<endl;  
   
  
 while(i<100000){       /**--------------------------------------MISSION---------------------------------*/ 
  usleep(100000); 
    
  store << speedMotorRight << "\t"; 
  store << speedMotorLeft << "\t"; 
  store << speedMotorFront << "\t"; 
  store << speedMotorBack << "\t";  
  store << speedx << "\t"; 
  store<< speedy << "\t"; 
  store<< speedz << "\t"; 
  store<< speedroll << "\t"; 
  store<<speedpitch << "\t"; 
  store<<speedyaw << "\t"; 
  store<<altitude << "\t"; 
  store<< yaw << "\t"; 
  store<<endl; 
   
  cout<<"Row stored"<<endl; 
   
  i++;  
  
 } 
  
 store.close(); 
  
 return EXIT_SUCCESS; 
} 
 

 
 
  



  
ANNEX.12 IMAGES FROM THE TESTS DAY 

 

 

Image of the pool where we where testing the robot and doing the first missions 

 

 

 
 
Image of the team running a mission in Nessie. 
 

 


