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The woods are lovely, dark and deep,
Would love to go miles before I sleep,
Want to go miles before I sleep.
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Abstract

Prostate segmentation in trans rectal ultrasound (TRUS) and magnetic resonance

images (MRI) facilitates volume estimation, multi-modal image registration, surgical

planing and image guided prostate biopsies. The objective of this thesis is to develop

shape and region prior deformable models for accurate, robust and computationally

efficient prostate segmentation in TRUS and MRI images. Primary contribution

of this thesis is in adopting a probabilistic learning approach to achieve soft clas-

sification of the prostate for automatic initialization and evolution of a shape and

region prior deformable models for prostate segmentation in TRUS images. Two

deformable models are developed for the purpose. An explicit shape and region

prior deformable model is derived from principal component analysis (PCA) of the

contour landmarks obtained from the training images and PCA of the probability

distribution inside the prostate region. Moreover, an implicit deformable model is

derived from PCA of the signed distance representation of the labeled training data

and curve evolution is guided by energy minimization framework of Mumford-Shah

(MS) functional. Region based energy is determined from region based statistics of

the posterior probabilities. Graph cut energy minimization framework is adopted

for prostate segmentation in MRI. Posterior probabilities obtained in a supervised

learning schema and from a probabilistic segmentation of the prostate using an at-

las are fused in logarithmic domain to reduce segmentation error. Finally a graph

cut energy minimization in the stochastic framework achieves prostate segmenta-

tion in MRI. Statistically significant improvement in segmentation accuracies are

achieved compared to some of the works in literature. Stochastic representation of

the prostate region and use of the probabilities in optimization significantly improve

segmentation accuracies.
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Resum executiu

La segmentació de la pròstata en imatges d’ecografia transrectal (TRUS) i en imat-

ges de ressonància magnètica (RM) facilita l’estimació del volum d’aquesta glàndula,

el registre d’imatges entre ambdues modalitats, aix́ı com la planificació quirrgica de

biòpsies guiades per imatge. L’objectiu d’aquesta tesi, doncs, és el desenvolupa-

ment d’eines automàtiques per a una segmentació de la pròstata de manera precisa,

robusta i computacionalment eficient en ambdues modalitats d’imatges.

La contribució principal d’aquest tesi és la segmentació de les imatges ecogràfiques

de la pròstata. El mètode proposat es basa en dos passos ben diferenciats. Primer, a

través d’un aprenentatge probabiĺıstic inicial, s’aconsegueix una primera localització

aproximada de la pròstata i que serveix per, en un segon pas, inicialitzar i permetre

evolucionar de manera automàtica dos models deformables independents, guiats a

partir de la informació de forma i regió de la pròstata estimada en el primer pas. El

primer model deformable s’obté expĺıcitament a partir de l’anàlisi de components

principals (PCA) d’un conjunt de punts del contorn, que permet modelar la forma

de la pròstata, i de l’anàlisi PCA de la distribució de probabilitat dins de la regió

prostàtica, que permet modelar la textura d’aquesta. Un tercer anàlisi PCA permet

correlacionar ambdues distribucions. D’altra banda, un segon model deformable es

deriva impĺıcitament de l’anàlisi PCA de la funció distància obtinguda amb el con-

junt de dades d’entrenament etiquetades. La consegüent evolució d’aquesta corba

s’obté mitjanant la minimització del funcional Mumford-Shah, el qual es basa en un

conjunt d’estad́ıstics regionals obtinguts a partir de l’estimació de les probabilitats

a posteriori de les regions internes i externes de la pròstata.

La segona contribució d’aquesta tesi és la segmentació automàtica de la pròstata

en imatges 3D de RM. De manera similar a les imatges ecogràfiques, el sistema
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combina les probabilitats d’un aprenentatge supervisat amb una segmentació inicial,

en aquest cas, obtinguda a partir d’un atles probabiĺıstic creat amb els volums

d’entrenament. La segmentació final s’obté a través d’una minimització basada en

grafs.

El resultat final és, doncs, el desenvolupament d’eines que permeten una seg-

mentació acurada i robusta de la pròstata tant en imatges ecogràfiques com de

ressonància magnètica, millorant de forma substancial i significant la precisió dels

mètodes desenvolupats fins a l’actualitat.



Résumé

Le cancer de la prostate est considéré comme un problème majeur de santé publique

dans le monde occidental et il est le deuxième cancer le plus fréquent chez les hommes

après le cancer du poumon. Les statistiques de Cancer Research UK montrent que

plus de 338,000 personnes sont annuellement diagnostiquées avec le cancer de la

prostate en Europe et 913,000 dans le monde entier [1]. Les taux de diagnostic les

plus élevés sont observés aux Etats-Unis, en Australie, en Nouvelle-Zélande et en

Europe, tandis que les taux les plus bas sont observés en Asie du sud et en Asie

centrale [1]. Le cancer de la prostate représente environ 7,1% de tous les cancers

diagnostiqués et est responsable de 3,4% des décès liés à un cancer. Environ 10.000

décès chaque année sont associés au cancer de la prostate et près d’un homme sur 6

est susceptible d’être diagnostiqué avec le cancer de la prostate au cours de sa vie.

Actuellement, les outils de dépistage tels l’antigène spécifique de la prostate

(PSA en anglais) détectent la maladie dans 25-30% des cas [123]. La procédure

de biopsie, généralement réalisée à l’aide d’une sonde d’échographie transrectale

(ETR), présente des erreurs d’échantillonnage dues au fait que la localisation du

cancer est inconnue au moment de la biopsie d’une part, et, d’autre part, part le

fait que les tissus cancéreux ne sont souvent pas visibles dans les images obtenues

par échographie transrectale (images ETR). Lors d’une biopsie avec un guidage par

l’image limité, un échantillonnage systématique permet jusqu’à 20 échantillons de

tissus de la prostate. Néanmoins, les cancers agressifs qui souvent nécessitent un

traitement immédiat peuvent ne pas être détectés, ce qui conduit à des biopsies

répétées. En outre, l’agressivité ou non du cancer ne peut pas être déterminé avec

précision, ce qui provoque l’anxiété du patient, un sur-traitement et une augmenta-

tion des coûts.
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Figure 1: Contraste des tissus de la prostate en échographie transrectale et l’IRM.
Un meilleur contraste des tissus mous dans l’image IRM permet la visualisation
d’une tumeur qui n’est pas visible dans l’image ETR.

L’utilisation d’images ETR pour la biopsie est maintenant une norme suivie par

les urologues pour le dépistage du cancer de la prostate. Toutefois, l’imagerie par

résonance magnétique (IRM) offre un meilleur contraste des tissus mous par rapport

aux images ETR. Ainsi, certaines tumeurs malignes visibles par l’IRM ne le sont

pas avec les images ETR comme illustré par l’image de la figure 1.

En fusionnant les deux modalités IRM et échographie transrectale, il est possible

de développer des outils performants de diagnostic. C’est dans ce contexte que

s’inscrit le projet PROSCAN qui est une collaboration entre le centre de recherche

VICOROB (Computer Vision and Robotics Group) de l’université de Gérone et le

Girona Magnetic Resonance Center du CHU de Gérone.

L’objectif principal du projet PROSCAN est le développement d’un système

de recalage d’images multimodales pour faciliter une meilleure visualisation des

tumeurs malignes dans les biopsies de la prostate guidées par images ETR. Le cadre
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Figure 2: Illustration de l’objectif du projet PROSCAN

de travail du projet PROSCAN est illustré par la figure 2.

L’objectif principal du projet est le recalage d’images IRM de la prostate ac-

quises avant la biopsie avec des images ETR en temps-réel pendant l’échographie

transrectale afin d’offrir une meilleure visualisation des tissus malins.

Un recalage basé sur les contours de la prostate réduit de manière significative le

temps de calcul et améliore précision. Par conséquent, la segmentation de la prostate

dans les images IRM et ETR est une étape préalable nécessaire à la fusion des deux

modalités. L’objectif principal de cette thèse est de développer des méthodes de

segmentation précises et rapides de la prostate dans les images IRM ET ETR afin

de faciliter la fusion d’images multimodales dans le cadre du projet PROSCAN.
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Nous avons divisé l’objectif principal de cette thèse en un ensemble de sous-

objectifs en fonction des critères d’exigence dans chaque modalité comme indiqué

par le projet PROSCAN. Ainsi, pour les images ETR une méthode de segmentation

rapide, automatique, précise et robuste d’images 2D est nécessaire pour seg-

menter la prostate dans des séquences vidéo. De même, pour l’IRM une méthode

précise et robuste doit être développée pour segmenter la prostate dans un volume

3D.

Nous avons commencé notre travail par une étude approfondie des méthodes de

segmentation dans les deux modalités échographie transrectale et IRM. Les princi-

pales similitudes et les différences entre les diverses méthodes, leurs forces et faib-

lesses ont été analysées. Les méthodes de segmentation de la prostate peuvent être

regroupées dans quatre catégories différentes, selon les informations utilisées pour

guider la segmentation :

• Méthodes basées sur le contour et la forme : Ces méthodes utilisent

l’information donnée par les contours e de la prostate pour la segmentation.

Néanmoins, l’information de contour étant peu fiable dans les images ETR

ainsi que dans la base et l’apex de la prostate dans les images IRM, il est

nécessaire d’utiliser l’information a priori sur la forme de la prostate pour

obtenir de meilleurs résultats.

• Méthodes basées sur les régions : Ces méthodes utilisent l’intensité locale

ou des statistiques de l’intensité (moyenne et écart-type) pour atteindre la seg-

mentation. Les méthodes de cette catégorie se distinguent principalement par

la méthode d’optimisation utilisée. Par exemple, les méthodes basées sur un at-

las utilisent un modèle de la prostate obtenu à partir d’images d’apprentissage

manuellement segmentées et tentent de minimiser la différence d’intensité en-

tre le modèle et une nouvelle à segmenter. En revanche, dans les méthodes

de type level-sets les statistiques (moyenne et écart-type) de l’intensité de la

prostate dans les images d’apprentissage sont utilisées pour maximiser la dis-

tance entre la prostate et les régions de fond de l’image. Un modèle déformable

implicite est ensuite propager de manière à minimiser son énergie dans la zone

de convergence des deux régions (prostate et fond).
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• Méthodes de classification supervisée et nonsupervisée : Ces méthodes

utilisent différentes caractéristiques (intensité ou réponses de filtres) pour di-

viser et/ou classifier l’image en deux régions : la prostate et le fond. L’objectif

de ces méthodes est de regrouper des objets semblables sur la base d’un vecteur

de caractéristiques. Contrairement aux méthodes basées sur les régions et la

minimisation d’une fonction d’énergie, un seuillage appliqué à une certaine

mesure de proximité ou de similarité est utilisé pour regrouper les objets sem-

blables (ici des pixels ou voxels).

• Les méthodes hybrides : Ces méthodes combinent les informations de con-

tour, forme, région et quelque fois le résultat d’une étape de classification su-

pervisée ou nonsupervisée pour segmenter la prostate. Elles sont plus robustes

aux artefacts d’imagerie et au bruit.

Segmentation de la prostate dans les images ETR

L’analyse des méthodes de segmentation montre que les approches qui combinent

les informations de forme et de contour donnent les meilleurs résultats. Aussi,

nous proposons d’utiliser le modèle AAM (Actice Appearance Model) qui a prouvé

son efficacité pour la segmentation de la prostate dans les image d’échographie

transrectale [95, 30]. Le modèle AAM permet de combiner les informations de

forme et d’apparence en une unique fonction de coût à optimiser. De plus, l’étape

d’optimisation par descente de gradient faite hors-ligne réduit considérablement les

temps de calcul.

Les images obtenues par échographie transrectale possèdent généralement une

faible qualité ainsi qu’un faible contraste. Pour améliorer la robustesse de notre

méthode de segmentation, nous introduisons des caractéristiques de texture extraits

avec les ondelettes de Haar et des filtres en quadrature. Les résultats obtenus mon-

trent que cette information de texture accroit la précision de la segmentation. Par

ailleurs, l’augmentation du temps de calcul due à l’utilisation des filtres est compensé

par l’augmentation de la précision.

Pour une initialisation automatique, nous avons développé un modèle proba-

biliste basé sur une classification supervisée. Un classifieur est construit à partir

d’un ensemble d’images d’apprentissage manuellement segmentées. Ce classifieur

est utilisé pour obtenir une pré-segmentation de la prostate dans l’image ETR dans
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Figure 3: Exemple de segmentation de la prostate dans une image ETR. De haut
en bas: résultat avec le modèle AAM tradiotionel et résultat avec notre méthode.
Le vrai contour de la prostate est représenté par la courbe verte.

laquelle on attribue à chaque pixel une probabilité d’appartenance à la prostate. Un

nouveau modèle AAM est ensuite construit dans lequel les intensités sont remplacées

par les probabilités obtenues à l’étape précédente. Les résultats obtenus montrent

que cette approche permet une initialisation automatique tout en améliorant la

précision de la segmentation.

Enfin, pour obtenir un modèle plus robuste nous avons utilisé la fonctionnelle

de Mumford-Shah qui permet de définir une fonction de coût à optimiser com-

prenant à la fois les informations d’apparence, de forme et de topologie locale de la

prostate. Les nombreux résultats qualitatifs et quantitatifs présentés dans la suite

de ce manuscrit montrent que notre méthode donne de meilleurs résultats comparé

à diverses autres approches. La figure 3 montre des exemples de résultats obtenus

avec le modèle AAM traditionnel [30] et notre méthode.

Segmentation de la prostate dans les images IRM

Le but du projet PROSCAN étant la fusion d’images multimodales de la prostate,

il faut pouvoir segmenter correctement la prostate dans les images IRM. La segmen-

tation 3D de la prostate dans les images IRM est rendu difficile par les variations
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inter-patients de la forme, la taille et des déformations de la prostate. Cependant,

il a été montré dans différents travaux que les méthodes de segmentation basée sur

un atlas obtiennent de bons résultats lorsqu’ils sont validés avec un grand nombre

de données [76, 94]. Plus récemment, [83] a utilisé une approche par classification

supervisée pour la segmentation de la prostate dans les images CT (imagerie par

tomographie axiale calculée par ordinateur). Motivés par ces travaux, nous pro-

posons de combiner les deux approches (atlas et classification supervisée) pour la

segmentation 3D de la prostate dans des volumes IRM. Plus précisément, les prob-

abilités obtenues avec une approche de classification supervisée sont combinées avec

celles obtenues avec un atlas probabiliste pour fournir une pré-segmentation de la

prostate. Cette pré-segmentation est ensuite affiner par une optimisation avec la

méthode Graph-Cuts [18].

Un diagramme décrivant la méthode est présenté dans la figure 4. Les résultats

obtenus montrent que cette approche est robuste par rapport aux variations de forme

et de taille de la prostate.

La figure 5 montre des exemples de résultats obtenus avec notre méthode de

segmentation.
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Publications liées à la segmentation de la prostate en IRM:

• [IAPR ICPR 2012] S. Ghose, J. Mitra, A. Oliver, R. Mart́ı, X. Lladó, J.
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Chapter 1

Introduction

The field of medical image analysis could be broadly categorized into medical image

segmentation, registration, motion tracking of an organ of interest and anatomical

and physiological parameter estimation. The motivation of this thesis is in devel-

oping an accurate, robust, computationally efficient prior knowledge based prostate

segmentation algorithm in trans rectal ultrasound (TRUS) and magnetic resonance

imaging (MRI). In this thesis we detail the development of a powerful schema of

using posterior probabilities for building shape and region priors deformable mod-

els. In this introductory chapter we highlight the motivation behind development

of prostate segmentation algorithm, provide the organizational layout of this thesis

and highlight the core contribution of this thesis.

1.1 Prostate cancer

Prostate cancer is considered a major health problem in the western world and it

is the second most common cancer among the male pouplation after lung cancer.

Statistics from Cancer Research UK show that more than 338, 000 people are diag-

nosed with prostate cancer every year in Europe and 913, 000 worldwide [1]. The

highest rate of prostate cancer cases are diagnosed in USA, Australia, New Zealand,

Western and Northern Europe, while the lowest rates are observed in South and

Central Asia [1]. Prostate cancer accounts for approximately 7.1% of all cancers

diagnosed and 3.4% of all cancers deaths. Approximately 10,000 deaths every year

1
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Table 1.1: Advantages and disadvantages of the prostate imaging techniques.
Advantages Disadvantages

TRUS

Useful in determining prostate vol-
ume

Low contrast images

No radiation involved Difficult to detect lesions
Inexpensive Speckle
Portable Shadow artifacts
Useful for real time imaging Cancer staging is difficult

MRI

Useful in determining prostate vol-
ume

Expensive

No radiation involved Not portable
High contrast for soft-tissues Difficult to implement real time

imaging
Allows lesion detection
Enables functional imaging of
prostate
Staging of cancer possible

CT
Useful in determining spread of
prostate cancer to bone tissues

Expensive

Useful in determining effectiveness
of prostate brachytherapy

Radiation involved

Not portable
Poor soft-tissue contrast
Difficult to detect lesions
Cancer staging is difficult
Difficult to implement real time
imaging

are associated with prostate cancer and about 1 in every 6 men is expected to be

diagnosed with prostate cancer during their lifetime.

Primarily TRUS, MRI and computed tomography (CT) imaging are used in

the diagnosis, treatment, and follow-up of prostate cancer. The use of a particular

modality depends on the clinical aim. The main features associated with the different

imaging modalities are summarized in Table 1.1.

Prostate segmentation from TRUS and MRI plays a key role in different stages

of the clinical decision making process. For instance, prostate volume, that can be

directly determined from prostate gland segmentation, aids in diagnosis of benign

prostate hyperplasia. The prostate boundary is utilized in different treatments of

prostate diseases, like prostate brachytherapy, high intensity focused ultrasonogra-
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(a) (b)

Figure 1.1: In TRUS imaging, the axial view of the prostate is shown as a hypoechoic
mass surrounded by a hyperechoic halo in (a). For a better understanding of the
prostate region, the contour is outlined in green in (b).

phy, in cryotherapy and in transurethral microwave therapy. In addition, prostate

gland segmentation also facilitates multimodal image fusion for tumor localization

in biopsy, minimally invasive ablative and radiation therapy. However, manual seg-

mentation of the prostate is a tedious task, prone to inter and intra observer variabil-

ity. Therefore, automatic or semi-automatic computer aided prostate segmentation

methods have been developed in the last decade. The choice of a prostate segmen-

tation method depends on imaging modality, computational time requirement and

degree of segmentation accuracy that is necessary to achieve. Low contrast, speckle,

and imaging artifacts like the shadow region significantly challenges the development

of computer aided prostate segmentation methods. Similarly, magnetic bias and de-

formation of the prostate due to insertion of the endorectal probe adversely affect

accuracies of prostate segmentation methods in MRI. In the next three sections we

explore the three modalities in more detail.

1.1.1 TRUS

TRUS is primarily used in determining prostate volume and in prostate biopsy due

to the fact that it is inexpensive, portable and real-time in nature [124]. Note from

Figure 1.1 that the prostate gland can be often observed as a hypoechoic mass

surrounded by a hyperechoic halo [33]. In general, TRUS images of the prostate are

characterized by speckle, shadow artifacts and low contrast [154] as observed in
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Figure 1.2: Prostate segmentation challenges , A=Low Contrast, B=Micro Calcifi-
cation, C=Intensity heterogeneity inside prostate, D=Speckle.

(a) (b) (c)

(d) (e) (f)

Figure 1.3: Inter patient variation in prostate shape and size of six patients.

Figure 1.2. Added to these challenges, the prostate shape and size may vary signifi-

cantly. For instance, Figure 1.3 shows how prostate shape and size may significantly

vary across different datasets.
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(a) Toshiba (b) Siemens

Figure 1.4: Contrast variation depending on machine manufacturer.

(a) (b) (c)

Figure 1.5: Contrast varies depending on acquisition parameters for the same ma-
chine.

Moreover, depending on machine manufacturer and acquisition parameters im-

age contrast may vary. Figure 1.4 shows how contrast varies with different machine

manufacturer, while Figure 1.5 shows the change in contrast depending on acquisi-

tion parameters for the same machine.

1.1.2 MRI

MRI is primarily used in diagnostic and treatment planning for prostate diseases [91,

93], since it provides good soft tissue contrast and enables a better lesion detection

and staging for prostate cancer. Figure 1.6 shows an axial view of the middle slice

of a prostate in MRI. In addition, dynamic contrast enhanced MRI (DCE-MRI)

aids in identifying malignant tissues from the diffusion rate of the contrast agent
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Figure 1.6: In MRI imaging, the better soft tissue contrast enables lesion detection.
Image (a) shows a prostate in MRI. For a better understanding of the prostate
region, the contour is outlined in green in (b).

[86, 105, 110] and magnetic resonance spectroscopy aids in identifying malignant

tissues from the relative concentration of different metabolites (like citrate, choline

and creatine) [63].

Multi-parametric MRI of the suspicious cases can reduce the number of unneces-

sary biopsies by differentiating between normal and cancer cases [140]. Improvement

in detection rate from 20 to 60% is observed with patient specific biopsy planing

with the aid of multi-parametric MRI information. However prostate segmentation

in MRI is necessary to aid personalized treatment planing which itself is a chal-

lenging task due to significant inter-patient difference in prostate shape, size and

volume, as illustrated in Figure 1.7.

Prostate shapes may vary depending on presence of endorectal coil. For example

in Fig. 1.7(a) and 1.7(b) no endorectal coil is present. However in Fig. 1.7(c)

an endorectal coil deforms the prostate. Furthermore endorectal coil introduced to

enhance contrast around the prostate also introduces intensity heterogeneities of the

prostate tissue as illustrated in Figure 1.8.

Soft tissue contrast varies within a prostate. In the central region the soft tissue

contrast is better and it is relatively easy to segment the prostate. However the soft

tissue contrast falls in the base and the apex region of the prostate making these

regions difficult to segment, as is shown in Figure 1.9.

Automatic detection of prostate cancer from multi-parametric MRI with high

specificity is difficult. Often radiologists batch read multi-parametric prostate MRIs
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(a) (b) (c)

(d) (e) (f)

Figure 1.7: Inter patient variation in prostate shape, size and volume. (a), (b),
and (c) shows inter-patient variation in the central region of the prostate. (d),(e),
and (f) show inter-patient volume variation. The volumes are created from manual
segmentations.

(a) Surface coil (b) Endorectal coil

Figure 1.8: Contrast and shape variation around prostate depending on placement
of the magnetic coil.
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Figure 1.9: In MRI, the soft tissue contrast varies depending on the region of the
prostate. Image in the center shows prostate in different region and image in the
right shows corresponding segmentations.

to detect suspicious lesions. However it is difficult to achieve a high specificity and

sensitivity in such batch processing framework. Furthermore, the success to treat

aggressive cancers depends on early detection and treatment. Hence it is necessary

to detect the smaller tumors of size 2-5 mm [67] which could be better detected

with automatic processing of multi-parametric MRI. The success of such a system

depends on automatic organ detection, segmentation and classification of suspicious

tissues.

1.1.3 CT

CT is generally used in prostate brachytherapy to determine the placement of the

radioactive seeds and also to confirm the seed location post-procedure [63]. The

high attenuation of the radioactive seed produces high intensity in CT images as

could be visualized in Figure 1.10. Note, that distinguishing external and internal

anatomy of prostate from CT images is difficult due to poor soft-tissue contrast.

Prostate segmentation in CT is a challenging task due to poor soft tissue reso-

lution as observed in Figure 1.10. Moreover the presence of bowel gas may deform

prostate in un-natural manner.
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Figure 1.10: In CT imaging, the soft tissue contrast is poor. However the modality
is useful in detecting radioactive seeds as observed in this figure.

1.2 Objectives of the thesis

Currently prostate specific antigen (PSA) screening facilitates prostate cancer de-

tection in 25-30% cases [123] with low specificity. This results in false detection in

60-70% cases resulting in higher percentage of undesirable prostate biopsies. Fur-

thermore TRUS guided prostate biopsies suffer from sampling error as they are

performed without the knowledge of cancer location in the prostate. Approximately

30% of these biopsies miss prostate cancer and often targeted re-biopsies results in

detection of cancer in 40% cases [69].

In recent years MR guided biopsies have improved the detection rate from 20 to

60% after negative TRUS guided biopsy. However MR guided biopsy is expensive

and time consuming. Fusion of the TRUS and MR images during TRUS guided

biopsies could improve positive detection rate in TRUS guided biopsies [13]. However

such tools to fuse the two imaging modalities suffers from computational inefficiency

and inacuracy [138].

The Computer Vision and Robotics group (VICOROB) of the University of

Girona has been working in prostate image analysis since 2008 in two main di-
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Tumor 

Figure 1.11: Prostate in TRUS and MRI. Better soft tissue contrast in MRI aids in
visualization of a tumor that is not visible in TRUS images.

rections: the study and development of algorithms for prostate segmentation and

in implementation of multimodal image registration techniques. In cooperation

with Girona Magnetic Resonance Center of Girona and Hospital Universitari Josep

Trueta of Girona the Computer Vision and Robotics group developed the PROSCAN

project that is discussed in the next section.

1.2.1 The PROSCAN project

TRUS guided prostate biopsies is now a standard used by urologists. However,

MRI provides better soft tissue contrast compared to TRUS images. Hence often a

malignant tissue that is visible in MRI would not be visibly distinguished in TRUS

images, as illustrated in Fig. 1.11.

The primary objective of this project was to develop a multimodal image regis-

tration system to facilitate better visualization and localization of malignant tissues

in TRUS guided prostate biopsies. The framework of the PROSCAN project is
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Figure 1.12: Illustration of the objective of the PROSCAN project

illustrated in Fig. 1.12. It could be observed, that the objective of the project is

multimodal registration of a pre-acquired prostate MRI with TRUS images in near

real time during TRUS guided prostate biopsy to facilitate better visualization of

the malignant tissues. Currently, very few solutions to achieve the fusion between

US and MRI exist. Current commercial solutions, which may be described as still

in a prototype phase of development, include the Eigen ”Artemis” device and the

Medcom ”BiopSee” system. All existing solutions require high degree of user inter-

vention and are not computationally efficient.

Relative concentration of different metabolites like citrate, choline and creatine

are important parameters in determining malignant tissues [63]. The secondary ob-

jective of the PROSCAN project was to determine suspicious tissues from magnetic
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resonance spectroscopy data and project the information into TRUS videos during

TRUS guided prostate biopsies to improve on true positive rate for malignant tissue

sampling.

Multimodal registration performed on prostate contours significantly reduces

computational time and improves registration accuracies [147]. Hence, prostate seg-

mentation in MRI and TRUS images is a necessary prerequisite step for the fusion

of the two modalities.

The primary objective of this thesis is to develop accurate and

computational efficient prostate segmentation methods in TRUS

and MRI to facilitate multimodal image fusion in PROSCAN

project.

The multimodal image fusion algorithm developed for the PROSCAN project

depends on minimizing the algebraic error between the binary masks of the fixed

TRUS and the moving MR images when both are acted upon by a set of non-

linear polynomial functions. The non-linear diffeomorphic transformation of the

MR images are based on thin-plate splines. The point correspondences required for

the thin-plate splines are established by a statistical measure. In addition to the set

of non-linear equations formed by thin-plate splines, the regularized bending energy

and the correspondence localization error are included in the system of equations to

obtain meaningful realistic transformations of anatomical targets. The details of the

proposed method can be further studied in [98]. Since the method relies completely

on segmented prostate images starting from establishment of point correspondences

around the prostate boundaries and the minimization of algebraic error of the mask

images, automatic segmentation of prostate is an important step in the PROSCAN

project.

We split the primary goal of this thesis into a set of sub-objectives depend-

ing upon the segmentation requirement criteria in each modality as outlined by the

PROSCAN project. Hence for the TRUS images a fast, automatic, accurate and

robust 2D prostate segmentation method was necessary to segment the prostate

in video sequences. Similarly for MRI an accurate and robust 3D prostate seg-

mentation method had to be developed.



1.3 Thesis summary and organization 13

1.3 Thesis summary and organization

In this Section we summarize the content of each chapter of the thesis.

Chapter 2, A Survey of Prostate Segmentation Methods in TRUS and

MRI

In this chapter we present an extensive survey of the prostate segmentation methods

in TRUS and MRI found in the literature. The objective of this chapter is to study

the key similarities and differences among the different methods, highlighting their

strengths and weaknesses. We define a new taxonomy for prostate segmentation

strategies that allows first to group the algorithms and then to point out the main

advantages and drawbacks of each strategy.

Chapter 3, Shape and Appearance Prior Models for Prostate Segmenta-

tion in TRUS in 2D TRUS Images

Statistical shape and appearance model of Cootes et al. [30] efficiently incorporates

shape and intensity priors in deformable model. In this chapter we explore a novel

approach of the use of image features in traditional statistical shape and appearance

model of Cootes et al. [30]. We detail the extension that we have made to [30] to

facilitate automatic initialization and evolution of the model. Moreover, an implicit

model of shape and appearance priors is adopted for accurate prostate segmentation

in TRUS images.

Chapter 4, Graph Cut Optimization in a Stochastic Framework for Prostate

Segmentation in MRI

In this chapter we explore the graph cut energy minimization framework in a stochas-

tic domain to segment prostate. Briefly, a supervised learning framework is devel-

oped to achieve a soft classification of the prostate. Graph cut energy minimization

in the probabilistic domain provides segmentation of the prostate in MRI.
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Chapter 5, Conclusions

The thesis is concluded by summarizing the major contributions of the thesis and by

suggesting possible future research directions associated with this work. Moreover,

in this last chapter, a list of the publications related to this thesis is included.



Chapter 2

A Survey of Prostate

Segmentation Methods in TRUS

and MRI

This chapter reviews the methods developed for prostate gland segmentation in TRUS

and MR images. The objective of this chapter is to study the key similarities and

differences among the different methods, highlighting their strengths and weaknesses.

We define a new taxonomy for prostate segmentation strategies that allows first to

group the algorithms and then to point out the main advantages and drawbacks of

each strategy. A discussion on choosing the most appropriate segmentation strategy

for a given imaging modality is provided and a quantitative comparison of the results

as reported in literature is also presented.

2.1 Introduction

Computer aided prostate segmentation in TRUS and MRI is a challenging task.

Each of the modalities have a different challenge associated with them. For in-

stance low contrast, speckle and imaging artifacts like the shadow region hinder

accurate prostate segmentation in TRUS images. Similarly, magnetic bias around

the endorectal coil and deformation of the prostate gland due to insertion of the en-

dorectal coil adversely affect prostate segmentation accuracies in MRI as observed

15
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in previous chapter. Prostate segmentation in TRUS and MRI aids in prostate

volume estimation, multimodal image registration, minimally invasive ablative and

radiation therapy.

Three related surveys on prostate segmentation were published by Zhu et al. [157]

in 2006, Noble et al. [102] in 2006, and Shao et al. [124] in 2003. Zhu et al. carried

out a survey on computerized techniques developed for prostate cancer detection

and staging, including not only prostate segmentation but also prostate staging,

computerized visualization and simulation of prostate biopsy, volume estimation

and registration between US and MR modalities. Noble et al. presented a survey

on US segmentation methods developed for different organs (i.e. heart, breast,

prostate) and for the detection of vascular diseases. Finally, Shao et al. presented a

survey on prostate segmentation methodologies developed for TRUS images.

This chapter presents an up-to-date summary of the techniques developed for

prostate segmentation in TRUS and MRI. We classify and review the different ap-

proaches found in the literature in order to show similarities and differences and

further to extract advantages and drawbacks from the reviewed algorithms. To

have an overall qualitative estimation of the performance of the different methods,

we have grouped the methods according to their theoretical approach and have pre-

sented their evaluation metrics and degree of validation. Note that a quantitative

comparison of different prostate segmentation methodologies is difficult in absence

of public data sets, publicly available software, and standardized evaluation metrics.

The outline of this chapter is as follows. The state-of-the-art computer-aided

prostate segmentation procedures are classified and presented in Section 2.2. In

Section 2.3, validation and quantitative evaluation of the prostate segmentation in

TRUS, and MR images are provided. Discussion on selection of an efficient prostate

segmentation technique based on imaging modality is presented in Section 2.4.

2.2 Prostate segmentation methods

In this work, we classify the prostate segmentation methods according to the the-

oretical computational approach taken to solve the problem. We believe that such

a classification successfully points out the key algorithmic similarities and dissim-

ilarities, highlighting their strengths and weaknesses at the same time. We glob-
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ally classify the methods into different strategies: contour and shape based, region

based, supervised and un-supervised classification methods based, and hybrid meth-

ods. We further refine these groups to produce a more local classification schema.

For instance, contour and shape based methods are further classified into edge,

probabilistic filters and deformable models. The proposed taxonomy is shown in

Figure 2.1. Note that level sets methods appear under contour and shape based and

region based methods. This is due to the fact that level sets can be guided by either

boundary or region information.

We have grouped the prostate segmentation methods in four different groups,

according to the information used to guide the segmentation. Broadly,

• Contour and shape based methods: These methods use prostate bound-

ary/edge information to segment the prostate. Since often edge information

is unreliable in TRUS and in the base and the apex region of the MR images,

prior shape information is incorporated to provide better results.

• Region based methods: These methods use local intensity or statistics like

mean and standard deviation in an energy minimization framework to achieve

segmentation. The methods in this category primarily varies depending on

the energy minimization framework. For example in atlas based methods a

model of the prostate is created from manually segmented training images

and intensity difference between the model and a new un-segmented image

is minimized. In contrast, in region based level sets prior mean and standard

deviation information of the prostate region are used to maximize the distance

between prostate and background regions. An implicitly defined deformable

model propagates depending on region based statistical moments whose energy

is minimized at the zone of convergence of the two regions.

• Supervised and un-supervised classification methods: These methods

use features like intensity or higher dimensional features like filter responses to

cluster and/or classify the image into prostate and background regions. The

objective of such methods is to group similar objects together based on the

feature vector. A thresholding scheme is used based on some proximity or

distance measure to group similar objects together.
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Figure 2.1: Our proposed taxonomy of prostate segmentation.

• Hybrid methods: The objective of the hybrid methods is to combine in-

formation from contour, shape, region and/or supervised or un-supervised

classification information to segment the prostate.

We have outlined the advantages and disadvantages of the reviewed prostate seg-

mentation approaches in Table 2.1.

In the following subsections, the reviewed methods are described according to

the presented taxonomy. Moreover, for each category, the approaches are grouped

and described according to the imaging modalities: TRUS and MRI.

2.2.1 Contour and shape based segmentation

Contour and shape based methods exploit contour features and shape information to

segment the prostate. These methods can be categorized into edge based methods,

probabilistic filters and deformable model segmentation techniques. Deformable

model based techniques are further classified into active contour models, deformable

meshes, active shape models, level sets and curve based segmentation. The following

subsections discuss individually each of these categories.
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Table 2.1: Advantages and disadvantages of the reviewed prostate segmentation
approaches.

Approaches References Advantages Disadvantages

C
o
n
to
u
r
an

d
S
h
a
p
e

Edge [106] Easy to extract Edge information is unre-
liable and often broken

Probabilistic filters [5], [120] Robust against noise
along boundary

Difficult to initialize and
to extend to 3D

D
ef
o
rm

a
b
le

M
o
d
el
s

ACM [77], [80],
[38], [148]

Easy to implement, pro-
duces smooth contours

Depends on reliable edge
information, good initial-
ization required, large-
scale deformations pro-
duce spurious corners

Mesh [54] Shape information is pre-
served

Reliable edge information
is often necessary, rigid
shape representation, slow
in speed

ASM [125],
[15], [65]

Shape representation and
variation in Gaussian
space is defined

Inaccurate in large-scale
shape variations, exten-
sion to 3D is difficult, need
of training

Contour
lev-
elset

[72] Contour implicitly de-
fined, easy extension to
3D

Depends on reliable edge
information, slow in speed

Curve
fit-
ting

[68], [58],
[11], [90]

Easy to implement, fast Rigid shape structure, re-
liable edge information is
necessary

R
eg
io
n

Atlas [76], [40] Automatic, robust to con-
trast differences, incorpo-
rate prior shape and inten-
sity information

Building atlas is not triv-
ial and prone to registra-
tion errors, slow in speed
of segmentation

Graph partitioning [159] Efficient optimization, re-
gion based information
could be incorporated

Incorporating shape pri-
ors is difficult, manual in-
teraction often necessary

Region level set [43] Region based information
more reliable than edge,
implicit contour

Intensity heterogeneity
produces fragmented
regions, no prior shape
information, slow in speed

P
R Clustering [115] Prior training not re-

quired, automatic
No prior shape informa-
tion can be introduced

Classification [148] Robust against noise, au-
tomatic

No prior shape informa-
tion, a training step is nec-
essary

H
y
b
ri
d Combining methods [154],

[33], [76],
[135],
[50], [76],
[133],
[134]

More robust to imaging
artifacts and noise

Choice of combining in-
formation from different
sources is complicated, of-
ten the methods are op-
timized for prostate seg-
mentation and less generic
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2.2.1.1 Edge based segmentation

Extracting edges in an image using gradient filters like Prewitt, Robert, Sobel, Shen

and Castan and Canny is a popular practice in image processing. However, in

the presence of noise gradient filters often detect false edges and also the detected

edges are often broken. Although computationally expensive edge linking algorithms

have to be designed to produce connected edges, in most cases it is necessary to

combine edge based algorithms with intensity based and texture based information

for accurate segmentation [108].

TRUS

Prostate segmentation based on edge information seems to be particularly difficult

in TRUS images. Traditional edge detection filters fail to obtain accurate edges due

to the low contrast, speckle and other imaging artifacts like shadow regions. To

overcome these problems, Liu et al. [87] propose to use a radial bass relief repre-

sentation of the prostate, which consists in superimposing the original image with

a zoomed negative of the same. Kwoh et al. [79] used harmonics from the Fourier

transform to reduce spurious edges of this representation. Other approaches aim to

reduce the speckle from the original image. For instance, Aarnink et al. [4] used local

standard deviation to identify homogeneous and heterogeneous regions in the image

in a multi-resolution framework, and this information was considered for detecting

the prostate boundary with more reliability. In contrast, Pathak et al. [106] reduced

speckle by applying a stick filter based on the non-zero correlation value of speckle

over large distances. The intensity value of the central pixel was replaced by the

average of the intensity values in the horizontal, vertical and diagonal directions of a

given size. The resulting image was further smoothed using an anisotropic diffusion

filter. Some basic prior knowledge of the prostate, such as shape and echo pattern,

is used to detect the most probable edges describing the prostate. Finally, patient-

specific anatomic information is integrated during manual linking of the detected

edges to segment the prostate.

MRI

The use of typical edge detector operators in MR images can produce many false

edges due to the high soft tissue contrast. Hence, Zwiggelaar et al. [160] used

first and second order Lindeberg directional derivatives [84], in a polar coordinate
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system to identify the edges. An inverse transform of the longest curve selected

after non maximal suppression of disconnected curves in the vertical direction was

used to obtain the prostate boundary. On the other hand, Samiee et al. [121] used

prior information of the prostate shape to refine the prostate boundary. Average

gradient values obtained from a moving mask (guided by prior shape information)

were used to trace out the prostate boundary. In a similar way, Flores-Tapia et

al. [48] used a priori shape information of the prostate to trace out the boundary by

the movement of a small mask on a feature space constructed from the product of

the detail coefficients of the Haar wavelets in a multi-resolution framework.

2.2.1.2 Probabilistic filtering

Probabilistic filters like the Kalman filter [143], the probabilistic data association

filter (PDAF) [114] and particle filters [39] have been successfully used to segment

images. These methods model the boundary of an organ as a probabilistic trajectory

of a moving object where the motion is governed by a dynamic model subject to

a particular uncertainty. Segmentation algorithms based on probabilistic filters are

fast as no optimization framework is necessary [5]. However, these methods may

be sensitive to the initialization and the extension to 3D segmentation is compli-

cated. Hence, to the best of our knowledge no method has been developed for 3D

segmentation of the prostate in MRI.

TRUS

Abolmaesumi et al. [5] used PDAF to segment the prostate in TRUS images. The

stick filter [106] was used to reduce speckle and enhance the contrast. The authors

argued that the boundary of the prostate was given by a trajectory of an object

whose motion was governed by a model from a finite set of known models at any

given radius. The models differed in uncertainty levels and structures, and switched

between the models depending on the Markov transitional probability [82]. The

authors assumed that the acceleration could be modeled by Gaussian noise and the

model produced a noisy version of the actual position of the particle. Each trajectory

was associated with a Kalman filter and the output was combined with an interactive

multiple model and PDAF to estimate the boundary location. On the other hand, as

the prostate in TRUS images is characterized by a hypoechoic mass surrounded by

hyperechoic perimeter [33], Sahba et al. [120] used median filtering followed by top
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hat and bottom hat transforms to effectively separate bright areas from dark regions

trapping the characteristic feature. Binary thresholding followed by morphological

filtering produced a smooth contour of the boundary. Subsequently, a Kalman

filtering followed by a fuzzy inference produced the final prostate contour.

2.2.1.3 Deformable model based segmentation

Deformable model segmentation techniques are influenced by theories from geom-

etry, physics and mathematical optimization. Geometry imposes constraints on

the model shape, physical theories guide the evolution of the shape in space, and

optimization theory guides the model to fit the available data [12]. Deformable

models are often associated with internal and external energies. External energies

propagate the deformable model towards the object boundary and internal energies

preserve smoothness of the contours during deformation. Internal and external en-

ergies associated with a deformable model are combined and included in an energy

minimization framework to segment anatomical structures by warping to the edges

with minimum deformation away from their mean shape. The methods proposed in

a deformable model framework may be broadly classified into active contour models,

deformable mesh, active shape models, level sets and curve fitting.

2.2.1.3.1 Active contour models The active contour model (ACM) or snake

was initially developed by Kass et al. [74]. On initialization close to an edge, the

active contour model evolves following the direction of the gradient in progressive

deformation and stops at the edge. However, different external energies like balloon

force [27], distance potential force [7] and gradient vector flow [144] have been pro-

posed to improve the capture range of active contour.

TRUS

Considering low contrast in TRUS images, localization of true prostate edge to

produce external energy is a real challenge. Knoll et al. [77] used maxima of a

multi-scale dyadic wavelet to determine prostate edges. Balloon force was used as the

external force to deform a snake towards the maxima of the dyadic wavelet transform

to segment the prostate in a multi-resolution framework. The form restricted contour
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deformation and its initialization by template matching are performed in a coarse to

fine segmentation process based on a multiscale image edge representation containing

the important edges of the image at various scales. To improve on the internal force

of the ACM, Ladak et al. [80] used cubic interpolation between four points selected

by the user to produce a discrete dynamic contour (DDC) [88]. Ding et al. [37]

used a cardinal spline to construct the initial contour of the prostate from three or

more manually selected points located in the prostate boundary. The final contour

produced in one slice was used to initialize the neighboring slices. To improve on

the capture range of the gradient force, Jendoubi et al. [70] used gradient vector

flow [144] computed from the gradient map obtained using Sobel and Laplacian

of Gaussian as external force to drive active contour towards the boundary of the

prostate. Zaim et al. [149] used difference of Gaussian followed by non maximal

suppression to detect dot patterns that were coherent with prostate tissue texture.

An active contour constructed from manual delineations of prostate with dot pattern

and gradient as external energy was used to segment the prostate.

2.2.1.3.2 Deformable mesh Broadly, deformable meshes could be categorized

into shape constrained deformable mesh or parametric deformable mesh. The meth-

ods included in the first category usually start dividing an initial manual segmenta-

tion in triangular and tetrahedral facets. Subsequently, similar to an ACM frame-

work, the mesh deforms under the influence of internal and external forces to produce

the desired segmentation. The objective of internal forces is to maintain a smooth

surface while an external force drives the model towards the boundary of the or-

gan. Often, the principal curvature of the surface is used as internal energy and

the gradient of the image is one of the most popular choices for external energy.

However, gradient is usually combined with texture to improve the segmentation

results. On the other hand, in the parametric deformable model, the deformable

mesh is constructed on the basis of a three dimensional geometrical figure like a

sphere, ellipsoid or a cube that has a close resemblance with the organ. Geometrical

parameters are used for internal energy computation. Either gradient or texture or

both are used as external forces to deform the mesh.

TRUS

To maintain the prostate shape, Ghanei et al. [54] used a shape constrained de-
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formable mesh in a multi-resolution framework to achieve three dimensional seg-

mentation of the prostate. Principal curvature of a surface from Todd and McLeod’s

method [131] was used as the internal force. The external force was computed from

the expansion and the restoration model proposed by Rao and Ben-Arie [112]. A

Gaussian noise model was assumed, while an edge was considered as a step function.

An impulse response function was generated and applied to the volumetric data to

generate the gradient. The gradient obtained in the process was used as the external

force for mesh propagation for segmenting the prostate.

2.2.1.3.3 Active shape model In absence of prior shape information, the final

segmentation output of deformable models often vary widely from the shape of the

anatomical structure. Cootes et al. [31] proposed the active shape model (ASM)

that worked in the deformable model framework maintaining the principal modes of

shape variations of the anatomical structures under study. Principal modes of shape

variations are identified by principal component analysis (PCA) of the point distri-

bution models (PDM) [31] aligned to a common reference frame with generalized

Procrustes analysis. Shape space is assumed to be Gaussian and is represented with

a mean shape added to weighted principal modes of variations identified from PCA.

With the initialization of the shape model, each landmark is searched within local

vicinity to reach a better position with respect to the edges with a minimum dis-

placement constraint that maintained the shape. Once all landmarks were displaced,

scaling, rotation and translation parameters are chosen that minimizes the distance

between the deformed contour and the shape model. Prior shape information in-

corporated in an active model makes it robust to noise and artifacts and produces

improved segmentation results. In order to consistently set the corresponding land-

marks automatically, the minimum descriptor length and Hill’s algorithm [64] are

proposed. The different methods primarily differed in the optimization framework

and the feature space used for modeling the deformation.

TRUS

Shen et al. [125] used rotational invariant Gabor features computed with respect

to the TRUS probe to characterize the prostate boundaries in multiple scales and

multiple orientations. The Gabor features are further reconstructed to be invariant

to the rotation of the ultrasound probe and incorporated in the prostate model as
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image attributes for guiding the deformable segmentation. The real and imaginary

parts of Gabor features were used for smoothing and edge detection, respectively. A

hierarchical deformation strategy is then employed, in which the model adaptively

focuses on the similarity of different Gabor features at different deformation stages

using a multiresolution technique from coarse to finer features, to achieve segmen-

tation. Similarly, Betrouni et al. [15] enhanced the prostate edge and reduced noise

using a priori knowledge of the noise in TRUS images. An ASM was then used to

produce the segmentation of the prostate. Hodge et al. [65] used the mean of manual

segmentation from three experts to produce the ground truth value for prostate in

TRUS images. An ASM was constructed from manually delineated contours after

the reduction of noise using a median filter. The authors proposed to modify the

PDM of Cootes to generate all plausible shapes by dividing the prostate mid gland

images into three regions and creating three plausible prostate shapes for each.

MRI

Cootes et al. [31] proposed prostate segmentation as one of the applications of their

generic ASM model in 2D. Zhu et al. [158] proposed a hybrid of two and three di-

mensional ASM to segment the prostate in MR data sets. A three dimensional ASM

was built that represented the shape variance of the prostate. In each iteration, the

three dimensional ASM was updated by the final search result of two dimensional

segmentation. The authors claimed that, their hybrid ASM had a superior per-

formance in sparse three dimensional data sets as compared to 3D ASM, since 3D

ASM built from sparse data was inefficient in detecting all possible modes of shape

variations.

2.2.1.3.4 Edge based level sets The level sets framework introduced by Osher

et al. [103] is a popular, powerful and efficient tool for medical image segmentation.

This framework was developed to study curve propagation in higher dimensions.

The level set is allowed to expand starting from a seed point in a direction normal

to the curve surface that produces the segmented contour, with a speed inversely

proportional to the intensity gradient. The evolution finally stops where the intensity
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difference is highest in a local neighborhood. Hence, the propagation of the curve in

a level set framework may help in finding an object boundary, and allows efficient

curve splitting and merging based on topological changes.

TRUS

Considering intensity heterogeneity of the prostate gland, it is difficult to segment

prostate with traditional level set initialized on gray-scale images. Hence, Kachouie

et al. [72] used Gaussian filtering followed by morphological filtering to classify

the mid gland image into prostate and non prostate regions. An elliptical level set

automatically initialized inside the prostate region was used to segment the prostate

using first and second order moments of a Gaussian probability density function. The

authors then used modified local binary patterns (LBP) to extract texture features

of the prostate gland in TRUS images [71]. Gradient magnitude information of the

modified LBP map was used as the external force to drive the elliptical level set to

convergence, thereby segmenting the prostate.

2.2.1.3.5 Curve fitting Parametric curves like splines, ellipses and Bézier curves

are often used to segment the prostate due to a close resemblance between the central

gland of the prostate and an elliptical curve. Curve parameters are used as inter-

nal force and gradient as external force to deform the curve towards the prostate

boundary.

TRUS

Hu et al. [68] used an ellipsoid, initialized from manual delineations of the limits

of the axes, to produce 3D prostate segmentation. Ellipsoid warping using thin

plate splines transformation was used to map the user selected six control points

to the end of the semi major axis of the ellipsoid to ensure a better fitting. The

deformation of the ellipsoid was influenced by the internal and external forces to

produce the segmentation. In a similar way, Ding et al. [38] used a deformable

super ellipse to just obtain an initial estimate of the prostate contour. Subsequently,

the initial parameters of the super ellipse and gradient information of the image

were jointly optimized to produce the final segmentation. To reduce propagation

errors, a continuity constraint based on an autoregressive model was imposed on the

initialization of the contour in new slices. Badiei et al. [11] also used an elliptical

curve to segment the prostate. The ellipse was fitted through six user defined points.
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The deformation of the prostate was modeled with a sine function in the angular

direction and with a Gaussian function in the radial direction. The warping function

was built using these two functions to create an elliptical shape for the prostate.

Finally, segmentation of the prostate was achieved by ellipse fitting to the prostate

boundary obtained by interacting multiple modes PDAF [5] and reverse warping. In

contrast to these works, Saroul et al. [122] used a tapered super ellipse to segment

the prostate. The prostate gland was divided into eight octants and the intensities of

each octant were modeled using a Rayleigh distribution. The tapered super ellipse

was combined with the probability density functions of the intensities of the prostate

and non prostate region in an energy optimization framework to segment the prostate

region. Mahdavi et al. [90] used a similar tapered ellipsoid to segment the prostate.

The authors used untapering and warping of the image to make the shape of the

prostate elliptical. Probe center as well as the bottom, center, middle right, and

bottom right of the prostate gland were selected by the user. The image was then

transformed to polar coordinates with the center of the probe as the coordinate

center. This aided in untapering and warping of the image. After initial fitting, a

deformation model was used to get the final fitting of the prostate boundary traced

by interacting multiple modes PDAF [5]. The obtained ellipse was used to initialize

other slices of the ellipsoid. The process continued for all the slices to obtain a

segmented prostate in 3D.

2.2.2 Region based segmentation

Predominant intensity distributions of the prostate region in different imaging modal-

ities have been exploited by researchers to develop region based segmentation algo-

rithms. Region based segmentation methods are further categorized into atlas, graph

partitioning and level set methods.

2.2.2.1 Atlas

An atlas is created from a set of manual segmentations of an anatomical structure

registered to a common coordinate frame. The atlas is then used as a reference

to segment images of a new patient. Therefore, in atlas based segmentation, the

segmentation problem is treated as a registration problem, since the segmentation is
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based on finding an one-to-one transformation mapping a pre-segmented atlas image

to the new target image. Atlas guided segmentation is well suited for segmentation

of structures that are stable over a large population, like the human brain [22].

MRI

Klein et al. [76] followed a multi-atlas approach to segment the prostate. Affine

registration and subsequently a non rigid registration using cubic B-splines [118]

in a multi-resolution framework was used to register the training volumes to the

test volumes. Corresponding transformation was applied to the label images of the

training dataset. In the next step the most similar atlas scans were selected based

on the measure of similarity computed from normalized mutual information. To

combine these atlas scans to a single segmentation, majority voting and the STAPLE

algorithm are used to produce the final segmentation. Recently, Dowling et al. [40]

improved on the results obtained by [76] by introducing a pre-processing step of bias

field correction, histogram equalization and anisotrpic diffusion smoothing. Dowling

et al. then used rigid, affine and diffeomorphic demons registration to generate

multiple labels of the test image. The most similar labels were identified and fused

to generate the final segmentation. Langerak et al. [81] proposed a new schema

for fusion of the labels in a multi atlas segmentation framework. They proposed to

combine segmentation result of all the labels to produce the target label. Each of

the labeled images of each of the atlas was compared to the target label. Labels

below a certain threshold were discarded and the target label was re-estimated with

the selected labels. The process continues in an iterative manner to provide the final

estimated segmentation label.

2.2.2.2 Graph partition

In graph based segmentation methods pixels or group of pixels or voxels are consid-

ered as nodes while edges (gradients) between pixels are often considered as costs.

The graph is then partitioned by minimizing a cost function and closely related

pixels are grouped together. Different graph partitioning algorithms like minimum

spanning tree, minimum cut, and normalized cuts may be used for such purpose [20].

TRUS

Zouqi et al. [159] built a graph partition scheme to segment the prostate. The
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graph was built with nodes and edges. Pixels were the nodes while horizontal edges

that connected these nodes represented edge discontinuity penalties. User defined

pixels from the object and the background were used to build two special nodes:

the source and the sink terminal. The max flow algorithm [19] gradually increased

the flow sent from the source to the sink along the edges in the graph given their

costs. Upon termination, the maximum flow saturated the graph. The saturated

edges corresponded to the minimum cost cut giving an optimal segmentation. The

initial contour obtained after graph cut segmentation was further refined in a fuzzy

inference framework that determined the membership of a pixel based on the region

based statistics.

2.2.2.3 Region based level sets

In contrast with the traditional boundary based level sets, Chan and Vese [23] used

region based statistics in their energy minimization criteria to propagate the level

set and segment the image. The method obtained superior results in the absence of

strong edges and in presence of white noise since the stopping criteria was dependent

on region based statistics.

TRUS

To produce a uniform region for the prostate, Fan et al. [43] set the value of a cubical

voxel to 0 if the difference between the minimum and the maximum intensity values

in the voxel was below 2. The value was set to 1 if the difference was greater than

2 but less than a threshold. This fast discriminative approach was used to extract

the prostate region and used in a region based level set framework to segment the

prostate in three dimensions.

2.2.3 Supervised and un-supervised classification based al-

gorithms

In pattern recognition (PR) a feature could be defined as a measurable quantity

that could be used to distinguish two or more regions. More than one feature

could be used to differentiate regions and an array of these features is known as

a feature vector. The vector space associated with feature vectors is known as
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feature space. Supervised and un-supervised classification based techniques aim at

obtaining a partition of the feature space into a set of labels for different regions.

Primarily classifier and/or clustering based techniques are used for the purpose.

Classifiers use a set of training data with labeled objects as priori information to

build a predictor to assign a label to future un-labeled observations. In contrast,

in clustering methods a set of feature vectors are given and the goal is to identify

groups or clusters of similar objects on the basis of the feature vector associated

with each. Proximity measures are used to group data into clusters of similar types.

2.2.3.1 Classifier based segmentation

In classifiers based segmentation the prostate is seen as a prediction or learning

problem. Each object in a training set is associated with a response variable (class

label) and a feature vector. The training set is used to build a predictor that can

assign class label to a object on the basis of the observed feature vector.

TRUS

Intensity heterogeneity, unreliable texture features and imaging artifacts pose chal-

lenges in the feature space to partition. Zaim [148] used texture features, spatial

information and gray-level values in a self organizing map neural network to seg-

ment the prostate. In a more recent work [150] the authors used entropy and energy

of symmetric, orthonormal, and second order wavelet coefficients [53] of overlap-

ping windows in a support vector machine (SVM) classifier. Mohammed et al. [99]

used spatial and frequency domain information from multi-resolution Gabor filters

and prior knowledge of prostate location in TRUS images to identify the prostate.

Parametric and non parametric estimation of power spectrum density of the Fourier

transform along with ring and wedge filter [111] of the region of interest (ROI) were

used as feature vectors to classify TRUS images into prostate and non prostate

region using non linear SVM.

2.2.3.2 Clustering based segmentation

The goal of clustering based methods is to determine intrinsic grouping in a set of

un-labeled data based on some distance measures. Each data is associated with a

feature vector and the task is to identify groups or clusters of similar objects on the
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basis of the set of feature vectors. The number of groups is assumed to be known and

implicitly one must select the relevant feature, distance measure and the algorithm

to be used.

TRUS

Richard et al. [115] used the mean shift algorithm [29] in texture space to deter-

mine the mean and covariance matrix for each cluster. A probabilistic label was

assigned to each pixel determining the membership of a pixel with respect to every

cluster. Finally, a compatibility coefficient and pixel spatial information was used

for probabilistic relaxation and refinement of the prostate region.

2.2.4 Hybrid segmentation

Combining a priori boundary, shape, region and feature information of the prostate

gland may improve segmentation accuracy. This section discusses the methods that

have combined two or more of the methods presented in previous sections.

TRUS

As discussed a mid gland image of the prostate in axial slices in TRUS images is

often characterized by a hypoechoic mass surrounded by a hyperechoic halo. In

order to capture this feature, Liu et al. [85] proposed to use radial search from

the center of the prostate to determine the edge points of the prostate. The key

boundary point was identified from the largest variation in gray value in each line.

An average shape model constructed from manually segmented contours was used to

refine the key points. A similar schema was adopted by Yan et al [147]. In this case,

contrast variations in normal vector profiles perpendicular to the PDM were used

to automatically determine salient points and produce prostate boundaries. Salient

points were determined by discarding points that fall in shadow regions. Prior

shape information of the prostate shape aided determining the missing points in

shadow regions in TRUS images. Optimal search performed through vector profiles

perpendicular to the salient points was used to determine prostate boundary with a

discrete deformable model in a multi-resolution, energy minimization framework.

Modeling shape and texture features and using them to segment a new image

has been used by many researchers. The schema primarily varied in the approach

adopted for the creation of the shape and the texture model. For instance, Zhan
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et al. [151] proposed to model the texture space by classifying into prostate and

non prostate regions the texture features captured by rotational invariant Gabor

filter by means of a SVM. This classified feature space was subsequently used as

an external force in a deformable model framework to segment the prostate. In

their consequent work [152], the authors proposed to speed-up the process by using

Zernike moments [55] to detect edges in low and middle resolutions and maintaining

the texture classification using Gabor features and SVM. In a different way [153],

the authors also proposed to reduce the number of support vectors by introducing a

penalty term in the objective function of the SVM, which penalizes and rejects the

outliers. Finally, Zhan et al. [154] proposed to combine texture and edge information

to improve the segmentation accuracy. Multi-resolution rotational invariant Gabor

features of the prostate and non-prostate regions were used to train a Gaussian kernel

SVM system to classify textures of prostate regions. In the deformable segmentation

procedure, SVM were used to label voxels around the surface of deformable model as

prostate or non prostate tissues. Subsequently, the surface of the deformable model is

driven to the boundary by the deformation force of labeled prostate tissues. The step

of tissue labeling and the step of label-based surface deformation were dependent

on each other, the process was carried out iteratively until convergence.

A similar schema was adopted by Diaz and Castaneda [35]. Asymmetric stick and

anisotropic filters were firstly applied to reduce speckle in TRUS images. A DDC was

produced using cubic interpolation of four points initialized by the user. The DDC

deformed under the influence of internal force, gradient magnitude and damping

forces to produce the contour of the prostate. Features such as intensity mean,

variance, output of back projection filter, and stick filter were used to construct the

feature vectors. The pixels were classified into prostate and non prostate regions

using SVM. Subsequently, DDC was automatically initialized from the prostate

boundary and used to obtain the final contour of the prostate. Cośıo et al. [33]

used position and gray level value of a prostate in TRUS image in a three Gaussian

mixture model to cluster prostate, non prostate tissues and to identify halo around

the prostate in TRUS images. A Bayes classifier was used to identify prostate

region. After pixel classification the ASM is initialized with the binary image using

a global optimization method. The optimization problem consists of finding the

optimum combination of four pose and two shape parameters, which correspond to
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an approximate prostate boundary in the binary image. A multi population genetic

algorithm with four pose and ten shape parameters was used to optimize an ASM

in a multi-resolution framework to segment the prostate.

Another common hybrid approach is to use both shape and intensity distribution

to segment the prostate. Medina et al. [95] used an AAM framework [30] to model

the shape and the texture space of the prostate. In this framework the Gaussian

model of the shape and intensity created from PCA analysis is combined to produce a

combined mean model. The prostate was segmented exploiting the prior knowledge

of the nature of the optimization space in minimizing the difference between the

target image and the mean model. Gong et al. [58] proposed to use a deformable

super ellipse to produce a shape model of the prostate. Using the deformable super

ellipse as the prior shape model for the prostate, the end goal was to find the optimal

parameter vector that best describes the prostate in a given unsegmented image. The

initial parameters were used in maximum a posteriori (MAP) framework to obtain

the optimized parameters for the ellipse.

Later, Tutar et al. [137] used the average of three manually delineated prostate

contours to construct a three dimensional mesh with spherical harmonics to repre-

sent the average model of the prostate. With 8 harmonics, a feature vector of 192

elements was reduced to 20 using PCA. Users initialize the algorithm by outlin-

ing the prostate boundaries in mid gland axial and sagittal images. Therefore, the

problem of finding the shape parameter vector that would segment the prostate in

the spatial domain was reduced to find the optimal shape parameters in parametric

domain that maximized the posterior probability density of a cost function, which

measures the degree of agreement between the model and the prostate edge in the

image. Yang et al. [142] proposed to use min/max flow [92] to smooth the contours

of the 3D model of the prostate created from 2D manual delineation. The primary

modes of shape variations were identified with PCA and morphological filters were

used to extract region based information of the prostate gland. The shape model

and region based information were subsequently combined in a Bayesian framework

to produce an energy function, which was minimized in a level set framework.

Garnier et al. [51] used 8 user defined points to initialize a 3D mesh of the

prostate. Two algorithms were used to determine the final segmentation of the

prostate. First, DDC with edge as external force and the 6 central gland user de-
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fined points as landmarks was used to deform the mesh to segment the prostate.

Next, the initial mesh was used to create the graph and in second stage image fea-

tures like gradients were introduced to build the cost function. Finally, graph-cut

was used to determine the prostate volume. The graph cut results were refined with

DDC to improve the results.

MRI

Prior shape and size information of the prostate were exploited by Vikal et al. [139]

to build an average shape model from manually delineated contours. The authors

used the Canny filter to determine edges after pre-processing the images with a stick

filter to suppress noise and enhance the contrast. The average shape model was used

to discard pixels that did not follow similar orientation as the model. The obtained

contour was further refined by the removal of gaps using polynomial interpolation.

The segmented contours obtained in the middle slices were used to initialize slices

lying above and below the central slice.

The use of a Bayesian framework to model the texture of the prostate is common

in MR images. For instance, Allen et al. [8] proposed to segment the prostate in an

expectation maximization (EM) framework treating the three distinctive peaks in

intensity distribution as mixture of three Gaussians (background, central region and

periphery of the prostate). A shape restricted deformable model with the clustered

pixels as a deformation force was then used to segment the prostate. Similarly, in

Makni et al. [91], the intensities of the prostate region were modeled as a mixture of

Gaussians. They proposed a Bayesian approach where the prior probability labeling

of the voxels was achieved by using a shape restricted deformable model and Markov

field modeling. The conditional probability was associated with the modeled inten-

sity values, and the segmentation was achieved by estimation of an optimum label

for prostate boundary pixels in a MAP decision framework.

Although atlas based registration and segmentation of the prostate has become

popular in recent time, the obtained segmentation results had to be refined with

a deformable model to improve the accuracy. Martin et al. [93] used a hybrid

registration minimizing intensity and geometry energies for registering the atlas.

The minimization of the intensity based energy aimed at matching the template

image with the reference image while the minimization of the geometric energy
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matched the model points of the template image to the scene points belonging to

the reference image. Finally, a shape constrained deformable model was used to

refine the results. More recently, Martin et al. [94] used a probabilistic atlas to

impose further spatial constraints and segment the prostate in three dimensions.

Shape and texture modeling of the prostate were merged in the work of Tsai et

al. [135], who used a shape and region based level set framework to segment prostate

in MR images. One of the contours was fixed and used as the reference system where

all the other contours were affine transformed to minimize their difference in a multi

resolution approach. PCA of the shape variability captured the primary modes of

variations and was also incorporated in the level set function, along with region

based information such as area, sum of intensities, average intensity and variance

information. The minimization of the level set objective function produced the

segmented prostate. The authors also suggested a coupled level set model of the

prostate, the rectum, and the internal obturator muscles from MR images to segment

these structures simultaneously [136]. The algorithm was made robust by allowing

the shapes to overlap with each other, and the final segmentation was achieved by

maximizing the mutual information of the three regions. Similarly, Liu et al. [86]

used a deformable ellipse to segment prostate boundary after Otsu thresholding [104]

of the image in prostate and non prostate region. A shape constrained level set

initialized from the elliptical fitting of the prostate was used to further refine the

results. Finally, post processing of the gradient map of the prostate and the rectum

produced the final segmentation. Firjani et al. [46] modeled the background and

the foreground pixels with Gaussian mixture Markov random field and used the

information of probability of a pixel being prostate in building the shape model. The

shape and the intensity were jointly optimized with a graph cut based algorithm.

The authors extended their work for 3D segmentation of the prostate [47]. Zhang

et al. [155] proposed an interactive environment for prostate segmentation. Region

and edge based level sets were used to segment the prostate from the background

depending on foreground and background region based information provided by the

user.

Gao et al. [50] represented the shapes of a training set as point clouds. Par-

ticle filters were used to register clouds of points created from prostate volumes

to a common reference to minimize the difference in pose. Shape priors and lo-
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cal image statistics were incorporated in an energy function that was minimized

to achieve prostate segmentation in a level set framework. More recently, Toth et

al. [132] used a series of 50 Gaussian kernels of variable size to extract prostate

texture features. ASM constructed from manually delineated contours of training

images was automatically initialized depending on the most probable location of the

prostate boundary to achieve segmentation. Later, Toth et al. [134] in addition to

intensity values, used mean, standard deviation, range, skewness, and kurtosis of

intensity values in a local neighborhood to propagate ASM automatically initialized

from magnetic resonance spectroscopy (MRS) information. MRS information was

clustered using replicated k-means clustering to identify prostate in mid slice to ini-

tialize multi feature ASM. More recently Toth et al. [133] developed a multi feature

landmark free active appearance model in which shape model was derived in a lev-

elset based framework that was propagated by multiple image derivative attributes

derived from mean, standard deviation, and Sobel features of a region. Chowdhury

et al. [26] used probabilistic atlas and random forest based classification to segment

prostate. Region based levelset were used to generate a 3D volume and ASM was

used to refine the segmentation results.

Khurd et al. [75] localized the center of the prostate gland with Gaussian mixture

model and expectation maximization based clustering after reducing magnetic bias

in the images. Thresholding on the probabilistic map of the prostate obtained with

random walker based segmentation algorithm [60] to segment the prostate.

2.3 Validation and qualitative performance eval-

uation

The performance of prostate segmentation algorithms is usually evaluated comparing

the output of the method with a ground truth (gold standard) obtained from manual

delineations of the prostate done by experienced radiologists. Hodge et al. [65]

advised to use the mean of the manual segmentations of different radiologists and/or

of the same radiologist at different times to reduce inter and intra observer variations

in preparation of the ground truth value.

Analyzing the literature we have seen that the evaluation metrics could be cate-
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gorized into qualitative and quantitative based metrics. In a qualitative evaluation,

the obtained contour is visually compared with the ground truth value. In contrast,

for quantitative evaluation, an error between the obtained contour and the ground

truth is numerically computed. Typically, these error metrics could be classified

into contour based, area based and volume based methods. Contour based metrics

rely on computing how close the ground truth and the obtained contours are. Typ-

ical metrics used are the Hausdorff distance (HD) [14], the mean absolute distance

(MAD) [147], mean distance (MD) [120], maximum distance (MaxD) [85], and root

mean square error (RMSQ) [158]. Area based errors are based on computing how

much the ground truth and the obtained areas overlap. It can be measured by the

Dice similarity coefficient (DSC) [96], area accuracy [11], area sensitivity [11], area

specificity [35], area overlap [5], area overlap error [125], and area error [120] metrics.

Finally, volume overlap error and difference, average difference [77], overlap [137],

detection, false detection, centroid distance [49], and similarity [24] are used for com-

puting a 3D overlapping error. However, DSC, specificity, sensitivity, accuracy and

HD of voxels are also used in terms of voxels to determine volumetric overlap [50].

The evaluation metrics for prostate segmentation are enlisted in Table 2.2, 2.3 and

2.4 where each table shows the metrics for contour, region and volume respectively.
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Table 2.2: Evaluation metrics for contour accuracy

Metric Parameters Equation Used by

C
on

to
u
r

Hausdorff
distance
(HD)

Given a set of fi-
nite points A =
{a1, a2, ....ap}
and B =
{b1, b2, ...., bq}

HD (A,B) = max (h (A, b) , h (B,A)) where
h (A,B) = maxa∈A (minb∈B ‖a− b‖)

[106], [58]

Root
mean
square
distance
(RMSD)

RMSD (A,B) =
√

1
N

∑N
j=1 (Aj −Bj)

2
[158]

Mean
Distance
(MD)

Given signed
distance dj
between each
correspond-
ing points
j (j = 1, 2, ..., N)
between the
algorithmic seg-
mented surface
and ground
truth.

MD = 1
N

∑N
j=1 dj [120], [77], [80],

[125], [15], [66],
[58], [68], [85],
[95], [154], [129]

Mean
absolute
distance
(MAD)

MAD = 1
N

∑N
j=1 |dj | [106], [80], [38],

[66], [68], [85],
[57], [137], [33],
[147], [139], [94]
[89] [134]

Maximum
distance
(MaxD)

MaxD = max |dj | [80], [15], [66],
[68], [85], [137],
[33], [147]
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Table 2.3: Evaluation metrics for area accuracy

Metric Parameters Equation Used by

A
re
a

Dice similarity coefficient
(DSC)

TP = True posi-
tive, TN = True
negative, FP =
False positive,
and FN = False
Negative

DSC = 2TP
(FP+TP )+(TP+FN) [121], [48],

[139], [86]

Sensitivity (SN) SN = TP
TP+FN [80], [11],

[99], [34]

Specificity (SP) SP = TN
TN+FP [11]

Accuracy (AC) AC = TP+TN
TP+TN+FP+FN [80], [11],

[99]

Overlap (OV) OV = TP
FP+FN [5], [149],

[15], [148],
[95]

Overlap Error (OE) OE = 1−Ov [125], [120]

Surface distance (SD) Given unsigned
distance ds be-
tween between
the algorithmic
segmented sur-
face and ground
truth.

SD = 1
N

∑s=1
N ds [40], [45],

[83], [117],
[49], [127]
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Table 2.4: Evaluation metrics for volume accuracy

Metric Parameters Equation Used by

V
ol
u
m
e

Hausdorff
distance
(HD)

Given a set of fi-
nite voxels A =
{a1, a2, ....ap}
and B =
{b1, b2, ...., bq}

HD (A,B) = max (h (A, b) , h (B,A)) where
h (A,B) = maxa∈A (minb∈B ‖a− b‖)

[91], [50],
[134]

Dice sim-
ilarity co-
efficient
(DSC)

TP = True
positive, TN =
True negative,
FP = False pos-
itive, and FN =
False Negative
in voxels

DSC = 2TP
(FP+TP )+(TP+FN) [76], [91],

[94], [50],
[81], [40],
[6], [45], [25],
[83]

Sensitivity
(SN)

SN = TP
TP+FN [35], [94],

[134]

Specificity
(SP)

SP = TN
TN+FP [35], [134]

Accuracy
(Ac)

Ac = TP+TN
TP+TN+FP+FN [35]

Similarity
(VS)

V S = 2TP
2+FP−FN [24]

Detection
(VDe)

V De = TP
FP+FN [127]

Detection er-
ror (VDEr)

V DEr = 1− V De [127]

Difference
(VD)

MSV = Man-
ually and ASV
= Algorithmi-
cally segmented
volume

V D = (MSV
⋃

ASV )−(MSV
⋂

ASV )
2×MSD [77], [66],

[154], [8],
[49]

Average
difference
(AVD)

AVD = MSV−ASV
MSV [77], [65],

[68]

Overlap
(VO)

V O = MSV ∩ASV
MSV ∪ASV [137], [51],

[134]
Overlap
error (VOE)

V OE = 1− V O [154]

Error (VE) V E = MSV+ASV−2(MSV
⋂

ASV )
MSV+ASV [90]

Centroid dis-
tance (VCD)

Given ground
truth centroid
cm and ca
algorithmic seg-
mented volume
centroid.

V CD = |cm − ca| [117], [49]
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Ideally a comparison of different state-of-the-art prostate segmentation method-

ologies on a public dataset should have been done to evaluate the performance

of the state-of-the-art methods. However, a quantitative comparison of different

methodologies is difficult in absence of public software, data sets and standardized

evaluation metrics. In addition, the methods are developed using wide variety of

algorithms with specific application requirements. Hence, such a quantitative com-

parison of different prostate segmentation methods on the same dataset with some

standardized metrics is extremely difficult as could be observed in some recently

published works [93, 33, 125, 90, 147, 58, 94, 50]. Nevertheless, to have an overall

quantitative estimate of the functioning of some of the state-of-the-art works in the

literature we present the reported results in Tables 2.5 and 2.6 for TRUS and MRI,

respectively.

The index of the Tables is expanded below.

• The name of the first author has been used as a reference of the paper.

• The segmentation dimension (Dim) gives the output of a given segmentation

methodology. The output can be in two (2D) or three (3D) dimensions.

• B/A indicates whether base and apex slices were considered for 2D segmenta-

tion.

• Pre-Proc indicates the type of pre-processing used in the method.

• In. indicates the use of endo-rectal coil in acquisition of MR images.

• The segmentation criteria shows in what category the algorithm is classified.

Hybrid segmentation methodologies are specified with the type of algorithms

that are combined to produce the final segmentation (the acronyms of this row

are: DM = Deformable model, ASM = Active shape model, AAM = Active

appearance model, GA = Genetic algorithm, EM = Expectation maximiza-

tion, DDC = Discrete dynamic contour, ACM = Active contour model, SVM

= Support vector machine, ANN = Artificial neural network, S-R Level set =

Shape and region based level set).
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• The automation (Auto) column specifies the degree of manual interaction that

was necessary. The process is considered automatic if the degree of manual

interaction was restricted to training.

• The measure column refers to the measures used by the authors to present

their obtained results.

• The last column (Validation) gives the number of images or data sets (volumes)

that were used to validate the developed algorithm.

The discussion on the evaluation procedures is given in Section 2.3.1. Afterwards,

a discussion about choosing an appropriate method for a given imaging modality is

carried out in Section 2.4.
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Table 2.5: Quantitative evaluation of prostate segmentation in TRUS images

Reference Year Dim Segmentation
Criteria

Auto Performance Validation

Measure Value

C
o
n
to
u
r
an

d
S
h
a
p
e

Pathak [106]
2000 2D Edge Based No Contour MAD 1.5 mm 125 images

Contour HD 4 mm
Abolmaesumi [5] 2004 2D Probabilistic

Filter
No Area OV 98% 6 images

Sahba [120]
2005 2D Probabilistic

Filter
No Contour MD 3.3±1.3 pix-

els
19 images

Area error 2.4±1.1%

Knoll [77]
1999 3D DM - ACM Yes Volume VD 10.97% 77 images

Contour MD 2.61 mm
Volume AVD 8.48%

Ladak [80]

2000 2D DM - ACM No Contour MAD 4.4 (≈ 0.63
mm)±1.8
pixels

117 images

Contour MaxD 19.5 (≈ 2.5
mm)±7.8
pixels

Area AC 90.1±3.2%
Area SN 94.5±2.7%

Ding [38] 2005 3D DM - ACM No Contour MAD 2.79±1.94
mm

6 datasets

Zaim [149] 2007 2D DM - ACM Yes Area OV 92% 10 images
Ghanei [54] 2001 3D DM - Mesh No Volume VS 89% 10 datasets

Shen [125]
2003 2D DM - ASM Yes Contour MD 3.2 (≈ 1.28

mm)±0.87
pixels

8 images

Area OE 3.98±0.97%
Area error 1.66±1.68%

Betrouni [15]
2004 2D DM - ASM No Contour MD 3.77 (≈ 2.55

mm)±1.3
pixels

10 images

Contour MaxD 6.25 (≈ 4.18
mm)±1.8
pixels

Area OV 93%±0.9%

Hodge [66]

2006 3D DM - ASM No Contour MD 0.12±0.45
mm

36 datasets

Contour MAD 1.09±0.49
mm

Contour MaxD 7.27±2.32
mm

Volume VD 0.22±4.58%
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Table 2.5: Continued. Quantitative evaluation of prostate segmentation in TRUS
images.

Reference Year Dim Segmentation
Criteria

Auto Performance Validation

Measure Value

C
on

to
u
r

Hu [68]

2002 3D DM - Curve
Fitting

No Contour MD (-)0.2±0.28
mm

5 datasets

Contour MAD 1.19±0.14
mm

Contour MaxD 7.01±1.04
mm

Volume VD 7.2±3.4%

Gong [58]
2004 2D DM - Curve

Fitting
No Contour MD 1.36±0.58

mm
125 images

Contour HD 3.42±1.52
mm

Badiei [11]

2006 2D DM - Curve
Fitting

No Area SN 97.4±1% 17 images

Area AC 93.5 +/-
1.9%

Contour MAD 0.67±0.18
mm

Contour MaxD 2.25±0.56
mm

Mahdavi[90] 2011 3D DM - Curve
Fitting

No Volume VE 6.63±0.9% 21 datasets

P
R

Zaim [148] 2005 2D Classifier -
ANN

Yes Area OV 91% 10 images

Mohammed [99]
2006 2D Classifier -

SVM
Yes Area SN 83.30% 18 regions

Area AC 93.75%
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Table 2.5: Concluded. Quantitative evaluations of prostate segmentation in TRUS
images.

Reference Year Dim Segmentation
Criteria

Auto Performance Validation

Measure Value

H
y
b
ri
d
M
et
h
o
d
s

Liu [85]
2002 2D Edge and

Average
Yes Contour MD 0.4±1.3 mm 282 images

shape model Contour MAD 0.9±0.9 mm
Contour MaxD 3.8 mm

Gong [57] 2005 2D Level set
and Curve
Fitting

No Contour MAD 0.64, 1.13,
0.52 and
1.16 mm

4 images

Medina [95]
2005 2D AAM No Area OV 96% 95 images

Contour MD 3.58±1.49
pixels

Tutar [137]
2006 3D Mesh and

Average
No Contour MAD 1.26±0.41

mm
30 datasets

shape model Contour MaxD 4.06±1.25
mm

Volume VO 83.5±4.2%

Zhan [154]
2006 3D SVM, DM

and Mesh
Yes Contour MD 1.07(≈ 0.33

mm)±0.1
voxels

6 datasets

Volume VOE 4.31±0.4%
Volume VD 2.39±1.29%

Yang [142] 2006 3D Shape
model and
Level set

Yes Correct seg-
mentation
rate

82% 11 datasets

Cośıo [33]
2008 2D EM and

ASM
Yes Contour MAD 1.65±0.67

mm
22 images

Contour MaxD 3.93±1.9
mm

Diaz [35]
2008 3D ACM and

SVM
No Volume SN 80% 7 datasets

Volume AC > 90%
Volume SP > 90%

Yan [147] 2010 2D ACM and
ASM

Yes Contour MAD 2.01±1.02
mm

10 datasets

Garnier [51]
2011 3D Mesh, graph

cut and
DDC

No Volume VO 86.36±3.78% 28 datasets

Volume HD 4.79±1.62
mm
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Table 2.6: Quantitative evaluation : prostate segmentation in MR images

Reference Year Dim Segmentation
Criteria

Auto Performance Validation

Measure Value

B
o
u
n
d
.

Samiee [121] 2006 2D Edge Based No Area DSC 0.905±0.001 2 datasets
Tapia [48] 2008 2D Edge Based No Area DSC 0.93±0.005 19 images
Zhu [158] 2007 3D DM - ASM No RMSD 5.4±2.9 mm 26 datasets

R
eg
.

Klein [76] 2008 3D Atlas Yes Volume median
DSC

0.85 50 datasets

Langerak [81] 2010 3D Atlas Yes Volume DSC er-
ror

0.05 100 datasets

Volume SN/SP
error

0.05

Dowling [40]
2011 3D Atlas Yes Volume DSC 0.86 50 datasets

Area SD 2.0±1.3 mm

H
y
b
ri
d
M
et
h
o
d
s

Allen [8]
2006 3D EM and DM No Contour MAD 2.8±0.8 mm 22 datasets

Volume VD 6.5±5.4%
Martin [93] 2008 3D Atlas and DM No Mean error 3.3±1.9 mm 18 datasets
Makni [91] 2009 3D DM and Bayes Yes Volume HD 9.62 mm 12 datasets

Classifier Volume DSC 0.90
Vikal [139] 2009 3D Edge and No Contour MAD 2.0±0.6 mm 3 datasets

Shape guide Area DSC 0.93±0.3
Liu [86] 2009 2D DM and Level

set
Yes Area DSC 0.91±0.03 10 datasets

Firjani [46] 2010 2D Intensity and
shape

Yes Area OE 5.2±1.2% 98 images

Firjani [47] 2011 3D Intensity and
shape

Yes Contour MD 0.8±0.9 mm 98 images

Martin [94] 2010 3D Atlas Yes Area SD 2.41 mm 36 datasets
and DM DSC 0.84

RMSD 1.97
Gao [50] 2010 3D Shape and No Volume DSC 0.82±0.03 15 datasets

Edge guide for
level sets

Volume HD 10.22±4.03
mm

15 datasets

Toth [132] 2011 3D Shape and
Edge Based

Yes Volumetric ratio 1.05±0.21 45 datasets

Toth [134]
2011 3D Shape and Yes Volume VO 0.7 32 datasets

Edge Based Contour HD 7mm

Toth [133]
2012 3D Shape and Yes Volume DSC 0.88±0.04 108 datasets

Edge Based MAD 1.51±0.78
mm

Chowdhury [26]
2012 3D ASM, Atlas Yes Volume DSC 0.82±0.52 20 datasets

and PR MAD 1.88±0.56
mm
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2.3.1 Open problems

We have explained in previous sections the validation procedures followed by the

researchers. From the reported results a set of of open problems are revealed.

1. Manual delineation of the prostate contours is considered to be the gold stan-

dard to which the result of a segmentation methodology is compared. Only

few authors considered the mean of delineated contours by different experts

and of the same expert at different time to reduce inter and intra observer vari-

ability of the process. Rasch et al. [113] quantified inter observer variabilities

in MRI. He found that, the average ratio between the volume derived by one

observer for a particular scan and patient and the average volume was 0.95,

0.97, and 1.08 for the three observers. Under such inter observer variabilities

an interesting option could be the use of prostate phantom to validate volume

information obtained using computer aided segmentation. Another interest-

ing option could be validation of the annotated data by biopsy, histology or

extracted prostate information.

2. The unavailability of public prostate databases makes quantitative compar-

ison of the segmentation algorithms difficult. Moreover, the quality of re-

sults depend on both the scans and quality of contouring. Lately, MICCAI

prostate challenge datasets for MRI are being used for comparison [50]. A

public datasets of prostate images [2] could also be used for validation. The

quality of the images vary with MR and TRUS machines, as advanced ma-

chines produce images of superior quality. Thus, it becomes almost impossible

to compare the performance of two algorithms separated by a span of signifi-

cant number of years.

3. Lack of standardized metrics in evaluation of segmentation result makes the

comparison of developed methodologies difficult, as shown in Table 2.2 and

Table 2.3. Mean average distance, maximum distance, average distance, area

of overlap, area difference, volume overlap and volumetric error are just a few

of the commonly used metrics. However, since MICCAI prostate challenge

2009 [96], Hausdorff distance and DSC are being increasingly used.
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4. Very few fully automatic methods have been developed, and often manual ini-

tialization and sometimes manual editing is encouraged. This may be suitable

for off-line procedures like the estimation of prostate volume, but unsuitable

for on-line procedures like real time fusion of multi-modal images [145].

2.4 Choosing an appropriate segmentation method

Choice of a proper segmentation methodology is dependent on contexts like imaging

modality and the final target application of the process. Hence, we have provided

recommendation of selection of a particular segmentation technique based on these

two basis. We have divided the section into TRUS and MRI subsections and have

provided recommendations based on applications for both the modalities.

2.4.1 TRUS

TRUS image of a prostate has low contrast and the signal is often corrupted by

speckle, shadow artifacts and micro-calcifications [147]. There are two different ways

to deal with speckle. One option is to minimize its effect in the image using, for

example, stick filters [106], that allow reducing speckle while enhancing the contrast

of the image. The second option is to take benefit of this information, which can be

done modeling speckle as a Rayleigh’s distribution [122]. Any of these options could

be employed for pre-processing of the image and prepare it for further analysis.

Prostate volume determined from segmented TRUS images serves as an im-

portant parameter in determining presence of benign or malignant tumor during

diagnosis of prostate diseases. Three commonly used prostate volume measurement

techniques in TRUS are planimetry calculation, prolate ellipse volume calculation,

and an ellipsoid volume measurement technique. Segmentation of prostate in 2D

in the axial slices in the mid gland region to determine maximum area and height

is useful in determining volume in all these techniques. Note in Table 2.5 that no

one tried a pure region based approach to segment the prostate. This is due to

the fact that these algorithms fragment the prostate into a large number of small

regions due to the heterogeneity inside the prostate gland. Related with edge based

approaches, we noted that pure contour based methods like edge detection [106]
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are being replaced (or expanded) with methods that combine prostate shape and

region based information [154, 33, 35], providing a more robust approach in pres-

ence of speckle and low contrast. In contrast, Abolmaesumi et al. [5] and Sahba

et al. [120] proposed an interesting option of modeling the prostate contour as a

Gaussian distribution. Such assumption provides more robustness to contour based

methods in low contrast. ASM is another edge based approach frequently used for

prostate segmentation in 2D images. However, such models are dependent on reli-

able edge information and hence may be adversely affected in presence of shadow

artifacts [147]. Moreover, the automatic initialization and extension to 3D is dif-

ficult [158]. However, shape constrained deformable models have been successfully

employed by different authors [154, 137, 142] as observed in Table 2.5. Automatic

delineation of the prostate in mid-gland images further reduces inter observer vari-

abilities.

In prostate brachytherapies, oncologists should prepare a set of parallel TRUS

ultrasound images and manually segment each 2D slice to obtain the prostate volume

which is then used to plan the location of the seeds. Hence, fast semi-automatic or

automatic prostate segmentation in 2D slices or 3D volume could be useful in such

procedures. Mahdavi et al. [90] method of fitting an ellipsoid to prostate edges is a

very useful method for such a scenario as the method has shown good volumetric

overlap accuracy.

Automatic, and fast prostate segmentation from 2D US images is often neces-

sary in image guided prostate biopsy or robot assisted surgery [147]. DDC and

super quadrics are computationally efficient procedures to segment the prostate in

2D. However, the fastest segmentation of the prostate contour had been reported

using partial ASM [147] and probabilistic filtering [5]. Considering semi-automatic

approach adopted by [5], the method developed by Yan et al. [147] is well suited for

real time segmentation of the prostate in two dimensions. Note that the speed of a

given segmentation method could be improved if the method could be parallelized

and implemented in graphical processing unit as well as if an off-line learning of the

optimization space could be adopted. Moreover, segmentation of prostate in TRUS

videos could be modeled as a tracking boundary problem to achieve near real time

segmentation.

Supervised and un-supervised classification based methods have the advantage
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of being fully automatic [148, 99], although a training is necessary in the ones us-

ing a classifier. However, the intensity heterogeneity and unreliable texture of the

prostate gland challenge again the development of a pure clustering or classification

schema for the prostate. Therefore, an interesting and common option is the use of a

clustering or/and classification schema for initial segmentation and subsequently use

the obtained information for the initialization and/or propagation of a deformable

model to produce the final segmentation [154]. Another common hybrid approach

is the integration of shape and intensity information jointly optimized in an AAM

framework [95]. Off-line learning of the optimization space aids in fast prostate seg-

mentation. However, such methods are affected by large-scale contrast variances and

use of texture information in place of raw intensity improve segmentation accuracies.

2.4.2 MRI

MR images of the prostate have better soft tissue contrast compared to TRUS im-

ages. However, insertion of the endorectal coil to enhance contrast in the prostate

region introduces intensity inhomogeneities that may adversely affect the segmen-

tation accuracy of algorithms dependent on pixel intensities. Viswanath et al. [141]

performed an extended review of three techniques [126], [128] and [28] applied to

magnetic field bias field correction. The authors concluded that bias field correction

algorithm should be application specific. For example it was observed that [126]

performed best with the goal of identifying cancer and on the other hand bias field

corrections can adversely affect clustering and classification based techniques of seg-

mentation. It is to be noted that MR images with endorectal coil are relatively

simpler to segment due to higher contrast of images around the prostate and well

deformed shape of the rectum.

Prostate segmentation from MR images is frequently used for volume determina-

tion, surgical planing and multi-modal image registration. In all these applications

prostate segmentation could be done automatically or semi-automatically. How-

ever, minimum human interaction is desired to minimize human induced variations

and errors. In the last decade, deterministic and probabilistic atlases are frequently

used for 3D segmentation of the prostate. Such methods are automatic, robust to

intensity variability and to noise [76]. Martin et al. used both deterministic [93]



2.5 Discussions 51

and probabilistic atlas [94] to segment the prostate, although the obtained segmen-

tations were refined with a deformable model. Pair-wise atlas selection schema of

Dowling et al. [40] has shown greater accuracy compared to [76, 41]. Hence, for

atlases pairwise registration is better compared to average atlas based segmenta-

tion. In Table 2.6 we observe that Klein et al. [76] with atlas based segmentation

achieved an impressive overlap accuracy of 0.85 DSC value when validated with 50

data sets. However, Martin et al. [94] with probabilistic atlas and deformable model

based segmentation achieved similar overlap accuracy and a good contour accuracy

values when validated with 36 data sets. Atlas based methods [76] and probabilistic

modeling of the prostate region [93] provide a more robust approach in presence of

these inhomogeneities.

Deformable models are frequently used for prostate segmentation. Makni et

al. [91] used information coming from an initial classification scheme to initialize

a deformable model. Note also that automatic methods are primarily developed

using classifiers, atlas and deformable models. It has to be noted that anatomi-

cal structures around the prostate may affect the prostate deformation. Modeling

the anatomical structures like bladder and rectum along with prostate will provide

additional flexibility to the segmentation algorithm [136]. A hybrid segmentation

method that incorporates shape and intensity priors achieves good segmentation

accuracy [135, 50]. Accuracies of segmentation of prostate in MRI using 3D ASM

depends on initialization. Cosio et al. [33] provided an efficient initialization scheme

in their work using Bayesian classification. In recent years Toth et al. [134] have

used clustering of spectral data obtained in DCE MRI to initialize 3D ASM. Seg-

mentation accuracies were improved using feature driven ASM.

2.5 Discussions

Diagnostic imaging has become an indispensable procedure in medical science. Meth-

ods of imaging the patient anatomical structures have improved the diagnosis of

pathologies, creating new avenues of research in the process. Automatic segmenta-

tion of anatomical structures from different imaging modalities like US, and MRI

has become an essential step to reduce inter and intra-observer variability, improv-

ing contouring time thereafter. This chapter reviewed the methods involved with
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prostate segmentation. Strength and limitations of the segmentation methodologies

have been discussed along with the presentation of validation and performance eval-

uation of the same. Finally, a discussion on choosing an appropriate segmentation

methodology for a given imaging modality and medical purpose has been carried

out. It has been highlighted that prostate segmentation techniques should utilize

geometric, and spatial information, intensity, texture, and imaging physics priors

to improve accuracy, as demonstrated by hybrid methods. Hybrid methods that

use prior information from different sources are more robust to noise and produce

superior results



Chapter 3

Shape and Appearance Prior

Models for Prostate Segmentation

in 2D TRUS images

Automatic or semi-automatic prostate segmentation in TRUS images is a challeng-

ing task. Low contrast images, speckle and imaging artifacts like the shadow region

and micro-calcifications adversely affect segmentation accuracies. Heterogeneous in-

tensity distribution of the prostate region, deformation of the prostate due to inser-

tion of the transrectal probe and inter-patient shape and size variations inhibits the

design of a global descriptor of the prostate. To deal with the prostate segmenta-

tion challenges, in this chapter, we propose a novel parametric model derived from

principal component analysis (PCA) of shape and image features to segment the

prostate.

3.1 Introduction

Prostate segmentation from TRUS images is a challenging task in the presence of

speckle, shadow artifacts, intensity heterogeneities inside the prostate gland and low

contrast. As we have observed in chapter 2, to address the challenges of prostate

segmentation in TRUS images Shen et al. [125] and Betrouni et al. [15] proposed

to use prior prostate shape information in their models. The use of prior shape

53
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information improved segmentation accuracy in presence of imaging artifacts and

low SNR. Yan et al. [147] proposed to incorporate prior shape information of the

prostate in a partial active shape model framework. The model selectively discarded

salient points for building the shape model to improve segmentation accuracy in the

presence of shadow artifacts in TRUS images. Gong et al. [58] proposed to use

deformable super ellipse to segment the prostate. Shape constraints of the model

were effective in achieving impressive segmentation results. Zhan et al. [154] demon-

strated the effectiveness of incorporating both prior shape and texture information

in their prostate segmentation framework. Medina et al. [95] used Active Appear-

ance Model (AAM) [30], an efficient framework of combining shape and intensity

priors, to segment the prostate in 2D TRUS images achieving an overlap ratio of

96%.

Motivated by the approaches of [30] and [95] we propose to use AAM in our

segmentation framework. However to deal with the challenges of prostate segmen-

tation in TRUS images we propose two different appearance models for the prostate.

The first appearance model is derived from PCA of texture features extracted with

quadrature filters and in the second model PCA of the posterior probabilities ob-

tained in a supervised learning schema is used. Statistical shape model is often used

in prostate segmentation [125], [15], [66]. However, few methods incorporate shape

and texture priors to segment prostate in TRUS images. In these models often the

texture priors are introduced with the classification of texture features ([154], [35],

[33]) or with region based statistics in a levelsets framework ([57]).

In contrast, our model significantly differs in the optimization space. In our

model, the shape and the appearance model are built from PCA of the shape and

the appearance space and the two are tightly coupled in the combined model of shape

and appearance. Computational complexities involved with texture prior models in

[154], [35], and [33] is high due to the extraction and classification of the texture

space. Therefore, in our first model we adopt an off-line learning of the optimization

space framework to develop a fast prostate segmentation method. The schema of the

optimization space is very close to the model used by [95]. However, it is to be noted

that [95] used traditional AAM [30] to segment the prostate and we have improved

on time and accuracy over [30] using a contrast invariant texture descriptor with the

quadrature filters. We consider that our approach is well designed for fast prostate
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segmentation often needed for computer guided prostate brachytherapy and prostate

biopsies [146].

To facilitate automatic initialization of our model we adopt a supervised learn-

ing framework to achieve probabilistic classification of the prostate in our second

model. Use of posterior probabilities obtained in the classification schema in build-

ing the appearance model further improve segmentation accuracies. We adopt two

different optimization schema with two different objectives. A fast off-line opti-

mization schema similar to Cootes et al. [30] is adopted to facilitate fast prostate

segmentation necessary for near real time segmentation of the prostate. Further,

we use multiple mean models of shape and appearance priors derived from spectral

clustering of combined shape and appearance parameters to improve on segmenta-

tion accuracies. We also explore the use of Mumford-Shah functional based energy

minimization to improve on segmentation accuracies for off-line segmentation of the

prostate.

The rest of the chapter is organized as follows. Next section explains statistical

shape and appearance model including their limitations. Speckle reduction with

Haar wavelets, quadrature filters to enhance texture and statistical model of shape

and texture are formulated in Section 3.3. In Section 3.4 we explore the use of pos-

terior probabilities for building the appearance model and automatic initialization.

Multiple mean models of shape and probability priors derived from spectral clus-

tering is proposed in Section 3.5. A Mumford Shah energy minimization framework

is proposed in Section 3.6. Quantitative and qualitative evaluations of our method

are presented in Section 3.7. We draw conclusions in Section 3.8.

3.2 Statistical shape and appearance model

The process of building a statistical model of shape and appearance could be sub-

divided into three major components: building the shape model, building the ap-

pearance model and building the combined shape and appearance model.

Point Distribution Model (PDM) [31] built from manually segmented contours

are aligned to a common reference frame with Generalized Procrustes Analysis

(GPA) [59]. Principal Component Analysis (PCA) of the aligned PDMs identify
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Automatic landmark detection and alignment (a) Prostate image in
TRUS (b) Ground truth from manual segmentation (c) Contour extracted from
ground truth (d) Automatic landmark detection with equal angle sampling (e) Con-
tours overlap before alignment (b) Contour overlap after alignment with generalized
Procrustes analysis.

the principal modes of shape variations. In our shape model we build the PDM au-

tomatically from equal angle sampling of the extracted contours of the ground truth

images. The PDMs of the extracted contours are aligned to a common reference

frame by minimizing the difference in translation, scale, and orientation by GPA.

Fig. 3.1 illustrates the process of aligning the contours after automatic landmark

detection.

Finally, PCA of the aligned contours are used to identify the primary modes of

shape variation. The shape model may be formalized in the following manner:

s = s+ Φsθs (3.1)

where s represents the shape model, s denotes the mean shape, Φs contains the first

p eigenvectors of the estimated joint dispersion matrix of shape and θs represents

the associated weight. The process of building the shape model is illustrated in Fig.

3.2. For building the appearance model Delaunay’s triangulation of the mean model
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Figure 3.2: Illustration of the shape prior model. Primary modes of shape variations
are identified with PCA of the aligned contours. The mean shape prior model is
given by x, P are shape eigenvectors and λ corresponding eigenvalues. Considering
a Gaussian shape representation new shapes could be generated.

contour and target model is performed and piece wise affine registration between

the mean and the training contour identifies the triangles or pieces automatically.

Intensity distribution is sampled from shape free reference for each of the pieces

to build intensity profile of the training images. PCA of the intensity distribution

is used to identify the principal components of intensity variations and suppress

noise to build the appearance model. The model may be formalized in the following

manner:

t = t+ Φtθt (3.2)

where t represents the texture model built from the training images and t denote the

mean intensity. Primary modes of intensity variations are represented by Φt with θt

being the corresponding weight. The process of building the appearance model is

illustrated in Fig. 3.3.

The model of shape and intensity variations are combined in a linear framework

as,

b =

[
Wθs

θt

]
=

[
WΦT

s (s− s)

ΦT
t (t− t)

]
(3.3)
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Figure 3.3: Illustration of the appearance model. Primary modes of appearance
variations are identified with PCA of the sampled image. The mean appearance
prior model is given by g, Pg are shape eigenvectors and λ corresponding eigenvalues.
Considering a Gaussian shape representation new shapes could be generated.

where W denotes a weight factor coupling the shape and the texture space. Finally,

a third PCA of the combined model ensures the reduction in redundancy of the

same and is given as,

b = V c (3.4)

where V is the matrix of eigenvectors and c the appearance parameters.

3.2.1 Optimization and segmentation of a new instance

In our model, we incorporate AAM optimization proposed by Cootes et al. [30].

The prior knowledge of the optimization space is acquired by perturbing the com-

bined model with known model parameters and perturbing the pose (translation,

scale and rotation) parameters. A linear relationship between the perturbation of

the combined model (δc) and the residual texture values (δt), and between the per-

turbation of the pose parameters (δp) and the residual texture values are acquired
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in multivariate regression frameworks as,

δc = Rcδt, δp = Rpδt (3.5)

where Rc and Rp refer to correlation coefficients. Given a new instance, on initial-

ization of the model, the difference of the appearance value with the mean model

is used to determine the residual value δt. The combined model (δc) and the pose

parameters (δp) are updated using Eq. 3.5 to generate new shape and combined

model and hence new texture. The process continues in an iterative manner until

the difference with the target image remains unchanged.

3.2.2 Limitations of statistical shape and appearance model

applied to prostate segmentation in TRUS

In Section 1.1.1 we have observed that TRUS images of the prostate are character-

ized by speckle, shadow artifacts, intensity heterogeneities inside the prostate gland.

Furthermore low contrast of the images and contrast variabilities depending on ma-

chine manufacturer and acquisition parameters introduces large scale variabilities in

intensities. Traditional statistical shape and appearance model considers the appear-

ance space to be Gaussian. Large scale variations of the intensities due to changes

in contrast and imaging artifacts produces an inefficient representation of the ap-

pearance space with a single Gaussian model. Considering the appearance model

and it’s relation to the optimization framework of statistical shape and appearance

model, large scale variations in intensities introduces segmentation inaccuracies.

Similarly as discussed in Section 1.1.1 inter-patient prostate shape and size may

vary and a single Gaussian model representation of the shape space will introduce

segmentation inaccuracies. Furthermore the offline optimization framework of statis-

tical shape and appearance model assumes a linear relationship between the change

in appearance space and change in the pose parameters as observed in Eq. 3.5.

However, as demonstrated by Cootes et al. [30] this linear relationship holds within

a small window of deviation of the pose parameters. Hence large scale deviation

of either the pose parameters or the intensities away from the Gaussian space will

produce erroneous results.
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To reduce contrast variabilities we adopt two approaches. In the first model

we extract contrast invariant texture features with quadrature filters to build our

appearance model. The model is presented in Section 3.3. However a manual

initialization is necessary for the model. In our second model we adopt a supervised

learning framework of random forest to produce a soft classification of the prostate.

The posterior probabilities obtained in the learning framework aid in building our

appearance model. Such an approach enables automatic classification and reduces

intensity variabilities as intensities are substituted with posterior probabilities to

build our appearance model. The model is formulated in Section 3.4.

To better approximate the Gaussian space of shape and appearance we derive

multiple mean Gaussian models of shape and texture. The approach is motivated by

central limit theorem [73] which states that a non Gaussian distribution can be better

approximated with multiple Gaussian distribution. We adopt spectral clustering of

the shape and appearance parameters to group similar prostates together to build

multiple mean models. Given a new instance all the mean models are applied to

segment the test image simultaneously. The mean model producing the least fitting

error is selected as the final segmentation. The schema has the advantage of better

approximating the Gaussian space of shape and appearance. Furthermore multiple

mean model aids in improving the range of pose parameters that could be handled by

the optimization framework of statistical shape and appearance model. Incidentally

that aids in maintaining the linear relationship between the change in pose and the

appearance parameters as proposed in Eq. 3.5. The model is formulated in Section

3.5.

3.3 Texture in appearance model

In Section 3.2.2 we have discussed the difficulties in building an accurate appearance

model in the presence of large scale contrast variabilities. To facilitate better repre-

sentation of the appearance model in this section we propose to build our appearance

model from contrast invariant texture descriptors. In this model the intensities of

the image are substituted with approximation coefficients of Haar wavelet transform

to obtain a better representation of the underlying texture. Subsequently we pro-

pose a novel method to represent prostate texture with local phase information of
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the quadrature filters is adopted to provide a contrast invariant representation of

the texture space.

In this section, we propose a model that transforms the image with Haar wavelets,

discard the Haar wavelets detail coefficients to reduce speckle, and then use quadra-

ture filters [17] to enhance texture information to propagate a statistical model of

shape and texture in a multi-resolution framework. The key contributions of this

work are:

• Enhancement of texture information of the prostate region from phase re-

sponses of quadrature filter pairs and

• Use of the texture information in training and propagation of a statistical

model of shape and appearance that improves on computational time and

segmentation accuracy when compared to the traditional active appearance

model [30] as discussed in Section 3.3.2.

The proposed method is based on three major components,

1. Reduction of speckle with Haar wavelets as discussed in Section 3.3.1.

2. Use of band pass quadrature filters to enhance texture information in the

prostate region.

3. Incorporating local phase information as texture in building the statistical

model of appearance.

The primary components of the proposed method are explained in details in the

following subsections.

3.3.1 Speckle reduction with haar wavelets

Speckle is an interference pattern in TRUS images that often corrupts underlying

texture [102]. Since Gaussian blurring for removal of speckle produces spurious

edges, Pathak et al. [106] developed ‘stick’ filters to reduce speckle without cor-

rupting underlying prostate texture. Jendoubi et al. [70] and Zaim et al. [149]

used median filtering to reduce speckle and improve on segmentation accuracy. Like
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Figure 3.4: Second level Haar wavelet decomposition of the prostate. The top-right,
bottom-left and bottom-right boxes show the horizontal, vertical and diagonal detail
coefficients respectively after the 1st level wavelet decomposition. The top-left box
(the 1st level approximation coefficient) further consists of 4 smaller images where
again, the top-right, bottom-left and bottom-right images are the detail coefficients
of the 2nd level wavelet decomposition and the top-left comprises of the 2nd level
approximation coefficients.

[106] Abolmaesumi et al. [5] used ‘stick’ filters to reduce speckle. In contrast to

these approaches, we propose to use Haar wavelets to reduce speckle and effect of

micro-calcifications in TRUS images. Wavelets are a family of basis functions that

decompose an image by a high pass filter and by a low pass filter into different

sub-bands. For a 2D image the high pass filter generates three detail coefficient

sub-bands corresponding to horizontal, vertical and the diagonal edges. The ap-

proximation sub-band obtained from low pass filter, is down-sampled and is further

decomposed to analyze the detail and the approximation coefficients at coarser res-

olutions. The Haar wavelet decomposition of a 2D TRUS prostate image is shown

in Fig.3.4.

The wavelet coefficients framework could be formalized in the following manner.

First, let a n-level wavelet transform be denoted by

ŵ =
[
âT ûT1 . . . û

T
n

]T
(3.6)

where, â and û represent the approximation and the detail coefficients respectively,

and ŵ is the wavelet transformed image. The detail coefficients are suppressed to
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(a) (b) (c)

(d) (e)

Figure 3.5: First level wavelet decomposition of a prostate image, A = Micro-
calcification, (a) 2D TRUS image of the prostate, (b) discarded horizontal detail
coefficients, (c) discarded vertical detail coefficients, (d) discarded diagonal detail
coefficients, (e) processed image of the prostate.

produce a truncated wavelet basis to reduce speckle as

b (ŵ) = Cŵ =
[
âT0 . . . 0

]T
(3.7)

where, C corresponds to a modified identity matrix with the rows corresponding

to the detail coefficients removed. In Fig. 3.5(b), 3.5(c), and 3.5(d) we observe

that the detail coefficients in horizontal, vertical and diagonal directions primarily

represent the speckle and micro-calcifications (labeled A) of Fig. 3.5(a). Hence,

discarding the detail coefficients visually reduces speckle and micro-calcifications as

observed in Fig. 3.5(e). Suppressing the high frequency components reduces texture

information. However, according to Petrou and Sevilla [107] significant texture

information of an image is preserved in the approximation coefficients at each scale

and they suggest analyzing the approximation coefficients in multi-resolution to

extract texture. Therefore, in our model to ensure the uniformity of texture inside

the prostate we suppress the detail coefficients to reduce speckle and the effect of

micro calcifications, producing a better representation of the underlying prostate

texture.
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3.3.2 Quadrature filters to enhance prostate texture

Band-pass quadrature filters tuned at different orientations and spatial frequencies

are often used as a basis for obtaining local estimates of phase, energy, orientation

and frequency [3]. These estimates are known to provide good discrimination of dif-

ferent textures [78]. However, the estimates from these filters are noisy and depend

on the choice of the quadrature filters [17]. An optimal quadrature filter should

demonstrate the following properties,

• The filter must be designed to form quadrature pairs to allow for separate

detection of local phase and amplitude.

• It should be well localized in both the space and frequency domains.

• It should be polar separable in frequency domain for accurate and easy esti-

mation of the local orientations.

• It should satisfy a zero response for a constant signal (zero DC) to be invariant

to gray level shift.

Large bandwidth zero DC filters constructed from log-Gabor function is a well known

choice to build quadrature filters applied to various computer vision applications [44],

[109], [100]. Log-Gabor filter pairs may be formalized in the following manner. The

one-dimensional log-Gabor filter in the frequency domain is a Gaussian function on

a logarithmic scale given by the following equation,

G1 (ω) = ncexp

(
− ln2 (ω/ω0)

2 ln2 (κβ)

)
(3.8)

where ω0 is the peak tuning frequency and 0 < κβ < 1 is dependent on the bandwidth

β of the filter by the following relation

β =
−2

√
2√

ln 2
lnκβ (3.9)

The normalization constant nc is given by

nc = exp

(
−1

8
ln (κβ)

2

)√ −2
√
π

ω0 ln (κβ)
(3.10)
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The spatial domain counterparts of the quadrature filters are used in a convolution

scheme to estimate local phase and amplitude information of an image. The local

phase and amplitude of a 1D signal f(x) are defined using analytical signal fA(x),

fA(x) = f(x)− ifH(x) (3.11)

where i =
√−1 and fH(x) is the Hilbert transform of f(x) defined by:

fH(x) =
1

π

∫ ∞

−∞

f(τ)

τ − x
dτ (3.12)

⇔ FH(ω) = F (ω).isign(ω), (3.13)

where F (ω) is the Fourier transform of f(x) and

sign(ω) =

{
−1 ω < 0

+1 ω ≥ 0
(3.14)

Therefore, the analytical signal in Fourier domain is obtained from (3.11) and (3.13)

as

FA(ω) = F (ω). [1 + sign(ω)] . (3.15)

The local amplitude of the signal is obtained as,

A(x) = ‖fA(x)‖ =
√
f 2(x) + f 2

H(x) (3.16)

and the local phase by,

φ(x) = arctan (f(x)/fH(x)) (3.17)

However, the Hilbert transform of the analytical signal is defined over the entire

signal and localization in small spatial and frequency span is necessary to extract

local phase and amplitude information. Zero response to a constant signal (gray

level invariance) and symmetric (even) filters are essential for extraction of local

phase and amplitude information. Considering the even symmetric filter to be fe
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we have,

f̂A(x) = fe(x) ∗ f(x)− iH(fe(x) ∗ f(x)) (3.18)

= (fe(x)− iH(fe(x)) ∗ f(x)
= (fe(x)− ifo(x)) ∗ f(x).

whereH(.) is the Hilbert transform and ‘*’ is the 1-D convolution operator and fo(x)

is the Hilbert transform of fe(x). In practice, an approximation of the local ampli-

tude or energy (Â(x)) and phase (φ̂(x)) is obtained by using band-pass quadrature

even and odd filter pair fe(x) and fo(x) respectively where,

Â(x) =

√
[fe(x) ∗ f(x)]2 + [fo(x) ∗ f(x)]2 (3.19)

φ̂(x) = arctan {fe(x) ∗ f(x)/fo(x) ∗ f(x)} . (3.20)

For multi-dimensional signals the analysis is performed at a set of filter orienta-

tions and the results are combined to provide local information [17]. The log-Gabor

filters are well suited for local frequency estimations and its zero DC component

makes it more invariant to gray level intensity changes making it robust to large

scale contrast variance [61]. In our model, we use log-Gabor quadrature filters to

estimate local phase of the prostate gland providing a better representation of the

underlying prostate texture uncorrupted from large scale gray level differences due

to presence of shadow artifacts and speckle. The log-Gabor filter is optimized for

TRUS prostate images using quadrature filter optimization toolbox of [9]. Band-

width of 2 octaves and peak tuning frequency of π/3 ensures optimized localization

in spatial and frequency domains to estimate local phase information in prostate

images. The log-Gabor quadrature filter in the frequency domain and the corre-

sponding even and odd pairs in spatial domain and phase response of quadrature

filter pairs for prostate image are shown in Fig. 3.6.

The schema from building the model to the fitting of a new instance is illustrated

in Fig. 3.7. The figure shows that from a set of training images a shape space and

a appearance space are built and combined in a AAM framework to produce a

mean model. Given a new test image, the mean model with the knowledge of the

optimization space segments the prostate from test image.
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(a) (b) (c)

(d) (e)

Figure 3.6: Log-Gabor filter in the frequency and spatial domain. (a) The filter in
frequency domain, (b) even part of the filter in spatial domain, (c) odd part of the
filter in spatial domain, (d)prostate Image, (e) and its phase response of quadrature
filter pairs.

Fitting of a new instance is computationally expensive. However, fitting time

improves with the reduction of difference between the target and the mean model.

Contrast invariant representation of our appearance model reduces the texture differ-

ence between the mean model and the target images. This facilitates improvement

of fitting time of the mean model to the target image. The work flow requires

additional time to transform the image into a new representation. The computa-

tional complexity involved with traditional AAM is [30] is O(n). Inside a single

loop the differences between the mean model and the target image are computed

and corresponding pose parameters are determined using Eq. 3.5. Introduction of

quadrature filter introduces a nested loop that increases computational complexity

to O(n2). However, the benefit of acquiring a contrast invariant representation of

the prostate texture outweigh this additional time requirement. This will be shown

in the experimental evaluation.

The multi-resolution functioning of the model is illustrated in Fig. 3.8. The

mean model is manually initialized in the lowest scale as observed in Fig. (a)
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Figure 3.7: Schematic representation of our approach. The final segmentation is
given in red contour and ground truth in green. Abbreviations used AAM = Ac-
tive Appearance Model, PDM = Point Distribution Model, GPA = Generalized
Procrustes Analysis.

and segmentation is performed from coarse to fine resolution as observed in Fig.

(b), (c), (d) and (e). The mean model is initialized by clicking in any position

close to the center of the prostate decided on visual inspection. The mean model

initialization and subsequent multi-resolution segmentations are produced based on

the local phase estimation from quadrature filters. The semi-automatic model is

accurate and robust, however manual intervention is necessary in initialization of the

model. Considering the objective of the PROSCAN project as discussed in Chapter

1 an automatic and accurate 2D segmentation method for the prostate is necessary.

In the next section we propose a soft classification of the prostate in a supervised

learning framework that facilitates automatic initialization and propagation of the
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(a) (b) (c)

(d) (e)

Figure 3.8: Multi-resolution functioning of the model (a) Initialization of the mean
model (black contour) (b) level 4 segmentation result, (c) level 3 segmentation result,
(d) level 2 segmentation result, (e) final segmentation result. Ground truth shown
with white contour while the black contour shows the segmentation achieved.

model.

3.4 Probability theoretic approach to appearance

model

In Section 3.2.2 we have discussed the difficulties in building an accurate appear-

ance model in the presence of imaging artifacts and contrast variations. In Section

3.3 we proposed a novel appearance model built from contrast invariant local phase

information of quadrature filter. However the model is semi-automatic as manual

initialization is necessary. In this section we discuss a novel prostate segmenta-

tion method in which appearance and spatial context based information from the

training images are used in a supervised learning schema to achieve a probabilistic

classification of the prostate. Subsequently intensities are substituted with posterior

probabilities to reduce inter dataset contrast variations and the appearance model is
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built from PCA of the posterior probabilities of the prostate region. Soft classifica-

tion of the prostate facilitates automatic initialization and propagation of the model

in a multiresolution framework. We present our supervised learning framework of

random forest in the next section.

3.4.1 Random forest based probabilistic classification

Decision trees are discriminative classifiers which are known to suffer from over-

fitting. However, a random decision forest or random forest achieves better gener-

alization by growing an ensemble of many independent decision trees on a random

subset of the training data and by randomizing the features made available at each

node during training [52]. During training, to minimize the pose and intensity

variations, our datasets are rigidly aligned and the inter-patient intensity variations

are normalized. The data consists of a collection of V = (X,F ), each centered at

3 × 3 neighborhood of pixels, where, X = (x, y) denotes the pixel position and the

feature vector F constitutes of the mean and standard deviation of the 3 × 3 pixel

neighborhood. Each tree τi in random forest receives the full set V , along with

the label and the root node and selects a test to split V into two subsets to max-

imize the information gain. A test constitutes of a feature and a feature response

threshold. The left and the right child nodes receive their respective subsets of V

and the process is repeated at each child node to grow the next level of the tree.

Growth is terminated when either the information gain is minimum or the tree has

grown to a maximum depth specified. Each decision tree in the forest is unique as

each tree node selects a random subset of features and threshold. During testing,

the test image is rigidly aligned to the same frame of the training datasets and its

intensities are normalized. The pixels are routed to one leaf in each tree by apply-

ing the test (selected during training). Each pixel of the test dataset is propagated

through all the trees by successive application of the relevant binary test to deter-

mine the probability of belonging to class c. When reaching a leaf node lτ , where

τ ∈ [1...,Γ] (where Γ represents the last tree) the posterior probabilities (Pτ (c|V ))

are gathered in order to compute the final posterior probability of the pixel de-

fined by P (c|V ) = 1
Γ

∑Γ
τ=1 Pτ (c|V ). Computation of class posterior probabilities in

random forest is illustrated in Fig. 3.9.
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(a)

(b)

Figure 3.9: Random forest classification framework (a) Random forest training (b)
Random forest classification with a test image.

In our automatic prostate segmentation model, the statistical shape and appear-

ance models are derived from PCA of prostate shape and posterior probability values

of the prostate region. The shape model is built using Eq. 3.1, the appearance model

is built using Eq. 3.2 and the combined model is built using Eq. 3.3. We adopt a

similar off-line optimization framework as discussed in Section 3.2. However in con-

trast to traditional shape and appearance model of [30] and our shape and texture

model as discussed in Section 3.3 we use posterior probability of the prostate region

determined from random forest classification to build, initialize and propagate our

model. The proposed schema of our method is illustrated in Fig. 3.10.

The automatic model for prostate segmentation produces good segmentation

accuracies. However with larger variabilities in shape and appearance parameters

segmentation accuracies of the model decreases. As discussed in Section 3.2.2, with

larger datasets inter-patient prostate shape and size varies significantly and a single

Gaussian model representation of the shape space introduces segmentation inac-
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Figure 3.10: Schematic representation of our approach. The final segmentation
is given in red contour and ground truth in green. Abbreviations used AAM =
Active Appearance Model, PDM = Point Distribution Model, GPA = Generalized
Procrustes Analysis.

curacies. Furthermore the offline optimization framework of statistical shape and

appearance model assumes a linear relationship between the change in appearance

space and change in the pose parameters as observed in Eq. 3.5. However, the linear

relationship holds within a small window of deviation of the pose parameters. Hence

large scale deviation of the pose parameters away from the Gaussian space produce

erroneous results. In order to improve on segmentation accuracies we propose to use

multiple mean models of shape and appearance parameters to segment the prostate.

The framework of multiple mean models of shape and appearance parameters is

discussed in the next section.
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3.5 Multiple mean models

Traditionally a statistical shape and appearance model assumes the shape and the

appearance spaces to be Gaussian. However in real cases, inter-patient prostate

intensity distribution, prostate shapes and sizes may vary significantly. In such

circumstances, a single mean model is inefficient to capture the variations of shape

and appearance spaces and it would be inappropriate to approximate them with a

single Gaussian distribution. To better approximate the Gaussian space of shape

and appearance we propose to use multiple mean Gaussian models of shape and

texture. The approach is motivated by central limit theorem which states that

a non Gaussian distribution can be better approximated with multiple Gaussian

distribution [73].

We adopt manual and spectral clustering of the shape and appearance vectors

to group similar prostates together to build multiple mean models to improve on

segmentation accuracies. We present the schema of manual clustering next followed

by automatic spectral clustering to group similar prostates together.

3.5.1 Manual clustering

The process of manual clustering and building multiple mean models is as follows;

we have 23 datasets that we want to cluster depending on similar shape and ap-

pearance parameters. Initially the 1st dataset is chosen as the reference to register

datasets 3 to 23 to produce a mean model of shape and texture. This mean model is

used to test dataset 2. The sum of squared difference of the posterior probabilities

between the mean model and dataset 2 is recorded as fitting error after the final

segmentation. Likewise, with the fixed reference (dataset 1), we build the second

mean model registering datasets 2 and 4-23 to test on dataset 3 and record the

fitting error. The process is repeated for all datasets from 4-23. This provides 22

model fitting errors for the test datasets with dataset 1 as reference (Fig. 3.11).

Consequently, the reference dataset is changed from 2 through 23 and the entire

process is repeated for all the datasets (23 in total). The entire procedure yields

23 graphs of model fitting errors (one for each dataset). We have analyzed these

23 model fitting error graphs and have observed that with less fitting error (< 2000

units, where units signifies the sum of squared differences of the probability values of
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Figure 3.11: Mean models fitting errors for with dataset 1 as reference.

the prostate region between the mean model and the target image) we have higher

accuracy in segmentation (in terms of Dice similarity coefficient, mean absolute dis-

tance etc.). This is not surprising considering the fact that the objective function

of our optimization framework tries to minimize the fitting error between the mean

model and target image with respect to the pose parameters. Hence, an increase

in fitting error indicates a reduction in segmentation accuracies. An empirical er-

ror value is determined from these graphs, above which, the segmentation accuracy

is reduced (in our case the threshold value is 1700 units). The reference dataset

that has a fitting error less than the empirical value for maximum number of test

datasets is identified (dataset 1 in our case). The datasets below this fitting error are

grouped together (datasets 1, 6, 8, 10, 15 and 21(Fig. 3.11)) and are removed from

further grouping. The process is repeated until all the datasets are grouped. These

groups of datasets provide individual mean models. However, increasing the num-

ber of mean models (decreasing the fitting error threshold) improves segmentation

accuracy with additional computational time in a sequential execution framework.

Hence, the choice of optimum number of mean models depends on the segmentation

accuracy and computational time requirement of the process.

Manual clustering of similar prostates together improves segmentation accuracies

as observed in Section 3.7. However the process of building multiple mean models is

time consuming and demands a high degree of manual intervention and fine tuning

of the fitting error parameter. In order to facilitate automatic clustering of simi-

lar prostate together we propose to use spectral clustering of combined shape and

appearance vector as explained in next section.
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3.5.2 Spectral clustering

The objective of clustering is to employ a grouping scheme that considers the

prostates with similar shape and appearance parameters to build a set of mean

models and produce an accurate optimization space. Furthermore, the number of

mean models should change dynamically depending on combined shape and appear-

ance parameters of the training datasets. To address both the issues, we propose to

use spectral clustering in the combined space of shape and appearance parameters.

Spectral clustering relies on the eigen structure of a similarity matrix to par-

tition points into disjoint clusters with high intra-cluster similarity and also high

inter-cluster dissimilarity. Moreover, the number of clusters could be determined

dynamically from the principal components in the eigen space. During training,

the combined shape and appearance eigenvectors are obtained by Eq. (3.2) and

Eq. (3.3). Cosine similarities of the combined vectors of P eigenvectors are used

to construct a P × P similarity or affinity matrix W that measures the similarity

between the P points. Wi,j is large when the points indexed by i and j are likely to

be in the same cluster. The problem may be defined in terms of a complete graph

with vertices υ = 1, ...,P and an affinity matrix with weights Wi,j, for i, j ∈ υ. The

objective is to determine K disjoint clusters A = (Ak)k∈1,....,K , where
⋃

k Ak = υ,

that optimizes the cost function of K−way normalized cut defined as,

C(A,W) =
K∑
k=1

⎛⎝ ∑
i∈Ak,j∈υ\Ak

Wi,j

⎞⎠ /

( ∑
i∈Ak,j∈υ

Wi,j

)
(3.21)

The K−way normalized cut C(A,W) may be simplified as D−1/2WD−1/2 where

D = diag(W) [10]. The algorithm may be summarized as,

1. Input:Similarity matrix W ∈ R
P×P

2. Compute first k eigenvectors of D−1/2WD−1/2 where D = diag(W) to build

the matrix U .

3. Re-normalize the matrix U .

4. Perform k-means clustering on the normalized U .
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Figure 3.12: Illustration of spectral clustering.

5. Output: Similar disjoint clusters k.

The number of clusters k is determined by the number of the largest k-eigen vectors

(obtained from 98% of total variations) of the normalized Laplacian C(A,W) of the

affinity matrix. The k-means clustering therefore groups the similar prostates to

form k mean models. The process of spectral clustering is illustrated in Fig. 3.12.

During validation, the test dataset is removed and multiple mean models are

built with the aid of spectral clustering. Given the test dataset all mean models are

applied to segment the images. Pixel wise posterior probability differences between

the mean models and the test image is recorded as fitting errors. The mean model

producing the least fitting error after deformation is considered as the achieved

segmentation. The proposed schema of our method is illustrated in Fig. 3.13. As

observed in Fig. 3.13 we build a similarity matrix of combined shape and appearance

vectorW and use k-mean clustering of the similarity space to group similar prostates

together.

The problem of non-Gaussian shape space has been discussed by Cootes et al.

in their work in [32]. The authors state ASM cannot accommodate non-linear varia-

tions of the mean shape and often non-linear PCA is adopted to solve the problem.

However non-linear PCA assumes that a plausible shape may be generated by vary-

ing weight vector associated with eigen vectors in a non linear space which is not

true always. Cootes et al. adopted a Gaussian mixture modeling for the shape space

and used expectation maximization based clustering to generate different Gaussian

shapes. Like ASM a mean shape was placed on the image and the landmarks were

displaced to a better position depending on the edge information. However the

model shape and the pose parameters were updated depending on the probability
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Figure 3.13: Schematic representation of our approach. The final segmentation is
given in black contour and ground truth in white. Abbreviations used AAM =
Active Appearance Model, PDM = Point Distribution Model, GPA = Generalized
Procrustes Analysis.

threshold value of the landmarks determined for the different Gaussian. Zhu et

al. [156] built a Gaussian mixture model for the landmark profiles to find the op-

timal placement of the landmark. The optimal position was determined from the

maximum probability value determined in a Gaussian mixture model framework.

Our approach significantly differs from both the works [32, 156]. One major

problem of using an expectation maximization framework to approximate the shape

and the appearance space is that the number of Gaussian distributions required to

approximate the two is difficult to determine automatically. Cootes et al. proposed

to use small number of Gaussian distribution to approximate the shape space. How-

ever by fixing the number of Gaussian distribution we tune our method according

to the available training datasets that reduces the generalization capability of the

model. In our model the number of Gaussian components is determined automati-

cally with spectral clustering. The number of Gaussian components varies depending

on the variability of the dataset. This makes the model more generic and new train-
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ing dataset could be easily incorporated in our framework to build multiple mean

models. Furthermore, we perform spectral clustering on both shape and appearance

parameters to build multiple Gaussian combined models which is very different from

the approach of Cootes et al. where multiple Gaussians are developed from shape

probability distribution and Zhu et al. where landmark profile intensity distribution

is used to determine the optimal landmark position in a Gaussian mixture model

framework. Furthermore, unlike [32, 156] we use similarity space of our combined

shape and appearance vector to build multiple models.

In all our previous models we have explored the use of explicit active contour

models to segment the prostate. However, the use of explicit active contour models

reduces contour accuracies as depending on deformation of such particle based active

contours corners may appear or the particles may come close and finally collapse. In

order to improve on contour accuracies we propose an implicit active contour model

based on variational model and Mumford-Shah energy minimization framework in

the next section.

3.6 Mumford-Shah energy minimization

In this Section we propose a variational model driven by Mumford-Shah (MS) func-

tional [101] for segmenting the prostate in TRUS images. According to MS func-

tional an image is modeled as piece wise smooth function and energy is minimized

by penalizing the distance between the image and the model, lack of smoothness

within a region and the length of boundaries of a region.

In our case a parametric representation of the implicit curve is derived from

principal component analysis (PCA) of the signed distance functions (SDFs) of the

labeled training data to impose shape prior. Posterior probability of the prostate re-

gion determined from random forest classification facilitates initialization and prop-

agation of our model in a MS energy minimization framework. The parameters of

the evolving curve are determined from minimization of region and contour based

energy as proposed in [21]. The proposed method is developed on two major com-

ponents: A) supervised learning framework of random forest to determine posterior

probability of a pixel being prostate, and B) adapting implicit shape, boundary and

intensity prior model of [21] to incorporate the posterior probabilities of the prostate
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region for initialization and evolution of the implicit curve.

In TRUS images prostate region have a heterogeneous intensity distribution and

depending on the acquisition parameters the region based statics (mean and stan-

dard deviation) of the prostate may not significantly vary from the background.

Moreover, shadow artifacts and speckle may adversely affect the region based statis-

tics (determined from intensities) of the prostate and the background. Significant

separation of the intensities of the prostate and the background is essential for MS

energy minimization framework. Moreover, inaccurate region based statistics of the

prostate and the background adversely affect levelsets propagation and hence seg-

mentation accuracies. Therefore, to reduce intensity variations inside the prostate

region, and significantly separate the intensities of the prostate and the background

we propose to determine the posterior probability of the image pixels being prostate

in a supervised learning framework of random forest and substitute intensities with

probabilities to achieve a better representation of the prostate and the background

as discussed in Section 3.4.1.

The problem of segmenting the prostate using a shape prior, and global and local

image information could be resolved by minimizing,

F = Fshape + Fregion + Fboundary (3.22)

The process of building the shape model of the prostate starts with the alignment of

n segmented prostate images of the training set with intensity based affine registra-

tion to minimize pose differences. The boundaries of each of the n aligned prostates

are embedded as the zero levelset of n separate SDFs Ψ with negative distances

assigned to the inside and positive distance assigned to the outside of the prostate

boundary. The mean levelset function of the prostate is computed from the aver-

age of these n SDFs, Φ = 1/n
∑n

i=1 Ψi. Contour alignment and the computation

of the mean levelset is illustrated in Fig. 3.14. To extract the shape variations

of the prostates Φ is subtracted from each of the n SDFs to create n mean-offset

functions Ψ̃. Each 2D mean-offset Ψ̃i is reshaped into a column vector. Then the

shape variability matrix of n prostates is given by S =
[
ψ̃1, ψ̃2, ...., ψ̃n

]
. PCA of S

yields the sorted matrix of principal components Wk (k is 98% of the total shape

variations) and a vector of eigen coefficients xpca. Finally the shape model is given
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(a) (b)

Figure 3.14: (a) The aligned contours of the training prostate images. (b) SDFs of
the aligned training dataset with black contour showing the mean shape.

as φ̂ = Φ+Wkxpca. The shape model is illustrated in Fig. 3.15.

The energy associated with the shape term may be given as,

Fshape =

∮ 1

0

φ̂2 (xpca, hxT
(C (q)))

∣∣∣C ′
(q)
∣∣∣ dq, (3.23)

where φ̂2 (xpca, hxT
(C (q))) = φ̂2 (xpca, C (q)) ≈

∣∣∣Ĉxpca − C (q)
∣∣∣2

C is the active contour at point q, xpca is the vector of eigen coefficients and hxT
is an

element of a group of geometric transformation parameterized by xT the geometric

transformation matrix. This essentially evaluates the shape difference between the

contour C and the zero levelset Ĉ of the shape function φ̂ as shown in Fig. 3.16.

By minimizing this energy we restrict the levelset evolution to follow prostate shape

prior.

As discussed in Section 3.4.1, intensity of the image is substituted with posterior

probabilities obtained with random forest. According to Chan and Vese [23] MS

functional model the curve parameters were determined from minimization of region

based energy given by,

Ecv =

∫
Ru

(I − κ)2dA+

∫
Rv

(I − γ)2dA (3.24)

Evolution of the curve ensured segmentation of the image into two region u and

v with mean intensities κ and γ without any specific shape. In our model, the MS
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(a) (b) (c) (d)

(e) −2λ1 (f) Mean (g) +2λ1

Figure 3.15: (a), (b), (c), and (d) show the first four primary eigenmodes of vari-
ations of the prostate. (f) Shows the mean shape (black contour) Φ and (e) and
(g) represent the variance in mean shape (black contour) with Φ± 2λ1 given by the
magenta contour.

functional of [23] is modified to incorporate shape prior. The region based energy

term as a function of the shape φ̂ is given as,

Fregion =

∫
Ω

ΘinH
(
φ̂ (xpca, xT )

)
dΩ (3.25)

+

∫
Ω

ΘoutH
(
−φ̂ (xpca, xT )

)
dΩ

where H (.) is the Heaviside function and Θr = |I − μr|2 + μ |	μr|2 and μ is the

mean r = in or out of the prostate shape prior. Gradient descent minimization of

the energy term aids in determining the shape xpca and the pose parameters xT of

the evolving curve to drive the shape model towards a homogeneous intensity region

with the shape of interest. However, the model cannot handle local deformation

like irregular boundaries of the prostate. Hence a new energy term is introduced as

Fboundary that aids in capturing the local edge variations around the global shape
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Figure 3.16: Illustration of shape function φ̂(xpca, C(q)). The green contour gives
the shape model and the red contour shows the evolving contour. The objective is
to minimize the distance between the evolving contour and the shape model.

variations. Local edge information is captured by the energy term given as,

Fboundary =

∮ 1

0

g (|	I (C (q))|)
∣∣∣C ′

(q)
∣∣∣ dq (3.26)

where g (·) is a Gaussian kernel applied on the image gradient (∇I). The energy

function F of Eq. (3.22) is minimized using the gradient descent optimization. In

Fig. 3.17 we illustrate the working principle of the model.

3.7 Experimental results

3.7.1 Datasets

The TRUS images were acquired using a 6.5 MHz side-ring probe with SIEMENS

Allegra and TOSHIBA Xario machines. We have validated the accuracy and ro-

bustness of our method with 46 axial mid gland TRUS images of the prostate with

a resolution of 348×237 pixels from 23 prostate datasets in a leave-one-patient-out

evaluation strategy. As reported by Pathak et al. [106] and Gong et al. [58] the

mid gland mean segmentation inter observer variability may range from 3.71±1.81

mm [106] to 1.82±1.44 mm [58]. Therefore, for the evaluation of our experiment

the ground truth was developed in a manner very similar to that of the MICCAI

prostate challenge 2009 [96], where manual segmentations performed by an expert

radiologist were validated by an experienced urologist. Both doctors have over 15

years of experience in dealing with prostate anatomy, prostate segmentation, and

ultrasound guided biopsies.
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(a) (b) (c)

(d) (e) (f)

Figure 3.17: Illustration of working of our model. (a) is the image to be segmented,
(b) random forest classification, (c) contour energy, (d) region based energy, (e)
shows the initial levelsets (red contour) with SDFs and (f) segmentation with our
model.

3.7.2 Results

As discussed in Chapter 2 no single evaluation measure has become standard in

evaluating prostate segmentation algorithms. To validate our 2D prostate segmen-

tation methods we have used the most popular prostate segmentation evaluation

metrics like Dice Similarity Coefficient (DSC) [36], 95% Hausdorff Distance (HD)

[14], Mean Absolute Distance (MAD) [146], specificity [35], and sensitivity [11].

We have compared our results achieved with statistical shape and texture model

of quadrature phase information (SSTM), statistical shape and probability prior

model (RF-AAM), multiple mean models with manual clustering (RF-AAM-Mult1)

and with spectral clustering (RF-AAM-Mult2), implicit shape and probability prior

model (RF-Impl), with the traditional AAM proposed by Cootes [30]. For the

random forest based classification, we have fixed the number of trees to 100, the tree

depth to 30 and the lower bound of information gain to 10−7. These parameters

were chosen empirically as they produced promising results with the test images.
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Table 3.1: Prostate segmentation quantitative comparison (HD, and MAD in mm,
Spec., and Sens. are for Specificity and Sensitivity respectively. Time is given in
seconds.) Statistically significant values are italicized

Method DSC HD MAD Spec. Sens. Time
AAM
[30]

0.94±0.03 4.92±0.96 2.15±0.94 0.89±0.03 0.99±0.01 1.51±0.07

SSTM 0.95±0.02 3.82±0.88 1.26±0.51 0.94±0.03 0.978±0.02 1.30±0.03
RF-
AAM

0.95±0.06 3.76±2.03 1.40±0.91 0.93±0.41 0.97±0.02 0.67±0.02

RF-
AAM-
Mult1

0.97±0.01 1.78±0.73 0.49±0.20 0.95±0.01 0.99±0.00 0.67±0.02

RF-
AAM-
Mult2

0.96±0.01 2.51±0.93 0.84±0.31 0.94±0.02 0.99±0.01 0.67±0.02

RF-
Impl

0.97±0.01 1.73±0.24 0.42±0.09 0.95±0.02 0.99±0.00 103.66±2.55

For building multiple mean models, during validation, the test dataset is re-

moved and multiple mean models are built with the aid of manual and spectral

clustering. The number of mean models varied between 5 to 7 depending on the

training datasets. Given an image of the test dataset, the image is classified with

random forest and all the mean models are initialized at the center of gravity of

the classified region (as prostate) to segment the prostate in parallel. Fitting or

registration errors between the mean models after final deformation and the test

image are computed by normalizing the pixel-wise intensity differences. Finally, the

segmentation by the mean model that provided the least fitting error is selected as

optimum segmentation.

Table 3.1 shows the comparison of different methods. In general, our models

performs better than the traditional AAM. This could be attributed to the fact that

incorporating a better representation of the underlying prostate texture compared to

raw intensities in AAM improves segmentation accuracy. Incorporating local phase

information from log-Gabor quadrature filters improves the overlap and contour ac-

curacy of our SSTM model compared to traditional AAM. However use of posterior
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probability facilitates automatic initialization and improvement of contour and over-

lap accuracy as could be observed in RF-AAM. The model is further improved with

multiple mean models as could be observed from the results of RF-AAM-Mult1 and

RF-AAM-Mult2. However considering generic and automatic nature of multiple

mean models with spectral clustering, the automatic model is preferred over manual

clustering model of RF-AAM-Mult1 even though manual clustering provides better

segmentation accuracies. Finally, the use of implicit shape and appearance prior

model improves on segmentation accuracy of RF-AAM-Mult.

Overlap accuracy computed from DSC has comparable values between tradi-

tional AAM, and SSTM. Two-tailed paired t-tests [56] were performed to identify

whether there were statistically significant differences between the methods in terms

of accuracies. SSTM model has a statistically significant improvement in t-test for

MAD with p = 0.0002 compared to traditional AAM. Comparing the Hausdorff

distance, SSTM model achieves statistically significant p = 0.0001 compared to the

traditional AAM. It is to be noted that a high DSC value and contour accuracy

metrics like HD and MAD are all equally important in determining the segmenta-

tion accuracy of an algorithm. In this context we may claim that the segmentation

accuracy of SSTM is superior to AAM.

Comparing AAM and SSTM with RF-AAM model we find that the use of poste-

rior probabilities improves contour and overlap accuracy compared to AAM however

we achieve similar contour and overlap accuracy value compared to SSTM. Compar-

ing RF-AAM-Mult1 and RF-AAM-Mult2 with AAM, SSTM, and RF-AAM we find

that the use of both posterior probabilities and multiple mean models significantly

improves overlap and contour accuracies. We achieved a statistically significant im-

provement in t-test p-value<0.0001 for DSC, HD and MAD compared to traditional

AAM, SSTM and RF-AAM.

In the two models RF-AAM-Mult1 and RF-AAM-Mult2 we adopt clustering

approach to build multiple Gaussian models of shape and appearance. However the

approach adopted is very different as explained in Section 3.5.1 and 3.5.2. In manual

clustering we use registration error or fitting error threshold of a mean model to a

test image to group prostates. In spectral clustering we use similarity measure of

shape and appearance vectors to cluster the prostates. The resulting cluster of the

two methods were different. This is due to the fact that in RF-AAM-Mult1 we
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consider the Gaussian space within which the model varies to find the registration

error. In RF-AAM-Mult2 we assume that there are multiple Gaussians of combined

shape and appearance vectors and try to build a model for each. To have a better

idea of the manual clustering we remove dataset 23 as a test dataset and cluster

remaining 22 datasets (1-22 datasets) using the method described in Section 3.5.1.

The graphs for each of the five groups are displayed in Fig. 3.18.

Hence according to the manual clustering schema the five groups are; Group 1

- 1,6,8,10,15,and 21, Group 2 - 2,14, and 17, Group 3 - 4,7,13, and 19, Group 4

- 3,5,20, and 22 and Group 5 - 9,11,12,16, and 18. Performing spectral clustering

with the same 22 datasets we observe the group changes. The grouping with spectral

clustering is given as Group 1 - 2,5,12,14, and 17, Group 2 - 13,15,16,18, and 19,

Group 3 - 3,6,8,9,20,22, Group 4 - 1 and 7, Group 5 - 10 and 21 and Group 6 - 4

and 11. This explains why we have different results in Table 3.1 for the two models

RF-AAM-Mult1 and RF-AAM-Mult2.

Comparing our RF-Impl with AAM, SSTM, RF-AAM and RF-AAM-Mult2 we

observe that use of implicit shape and appearance prior model significantly improve

overlap and contour accuracies and a statistically significant improvement in t-test

p-value<0.0001 for DSC, HD and MAD is achieved compared to traditional AAM,

SSTM, RF-AAM, RF-AAM-Mult1 and RF-AAM-Mult2.

All the methods compared in Table 3.1 are implemented in Matlab 7 on an Intel

Core i5, 2.8 GHz processor and 8 GB RAM. The mean segmentation time of SSTM

is 1.30±0.03 seconds, compared to 1.51±0.07 seconds of traditional AAM. The fit-

ting of a new instance is computationally expensive in AAM. However, fitting time

improves with the reduction in difference between the target and the mean model

and this is observed when we compare the computational time of AAM and SSTM.

In SSTM contrast invariant texture descriptor of the prostate tissue, the texture

difference between the mean model and the target images will be considerably less.

This facilitates improvement of fitting time of the model to the target image. The

work flow requires additional time to transform the image into a new representation.

However, the benefit of acquiring a contrast-invariant representation of the prostate

texture outweighs this additional time requirement. However the best segmentation

time is achieved with random forest based statistical shape and appearance model

(RF-AAM, RF-AAM-Mult1 and RF-AAM-Mult2). With Matlab we achieve a mean
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(a) (b)

(c) (d)

(e)

Figure 3.18: Manual clustering fitting error graph for the 5 groups. The green
datapoint denotes the group members and the red datapoints denotes the datasets
that was not considered as they were already grouped. For example in (b) dataset
1,6,8,10,15, and 21 are denoted with red datapoints as they were grouped in group 1
as shown in (a). The datasets that are grouped for group 2 are 2,14, and 17 denoted
with a green datapoints.
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(a) (b) (c)

Figure 3.19: (a) Artifacts in TRUS image of the prostate, A=Low SNR, B=Micro
Calcification, C=Intensity heterogeneity inside prostate, D=Speckle Noise. (b) Man-
ual initialization of the mean model, (c) Final segmentation result. White contour
ground truth and black contour is the segmentation achieved.

segmentation time of 0.67±0.02 seconds and we believe this could be improved fur-

ther with C++ coding to make segmentation possible in near real time. The overlap

and contour accuracies of RF-Impl model comes at a price of increased computa-

tional time. The mean segmentation time of the RF-Impl model is 103.66±2.55

seconds which makes the model unsuitable for near real time procedures. However

the improved segmentation accuracies imply that the model is well suited for off-line

automatic and accurate prostate segmentation in TRUS images.

The robustness of the SSTM against low SNR, intensity heterogeneities, speckle

noise and micro-calcification is illustrated in Fig. 3.19 where our proposed model

successfully avoids the artifact and segments the prostate with an accuracy of 97%.

In Fig. 3.20 we illustrate the necessity of a deformable model based segmentation

after random forest classification. We observe that random forest classification of

Fig. 3.20(a) and Fig. 3.20(d) produces mis-classified regions in Fig. 3.20(b) and

3.20(e). Our statistical shape and probability prior models working on initial seg-

mentation improve segmentation accuracies as observed in Fig. 3.20(c) and 3.20(f).

Qualitative improvement in segmentation accuracy of RF-AAM-Mult compared

to RF-AAM is illustrated in Fig. 3.21 for two datasets. In Fig. 3.21, we observe

that segmentation accuracy of our model with spectral clustering (in Fig. 3.21(b)

and Fig. 3.21(d)) is better compared to RF-AAM (in Fig. 3.21(a) and Fig. 3.21(c)).
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(a) (b) (c)

(d) (e) (f)

Figure 3.20: Illustration of the requirement of shape and probability prior model.
(a) and (d) are the images to be segmented, (b) and (e) show the random forest
classification with mis-classified regions and (c) and (f) show the final segmentation
achieved.

(a) (b)

(c) (d)

Figure 3.21: Improvement in segmentation accuracies with spectral clustering and
multiple mean models. (b) and (d) show segmentation with, and (a) and (c) show
segmentation without multiple mean models.
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Figure 3.22: The green contour gives the ground truth and the red contour gives
the obtained result. Column 1 shows the results achieved with AAM and column 2
with RF-AAM-Mult model.

In Fig. 3.22 the first column shows the results achieved with AAM [30] and

the second column shows the results achieved with RF-AAM-Mult method. In Fig.

3.23 we compare the performance of different levelsets qualitatively. From Fig. 3.23

we deduce that use of posterior probabilities in MS energy minimization framework

is necessary to improve on prostate segmentation accuracies in TRUS images. To

provide qualitative results of our method we present a subset of results in Fig. 3.24.

The first row shows the results achieved with AAM [30] and the second row shows

the results achieved with RF-Impl model. The method RF-AAM-Mult2 is accurate

however accuracy depends on random forest classification. Mis-classification around

the prostate contour may reduce segmentation accuracies as could be observed in

Fig. 3.25

Ideally a comparison of different state-of-the-art prostate segmentation method-
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(a) (b) (c)

(d) (e) (f)

Figure 3.23: Illustration of working of our model and qualitative results of different
levelsets. (a) is the image to be segmented, (b) shows the initial levelsets (red con-
tour) with SDFs, (c) segmentation with our model, (d) segmentation with levelsets
[23], (e) segmentation with levelset [23] on posteriors, (f) segmentation with levelsets
[21] on intensity. In (c), (d), (a), and (f) green contour is the ground truth and red
contour is the obtained segmentation.

ologies on our dataset should have been done to evaluate the performance of our

method to that of the state-of-the-art. However a quantitative comparison of differ-

ent prostate segmentation methodologies is difficult in absence of a public dataset

and standardized evaluation metrics. Nevertheless, to have an overall qualitative es-

timate of the functioning of our method we have compared with some of the works

in the literature in Table 3.2. Analyzing the results we observe that our mean DSC

value is better compared to area overlap accuracy values of Betrouni et al. [15] and

Ladak et al. [80] and very close to the area overlap error value of Shen et al. [125].

However, it is to be noted that we have used more images compared to [125]. Our

MAD value is comparable to [15], [125], and to [80]. From these observations we

may conclude that qualitatively our method performs well in overlap and contour

accuracy measures.
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Figure 3.24: The green contour gives the ground truth and the red contour gives
the obtained result. Row 1 shows the results achieved with AAM and row 2 shows
results of our model for the corresponding prostates.

Figure 3.25: The green contour gives the ground truth and the red contour gives
the obtained result.

3.8 Discussions

In this chapter we have explored the use of statistical shape and appearance prior

model for prostate segmentation in TRUS images. We have demonstrated that
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Table 3.2: Qualitative comparison of prostate segmentation algorithms. Time is
measured in seconds.

Reference Area Acc. Contour Acc. Datasets Time
Betrouni [15] Overlap

93±0.9%
Dist-3.77±1.3 pxs 10 images 5

Shen [125] Error
3.98±0.97%

Dist-3.2±0.87 pxs 8 images 64

Ladak [80] Accuracy
90.1±3.2%

MAD-4.4±1.8 pxs 117 images -

Cosio [33] - MAD-1.65±0.67
mm

22 images 660

Yan [147] - MAD-2.10±1.02
mm

19 datasets/
301 images

0.3

RF-AAM-
Mult2

DSC 0.96±0.01 MAD-0.84±0.31
mm

23 datasets/
46 images

0.67

RF-Impl DSC 0.97±0.01 MAD-0.42±0.09
mm

23 datasets/
46 images

103.66

the use of contrast invariant texture features improves segmentation accuracies and

reduces segmentation time requirement of the procedure. To facilitate automatic

initialization we adopted a probabilistic modeling of the TRUS images. Image

intensities were substituted with posterior probabilities obtained in a supervised

learning schema of random forest for automatic initialization and propagation of

shape and appearance prior model. Finally we demonstrated that the use of an

implicit shape and appearance prior model improves segmentation accuracies com-

pared to the explicit shape and appearance prior model. However considering fast

prostate segmentation requirement of the PROSCAN project multiple mean mod-

els of shape and posterior probabilities provides an computationally efficient and

accurate method suitable for the purpose.
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Chapter 4

Graph Cut Optimization in a

Stochastic Framework for Prostate

Segmentation in MRI

Variations in inter-patient prostate shape, and size and imaging artifacts in mag-

netic resonance images (MRI) hinders automatic accurate prostate segmentation.

In this chapter we propose a graph cut based energy minimization of the posterior

probabilities for automatic 3D segmentation of the prostate in MRI. A probabilis-

tic classification of the prostate voxels is achieved with a probabilistic atlas and a

random forest based learning framework. The posterior probabilities are combined to

obtain the likelihood of a voxel being prostate. Finally, 3D graph cut in the stochastic

space provides segmentation of the prostate.

4.1 Introduction

Prostate segmentation in MRI facilitates volume estimation, multi-modal image reg-

istration, surgical planing and image guided prostate biopsies. Accuracies and speed

of multimodal image registration could be significantly improved by performing the

image registration on segmented prostates [147]. In our PROSCAN project, as dis-

cussed in Chapter 1, fast and accurate multimodal registration of the prostate is

necessary. In Chapter 3 we have derived different models for automatic prostate

95
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segmentation of the prostate in TRUS images. In this chapter we propose a novel

automatic prostate segmentation method in MRI.

As discussed in Chapter 2, it is observed inter-patient prostate shape, size, defor-

mation and intensity variations along with imaging artifacts challenge 3D automatic

segmentation of the prostate. However, atlas based prostate segmentation methods

have achieved good segmentation accuracies when validated with large number of

MRI datasets [76, 94]. In recent years Li et al. [83] have adopted a supervised

learning approach for prostate segmentation in CT images. Motivated by these

approaches we propose to combine the two approaches to achieve a probabilistic

classification of the prostate voxels. The probabilistic classification is achieved by

the fusion of the posterior probabilities determined with a probabilistic atlas and a

supervised learning framework of random forest. Finally, graph cut based energy

minimization [18] of the posterior probabilities produces the hard 3D segmentation

of the prostate. The proposed method is robust to inter-patient shape, size and

intensity variabilities. The key contributions of this work are:

• Fusion of the posteriors from random forest and probabilistic atlas to achieve

probabilistic classification of the prostate.

• Use of graph cut in the stochastic domain to achieve segmentation of the

prostate.

The performance of our method is compared with some of the works in the literature

[50, 62, 41] that have used the same datasets. The remaining chapter is organized

in the following manner. Section 4.2 provides a description of the datasets used, in

Section 4.3 we discuss our proposed segmentation framework, followed by the results

and discussions in Section 4.4. Finally, the chapter concludes in Section 4.5.

4.2 Datasets

We have validated the accuracy and robustness of our approach with the 15 MRI

public dataset of MICCAI prostate challenge [96] in a leave-one-patient-out valida-

tion strategy. The datasets are axial T2 volumes acquired with fast relaxation fast

spin echo MR imaging. The slice thickness is 4 mm, repetition time of 5100 ms
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Figure 4.1: Schematic representation of our approach. Posteriors from shape re-
stricted random forest classification and probabilistic atlas based segmentation are
combined (

∑
). Graph cut based energy minimization of the combined probabilities

provides the segmentation. The green contour/volume is created from the ground
truth and red contour/volume is created from obtained segmentation.

and echo time of 107.7 ms were acquired with 1.5 Tesla machines. The prostate

images used for the experiment have an average size of 256×256 pixels with a pixel

dimension being 0.2734 mm. Manual segmentations performed by an expert were

validated by another expert to prepare the ground truth.

4.3 Proposed segmentation framework

The proposed method is developed on three major components: 1) Probabilistic

atlas based segmentation, 2) Random forest based probabilistic classification of the

voxels being prostate, and 3) Graph cut based energy minimization of the combined

probabilities. The schema of our proposed method is illustrated in Fig. 4.1.
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4.3.1 Probabilistic atlas

Recently Martin et al. [94] and Dowling et al. [41] have used demon registra-

tion to build atlases that have achieved promising results for prostate segmentation.

Following a similar approach, we use the probabilistic atlas-based segmentation of

the prostate using demons registration [130]. Demons registration computes the

voxel velocities or transformation field between the moving and reference volumes.

The displacement field is computed on a regular grid with one displacement vector

per voxel. The demons energy is computed from the difference of voxel intensities

between the moving and reference volumes. The minimization of the energy gra-

dient provides the corresponding update (U) of a given transformation field (S).

Edge forces of both the moving and reference volumes improve the registration con-

vergence and stability. If M and F represent the moving and reference volumes

respectively, then the voxel velocity u at voxel p with m and f as the respective

voxel intensities is given by Eq. (4.1) and the demons energy E(u) is given by Eq.

(4.2).

u =
(m− f)∇f

|∇f |2 + α(m− f)2
+

(m− f)∇m

|∇m|2 + α(m− f)2
(4.1)

E(u) = ‖F −M ◦ (S + U)‖2 + σ2
i

σ2
x

‖U‖2 . (4.2)

where ∇f and ∇m are the respective intensity gradients and α is a normalization

factor that adjusts the force strength, σ2
i and σ2

x are the constants for intensity and

transformation uncertainties, respectively.

The process of atlas construction begins with alignment of N manually seg-

mented training datasets to a common reference. One among N training datasets is

manually selected by an expert to reduce bias and N − 1 datasets are registered to

the reference dataset. The registration is done in two stages, intensity based affine

registration of N − 1 datasets to the reference dataset is followed by the non-rigid

demons registration. The mean volume is computed by averaging all patient vol-

umes aligned to the reference volume. The probability map is obtained by averaging

the deformed patient volume labels. Given a new patient dataset, the atlas is first

registered to the dataset using affine and demons based registration. Once regis-

tered, the transformation of the atlas probability map determines the probabilistic

segmentation of the new patient dataset given by Pat. Following [76, 62] we man-
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ually select the volume-of-interest encompassing the prostate, the bladder and the

rectum to reduce the computational time.

4.3.2 Random forest based classification in MRI

MRI intensities of the prostate and the background regions are difficult to differ-

entiate. Also the inter-patient intensities inside the prostate region may vary sig-

nificantly depending on the acquisition parameters and imaging artifacts. Such

intensity variations may affect graph cut based energy minimization framework.

Therefore, to reduce the intensity variations and significantly differentiate between

the prostate and the background regions we propose to substitute intensities with

posterior probabilities of a voxel being prostate. Our probabilistic classification

problem is addressed in a supervised learning schema of random decision forest [52]

as proposed, explained and illustrated in Section 3.4.

The training phase begins with the normalization of intensities of the training

volumes of interest and with their rigid alignment to minimize the pose and intensity

variations. The inter-patient intensity variations are linearly normalized between 0

and 1 and we use Evangelidis et al. [42] method for rigid alignment. The data for

training consists of a collection of 3 × 3 × 3 neighborhood of voxels, centered at

V = (X,F ), with X = (x, y, z) denoting the position of the voxel associated with a

feature vector F . The feature vector F consists of the mean and standard deviation

of the 3×3×3 voxel neighborhood. Each tree t in a decision forest of T trees receives

the full data set V along with the label and selects a test to split V into two subsets

to maximize information gain where, a test is a feature response threshold. The left

and the right child nodes receive their respective subsets of V and the process is

repeated at each child node to grow the tree. The growth is terminated if either the

information gain is minimum or the tree has grown to a maximum specified depth.

Each decision tree in the forest is unique as each tree node selects a random subset

of features and threshold.

During testing, the manually selected volume of interest of the test dataset en-

compassing the prostate, the bladder and the rectum with normalized intensities

is rigid aligned to the pre-registered training data. Each voxel of the test dataset

is propagated through all the trees by successive application of the relevant bi-
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nary test to determine the probability of belonging to class c. When reaching a

leaf node lt in all tree with t ∈ [1..., T ], posterior probabilities (Pt(c|V )) are gath-

ered in order to compute the final posterior probability of the voxel defined by

P (c|V ) = 1
T

∑T
t=1 Pt(c|V ). Geremia et al. [52] imposed spatial restriction on the

classified voxels by incorporating spatial information of the voxels obtained from

the atlas. Similarly, to impose probabilistic implicit shape and spatial prior to the

decision forest classification, we obtain a probabilistic shape and spatial prior model

Psp of the prostate by averaging the intensity-based affine registration of the ground

truth obtained from the training datasets. Psp is aligned with the center of the

volume obtained from decision forest classification and the shape and spatial priors

are imposed on the random forest classification by obtaining the likelihood value of

a voxel being prostate as Plk = P (c|V )× Psp.

Probabilistic segmentation of the prostate obtained using a probabilistic atlas

(Pat) is fused with the likelihood values Plk to achieve the final probabilistic classi-

fication of the prostate by Pfn = log (Pat) + log (Plk). Log likelihood minimizes the

effect of error incorporated either from the demon registration or from the random

forest classification.

4.3.3 Graph cut based energy minimization

The segmentation problem may be formulated as maximum a posteriori estimation

of a Markov random field, and could be solved in a graph cut energy minimization

framework [18]. The graph G = 〈V x, ε〉 is defined as a set of voxels V x and a set

of edges ε connecting neighboring voxels where the objective is to compute the best

cut that minimizes the sum of the costs of the edges. Close neighboring voxels have

higher edge costs. Two specially designated terminal nodes Sr (source) and Ta

(sink) that represent the prostate and the background have to be manually selected

by the user. However, we use soft classification of the prostate to automatically

determine Sr and Ta. Typically, the neighboring voxels are interconnected by edges

in a regular grid like structure. The objective of graph cut based energy minimization

is to completely separate the terminals Sr and Ta, thereby segmenting the prostate

from the background. In our model, we build the graph with soft classification

of the voxels and use graph cut over the soft classification to achieve the final 3D
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Figure 4.2: Sr(S) and Ta(T ) terminals are identified automatically from posterior
probabilities. Graph cut based energy minimization in 3D provides the segmenta-
tion.

segmentation of the prostate.

Our model could be formalized as; let a be a voxel and B be the set of all voxels

and xa be 0 or 1 depending on a belonging to the background or the prostate and xc

is the neighbor of xa. Let E
a be the individual voxel matching cost for a; Ea,c vary

inversely with the difference of intensities of voxels a and c. Then the cost function

is given as,

E =
∑
a∈B

Ea(xa) +
∑

(a,c)∈ε
Ea,c(xa, xc) (4.3)

where ε is the set edges of neighboring voxels. The first term represents the cost

information related to data, while the second term represents a smoothness related

cost. Energy E is minimized by max-flow/min-cut based graph cut [18]. Graph cut

based energy minimization is illustrated in Fig. 4.2.

4.4 Experimental Results

4.4.1 Results

During validation, probabilistic atlas and decision forest are build with 14 training

datasets as discussed in sections 4.3.1 and 4.3.2. The number of trees were fixed to

100, tree depth to 30 and the lower bound of information gain to 10−7 in decision

forest as these parameters produced promising results with test images. The features

of random forest were limited to mean and standard deviation of voxels. During

testing, the probabilistic atlas is registered to the test dataset and the probabilistic

labels are transformed to achieve a probabilistic segmentation of the prostate. Next,
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Table 4.1: Prostate segmentation quantitative results
Method DSC HD
Gubern-Merida
[62]

0.79 7.11 mm

Dowling [41] 0.73±0.11 -
Gao [50] 0.82±0.05 10.22±4.03
Our Method 0.91±0.04 4.69±2.62

a probabilistic classification of the voxels is achieved with shape restricted decision

forest and atlas-based segmentation probabilities.

We have used the popular prostate segmentation evaluation metrics like Dice sim-

ilarity coefficient (DSC), and 95% Hausdorff distance (HD) to evaluate our method.

To have an overall quantitative estimate of our performance we have compared our

method with the results published in the MICCAI prostate challenge 2009 [62, 41]

and with the work of Gao et al. [50] in Table 4.1. Please note that [41] used a

probabilistic atlas for their segmentation achiving a DSC value of 0.73; however,

our stochastic framework which combines the probabilities from decision forest and

probabilistic atlas produces better results (DSC 0.91). In fact, statistically signif-

icant improvement in DSC and HD of student P test t-value < 0.0001 has been

achieved compared to [41, 50]. Moreover [50] used shape and local region based

statistics of mean and standard deviation of the voxels to propagate their levelsets

to achieve a deterministic segmentation of the prostate. We use similar features

but employ a stochastic approach and use a MAP-MRF approach to compensate

mis-classifications and achieve better results.

The combined framework of probabilistic atlas and random forest works as the

two approaches produces better results in different zones of the prostate. The proba-

bilistic atlas produces good results in the central region of the prostate while random

forest produces better results in the base and the apex regions. Quantitatively, atlas

based registration produces a DSC of value of 0.74±0.18, random forest produces

a DSC value of 0.78±0.25, with average model refinement of random forest classi-

fication a DSC of 0.81±0.15 is achieved and combining the two probabilities in log

scale produced DSC of 0.87±0.09 is obtained. Graph cut base segmentation further

improves the result to 0.91±0.04 as observed in Table 4.1.
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In Fig. 4.3 we illustrate the results obtained with random forest and probabilistic

atlas for the apex, central and the base slices. From Fig. 4.3 we observe that spatially

constrained random forest produces better results in the base and apex regions of

the prostate compared to probabilistic atlas. However, probabilistic atlas produces

better results in the central region.

In Fig. 4.4 we observe that random forest produces mis-classifications outside

the volume of interest in one of the base slice. However the product of random

forest probability and average model suppress such mis-classifications to improve

classification accuracy.

Qualitative results of our method are presented in Fig. 4.5. In Fig. 4.5 we observe

that our combined framework of probabilistic atlas, random forest and graph cut

optimization approximates the ground truth closely. Prostate segmentation in the

base and the apex regions are fairly difficult due to low contrast images and produces

segmentation errors with atlas based segmentation [94]. However our model that

combines probabilistic atlas with a supervised learning framework of random forest

produces good results as could be observed from the segmentation of the base and

the apex slices.

Ground truth and segmented volume of some more datasets are given in Fig.

4.6. It could be observed from Fig. 4.6 that our model closely approximates the

ground truth volume constructed from the manual segmentations. The inter patient

differences in prostate volumes are once again observed from these datasets.

4.5 Discussions

A novel schema of graph cut based energy minimization in a stochastic domain

obtained with atlas based segmentation and shape constrained decision forest with

the goal of segmenting the prostate in MRI has been proposed. Our method is

robust to significant shape, size and contrast variations in MRI compared to some

existing work in the literature. The proposed method has shown promising results

however the algorithm should be validated with more datasets and feature selection

may improve the probabilistic classification of the random forest.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.3: Spatially constrained random forest produces better results compared to
probabilistic atlas in the base and the apex region of the prostate. However proba-
bilistic atlas produces better results in the central region of the prostate. Form top
to down rows apex, central and base images of prostate. First column original im-
age, second column atlas based segmentation and third column spatially constrained
random forest based segmentation.
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(a) (b)

(c) (d)

Figure 4.4: (a) is one of the base slice. (b) is a random forest classification of the
slice with mis-classifications outside the volume of interest. (c) shows the average
model for the base slice and (d) shows the probabilities obtained by the fusion of
(b) and (c) that reduces mis-classifications.
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Figure 4.5: Subset of segmentation results of 3 datasets. The green contour/volume
is created from the ground truth and red contour/volume is created from obtained
segmentation.
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Figure 4.6: Subset of segmentation results of 6 more datasets. The green volumes
are created from the ground truth and red volumes are created from obtained seg-
mentation of the corresponding volumes.
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Chapter 5

Conclusions

In this last chapter a summary of the thesis is presented. We present our conclusions

and provide insight into future course of research. Besides, a list of the publications

directly related to this thesis is given.

5.1 Summary of the thesis

The primary goal of this thesis was to provide accurate, robust and computationally

efficient algorithms for prostate segmentation in TRUS and MRI since registration

performed on prostate contours significantly reduces computational time and im-

proves registration accuracies [147]. The registration algorithm developed for the

PROSCAN project [98] is more accurate compared to some of the methods avail-

able in literature like B-splines [119] and traditional thin-plate splines [16, 116]. The

method primarily works on binary masks obtained from segmentation of prostate

in TRUS and MRI and hence segmentation of prostate is absolutely necessary for

the registration method. In recent times we have also developed a computationally

efficient version of the registration method that is computationally more efficient

compared to [119, 16, 116]. In this method the deformation parameters of the

thin-plate splines are learnt offline using a training set of TRUS-MRI images and

the resulting deformation models formed by spectral clustering are applied in their

Gaussian spaces to register a new pair of TRUS-MRI images. A detailed study of

this fast registration method can be found in [97].

109
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In the thesis a thorough review of prostate segmentation methods in TRUS and

MRI was carried out. Careful analysis of the methods revealed that shape and

appearance priors in segmentation algorithms improves segmentation accuracies.

Active appearance model (AAM) of Cootes et al. [30] was selected as it combines

shape and appearance prior in a single cost function in the optimization framework.

Further, off-line gradient descent optimization significantly reduces computational

time requirement of the process.

In TRUS images the image quality is adversely affected by speckle and imaging

artifacts. To deal with the challenges we introduced texture features extracted

with Haar wavelets and quadrature filters in AAM to improve on segmentation

accuracies. We demonstrated that the increase in segmentation time of the process

due to the introduction of the filter could be compensated by accurate texture

information from the filters. The new model improved on segmentation accuracies

without significantly increasing the segmentation time requirement of the process.

To facilitate automatic initialization of our model we adopted a probability the-

oretic approach to image modeling. Supervised learning provided a probabilistic

model of the prostate and a new statistical shape and appearance model was de-

veloped in which image intensities in the appearance model was substituted with

the probabilities. Such an approach aided in automatic initialization and improved

segmentation accuracies.

Probabilities obtained from the supervised learning framework were introduced

in Mumford-Shah energy minimization framework of a variational model to improve

on segmentation accuracies further. Parametric representation of the implicit curve

was derived from principal component analysis (PCA) of the signed distance repre-

sentation of the labeled training data to impose shape prior. Posterior probability

of the prostate region facilitated initialization and propagation of our model. The

cost function of the new model developed from implicit shape priors, region based

energy and local topology was minimized to improve segmentation accuracies.

For prostate segmentation in MRI, the same supervised learning framework was

extended for producing a 3D probabilistic representation of the prostate. Posterior

probabilities obtained from the learning framework were combined with probabilities

obtained from atlas based segmentation to produce a initial 3D soft segmentation of

the prostate. The initial soft segmentation was minimized in a graph-cut based en-
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ergy minimization framework to achieve prostate segmentation. The new stochastic

approach to prostate segmentation improved on segmentation accuracies compared

to some of the work in literature.

5.1.1 Contributions

To summarize the major contributions of this thesis are:

• An extensive survey of prostate segmentation methods in TRUS and MRI was

carried out. A new taxonomy for prostate segmentation strategies depend-

ing on theoretic approach to segmentation is proposed and advantages and

drawbacks of each strategy has been pointed out. A discussion on choosing

the most appropriate segmentation strategy for a given imaging modality was

provided along with the quantitative results as reported in literature. We

concluded from our literature review that shape and appearance priors in a

prostate segmentation algorithm improves segmentation accuracies.

• A new statistical shape and texture enhanced appearance model has been

proposed for prostate segmentation in TRUS images. Use of texture features

extracted with Haar wavelets and quadrature filters improves segmentation

accuracies compared to traditional shape and appearance model in leave-one-

patient-out validation framework.

• A new probability theoretic approach to model prostate images in TRUS has

been developed. Posterior probabilities determined in a supervised learning

framework facilitates automatic initialization and evolution of the curve. Be-

sides, multiple mean models automatically determined from spectral clustering

of shape and probability priors significantly improves prostate segmentation

accuracies in TRUS images.

• A new shape an appearance prior variational model has been proposed. Mumford-

Shah energy minimization in stochastic domain improves on prostate segmen-

tation accuracies in TRUS images in leave-one-patient-out validation.

• A new graph cut energy minimization in stochastic domain for prostate seg-

mentation MRI has been proposed. Leave-one-patient-out validation with
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MICCAI prostate challenge database produced significant improvement in seg-

mentation accuracies compared to some of the reviewed methods in literature.

5.2 Further work

Accurate prostate segmentation in TRUS and MRI is a challenging task and the

challenges varies from one imaging modality to another. In this thesis we have

discussed various solutions that have been adopted and described in detail. However,

an important number of ideas remain underdeveloped and needs to be analyzed

and investigated in detail. Future directions for research are organized in three

different blocks: further work to improve segmentation accuracies and improve on

segmentation time requirement, future research directions departing from this thesis,

and technological directions.

5.2.1 Improving segmentation accuracies and time

In this thesis we have demonstrated that incorporating texture information in sta-

tistical shape and appearance model improves segmentation accuracies. However

texture information of the prostate region is unreliable and unpredictable. An inter-

esting direction for research could be the identification of the discriminative features

that identifies the prostate in TRUS and MRI and use of such features in a learning

framework to improve on segmentation accuracies.

We have adopted the supervised learning framework of random forest for a soft

classification of the prostate. However, the use of integral window and incorporating

Haar like features in GPU based parallelization could significantly reduce segmenta-

tion time requirement of the process. Considering that discriminative features could

be identified and used in parallel random forest based classification the requirement

of a deformable model may be entirely removed from the process further reducing

computational time requirement of the prostate segmentation. Treating prostate

segmentation as a tracking problem of prostate contours in consecutive frames using

particle filters would reduce computational cost of the process. Finally, translation

of the entire codes from Matlab to C++ will improve computational time of the

entire process.
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In this thesis we have explored statistical shape and appearance model for prostate

segmentation in TRUS. However, in these models the propagating contour is derived

from linear PCA of shape and appearance parameters. However, use of non-linear

PCA may improve shape and appearance model by better approximating the pri-

mary components of the shape and appearance. Another interesting direction for

research would be the use of independent component analysis (ICA) to de-correlate

the shape and appearance spaces.

5.2.2 Future research lines departing from this thesis

The second group of further work focuses on the development of new research di-

rections stemming from this thesis. We think that primary focus for such research

direction should be the optimization framework adopted for segmentation.

We have focused on three different kind of energy minimization framework for this

thesis. We adopted an off-line gradient descent optimization for prostate segmen-

tation in TRUS to improve on computational time requirement of the process. We

have also explored a Mumford-Shah energy minimization in the variational frame-

work that produces more accurate results for the TRUS images compared to our

previous method but requires additional computational time optimization. Finally,

we have explored graph cut based energy minimization framework for prostate seg-

mentation in MRI to reduce mis-classification by imposing spatial constraints. How-

ever, each of these optimization frameworks could be improved further for instance

adopting a non-linear approach to shape and appearance modeling in off-line gradi-

ent descent optimization may improve shape and the appearance model. Further,

using a sparse representation in variational model may improve computational time

without sacrificing segmentation accuracies. Segmentation accuracies with graph

cut energy minimization could be improved further by introducing a shape prior in

the framework.

5.2.3 Technological further work

The last further direction is the implementation of the proposed algorithms into a

clinical practice to improve the rate of positive biopsies in the PROSCAN project.
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After the implementation of the proposals, we will have a larger database to clinically

test the algorithms. In fact, we expect that using a larger training database will

significantly improve segmentation accuracies considering prior learning of shape

and appearance parameters adopted in the algorithm.

Prostate segmentation is still an open problem and with advancement of tech-

nology for diagnosis, treatment and follow up of prostate diseases new requirements

have to be met. Multimodal image fusion of at least two imaging modalities provides

valuable information. For example, the fusion of MRI and PET imaging should aid

in identifying malignant tissues more accurately. However, for such a method to

work in a real scenario, automatic, accurate and real time fusion of the two imaging

modalities is necessary. Under such circumstances automatic real time segmentation

of the prostate and registration on prostate contours would improve accuracy and

efficiency. Automatic and accurate real time segmentation of the prostate may be

achieved with efficient algorithms designed for graphical processing units. An in-

crease in 3D prostate segmentation methods will be the trend in coming years due to

the increasing use of 3D imaging modalities, where efficient and accurate algorithms

are necessary. In that sense, information from dynamic contrast enhanced MRI,

and MR spectroscopy, will be increasingly used as additional features for automatic

segmentation.

5.3 Related publications

A list of publications of the author for the PhD candidacy is given below, ordered

according to their topic.

Publications related to the prostate segmentation in TRUS:

• [IJCARS 2012] S. Ghose, A. Oliver, R. Mart́ı X. Lladó J. Freixenet, J. Mitra,

J.C. Vilanova, J. Comet, and F. Meriaudeau. Statistical shape and texture

model of quadrature phase information for prostate segmentation. Interna-

tional Journal of Computer Assisted Radiology and Surgery, Volume 7, Issue

1, pp 43-55, Heidelberg, Germany, Springer-Verlag, 2012.

• [IAPR ICPR 2012] S. Ghose, J. Mitra, A. Oliver, R. Mart́ı, X. Lladó, J.

Freixenet, J.C. Vilanova, J. Comet, D. Sidibé and F. Meriaudeau. A Mumford-
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Shah Functional based Variational Model with Contour, Shape, and Probabil-

ity Prior information for Prostate Segmentation. IAPR International Confer-

ence on Pattern Recognition, (accepted), Tsukuba, Japan. August 2012.

• [IEEE EMBC 2012] S. Ghose, J. Mitra, A. Oliver, R. Mart́ı, X. Lladó, J.

Freixenet, J.C. Vilanova, J. Comet, D. Sidibé and F. Meriaudeau. Spectral

Clustering of Shape and Probability Prior Models for Automatic Prostate

Segmentation in Ultrasound Images. IEEE Conference of the Engineering in

Medicine and Biology Society, (accepted), San Diego, California. August 2012.

• [ACIVS 2012] S. Ghose, J. Mitra, A. Oliver, R. Mart́ı, X. Lladó, J. Freixenet,

J.C. Vilanova, J. Comet, D. Sidibé and F. Meriaudeau. A Supervised Learning

Framework for Automatic Prostate Segmentation in Trans Rectal Ultrasound

Images. Advanced Concepts for Intelligent Vision Systems, (accepted), Brno,

Czech Republic. September 2012.

• [IEEE DICTA 2011] S.Ghose, A.Oliver, R.Mart́ı, X.Lladó, J.Freixenet,

J.Mitra, J.C.Vilanova, J.Comet, and F.Meriaudeau. Statistical shape and

probability prior model for automatic prostate segmentation. IEEE Interna-

tional Conference on Digital Image Computing: Techniques and Applications,

pp 340-345. Noosa, Australia. December 2011.

• [MICCAI PCI 2011] S.Ghose, A.Oliver, R.Mart́ı, X.Lladó, J.Freixenet,

J.Mitra, J.C.Vilanova, J.Comet, and F.Meriaudeau. Multiple mean models

of statistical shape and probability priors for automatic prostate segmenta-

tion. MICCAI Workshop on Prostate Cancer Imaging: Computer Aided Di-

agnosis, Prognosis, and Intervention, LNCS 6963, pp 35-46. Toronto, Canada.

September 2011.

• [IEEE ICIP 2011] S.Ghose, A.Oliver, R.Mart́ı, X.Lladó, J.Freixenet, J.C.

Vilanova, and F.Meriaudeau. A probabilistic framework for automatic prostate

segmentation with a statistical model of shape and appearance. IEEE Inter-

national Conference on Image Processing, pp 725-728. Brussels, Belgium.

September 2011.

• [CARS 2011] S.Ghose, A.Oliver, R.Mart́ı, X.Lladó, J.Freixenet, J.C.Vilanova,



116 Chapter 5. Conclusions

F.Meriaudeau, and J.Mitra. Quadrature phase-based statistical shape and ap-

pearance for prostate segmentation. Proceedings of Computer Assisted Radi-

ology and Surgery, Springer, Volume 6, pp. S12-S16, Berlin, Germany. June

2011.

• [SPIE Medical Imaging 2011] S.Ghose, A.Oliver, R.Mart́ı, X.Lladó, J.

Freixenet, J.C.Vilanova, and F.Meriaudeau. Prostate segmentation with local

binary patterns guided active appearance model. SPIE Conference on Medical

Imaging : Image Processing. Proceedings of the SPIE, Volume 7962, pp.

796218-796218-8. Lake Buena Vista, Orlando, Florida. February 2011.

• [MICCAI PCI 2010] S.Ghose, A.Oliver, R.Mart́ı, X.Lladó, J.Freixenet,

J.C.Vilanova, and F.Meriaudeau. Texture guided Active Appearance Model

propagation for prostate segmentation. MICCAI Workshop on Prostate Can-

cer Imaging: Computer Aided Diagnosis, Prognosis, and Intervention, LNCS

6367, pp 111-120. Beijing, China. September 2010.

Publications related to the prostate segmentation in MRI:
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Freixenet, J.C. Vilanova, J. Comet, D. Sidibé and F. Meriaudeau. Graph Cut

Energy Minimization in a Probabilistic Learning Framework for 3D Prostate
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• [IEEE ICIP 2012] S. Ghose, J. Mitra, A. Oliver, R. Mart́ı, X. Lladó, J. Freix-

enet, J. C. Vilanova, D. Sidibé, F. Meriaudeau. A Coupled Schema of Prob-

abilistic Atlas and Statistical Shape and Appearance Model for 3D Prostate

Segmentation in MR Images. International Conference on Image Processing

(ICIP), to appear, San Diego, USA, Sep-Oct, 2012.

• [SPIE Medical Imaging 2012] S. Ghose, A. Oliver, R. Mart́ı, X. Lladó, J.

Freixenet, J.C. Vilanova, and F. Meriaudeau. A hybrid framework of multiple

active appearance models and global registration for 3D prostate segmentation

in MRI . SPIE Conference on Medical Imaging : Image Processing. Proceed-

ings of the SPIE, Volume 8314, pp. 8314S1-8314S9. San Diego, California.

February 2012.
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Active Appearance Model. IEEE International Conference on Signal-Image
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Publications related to the survey of prostate segmentation algorithms:
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feomorphism for multimodal prostate registration. Medical Image Analysis
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Ghose, J.C. Vilanova, and F. Meriaudeau. A non-linear diffeomorphic frame-

work for prostate multimodal registration. IEEE International Conference on

Digital Image Computing: Techniques and Applications, pp 31-36. Noosa,

Australia. December 2011.



Bibliography

[1] Prostate Cancer Statistics - Key Facts.

info.cancerresearchuk.org/cancerstats/types/prostate, accessed on [1st

April, 2011], 2011.

[2] Prostate MRI database. http://prostatemriimagedatabse.com, accessed on

[12th Jan, 2012], 2012.

[3] T. Aach, A. Kaup, and R. Mester. On Texture Local Energy Transform Versus

Quadrature Filters. Signal Processing, 45:173–181, 1995.

[4] R. G. Aarnink, S. D. Pathak, J. J. M. C. H. de la Rosette, F. M. J. Debruyne,

Y. Kim, and H. Wijkstra. Edge Detection in Prostatic Ultrasound Images

Using Integrated Edge Map. Ultrasonics, pages 635–642, 1998.

[5] P. Abolmaesumi and M. Sirouspour. Segmentation of Prostate Contours

from Ultrasound Images. In Proceedings of IEEE International Conference

on Acoustics, Speech, and Signal Processing, pages 517–520, USA, 2004. IEEE

Computer Society Press.

[6] O. Acosta, J. Dowling, G. Cazoulat, A. Simon, O. Salvado, R. de Crevoisier,

and P. Haigron. Atlas based segmentation and mapping of organs at risk from

planning ct for the development of voxel-wise predictive models of toxicity

in prostate radiotherapy. In A. Madabhushi, J. Dowling, P. Yan, A. Fenster,

P. Abolmaesumi, and N. Hata, editors, Prostate Cancer Imaging, volume 6367

of Lecture Notes in Computer Science, pages 42–51. Springer, 2010.

[7] S. T. Acton and N. Ray. Biomedical Image Analysis: Tracking. Morgan and

Claypool Publishers, USA, first edition, 2005.

119



120 Bibliography

[8] P. D. Allen, J. Graham, D. C. Williamson, and C. E. Hutchinson. Differen-

tial Segmentation of the Prostate in MR Images Using Combined 3D Shape

Modelling and Voxel Classification. In 3rd IEEE International Symposium

on Biomedical Imaging: Nano to Macro, pages 410–413, USA, 2006. IEEE

Computer Society Press.

[9] M. Andersson and H. Knutsson. Adaptive Filtering.

www.imt.liu.se/edu/courses/TBMI02, 2010.

[10] F. R. Bach and M. I. Jordan. Learning spectral clustering. In NIPS, 2003.

[11] S. Badiei, S. E. Salcudean, J. Varah, and W. J. Morris. Prostate Segmen-

tation in 2D Ultrasound Images Using Image Warping and Ellipse Fitting.

In R. Larsen, M. Nielsen, and J. Sporring, editors, Medical Image Comput-

ing and Computer-Assisted Intervention - MICCAI, pages 17–24, Berlin and

Heidelberg and New York, 2006. Springer.

[12] I. N. Bankman. Handbook of Medical Image Processing and Analysis. Elsevier,

USA, second edition, 2008.

[13] M. Baumann, M. Bolla, V. Daanen, J.-L. Descotes, J.-Y. Giraud, N. Hungr,

A. Leroy, J.-A. Long, S. Martin, and J. Troccaz. Prosper: image and robot-

guided prostate brachytherapy. CoRR, 2011.

[14] E. Belogay, C. Cabrelli, U. Molter, and R. Shonkwiler. Calculating the haus-

dorff distance between curves. Information Processing Letters, 64:17–22, 1997.

[15] N. Betrouni, M. Vermandel, D. Pasquier, S. Maouche, and J. Rousseau. Seg-

mentation of Abdominal Ultrasound Images of the Prostate Using A priori

Information and an Adapted Noise Filter. Computerized Medical Imaging and

Graphics, 29:43–51, 2005.

[16] F. Bookstein. Principal warps: Thin-plate splines and the decomposition of

deformations. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 11(6):567–589, June 1989.



Bibliography 121

[17] D. Boukerroui, J. A. Noble, and M. Brady. On the Choice of Band-Pass

Quadrature Filters. Journal of Mathematical Imaging and Vision, 21:23–80,

2004.

[18] Y. Boykov and G. Funka-Lea. Graph cuts and efficient n-d image segmenta-

tion. International Journal of Computer Vision, 70(2):109–131, 2006.

[19] Y. Boykov and V. Kolmogorov. An Experimental Comparison of Min-

cut/Max-flow Algorithms for Energy Minimization in Vision. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 26:1124–1137, 2004.

[20] Y. Boykov and O. Veksler. Graph Cuts in Vision and Graphics: Theories

and Applications, In Handbook of Mathematical Models in Computer Vision.

Springer, USA, 2006. Editors: Nikos Paragios and Yunmei Chen and Oliver

D. Faugeras.

[21] X. Bresson, P. Vandergheynst, and J.-P. Thiran. A variational model for

object segmentation using boundary information and shape prior driven by

the mumford-shah functional. International Journal of Computer Vision,

68(2):145–162, 2006.
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