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Abstract

Functional Data Analysis (FDA) deals with samples where a whole function is observed
for each individual. A particular case of FDA is when the observed functions are density
functions, that are also an example of infinite dimensional compositional data. In this
work we compare several methods for dimensionality reduction for this particular type
of data: functional principal components analysis (PCA) with or without a previous
data transformation and multidimensional scaling (MDS) for different inter-densities
distances, one of them taking into account the compositional nature of density func-
tions. The different methods are applied to both artificial and real data (households
income distributions).
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1 Introduction

Observing and saving complete functions as results of random experiments is nowadays possible by
the development of real-time measurement instruments and data storage resources. For instance,
continuous-time clinical monitoring is a common practice today. Ramsay and Silverman (2005)
express it saying that random functions are the statistical atoms in these cases. A particular case
of functional data appears when the observed functions are density functions, that are also an
example of infinite dimensional compositional data (Egozcue, Dı́az-Barrero, and Pawlowsky-Glahn
2006).

Functional Data Analysis (FDA) deals with the statistical description and modeling of samples
of random functions. Functional versions for a wide range of statistical tools (ranging from ex-
ploratory and descriptive data analysis to linear models to multivariate techniques) have been
recently developed. Others techniques are specific of FDA, because they exploit the functional
nature of this kind of data: principal differential analysis is a kind of principal component analysis
made on the derivatives of the observed functions; registration is a pre-process step where a change
of variable is done in each observed function in order to made them as similar as possible. See
Ramsay and Silverman (2005) (the second edition of Ramsay and Silverman 1997) for a general
perspective on FDA and Ferraty and Vieu (2006) for a non-parametric approach. Ramsay and
Silverman (2002) present applications of FDA to a wide range of problems and disciplines. Spe-
cial issues recently dedicated to this topic by several journals (Davidian, Lin, and Wang 2004,
González-Manteiga and Vieu 2007, Valderrama 2007) bear witness to the interest for this topic in
the Statistics community.

It is well worthwhile noting that random functions can also be obtained from standard random
samples, by the application of non-parametric curve estimation methods. For instance, Kneip and
Utikal (2001) use non-parametric density estimation methods to obtain annual income densities
allowing them to study the temporal evolution of income density functions in United Kingdom
from 1968 to 1988. The most frequent situation, however, is that of having observations densely
sampled over time, space or other continuous parameter spaces. In these situations interpolation
techniques (if the underlying sampled functions are smooth and there is no sampling noise) or
smoothing methods (in other cases) allow us to transform the discrete observations to continuous
functional objects.

Assume we have observed n functions f1, . . . , fn. In general, they belong to an infinite-dimensional
functional space. The dimensionality reduction problem consists in looking for a low dimensional
configuration X (a n× q matrix, q < n, with rows xi, i = 1, . . . , n) and an application ρ from Rq

to the functional space such that ρ(xi) is close (in some sense) to the observed fi, for i = 1, . . . , n.
Usually, dimensionality reduction aims at visualizing data, which requires a plane representation,
that implies q = 2.

In this work we compare several methods for dimensionality reduction for this particular type of
data: functional principal components analysis (FPCA) with or without a previous data trans-
formation and multidimensional scaling (MDS) for different inter-densities distances, one of them
taking into account the compositional nature of density functions. The different methods are ap-
plied to both artificial and real data (households income distributions in European countries; see
Delicado 2007).

2 Dimensionality reduction for density functions

Ferraty and Vieu (2006) define a functional variable as a random variable f taking values in an
infinite functional space, usually

L2(I) = {f : I → R, such that
∫

I

f(t)2dt < ∞},



where I = [a, b], with a and b real numbers or ±∞, and a < b. An observation f of f is called
a functional data. A functional data set f1, . . . , fn is the observation of n independent functional
variables f1, . . . , fn identically distributed as f .

We are particularly interested in the case where the observed functions are density functions in
[a, b]: they are positive and integrate up to 1 on [a, b]. So we assume that the functional space in
our case is

F(I) = {f : I → R, such that f(t) ≥ 0 for all t ∈ I, and
∫

I

f(t)dt = 1}.

2.1 Functional Principal Component Analysis

In the context of FDA on L2(I), a version of the Principal Component Analysis (PCA) has been
developed: the Functional Principal Component Analysis (FPCA). The objective of FPCA can be
stated as follows. Given a functional random sample with mean function f̄(t) = (1/n)

∑n
i=1 fi(t),

for all t ∈ I, we look for functions g1, . . . , gq (principal functions or principal components) in L2(I)
and real numbers ψij , i = 1, . . . , n, j = 1, . . . , q, such that

n∑

i=1

∫

I


(fi(t)− f̄(t))−

q∑

j=1

ψijgj(t)




2

dt

was minimum. Moreover, the functions g1, . . . , gq are asked to be orthonormal:
∫

I
gi(t)gj(t)dt is

equal to 0 if i 6= j and equal to 1 if i = j. In other words, we are looking for a representation of
functional data in a q-dimensional space (that spanned by the functions g1(·), . . . , gq(·)):

fi(t) ≈ f̄(t) +
q∑

j=1

ψijgj(t), t ∈ I, i = 1 . . . n. (1)

It can be proven that the principal functions are eigen-functions of the sampling covariance oper-
ator: ∫

I

Γn(t, s)gj(s)ds = λjgj(t), for all t ∈ I, (2)

where

Γn(t, s) =
1
n

n∑

i=1

(fi(t)− f̄(t))(fi(s)− f̄(s)),

and that

ψij =
∫ b

a

(fi(t)− f̄(t))gj(t)dt, i = 1, . . . , n, j = 1, . . . , q.

Coefficient ψij is the score of the observation i on the j-th principal component. The numbers
λ1, . . . , λq, known as eigen-values, they are sorted in decreasing order and they are proportional
to the proportion of total variability explained by the corresponding principal functions.

The dimensionality reduction problem is approached in this context by defining the matrix X with
elements (i, j) equal to ψij , i = 1, . . . , n, j = 1, . . . , q. The application ρ : Rq −→ L2(I) is defined
by the right hand side of Equation (1).

There are different approaches to solve Equation (2) in practice. Ramsay and Silverman (2005)
propose to express observed functions as linear combinations of B-splines functions forming an
approximate base of L2(I). This way Equation (2) can be re-expressed as a matrix equation to be
solved by standard methods.

A different solution is suggested by Kneip and Utikal (2001). Once the original functions have
been properly smoothed (if required), the centered functions are evaluated in a fine grid of evenly



spaced points of I: t1 = a, . . . , tM = b. Let F be the n × M the resulting data matrix. It can
be proven that for large values of M the solutions of (1) can be derived from eigenvalues and
eigenvectors of FFT or FT F , the last one having the advantage of having dimension n× n, what
is very convenient given that usually n << M . In this paper we follow this approach.

A way to interpret the meaning of the principal component functions is that they represent the
main variation modes of the observed functions around the global mean function. The mean
function f̄ represents what is common to all the data, the centered functions (fi − f̄) account for
individual differences and the principal component functions summarize what is common in the
way individual are diverse.

The following observations help to interpret principal components. Principal component scores are
the scalar product between observed functions and eigen-functions. So argument values t ∈ I with
large values in a particular eigen-function have a great importance in the corresponding principal
component. A convenient graphical way to interpret a principal component is to add and subtract
from the mean the eigen-function multiplied by an appropriate constant. This gives us an idea of
how the observed functions differ from the mean for observations that have significant positive or
negative values in this principal component (looking at parts of I where the shifted mean function
is above or below the original mean function and where the maxima and minima values are).
Principal components show several orthogonal patterns in a decreasing order of importance.

Let us return to the case of observing density functions, so our functional data belongs to F(I),
that in general does not coincide with L2(I). Therefore FPCA previously introduced could present
some problems now, as the examination of the right hand side of Equation (1) reveals: it is not
sure that f̃i(t) = f̄(t) +

∑q
j=1 ψijgj(t) is always a density function, even having observed density

functions. It is easy to prove that f̄(t) is a density function and that
∫

I
gj(t)dt = 0, but f̃i(t) can

be negative for some t ∈ I because both ψij and gj(t) can take negative values.

A standard solution to this problem is to look for a transformation Ψ : F(I) 7→ L2(I ′) and then
to apply FPCA to the transformed functions. For instance, Ψ(f)(·) = log(f(·)) is a sensible choice
when the transformed densities are in L2(I).

Consider now the case of fri being close to normal density functions (in this case I ≡ (−∞,∞)).
The following property is verified when fµ,σ(x) is the density function of a N(µ, σ2) random
variable:

∂

∂x
log(fµ,σ(x)) = −x− µ

σ
.

So the functional
ΨN (f)(x) ≡ ∂

∂x
log(f(x))

would transform a density function f (assumed to be close to normality) to a function that would
be close to a straight line with negative slope. Therefore applying the transformation ΨN could
be appropriate when observed densities fri are close to normality. This property is exploited in
Ramsay and Silverman (2002) in the context of Functional Principal Component Analysis when
data are density functions: they first transform the observed densities with this functional and
then they perform FPCA on the transformed functions. The main drawback of this practice is
that the transformed functions g(x) = −(x−µ)/σ are not in L2((−∞,∞)). Therefore the interval
(−∞,∞) must be reduced to a compact interval [a, b]. The choice of [a, b] is arbitrary and it could
influence the final result.

For the case of densities fri(y), y ∈ (0,∞), close to log-normal density functions, a suitable
functional is

ΨlN (f)(x) = ΨN (f(exp(x)) exp(x)), x ∈ (−∞,∞),

given that f(exp(x)) exp(x) is the density function of X = log(Y ), Y having density f .



2.2 Multidimensional Scaling

Multidimensional Scaling (MDS) is a generalization of PCA when the information about data
is given by a inter-individuals distance matrix, instead of by a standard data matrix. Assume
that there are n individuals and that a distance (or dissimilarity) function between individuals is
available. Let dij ≥ 0 be the dissimilarity between individuals i and j. It is assumed that dij = dji

and that dii = 0 for all i, j = 1 . . . , n. Let ∆ be the n × n matrix with element (i, j) equal to
dij . Assume that for q ≤ n there exists a n × q data matrix X such that the Euclidean distance
between the i-th and j-th rows of X is dij . We say that X is an Euclidean configuration of ∆.
Such a configuration does not always exist. When it does, ∆ is said to be Euclidean. In this case
the X can be chosen having orthogonal columns, that are called principal coordinates.

Define the n × n matrix D with element (i, j) equal to d2
ij . It can be proved (Borg and Groenen

2005) that ∆ is Euclidean if and only if

Q = −1
2
PDP

is positive definite, where P = I − (1/n)11T is a centering matrix (1 is the n× 1 vector of ones).
In this case, let Q = V ΛV T be the spectral decomposition of Q (V is a n×n orthonormal matrix,
and Λ = diag(λ1, . . . , λn) with λ1 ≥ · · · ≥ λn). Let X̃q = VqΛ

1/2
q , where Vq is formed by the first q

columns of V and Λq = diag(λ1, . . . , λq). Then Q ≈ X̃qX̃
T
q and X̃q is a q-dimensional approximate

Euclidean configuration of ∆.

In terms of dimensionality reduction, in MDS the low dimensional configuration we are seeking is
X̃q. In MDS what is desired is that the Euclidean distance between the rows i and j of X̃q is as
similar as possible to dij , the distance between data i and j.

The relation between PCA and MDS is as follows. Let X be a n× p data matrix. Let dij be the
Euclidean distance between the rows i and j of X. Then X̃q (q ≤ p) coincides with the matrix of
the first q principal components of X (see Peña 2002, Section 6.5).

In this paper we apply MDS to the specific case of density functions. Many distances can be
computed between density functions. For instance, given that density functions are always in L1,
we can base MDS on L1 distances between observed densities: ‖fi − fj‖1 =

∫ b

a
|fi(x) − fj(x)|dx.

Other distances can also be used: for instance, the Hellinger distance (that is the L2 distance
between squared root of densities), the L2 distance between densities (assuming they are well
defined; for instance assuming that densities are bounded on [a, b]) the L2 distance between logs
of densities (assuming they are well defined) or the symmetrized version of the Kullback-Leibler
divergence:

dKL(fi, fj) =
∫ b

a

log
(

fi(x)
fj(x)

)
fi(x)dx +

∫ b

a

log
(

fj(x)
fi(x)

)
fj(x)dx.

More in general, let Ψ : F(I) 7→ FΨ be a transformation from F(I) to another functional space
FΨ, and let d∗(·, ·) be a distance between elements of FΨ. Let f and g be two density functions,
then

dΨ(f, g) = d∗(Ψ(f), Ψ(g))

is a distance between f and g. For instance, assuming that FΨ = L2(I ′) and using the L2 distance
in L2(I ′) as d∗, the results of MDS from distance dΨ coincide with those obtained by doing FPCA
on the transformed functions Ψ(fi), i = 1, . . . , n.

2.3 Density functions as compositional data

The set F(I) of density functions on I is a convex set of L1(I) that is not a linear subspace when
using ordinary sum and multiplication by real constant, as pointed out by Egozcue, Dı́az-Barrero,
and Pawlowsky-Glahn (2006). They note that density functions are in fact infinite dimensional



compositional data. Therefore they propose to extend Aitchison’s geometry (well developed for
data living in the finite dimensional simplex; see (Pawlowsky-Glahn and Egozcue 2001)) to the
infinite dimensional simplex F(I). In particular, when I = [a, b] is a finite interval they give
a Hilbert space structure to the subset of F(I) formed by densities whose logarithm is square-
integrable. In this space, the distance between two densities f and g is defines as

dA(f, g) =

[
1
2η

∫ b

a

∫ b

a

(
log

f(x)
f(y)

− log
g(x)
g(y)

)2

dxdy

]1/2

,

where η = b − a and the subscript A refers to Aitchison’s geometry. Once dA has been defined,
MDS can be applied to the matrix ∆A of inter-densities distances dA(fi, fj). Therefore all we have
said in Subsection 2.2 applies here.

Observe that
dA(f, g) =

1√
2η

dL2(I×I)(f∗, g∗)

where f∗ : I × I 7→ R is defined as f∗(x, y) = log(f(x)/f(y)), and g∗ is defined analogously. We
conclude that ∆A is a Euclidean matrix.

3 Application to artificial data

We have generated three sets of density functions and then we analyze them with the different
dimensionality reduction methods presented in the previous section. The sets of densities are the
following:

Set 1: For i = 1, . . . , n1 = 21, fi is the density of a N(µi, 1), with µi = −3 + 6(i− 1)/20.

Set 2: For i = 1, . . . , n2 = 21, fi is the density of a N(0, σ2
i ), with log(σi) = −.5 + (i− 1)/20.

Set 3: For i = 1, . . . , 9 and for j = 1, . . . , 9, fij is the density of a N(µi, σ
2
j ), with µi = −2+4(i−1)/8

and log(σi) = −.5 + (j − 1)/8. Therefore there are n3 = 81 functions in the set.

From this definition it follows that Sets 1 and 2 are intrinsically one-dimensional in the sense that
they are included in a one-dimensional manifold of F(I): the image of an application from a subset
of R to F(I). In the same sense, Set 3 is two-dimensional. Therefore good dimension reductions
techniques must discover these intrinsic dimensions.

3.1 FPCA for density functions

In Subsection 2.1 we have noted that FPCA is not a well suited technique for density functions.
We are showing now the practical drawbacks of FPCA when applied to density functions.

Figure 1 summarizes the FPCA for densities in Set 1. Several erroneous conclusions could be
derived from the analysis of this graphical output. First, the percentage of explained variance for
the first two principal components (56.50% and 29.98%, respectively) indicates that the intrinsic
dimension of the set is at least two. But if we look at the projection of functions on the com-
ponents plane (top right panel in Figure 1) we observe that a second dimension is needed only
to accommodate the nonlinear structure of the set, that can not entirely be reflected in the first
principal component. The reason of this fact is that the one-dimensional manifold of F(I) where
Set 1 is included has a curvature that FPCA (a linear method) is not able to detect. Observe that
the components plane clearly shows a nonlinear relationship between first and second principal
components: if they were independent their interpretation could be done separately, but FPCA
only guarantees that they are uncorrelated.



The graphic labeled as “mean +/- PC 1” is also misleading by several reasons. The main one is
that it is based on representing the mean function (width black line) but arithmetic mean is not an
appropriate location measure for densities in Set 1 because the mean function does not belong to
the one-dimensional manifold where Set 1 is included: it does not correspond to a normal density;
it does not have standard deviation equal to 1; in the components plane the mean function has
coordinates (0, 0), being a point that is far from the points corresponding to the densities in Set
1. Moreover, this graphic reinforces the idea that the data set could be approximated by adding
and subtracting a multiple of the first principal component from the mean function, and this
interpretation is strongly dependent on the assumption of a linear structure for the data. Given
that Set 1 is not linearly structured, this graphic only lead us to false conclusions. The same
applies for the graphic labeled as “mean +/- PC 2”. The two bottom panels of Figure 1 show the
density functions in Set 1 and the approximated functions derived from FPCA (using the right
hand side of Equation 1), from top to bottom. It is clear that the approximation is quite bad.

We analyze now Figure 2, the graphical output of FPCA for densities in Set 2. In this case FPCA
is able to detect that the right dimension of the set is one (98.93% of the variability is explained
by the first principal component). Nevertheless, other drawbacks of FPCA for density functions
(already pointed out when talking about for Set 1) are also present here: the nonlinear relationship
between first and second principal components, the mean function is not in the one-dimensional
manifold of F(I) where Set 2 is included (but in this case it is closest than in the case of Set 1),
the approximated density functions do not look like the true functions in Set 2.

When looking at FPCA for densities in Set 3 (see Figure 3) we observe that the first two components
account for the 92.48% of the total variability, what is erroneously indicating that the intrinsic
dimension of the data is larger that two. The first principal function coincides with that of the
FPCA for Set 1, and the second one is the same (up to a change of sign) as the first one obtained
for Set 2. This fact shows that FPCA at least has been able to discover the two main sources
of variation in Set 3. Nevertheless, the projection of functions on the components plane indicates
that the two main modes of variation do not correspond with changes in mean and changes in
standard deviation. Instead of that, this plane reflects a complicated nonlinear relation between
principal components and changes on µ and σ. Again, the approximated density functions derived
from FPCA are far from those in Set 3.

3.2 FPCA for transformed density functions using ΨN

The bad behaviour of FPCA for density functions can be amended if densities are transformed
by an appropriate functional, as we have noted in Subsection 2.1. For normal densities we have
indicated that ΨN is a good functional, because it transforms normal densities to straight lines,
that will always be in a two dimensional vector space, where linear operators (as FPCA) work
properly.

Figure 4 is the graphic output corresponding to FPCA applied to Set 1 transformed by ΨN . It
is clear that the dimension of Set 1 is one. The first principal function is almost constant and
the second one is practically equal to zero. The present noise is due to numeric errors in the
computation of eigen-functions, that are also the responsible of the surprising position of function
1 in the second principal component (see top right panel).

Instead of the graphic “mean +/- PC i” (that works on the space of transformed densities, that is, in
the set of straight lines) we have drawn the densities that would be obtained inverting the operator
ΨN . So we have the representation of three densities for the principal component i (i = 1, 2):
Ψ−1

N (mean - PC i), Ψ−1
N (mean), Ψ−1

N (mean + PC i). In this case these three functions calculated
for the first principal component give an exact idea about the way densities in Set 1 vary around
its center (that could be located in the standard normal density). The corresponding graphic to
the second principal component only shows very small noisy deviations from this center. Observe
that the approximated functions are now almost identical to the true densities.
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Figure 1: FPCA for densities in Set 1.
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Figure 2: FPCA for densities in Set 2.
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Figure 3: FPCA for densities in Set 3.



Similar comments on the well behaviour of FPCA combined with transformation ΨN also apply
to Sets 2 (Figure 5) and 3 (Figure 6). Only a remark for Set 3 is in order. Observe that the
projection of functions on the components plane shows that the first principal components are not
independent, even if they present a dependent structure much more simple than that obtained
applying FPCA directly on density functions in Set 3.

It is appropriate to remember that the good results of FPCA illustrated in Figures 4, 5 and
6 have been possible because in this artificial data case we know the right transformation ΨN

that linearize the functional data sets. In general such a transformation would be unknown. So
we need dimension reduction methods working without the knowledge of any specific linearizing
transformation.

3.3 MDS for several distances between density functions

We analyze in this section the performance of MDS based on six different distances when applied
to Sets 1, 2 and 3. The distances used are: L1, L2, Hellinger, L2 between logarithms, Symmetrized
Kullback-Leibler divergence and dA (the distance that take into account that density functions are
compositional data).

The results of MDS for Sets 1, 2 and 3 are illustrated in Figures 7, 8 and 9, respectively. Each
row of graphics correspond to a distance. The left panel of the row is the plane of the two first
principal coordinates (similar to the plane of the first two principal components). The percentage of
explained variability are calculated as the quotient between the corresponding eigenvalues of matrix
Q and the sum of the absolute values of all the eigenvalues of Q (not all of them must be positive
if the distance is not Euclidean; L1 distance and Symmetrized Kullback-Leibler divergence are the
only not Euclidean distances among those we are used). The other two panels are analogous to the
graphics labeled as “mean +/- PC i” (i = 1, 2) in Figures 1 to 6, but with some particularities: the
function represented with width black line is calculated as the geometric mean of those functions
having both first and second principal coordinates values between first and third quartiles (if no
function verifies both conditions simultaneously, then functions verifying one of them are taken
to compute the geometric mean), conveniently normalized for being a density function. Then the
(rescaled) geometric mean of functions having first principal coordinate lower than the first quartile
is drawn in blue, and finally the same is done for those with values larger that the third quartile and
the corresponding function is drawn in red. The same is done for the second principal coordinate.
Observe that MDS does not provide any function such as the principal functions obtained by
FPCA. Therefore it is not possible to do graphics directly comparable with those labeled as “mean
+/- PC i”. This is the reason why we have developed the kind of graphics explained before.

For Set 1 of densities, Figure 7 shows that distances L1, L2 and Hellinger has a similar behaviour
to FPCA done on density functions (two dimensions are required, and nonlinear relations between
the first and second principal coordinates are present). Distance dA reproduce the output obtained
doing FPCA on densities transformed by ΨN . This is true in this case because dA(f, g) is equivalent
to L2 distances between f∗ and g∗, where

f∗(x, y) = log(f(x)/f(y)) =
µ

σ2
(x− y) +

y2 − x2

2σ2
=

1
σ2

(
µ(x− y) + (y2 − x2)/2

)
,

in the case of f being the density function of a N(µ, σ2). When moving µ, the set of functions
f∗(x, y) moves over a one-dimensional vector space. Therefore MDS on Set 1 using L2 distances
between f∗ and g∗, that is equivalent to doing FPCA over functions f∗, identifies perfectly this
one-dimensional linear manifold. Using distances L2 between logarithms or Symmetrized Kullback-
Leibler divergence, is almost equivalent to using dA, with the advantage that numeric errors has
less influence on the second principal coordinate (compare right panels in the rows 4, 5 and 6 of
Figure 7).

The behaviour of MDS applied to Set 2 and 3 (Figures 8 and 8) is very similar to that described
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Figure 4: FPCA for transformed densities in Set 1.
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Figure 5: FPCA for transformed densities in Set 2.
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Figure 6: FPCA for transformed densities in Set 3.



for Set 1. We conclude that distances L2 between logarithms, Symmetrized Kullback-Leibler
divergence and dA give the best results, comparable to those achieved when the specific linearizing
transformation is known.

4 A real data example: Households income distributions

In this section we analyze income distributions for European countries. Let fi(x) be the relative
equivalent disposable income (after taxes and benefits) density function of country i, one of the 15
countries forming the European Union before May 2004.

The true densities fi(x) are not available, so we are working with non-parametric estimates of
them. The used incomes are disposable (or net) because they are the result of applying taxes and
social benefits to the household gross income. They are equivalent incomes in the sense that the
household incomes are divided by the equivalent number of adults living in there, according to the
modified OECD scale: one adult (person aged 14 or plus), plus one half of the additional number
of adults, plus 0.3 times the number of children. Finally they are relative because in each country
the observed equivalent incomes are divided by the country median. The information about the
income distribution in European countries comes from the 8th wave of the European Community
Household Panel (ECHP-w8) corresponding to year 2001. Any household in the sample has a
specific weight and this fact has to be taken into account in the estimation process.

In order to do the non-parametric density estimation, we take the log of the data because their
marked right asymmetry. Given that not all the relative income data are positive, a positive
constant c has to be added to each observation before taking logs (we have chosen c = 1). Then
usual kernel estimation is done in the transformed scale, and a change-of-variable formula is used
to recover a density estimation in the original scale. See Delicado (2007) for a similar estimation
process for regional income.

We select the bandwidth using the normal reference rule for weighted data. It is well known that
this rule is appropriate only when data are near normality (that is the case for log(xi + c)) and
that it tends to over-smooth (to produce too high values for the bandwidth). In order to correct
the over-smoothing, a common practice is to multiply the proposed values by a positive constant
lower than 1. In our case, we always take 2/3 times the values provided by the normal reference
rule (Luxembourg, where the normal reference rule is respected, is an exception because otherwise
the estimated density would be very bumpy). The constant 2/3 was chosen by visual inspection.
The same applies for the constant c choice.

We use the library sm (Bowman and Azzalini 2001) in the package R (R Development Core Team
2005), that implements the normal reference bandwidth choice rule and kernel estimation for
weighted data. All densities are evaluated in 1001 points evenly spaced from -1 to 5. The estimated
densities are shown in Figure 10 (panel labeled as Estimated density functions).

Figure 10 is the graphical output of FPCA applied directly to the estimated density functions
(observe that in this case we do not know what transformation Ψ would transform the densities
into a linear set of functions). It seems that the set is two-dimensional. The first principal
function can be interpreted as a polarization dimension: Countries with positive value of the
first principal component (Greece, Portugal, Luxembourg, Ireland, Spain) has densities with less
weight around the median (x = 1) and more in lower and higher values, so their polarization is
bigger. The opposite happens for countries with negative values (Denmark, Sweden, Germany,
Finland). The second component has a difficult interpretation, and it seems only take into account
the particularities of Luxembourg. These conclusions have to be taken carefully, because the
approximated functions are considerable different to the estimated densities.

The MDS analysis has been done using four different distances (L1, L2, Hellinger and Symmetrized
Kullback-Leibler divergence). The other two (L2 between logarithms and dA) present numerical
problems when computed on this data set because log(fi(x)) are not in L2([−1, 5]). Figure 11
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Figure 7: MDS for densities in Set 1.
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Figure 8: MDS for densities in Set 2.
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Figure 9: MDS for densities in Set 3.



2 4 6 8 10 12 14

0
10

30
50

PC

%
 o

f v
ar

ia
nc

e

67.09

22.03

Percentage of variance explained for each PC

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

−
0.

20
−

0.
10

0.
00

1st principal function

2n
d 

pr
in

ci
pa

l f
un

ct
io

n

2nd vs 1st principal coordinates

De

Dk

Nl Be

Lu

Fr
UK

Ir

It
GrEs Pt

AtFiSe

−1 0 1 2 3 4 5

−
0.

2
0.

0
0.

1
0.

2

PC 1 (67.09% of var.)

I

V
[, 

j]

−1 0 1 2 3 4 5

−
0.

10
−

0.
05

0.
00

0.
05

PC 2 (22.03% of var.)

I
V

[, 
j]

−1 0 1 2 3 4 5

−
0.

2
0.

2
0.

6
1.

0

mean +/− PC 1 (67.09% of var.)

I

m
u

−1 0 1 2 3 4 5

−
0.

2
0.

2
0.

6
1.

0
mean +/− PC 2 (22.03% of var.)

I

m
u

−1 0 1 2 3 4 5

0.
0

0.
4

0.
8

Estimated density functions

x

f(
x)

−1 0 1 2 3 4 5

0.
0

0.
4

0.
8

Approximated functions

x

f(
x)

Figure 10: FPCA for household income densities for European countries.



shows the results. As it happens with artificial data, distances L1, L2 and Hellinger give similar
results to those of FPCA. The results derived from the Symmetrized Kullback-Leibler divergence
are very different, indicating that the set could be considered one-dimensional. The interpretation
of the first principal direction is not clear.
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Figure 11: MDS for household income densities for European countries.


