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Abstract 
 

Our essay aims at studying suitable statistical methods for the clustering of 
compositional data in situations where observations are constituted by trajectories of 
compositional data, that is, by sequences of composition measurements along a domain. 
Observed trajectories are known as “functional data” and several methods have been 
proposed for their analysis. 
In particular, methods for clustering functional data, known as Functional Cluster 
Analysis (FCA), have been applied by practitioners and scientists in many fields. To our 
knowledge, FCA techniques have not been extended to cope with the problem of 
clustering compositional data trajectories. In order to extend FCA techniques to the 
analysis of compositional data, FCA clustering techniques have to be adapted by using a 
suitable compositional algebra. 
The present work centres on the following question: given a sample of compositional 
data trajectories, how can we formulate a segmentation procedure giving homogeneous 
classes? To address this problem we follow the steps described below. 
First of all we adapt the well-known spline smoothing techniques in order to cope with 
the smoothing of compositional data trajectories. In fact, an observed curve can be 
thought of as the sum of a smooth part plus some noise due to measurement errors. 
Spline smoothing techniques are used to isolate the smooth part of the trajectory: 
clustering algorithms are then applied to these smooth curves. 
The second step consists in building suitable metrics for measuring the dissimilarity 
between trajectories: we propose a metric that accounts for difference in both shape and 
level, and a metric accounting for differences in shape only. 
A simulation study is performed in order to evaluate the proposed methodologies, using 
both hierarchical and partitional clustering algorithm. The quality of the obtained results 
is assessed by means of several indices. 
 
 
Kew words: Compositional data trajectories, cluster analysis, functional data analysis, 
cluster validity indices, simulation study. 

 



1   Introduction 
 
Statistical data appear in compositional form in several contexts,. Compositional data are vectors of 
proportions describing the relative contributions of each category of possible outcomes to the whole. 
 
Let ( )1 2 Cp , p ,..., p=p  be a C-dimensional vector where 0ip >  for i=1,2,…,C and 1ii

p =∑ . Due to the 
sum constraint and the bounded support, special techniques are required for compositional data analysis 
(Aitchison, 1982;1986). 
In this paper, we deal with the trajectories of compositional data - that is, with sequences of composition 
measurements along a domain - by addressing the problem of clustering compositional data trajectories. 
For example, particle number concentrations and particle size distributions (14 classes between 0.3 to 20 
μm) were monitored in Milan, using an optical particle counter (OPC GRIMM 1.108 “Dustcheck”) and a 
portable meteorological station (Ferrero and others; 2007). Data consist in the measurement, along a 
vertical domain (height), of the composition of particle-size distribution. The detection of a clustering of 
trajectories may improve our knowledge of characteristic profiles under specific meteorological 
conditions. 
Observed trajectories can be seen as “functional data” and several methods have been proposed for their 
analysis; for instance Ramsay and Silverman (2005) present several techniques for analysing such data, 
e.g. principal components analysis, linear modelling, canonical correlation analysis and cluster analysis.  
In particular, methods for clustering functional data, known as Functional Cluster Analysis (FCA), have 
been applied in many fields (Ghigo and others, 2006; Ludwig and others, 1995). To our knowledge, FCA 
techniques have not been extended to deal with the problem of clustering compositional data trajectories. 
In order to extend FCA techniques to the analysis of compositional data, FCA clustering techniques have 
to be adapted by means of a suitable algebra for compositions. 
 
This paper centres around the following question: how are we to formulate a segmentation procedure 
giving homogeneous classes starting from a set of K compositional data trajectories. 
One might consider the measurements of K curves as vectors, and use a standard clustering algorithm 
(Hartigan, 1975); however, as Abraham and others observed (2003), there are two main drawbacks to this 
approach.  
Firstly, measurements may have been taken at different points in the domain (misaligned data), or the 
domains themselves may be different, that is, the index set may not be exactly the same for the K curves. 
For example, when measurements are taken in a time interval, starting and end points may be different.  
Secondly, in the presence of measurement errors, clustering methods applied to raw data do not benefit 
from the functional data structure. Because of the functional nature of observations, a suitable approach 
would be that of removing the noise due to measurement errors. In this way, the focus can be placed on 
the clustering of the smooth part of the observed curves. 
 
Once the smooth part has been extracted from each of the K curves, the clustering algorithm can be 
applied by establishing a suitable metric, in order to evaluate a measure of dissimilarity between 
observational units. 
The procedure for clustering functional data may be summarised as follows: smooth out curves in order to 
remove measurement errors; choose a metric with which to evaluate dissimilarity among the objects in 
question; apply a clustering algorithm and evaluate the quality of the resulting partition. All these steps 
have to be performed in this particular context by considering the compositional nature of our 
measurements.  
 
The present paper is organized as follows: Section 2 examines how smoothing techniques can be applied 
to compositional functional data. Section 3 focuses on the construction of dissimilarity matrices between 
curves of compositional data. In Section 4, a simulation study is performed in order to evaluate the 
performances of different clustering algorithms. Section 5 concludes the article with a brief discussion. 
 
 
2 Smoothing a compositional data trajectory 
 
 
While in standard functional data analysis (FDA) each observational unit (curve) consists of a set of 
measurements (usually univariate measurements), in the present context the measurements refer to 
compositions, hence standard FDA methodologies have to be combined with compositional algebra in 



order to be applicable. In what follows, we introduce the notation required in order to define a 
compositional data trajectory. We think of an observed compositional data trajectory as a set of 
measurements taken along a domain [ ]min maxx x ; x∈ , such as, for example altitude,  depth or time. 
Moreover, we assume that T measurements have been taken along such a domain. In this paper, we adopt 
a dot as a subscript when considering the whole domain which the subscript refers to. Thus, we define the 
complete data matrix for a compositional trajectory as [ ],• ••=D x p  whose generic t-th row is [ ]t tx , •p  

(t=1,…,T) and contains the C-dimensional composition vector ( )1 2t t t Ctp , p ,..., p• =p  observed in 
correspondence with tx . 
 
An observed curve can be thought of as the sum of a smooth part and some noise due to measurement 
errors. In what follows, we propose an approach whereby spline smoothing is applied to compositional 
data.  
When smoothing compositional trajectories, the sum-to-one constraint typical of compositional data has 
to be taken into account. In the context of compositional data analysis, the perturbation operator ⊕ (see 
Aitchison, 1986) enables us to obtain an error structure in the simplex 1C−∇  that is equivalent to the 
additive error model in the real space Cℜ  (Billheimer and others, 2001). More specifically, the observed 
value t•p  can be thought of as the underlying true value t•π  perturbed by an error t•ξ , that is: 
 

t t t• • •= ⊕p π ξ   1C
t t t, , −
• • • ∈∇p π ξ  t=1,…,T (1) 

 
The estimate of t•π , denoted by tˆ •p , can be obtained by following the steps below: 

1. First apply the additive log-ratio (alr) transformation (Aitchison, 1986) to the observed 
compositions; 

2. Then smooth transformed data trajectories using standard smoothing techniques (B-spline, p-
spline, cubic-spline, etc.).  

3. In order to obtain smoothed compositions, the inverse alr transformation can be applied to 
smoothed transformed data. This procedure enables us to obtain smoothed trajectories which at 
each time t, comply with the sum-to-one constraint. 

In what follows, each point is described in detail. 
1. Firstly, we apply the additive log-ratio (alr) transformation to transfer observations from the ( )1C − -

dimensional simplex 1C−∇ to the ( )1C − -dimensional Euclidean space: 
 

( )( ) ( ) ( )11 2
1 2 1

C tt t
t t t tC t

Ct Ct Ct

pp p
z ,z ,...,z alr ln ,ln ,...,ln

p p p
−

• •−

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞
= = = ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

z p  
(2) 

 
By means of alr transformation, we transform the original T C×  matrix ••p  in the 1C−∇  simplex into the 

( )1T C× −  matrix ( )1 2 1C, ,...,•• • • − •
⎡ ⎤= ⎣ ⎦z z z z  in the ( )1C − -dimensional Euclidean space. 

2. Several smoothing techniques could be used to smooth the transformed data ••z . In this paper, we have 
adopted cubic spline smoothers. For a review of smoothing spline techniques see, for example, Hastie and 
others (2001). We introduce some essential background information following their approach. 
Each column i•z  (i=1,…,C-1) of the transformed data matrix is smoothed independently. The smoothing 
is achieved by looking  among all functions ( )f x  with the first two continuous derivatives, to find the 
one that minimizes the residual sum of squares: 
 

( ) ( )( ) ( ) ( )2 22 2

1 1

T T

it t it
t t

RSS f , z f x f '' s ds f '' s dsλ λ ε λ
= =

= − + = +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑ ∑∫ ∫  
(3) 

 
where λ  is a fixed smoothing parameters, the first term is a measure of proximity to the data and the 
second term penalizes curvature in the interpolating function. 
It can be shown that the solution to the minimum problem is a natural cubic spline with knots at the 
unique values of the tx , t=1,…,T , which can be written as: 
 



( ) ( )
1

N

j j
j

f x N x β
=

= ∑
 

(4) 

 
where ( )jN x  are a set of third degree polynomial basis functions representing the family of natural 
splines. Estimators of the jβ  parameters are obtained using a generalized ridge regression. We should 

point out that (4) is an example of a linear smoother, since estimated parameters jβ̂  are obtained as linear 

combinations of the itz  values. Let N be a T T×  matrix whose generic element is ( )ij j tN N x=  and let 

Ω  be a T T×  matrix whose generic element is ( ) ( )'' ''
jk j kN s N s dsΩ = ∫ , thus: 

 

( ) 1T T
i

ˆ λ
−

•= +β N N Ω N z  (5) 

 
where ( )1 2 T

ˆ ˆ ˆ ˆ, ,...,β β β=β . The vector of fitted (smoothed) values iˆ •z  obtained in correspondence to the 

predictor vector •x  can be expressed as: 
 

( ) 1T T
i i i

ˆˆ λλ
−

• • •= = + =z Nβ N N N Ω N z S z  (6) 

 
The linear operator λS  is known as the smoother matrix. The effective degrees of freedom dfλ  of the 
smoothing spline are captured by the trace of this matrix. A smoothing spline can be equivalently 
parameterised in terms of degrees of freedom or in terms of the λ  smoothing parameter, since 

( )df trλ λ= S  is a monotone function of λ . Both parameters govern the amount of smoothing in the 

estimated function. Once the functions ( )jN x  have been chosen, the smoothing spline is fully defined by 
the degrees of freedom (or equivalently by the smoothing parameter). Then the problem of selecting a 
spline function come down to selecting the number of degrees of freedom. As an example, different dfλ  
values might be tested, and the selection might be based on approximate F-tests, residual plots and other 
more subjective criteria. 
 
By means of (6), transformed observed values itz  at each observed value of the predictor tx , can be 
expressed as the sum of a smooth part and a noise as follows: 
 

( )it t it it it
ˆ ˆz f x zε ε= + = +  (7) 

 
Once the smoothing spline has been estimated, prediction at every point in the interval [ ]min maxx ; x  can be 
obtained at each desired value of the predictor variable. This turns out to be very useful when comparing 
different trajectories measured at different x values in the interval [ ]min maxx ; x . Let x%  be the new point 
where a prediction is needed. Prediction is obtained as: 
 

( )Ti
ˆz x= N β%%  (8) 

 
where ( )xN %  is the 1T ×  vector of the basis function evaluated at x% . 
3. Finally, we obtain the smoothed composition trajectory by means of the inverse alr transformation: 
 

( ) ( ) ( )( )111
1 1 1

1 1 1

1
1 1 1

C tt
t t C C C

it it iti i i

ˆexp zˆexp z
ˆ ˆalr ,..., ,

ˆ ˆ ˆz z z

−−
• • − − −

= = =

⎛ ⎞
⎜ ⎟= =
⎜ ⎟+ + +⎝ ⎠∑ ∑ ∑

p z  
(9) 

 
An example of a smoothed trajectory when C=3 is shown in Figure 1. 
 



 
 

Figure 1: An example of a smoothed compositional trajectory. 
 
 
3   Functional Cluster Analysis for compositional data 
 
The clustering problem consists in partitioning a given data set into groups (clusters) so that the data 
points in a cluster are more similar to each other than points in different clusters (Guha and others, 1998). 
Thus the main concern in the clustering process is to portray the organization of patterns into “sensible” 
groups, in such a way that it reveals similarities and differences, and how to derive useful conclusions 
from them. This section proposes one method of clustering K compositional trajectories.  
 
Let itkp  be the i-th class proportion observed in correspondence of the t-th measurement for the k-th 
trajectory, where i=1,..,C, t=1,…,Tk and k=1,…,K. Here Tk denotes the number of observations for the k-
th trajectory and the subscript k is used in order to emphasise the fact that different numbers of 
observations may be available for each trajectory. 
 
In keeping with the notation introduced in section 2, we define the data matrix related to the k-th 
trajectory as [ ]k k k,• ••=D x p . Here tk•p  denotes the C-dimensional compositional vector at time t for 
trajectory k, while k••p  denotes the kT C×  matrix containing data measured in the k-th trajectory. We 
obtain smoothed compositional trajectories kˆ ••p , for k=1,..,K, following the steps proposed in section 2.  
 
In order to cluster observed trajectories, we need to evaluate differences in the smoothed trajectories kˆ ••p . 
Several applications in functional cluster analysis are based on the measurement of dissimilarities in 
observed curves, by evaluating differences between the spline coefficients ( )1 2k k k Tk

ˆ ˆ ˆ ˆ, ,...,β β β=β  

(Abraham and others, 2003; Ghigo and others, 2006). This approach is appropriate only if the same basis 
functions degree and knots placement are used for each curve. Since measurements could be taken for 
different values of the predictor variable (misalignment) and the quantities ( )kmin •x  and ( )kmax •x  may 
vary substantially among trajectories, we prefer a more flexible approach based on different knots 
placement for each trajectory. As a consequence, smoothed trajectories cannot be compared in terms of 

kβ̂  coefficients.  
 
3.1   Building a suitable metric 
 
In order to compare the K trajectories, a measure of the distances between them has to be created. A 
proximity measure and a clustering criterion are the main features of a clustering algorithm. The 
proximity measure quantifies the “similarity” between two data points. 
 
Given two generic functions f and g, a measure of the distance between them in the interval [ ]min maxx ; x  is 
the integral: 
 

( ) ( ) ( )min

max

X

X
d f ,g f x g x dx= −∫  (10) 

 



where •  denotes a norm. In what follows, we propose a strategy for evaluating this integral when the 

two functions lie in the simplex 1C−∇ . 
 
First of all, we propose to approximate integral (10) using Monte Carlo integration by averaging point-to-
point distances on a regular grid in the interval [ ]min maxx ; x  as follows: 
 
( ) ( ) ( )1

1

n
i ii

d f ,g n f x g x−
=

≅ −∑  (11) 

 
This Monte Carlo integration can be made arbitrarily accurate by increasing the number n of points.  
This approximation is used in order to evaluate the distance between the trajectories l and k, l,k=1,…,K. 
Starting from the observed values l••p  and k••p , we obtain smoothed trajectories lˆ ••p  and kˆ ••p  by 
means of the procedure outlined in Section 2. Approximation (11) to integral (10) can be evaluated when 
data are realigned on a regular grid ( ; 1ix i ,...,n= ). This can be done by obtaining predicted values l••p%  
and k••p%  at each ix  point as described in Equation (8). Unlike l••p  and k••p , these predicted values are 
then aligned on the grid ; 1ix i ,...,n= , and thus (11) can be evaluated once a suitable norm in the simplex 
has been chosen. 
 
Given two compositions ( )1 2 Cq ,q ,...,q=q  and ( )1 2 Cw ,w ,...,w=w  the difference between such vectors is 
evaluated as: 
 

1 2 1 1 2 2

1 2 1 1 1

C C C
C C C

C i i i i i ii i i

q q wq q q w q w
, ,..., , ,...,

w w w q w q w q w
= = =

⎡ ⎤⎡ ⎤
⎢ ⎥Θ = Γ = =⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦∑ ∑ ∑

q w m  
(12) 

 
where Γ  is the constraining operator which transforms each vector with positive components into a unit-
sum vector. Therefore we define the distance ( )d ,q w  as the norm of the difference (12), as defined in 
Billheimer and others (2001): 
 
( ) ( ) ( )1d , alr ' alr−= =q w m m Ψ m  (13) 

 

where ( )1
1 1 1

1
C C C'C

−
− − −

⎡ ⎤= −⎢ ⎥⎣ ⎦
Ψ I j j , 1C−I  is a (C-1)-dimensional identity matrix, and 1C−j  is a (C-1)-

dimensional column vector of ones. The norm (13) meets the requirements of scale invariance and 
permutation invariance discussed in Aitchison (1992). 
By using Equation (13) we estimate the distance between trajectories k and l as: 
 
( ) 1

1

n
il iki

d l ,k n−
• •=

≅ −∑ p p% %  (14) 

 
By calculating (14) for each pair l,k with l,k=1,…,K, we obtain the distance matrix D  whose generic 
entry is ( )lk d l ,k=D . Starting from this matrix, alternative clustering algorithms can be adopted. 
 
When metric (13) is used, differences between observed curves will depend on differences in their shapes 
and on the distance between their centers in the simplex. In an Euclidean space, this is the same as saying 
that the value of integral (10) depends on the norm of the difference between means f  and g  , as well as 

on the integral of the difference of the centered functions ( )f x f−  and ( )g x g− , that is: 
 

( ) ( ) ( ) ( )max

min

x

max min x
d f ,g x x f g f x f g x g dx⎡ ⎤= − − + − − −⎡ ⎤⎣ ⎦⎣ ⎦∫  (15) 

 
If the aim is to measure differences in shapes, only the second term of Equation (15) should be 
considered. The same argument applies when dealing with curves in the simplex. The center of a curve in 



the simplex is represented by its geometric mean. Thus, given predicted values k••p% , k=1,…,K, we obtain 
centered trajectories as: 
 

k k k•• ••= Θc p g% % %  (16) 
 

where ( )
1

1

nn
k iki

−

•=
= ∏g p% %  is the geometric mean of the predicted values for trajectory k. 

Then we propose the distances between centered trajectories as a suitable metric: 
 

( ) 1
1

n*
il iki

d l ,k n−
• •=

≅ −∑ c c% %  (17) 

 
By calculating (17) for each pair l,k with l,k=1,…,K, we obtain the distance matrix *D  whose generic 
entry is ( )* *

lk d l ,k=D . 
 
 
3.2   Cluster analysis and cluster validity assessment 
 
A multitude of clustering methods have been proposed in the literature. The algorithms can be broadly 
classified into the following types (Jain and others, 1999): partitional clustering, hierarchical clustering, 
density-based clustering and grid-based clustering. This paper considers the first two types of algorithm. 
 
One example of a partitional algorithm is PAM (Partitioning Around Medoids). An appealing use of the 
PAM algorithm is to determine a representative object (medoid) for each cluster, that is, to find the most 
centrally located objects within clusters. The algorithm begins by selecting an object as a medoid for each 
cluster. Then each of the non-selected objects is grouped together with the medoid it most closely 
resembles. PAM swaps medoids with other non-selected objects until all objects qualify as medoids.  
 
Hierarchical clustering algorithms can further be divided into (Theodoridis and Koutroubas, 1999) 
agglomerative and divisive algorithms, depending on the method used to produce the clusters. An 
example of agglomerative hierarchical clustering is the Ward clustering algorithm (Ward, 1963), which 
works bottom up, merging objects at each step in order to obtain the minimum within-group increase in 
variance. 
 
The objective of clustering methods is to discover the existence of significant groups within a given data 
set. In general, they search for clusters whose members are close to each other (in other words, that 
display considerable similarity) and clearly separated. 
 
One of the most important issues in cluster analysis is the evaluation of clustering results to find the type 
of partitioning that best fits the underlying data. This is the main subject of cluster validity. We are now 
going to discuss some fundamental concepts within this topic, and examine certain cluster validity 
approaches proposed in the literature. 
 
We define the term “optimal” clustering scheme as being the outcome of running a clustering algorithm 
that best fits the inherent partitions of the data set. The problems of deciding which number of clusters 
best fits the data set, and of evaluating clustering results, have been the subject of several studies. 
 
The procedure of evaluating the results of a clustering algorithm is known as “cluster validity” 
assessment. Our cluster validity assessment is based on external criteria as described in Theodoridis and 
Koutroubas (1999). According to these criteria, clustering results are evaluated on the basis of a pre-
specified structure, and this make such criteria particularly well-suited for simulation studies where the 
membership of each object to a cluster is specified beforehand in the simulation study design.  
 
A number of validity indices have been defined and proposed in literature (Halkidi and others, 2000 and 
2001). The indexes are built by comparing the proximity matrix obtained using a clustering algorithm P%  
, with the true proximity matrix P  computed on the basis of the designed simulation study. When 
clustering K objects, the proximity matrix is a symmetric K K×  dimensional matrix whose generic 
element 1ijP =  if objects i and j are in the same cluster, or 0ijP =  otherwise. 



For building appropriate indices, the following quantities have to be defined. Let: 
• a be the number of pairs for which 1ijP =%  and 1ijP = . 

• b be the number of pairs for which 1ijP =%  and 0ijP = . 

• c be the number of pairs for which 0ijP =%  and 1ijP = . 

• d be the number of pairs for which 0ijP =%  and 0ijP = . 
We adopt the following indices in order to evaluate cluster validity: 

• Rand Statistic: 
( )

2
1

( a d )R
K K

+
=

−
 

• Jaccard Coefficient: J a /( a b c )= + +  

• Folkes and Mallows index: a aFM
a b a c

= ⋅
+ +

 

For the previous three indices, it has been proven that high values of indices indicate great similarity 
between P%  and P . The higher the values of these indices, the higher the quality of the results. 
See Halkidi and others (2001) for a general examination of the properties of such indices. 
 
 
4   Simulation study 
 
In order to evaluate the performances of the proposed methods, we have performed a simulation study 
and compared the results obtained with PAM and Ward clustering algorithms applied by utilising D  and 

*D  distance matrices. For the sake of simplicity, let C=3. 
 
The simulation study is designed to evaluate the effect of the shape-difference and level-difference in the 
clustering procedures. In particular, we are interested in comparing results obtained using D  and *D  
dissimilarity matrices. For this reason, several settings have been designed as follows. The trajectories are 
determined as a third grade polynomial on the alr scale in the interval [ ]min maxx x ; x∈ .  
 
4.1 Population specification 
 
For each setting we generate observed trajectories from four populations: each population is created as the 
combination of different centers and shapes. 
The population shapes are determined as third degree polynomial functions on the alr scale with 
coefficients matrix { } 1 2 3 1 2ij ; i , , ; j ,δ= = =δ : 
 

2 3
1 11 12 13

2 3
2 21 22 23

t t t t

t t t t

z x x x

z x x x

δ δ δ

δ δ δ

= + +

= + +
 

(18) 

 
and then back-transformed using ( )1

talr−
•z . In particular, the specified values for each setting are 

reported in Table 1, where δ  coefficients are indexed by a superscript denoting the population shape (A 
and B) to which the coefficients refer.  
 
In order to take the differences in centers into consideration, we consider three pairs of different 
compositional centers (Table 2).  
 
By perturbing shapes (Table 1) with centers (Table 2), we generate nine different settings: each setting is 
characterised by the different importance  of shape-difference and level-difference on population 
dissimilarity. True population values are denoted as L

t•π , where t=1,…,T and the label L indicates the 
populations. 
 
 

( )1 1
1

A. A
t talr μ−
• •

⎡ ⎤= ⊕⎣ ⎦π z δ   ( )2 1
2

A. A
t talr μ−
• •

⎡ ⎤= ⊕⎣ ⎦π z δ  

( )1 1
1

B. B
t talr μ−
• •

⎡ ⎤= ⊕⎣ ⎦π z δ   ( )2 1
2

B. B
t talr μ−
• •

⎡ ⎤= ⊕⎣ ⎦π z δ  

(19) 



 
Table 1. Shape parameters. 

 

11 12 13δ δ δA A A, , 0.6 0.3 -0.36 Shape 1 
21 22 23
A A A, ,δ δ δ 0.33 0.6 0.04 

11 12 13δ δ δB B B, , 1 0.5 -1 
Setting 1 

Shape 2 
21 22 23
B B B, ,δ δ δ 0.53 1 0.11 

11 12 13δ δ δA A A, , 0.4 0.4 -0.2 Shape 1 
21 22 23
A A A, ,δ δ δ -0.6 0.5 0 

11 12 13δ δ δB B B, , 1 0.5 -1 
Setting 2 

Shape 2 
21 22 23
B B B, ,δ δ δ 0.53 1 0.11 

11 12 13δ δ δA A A, , 0.9 0.2 -0.8 Shape 1 
21 22 23
A A A, ,δ δ δ 0.55 -0.2 0.2 

11 12 13δ δ δB B B, , 1 0.5 -1 
Setting 3 

Shape 2 
21 22 23
B B B, ,δ δ δ 0.53 1 0.11 

 
Table 2. Center parameters. 

 
1μ  0.7 0.2 0.1 Setting X.1 
2μ  0.5 0.3 0.2 
1μ  0.7 0.2 0.1 Setting X.2 
2μ  0.65 0.25 0.1 
1μ  0.7 0.2 0.1 Setting X.3 
2μ  0.69 0.19 0.12 

 
For example, the first population for Setting 1.1 has center 1μ  referring to  row Setting X.1 in Table 2, 
and Shape 1 referring to row Setting 1 in Table 1. The second population for Setting 1.1 has center 2μ  
referring to row Setting X.1 in Table 2 and Shape 2 referring to row Setting 1 in Table 1. The third 
population for Setting 1.1 has center 2μ  referring to row Setting X.1 in Table 2 and Shape 1 referring to 
row Setting 1 in Table 1. The fourth population for Setting 1.1 has center 1μ  referring to row Setting X.1 
in Table 2 and Shape 2 referring to row Setting 1 in Table 1. Population trajectories for each setting are 
illustrated in Figure 2. 
We would point out that three different proximity matrix may be created: 

• ShapeP : whose generic element 1Shape
ijP =  if population trajectories i and j have the same shape, 

• CenterP : whose generic element 1Center
ijP =  if population trajectories i and j have the same center, 

• P : whose generic element 1ijP =  if population trajectories i and j have the same center and 
shape. 

Matrices ShapeP  and CenterP  describe the proximity structure of a population with two clusters only, 
whereas P  refers to a population with four clusters. 
 



Setting 1.1 Setting 1.2 Setting 1.3

 
Setting 2.1 Setting 2.2 Setting 2.3

 
Setting 3.1 Setting 3.2 Setting 3.3

 
 
 

Figure 2: Population trajectories for all settings. 
 
 
4.2 Simulating data sets 
 
We consider a population trajectory to be the law underlying observed values. Given a true population to 
which a trajectory belongs, we assume that an observed trajectory is characterised by three source of 
variability, which cause discrepancies between observed data and the true underlying law. The first two 
sources of variability are tied to the variations that are going to characterise centers and shapes due to the 
natural variability of the phenomenon. The third sourced of variability is associated with measurement 
error. All these sources of variability are reproduced throughout the simulation study. 
A number of data sets are simulated. Each data set comprises K=100 trajectories: the first 20 are 
generated from the first population in the setting. For the other three populations in question, we generate 
15, 40 and 25 trajectories respectively. We are now going to describe how a generic trajectory is 
generated, ignoring the indexes referring to the population to which the trajectory refers, in order to 
simplify notation. 
Each trajectory is generated by adding noise to coefficients and centers in Tables 1-2.  
Let k•μ  be the center of the k-th simulated trajectory. In order to obtain this center for a simulated 
trajectory, we perturbe population center ( )1 2 3, ,μ μ μ• =μ , by adding noise με  on the alr scale as 
follows: 
 

( ) ( )kalr alr μ• •= +μ μ ε         ( )20
i i

~ N ,μ με σ      i=1,2  (20) 

 



The variance of the errors 2
iμ

σ  is fixed in order to control the coefficient of variation of the centers k μ , 
and is held constant throughout the simulation study. 
Then the coefficients determining the shape of the k-th trajectory are obtained by perturbing coefficients 
in Equation (18) using 

ijδε  error: 
 

ijijk ij δδ δ ε= +  ( )20
ij ij

~ N ,δ δε σ  i=1,2; j=1,2,3; k=1,…,100 (21) 

 
The variance in the errors 2

ijδσ  is fixed in order to control the coefficient of variation (CV) of the k ijδ  
coefficients. The nine settings are studied using four different values of such CVs (respectively .10, .15, 
.20, .25). A total of M=200 data sets are simulated for each setting, 50 for each CV value.  
Finally measurement error is added by means of the terms t•υ  in order to obtain simulated values k t•p , 
t=1,…,T. 
 

( )( )1
tk t k k talr−
• • •= ⊕ ⊕p z δ μ υ  (22) 

 
The first two terms in Equation (22) are the population values indicated in Equation (19) perturbed by 
means of Equations (20) and (21). 
 
4.3 Results 
 
In Table 3(a)-3(d) simulation results are reported separately for each value of the CVs (respectively 0.1, 
0.15, 0.2 and 0.25) of the ijkδ  coefficients in Equation (21). Each Table comprise four sub-tables 
indicated by roman numerals, and the Rand (R), Jaccard (J) and Falks and Mallows (FM) indices are 
reported for each sub-table. The following is a description of each sub-table: 
(I): Results obtained by using the *D  dissimilarity matrix, choosing two clusters and comparing the 
resulting ShapeP%  proximity matrix with the ShapeP  population proximity matrix. This enables us to obtain a 
clustering structure when only shape dissimilarity is of interest. 
(II): Results obtained by using the D  dissimilarity matrix, choosing two clusters and comparing the 
resulting ShapeP%  proximity matrix with the ShapeP  population proximity matrix. 
(III): Results obtained by using the D  dissimilarity matrix, choosing two clusters and comparing the 
resulting CenterP%  proximity matrix with the CenterP  population proximity matrix. 
Sub-tables (II) and (III) are designed to establish which clustering structure (the one discriminated more 
by shape or the one discriminated more by the center) is captured when two clusters are sought. 
(IV): Results obtained by using the D  dissimilarity matrix, choosing four clusters and comparing the 
resulting P%  proximity matrix with the P  population proximity matrix. 
 
Tables 4(a)-4(d) show the equivalent results obtained using the Ward Algorithm.  
First of all, according to the values of R, J and FM indices, no appreciable differences are found between 
the quality of results obtained using PAM (Table 3) and Ward (Table 4) algorithms. For this reason, we 
have chosen to comment on the results in Table 3 only. 
 
In sub-tables (I)a-d, for all CV values, the considered indexes perform well in representing the clustering 
structure according to shape: i.e. ShapeP%  and ShapeP  are very similar. As CV values increase, i.e. more 
noise on the shape parameters is introduced into the simulation, the values of the quality indices fall. In 
particular, for Setting 1 (characterised by similar shapes) and CV=0.25, we observe the lowest values of 
quality indices. 
In sub-tables (IV), when 4 clusters are sought, low-quality clustering structure is obtained because 
trajectories are not sufficiently discriminated in terms of shape or center. We observe a particular 
performance of indices in setting 2.1, characterised by substantial differences in both shape and level.  
As regards sub-tables (II) and  (III), we note that for settings 1.1, 2.1 and 3.1, where the center-difference 
is predominant, if the D metric is adopted, the two clusters obtained reproduce the proximity structure 

CenterP . As regards Settings 1.2, 1.3, 3.2 and 3.3, low quality clustering structure is obtained in both sub-
tables (II) and (III). This shows that, when 4 clusters cannot be detected, the *D  metric proves far more 
effective in capturing clusters of shapes, since it is cleansed of the confounding effect of difference in 
centers.   



Table 3. Simulation results. PAM algorithm. 
 

(a) (I) (II) (III) (IV) 
 R J FM R J FM R J FM R J FM 
Setting1.1 1.00 1.00 1.00 0.50 0.36 0.53 1.00 0.99 1.00 0.76 0.39 0.56 
Setting1.2 1.00 1.00 1.00 0.51 0.37 0.54 0.61 0.46 0.62 0.68 0.26 0.41 
Setting1.3 1.00 1.00 1.00 0.51 0.37 0.54 0.54 0.39 0.55 0.67 0.24 0.39 
Setting2.1 1.00 1.00 1.00 0.50 0.36 0.53 1.00 1.00 1.00 1.00 1.00 1.00 
Setting2.2 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.36 0.53 0.78 0.43 0.60 
Setting2.3 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.36 0.53 0.76 0.40 0.57 
Setting3.1 1.00 1.00 1.00 0.50 0.36 0.53 1.00 0.99 1.00 0.87 0.65 0.77 
Setting3.2 1.00 1.00 1.00 0.61 0.48 0.64 0.58 0.43 0.60 0.76 0.39 0.55 
Setting3.3 1.00 1.00 1.00 0.81 0.73 0.82 0.50 0.36 0.53 0.74 0.35 0.52 
 
(b) (I) (II) (III) (IV) 
 R J FM R J FM R J FM R J FM 
Setting1.1 0.98 0.97 0.98 0.50 0.36 0.53 1.00 0.99 1.00 0.75 0.38 0.55 
Setting1.2 0.99 0.98 0.99 0.50 0.36 0.53 0.62 0.46 0.63 0.68 0.26 0.41 
Setting1.3 0.99 0.99 0.99 0.51 0.37 0.54 0.54 0.38 0.55 0.67 0.24 0.38 
Setting2.1 1.00 1.00 1.00 0.50 0.36 0.53 1.00 0.99 1.00 1.00 0.99 1.00 
Setting2.2 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.36 0.53 0.78 0.44 0.61 
Setting2.3 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.36 0.53 0.77 0.40 0.57 
Setting3.1 1.00 1.00 1.00 0.50 0.36 0.53 0.99 0.99 0.99 0.86 0.62 0.75 
Setting3.2 1.00 1.00 1.00 0.60 0.47 0.63 0.59 0.44 0.61 0.75 0.37 0.54 
Setting3.3 1.00 1.00 1.00 0.83 0.74 0.84 0.50 0.36 0.53 0.74 0.35 0.52 
 
(c) (I) (II) (III) (IV) 
 R J FM R J FM R J FM R J FM 
Setting1.1 0.93 0.88 0.93 0.50 0.36 0.53 1.00 0.99 1.00 0.76 0.40 0.57 
Setting1.2 0.93 0.88 0.93 0.51 0.36 0.53 0.62 0.46 0.63 0.68 0.25 0.39 
Setting1.3 0.91 0.85 0.91 0.52 0.38 0.55 0.53 0.38 0.55 0.67 0.24 0.38 
Setting2.1 1.00 1.00 1.00 0.50 0.36 0.53 0.99 0.99 0.99 1.00 0.99 1.00 
Setting2.2 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.36 0.53 0.78 0.43 0.60 
Setting2.3 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.36 0.53 0.77 0.40 0.57 
Setting3.1 1.00 0.99 1.00 0.50 0.36 0.53 1.00 0.99 1.00 0.84 0.56 0.71 
Setting3.2 0.99 0.99 0.99 0.61 0.49 0.64 0.58 0.43 0.60 0.75 0.36 0.53 
Setting3.3 1.00 0.99 1.00 0.73 0.62 0.74 0.52 0.37 0.54 0.73 0.34 0.51 
 
(d) (I) (II) (III) (IV) 
 R J FM R J FM R J FM R J FM 
Setting1.1 0.78 0.68 0.79 0.50 0.36 0.53 1.00 0.99 1.00 0.75 0.38 0.55 
Setting1.2 0.73 0.60 0.74 0.51 0.36 0.53 0.62 0.46 0.63 0.66 0.23 0.37 
Setting1.3 0.77 0.66 0.78 0.51 0.37 0.54 0.54 0.39 0.56 0.65 0.22 0.36 
Setting2.1 1.00 1.00 1.00 0.50 0.36 0.53 1.00 0.99 1.00 1.00 0.99 1.00 
Setting2.2 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.36 0.53 0.78 0.44 0.60 
Setting2.3 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.36 0.53 0.76 0.40 0.57 
Setting3.1 0.98 0.96 0.98 0.50 0.36 0.53 1.00 0.99 1.00 0.85 0.57 0.72 
Setting3.2 0.97 0.95 0.98 0.61 0.48 0.64 0.59 0.44 0.61 0.73 0.34 0.50 
Setting3.3 0.98 0.96 0.98 0.70 0.58 0.72 0.51 0.36 0.53 0.73 0.33 0.50 
 
 



Table 4. Simulation results. Ward algorithm. 
 

(a) (I) (II) (III) (IV) 
 R J FM R J FM R J FM R J FM 
Setting1.1 1.00 1.00 1.00 0.50 0.36 0.53 1.00 0.99 1.00 0.75 0.39 0.56 
Setting1.2 1.00 1.00 1.00 0.51 0.38 0.55 0.60 0.45 0.62 0.66 0.24 0.38 
Setting1.3 1.00 1.00 1.00 0.51 0.38 0.55 0.53 0.39 0.56 0.64 0.22 0.36 
Setting2.1 1.00 1.00 1.00 0.50 0.36 0.53 1.00 0.99 1.00 1.00 0.99 1.00 
Setting2.2 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.36 0.53 0.78 0.45 0.62 
Setting2.3 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.36 0.53 0.76 0.40 0.57 
Setting3.1 1.00 1.00 1.00 0.50 0.36 0.53 1.00 1.00 1.00 0.86 0.61 0.75 
Setting3.2 1.00 1.00 1.00 0.57 0.44 0.60 0.57 0.42 0.59 0.76 0.40 0.57 
Setting3.3 1.00 1.00 1.00 0.67 0.56 0.69 0.53 0.38 0.55 0.74 0.36 0.53 
 
(b) (I) (II) (III) (IV) 
 R J FM R J FM R J FM R J FM 
Setting1.1 1.00 1.00 1.00 0.50 0.36 0.53 1.00 0.99 1.00 0.75 0.38 0.55 
Setting1.2 1.00 1.00 1.00 0.51 0.38 0.55 0.59 0.45 0.62 0.65 0.23 0.38 
Setting1.3 1.00 1.00 1.00 0.52 0.38 0.55 0.54 0.39 0.56 0.65 0.23 0.37 
Setting2.1 1.00 1.00 1.00 0.50 0.36 0.53 1.00 0.99 1.00 1.00 0.99 1.00 
Setting2.2 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.36 0.53 0.78 0.46 0.63 
Setting2.3 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.36 0.53 0.76 0.40 0.57 
Setting3.1 1.00 1.00 1.00 0.50 0.36 0.53 1.00 1.00 1.00 0.85 0.60 0.74 
Setting3.2 1.00 1.00 1.00 0.54 0.41 0.58 0.61 0.46 0.63 0.77 0.41 0.58 
Setting3.3 1.00 1.00 1.00 0.70 0.60 0.72 0.52 0.38 0.55 0.75 0.37 0.53 
 
(c) (I) (II) (III) (IV) 
 R J FM R J FM R J FM R J FM 
Setting1.1 0.94 0.92 0.94 0.50 0.36 0.53 1.00 1.00 1.00 0.75 0.38 0.55 
Setting1.2 0.93 0.90 0.93 0.51 0.37 0.54 0.61 0.46 0.63 0.65 0.23 0.38 
Setting1.3 0.93 0.90 0.94 0.51 0.38 0.55 0.54 0.40 0.57 0.65 0.23 0.38 
Setting2.1 1.00 1.00 1.00 0.50 0.36 0.53 1.00 0.99 1.00 1.00 0.99 0.99 
Setting2.2 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.36 0.53 0.78 0.45 0.62 
Setting2.3 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.36 0.53 0.76 0.40 0.57 
Setting3.1 1.00 1.00 1.00 0.50 0.36 0.53 1.00 1.00 1.00 0.84 0.56 0.71 
Setting3.2 1.00 1.00 1.00 0.56 0.43 0.59 0.59 0.44 0.61 0.75 0.37 0.54 
Setting3.3 1.00 1.00 1.00 0.71 0.60 0.73 0.52 0.37 0.54 0.74 0.35 0.52 
 
(d) (I) (II) (III) (IV) 
 R J FM R J FM R J FM R J FM 
Setting1.1 0.67 0.58 0.71 0.50 0.36 0.53 1.00 0.99 1.00 0.75 0.37 0.54 
Setting1.2 0.68 0.58 0.71 0.51 0.38 0.55 0.60 0.46 0.63 0.64 0.22 0.37 
Setting1.3 0.68 0.59 0.71 0.51 0.37 0.54 0.55 0.40 0.57 0.64 0.22 0.35 
Setting2.1 1.00 1.00 1.00 0.50 0.36 0.53 0.99 0.99 0.99 1.00 0.99 0.99 
Setting2.2 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.36 0.53 0.78 0.44 0.61 
Setting2.3 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.36 0.53 0.77 0.41 0.58 
Setting3.1 0.99 0.98 0.99 0.50 0.36 0.53 1.00 1.00 1.00 0.84 0.57 0.72 
Setting3.2 0.99 0.98 0.99 0.57 0.44 0.61 0.59 0.45 0.62 0.73 0.35 0.52 
Setting3.3 0.99 0.99 0.99 0.66 0.55 0.69 0.52 0.38 0.55 0.72 0.34 0.50 
 
 
5   Conclusion 
 
In this paper a procedure for clustering compositional data trajectories has been proposed. The procedure 
take advantage of the functional nature of observed data and make use of spline smoothing to separate 



“true values” from random noise and measurement errors. Moreover spline smoothing techniques are 
particularly suitable in this context since they allow comparison among trajectories measured on a 
misaligned grid. This comparison can be done by realigning observed data on a regular grid via 
prediction. 
 
The most critical issues in cluster analysis are represented by the clustering algorithm and by the metric 
used to build the dissimilarity matrix. In the presented simulation study we found that the clustering 
algorithm is far less important than the employed metric. Two possible metrics are proposed. The first 
consider both the center of the observed trajectories and their shapes, while the second focus on the shape 
only. 
Of course the proposed metrics are just two out of a whole series of possible instruments which can be 
used to measure trajectory dissimilarity. A number of different metrics could be built in order to take into 
account different features in the compositional trajectories. Each metric would result in a different 
clustering structure, and such difference can be ascribed to the different focus the researcher justifying the 
use of such metrics.  
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