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Abstract

We describe an approach to automatically detect building facades in images of urban environments. This is an important
problem in vision-based navigation, landmark recognition, and surveillance applications. In particular, with the prolif-
eration of GPS- and camera-enabled cell phones, a backup geolocation system is needed when GPS satellite signals are
blocked in so-called “urban canyons.”

Image line segments are first located, and then the vanishing points of these segments are determined using the RANSAC
robust estimation algorithm. Next, the intersections of line segments associated with pairs of vanishing points are used
to generate local support for planar facades at different orientations. The plane support points are then clustered using an
algorithm that requires no knowledge of the number of clusters or of their spatial proximity. Finally, building facades are
identified by fitting vanishing point-aligned quadrilaterals to the clustered support points. Our experiments show good per-
formance in a number of complex urban environments. The main contribution of our approach is its improved performance
over existing approaches while placing no constraints on the facades in terms of their number or orientation, and minimal
constraints on the length of the detected line segments.
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1 Introduction

The ability to detect and recognize buildings is important to a variety of vision applications operating in outdoor urban
environments. These include landmark recognition, assisted and autonomous navigation, image-based rendering, and 3D
scene modeling. This paper discusses a solution to one part of the building recognition problem, that of detecting multiple
planar surfaces from a single image. Because each building facade can be described as a region of a scene plane at a
specific position and orientation, the ability to generate a collection of building facades can be viewed as a first step in a
system designed to solve any of the previously mentioned applications.

A number of general methods exist for scene surface recovery. The structure from motion approach is one of the most
general [1]. From multiple images acquired from different viewpoints, the displacements of corresponding pixels from
one image to the next are used to compute the 3D depth of the corresponding scene points. This depth information can
then be segmented into qualitatively different surfaces by fitting parametric surfaces (e.g., planes and conics) to the depth
values [2]. Werner and Zisserman use this approach for architectural model reconstruction from multiple images [3].
Liebowitz et al. discuss the same application, but use one or two images along with geometric constraints that are common
to architectural scenes [4].

In some cases, 3D properties of a scene must be inferred from a single image. For example, static surveillance cameras
may be placed in urban environments at locations where Global Positioning System (GPS) signals cannot be received; in
this case, accurate position and orientation of the camera relative to a world coordinate frame must be determined from a
single perspective image of the environment.
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Tourism is another application of single image structure recovery. The tourist of the near future will be able to point their
camera-equipped mobile phone at the urban scene in front of them and ask questions such as [5]: Where am I? What
building is this? How do I get to a particular location? These questions can be answered given the camera location and
orientation, and given a 2D or 3D map of the environment. While GPS, which is now integrated into some mobile phones,
could be used to determine location, in some urban environments tall building block GPS signals, rendering GPS unusable.
Even when GPS can be received, it does not provide orientation, and position is only accurate to about 10 meters. Thus,
vision-based location from a single image has the potential to increase the accuracy of information obtained from these
mobile devices. Approaches to determine the orientation of a camera relative to the three dominant orthogonal directions
in an urban scene include [6, 7, 8].

Some approaches to recognizing planar surfaces from a single image assume the availability of 2D or 3D models that
describe the facades of each building. A facade model may consist of an image of the facade, or of a collection of coplanar
points or line segments. It is well known that images of a planar surface acquired from different viewpoints are related
by a linear transformation known as a homography [10]. Given a model of a planar surface consisting of a set of point
or line features, and a set of four or more corresponding features in an image from a calibrated camera, the position and
orientation of the scene plane is uniquely determined from the homography relating the model and image [9, 10, p. 213].
This geometric constraint may be used to find sets of image features lying on a common plane [11, 12].

Most existing single-view approaches that use building facades for navigation, recognition, etc., require that a single scene
plane span the majority of the image. This enables straightforward matching between an image and a model. For example,
Robertson and Cipolla [13] describe an approach to navigation in urban environments in which a single image acquired
from a mobile phone is used to determine the position and orientation of the camera; they assume that the image is
dominated by a single plane and match the query image to a database of facade images using correspondences of local
color features centered on Harris corner points. When multiple planar surfaces are visible in an image, the image must be
segmented into regions corresponding to each scene plane.

As any given image can be generated by an infinite number of 3D surfaces, when only a single image is available some
assumptions about the geometric properties of the scene must be made in order to recover the surface geometry. Most
urban building facades have surface markings due to doors, windows, bricks, and blocks. As such, each building facade
generally consists of two sets of parallel lines, where lines in the first set intersect lines in the second set at right angles.
It is well known that the perspective image of a collection of parallel scene edges intersect at a single point in the image,
known as the vanishing point. Thus, the image of a building facade may be identified by locating regions in the image
covered by pairs of intersecting edges, where each edge is oriented in the direction of one of two vanishing points. This is
the approach that we take in this paper.

Image line segments are first located, and then the vanishing points of these segments are determined using the RANSAC
robust model fitting algorithm [14]. Groups of short segments are combined into longer segments while maintaining
alignment with the associated vanishing points. Next, the intersections of line segments associated with pairs of vanishing
points are used to generate local support for planar facades at different orientations. The plane support points are then
clustered using an algorithm that requires no knowledge of the number of clusters or of their spatial proximity. Finally,
building facades are identified by fitting vanishing point-aligned quadrilaterals to the clustered support points. The main
contribution of our approach is its improved performance over existing approaches while placing no constraints on the
facades in terms of their number or orientation, and minimal constraints on the length of the detected line segments.

A number of approaches to planar surface detection from a single image are related to ours. Schaffalitzky and Zisserman
[15] propose an approach that uses projective invariants to group repeated structures lying on a plane; vanishing points and
lines are identified, but the problem of segmenting multiple planes in an image is not addressed. Hoiem et al. [16] propose
an approach to computing coarse 3D orientation of a scene from a single image by learning appearance-based models of
surfaces at different orientations. The approach does a good job identifying vertical surfaces, but doesn’t reliably identify
the correct orientations of those surfaces. Kosecka and Zhang [17] describe an approach to detecting building facades that
relies on being able to detect a small number of long line segments along the borders of facades.
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Figure 1: Original image (left) and detected line segments (right).

2 Detection of Vanishing Points

Themajority of edges in an urban environment generally align with the three principle orthogonal directions of a local world
coordinate frame. However, due to the presence of slanted surfaces (such as roofs), numerous edges at other orientations
may also be present. But, the edges on any planar surface, whether slanted or not, are usually parallel or orthogonal to
each other. Therefore, to detect all large planar surfaces, we locate the vanishing points of all large groups of parallel scene
edges, regardless of their orientation.

Vanishing points have been used in the past to solve a number of calibration problems, including internal camera parameter
estimation, relative orientation, image rectification, and object recognition. A variety of methods have been developed to
detect and estimate vanishing points. Common approaches include image-space clustering [18], the Hough transform [19],
and expectation maximization [7]. We use an approach based on the RANSAC robust model fitting algorithm [14] that is
similar to the approach of Wildenauer and Vincze [20] .

The first step in our approach to detecting vanishing points is the detection of straight line segments. The Canny edge
detector [21] with hysteresis thresholding is used to generate a binary image of edge points. Straight line segments are
extracted from this edge image by first linking edges into contours and then splitting the contours into straight segments
[22]. The final line segments are those whose sum of squared distances to the contour points is minimized. Each line
segment Li is identified by its two endpoints: Li =
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than 10 pixels are discarded. Figure 1 shows an image and the line segments detected in that image. This image will be
used throughout Sections 2-4 of this paper to explain our approach.
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The RANSAC algorithm is applied several times to the above data; each trial is used to locate the single vanishing point
with the most support. Before each new trial, the data supporting the vanishing point found in the previous trail is removed.
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Figure 2: Line segments from the example image classified by vanishing point.

This process is repeated until Vmax vanishing points are found, or until the size of the largest consensus set is less than
Smin. (The values of these parameters and those that follow are given in Section 5.) On each trial of RANSAC, T random
samples of line pairs are examined. The line pair li and lj seed a potential vanishing point vij when the segments Li and
Lj are each at leastHseed pixels long and when their angle, θij = cos−1
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Θsup. All line segments in the largest consensus set Cmax are used to estimate the final location of the vanishing point,
v∗, for the current trial. v∗ is required to minimize the weighted sum, for all lines Lt ∈ Cmax, of the squared distances of
line segment end points to the line through v∗ andmt:
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vt = v × mt. v∗ is found using standard methods for nonlinear optimization.
After computing v∗, all line segments Lt ∈ Cmax are corrected so that they are coincident with v∗. The correction is
performed by projecting the endpoints of each line segment Lt onto the line l

∗

vt = v∗ × mt through v∗ andmt. Figure 2
shows the lines segments from the example image classified by the vanishing point that each supports.

3 Detection of Consistent Clusters of Plane Support

Image line segments that have been labeled according to vanishing point provide an initial cue to segmenting planar
regions in the image. Under the assumption that intersecting edges in the scene are coplanar and orthogonal, every pair
of nearby, nonparallel, vanishing point-aligned image line segments defines the local surface orientation of the scene point
that projects to the segment intersection point in the image. For two local image regions to be images of the same plane,
the pairs of intersecting line segments in each of the two regions should be labeled with the same two vanishing points. We
therefore seek to cluster pairs of intersecting line segments that have identical vanishing point label pairs.

Not all pairs of vanishing points define the orientation of a plane that can be easily detected in an image. Vanishing
directions that are close to parallel correspond to planes that are highly forshortened: their normals are nearly perpendicular
to the camera line of sight, and their image consists of line pairs that are nearly parallel and very dense. These line segments
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Figure 3: Plane support points for all pairs of vanishing points with sufficiently large mean angle between segments.

will be very difficult to accurately detect. Although building facades may occur at these orientations, what’s more common
is that two nearly parallel vanishing directions correspond to edges on two different, nonparallel planes. Hence, to label
the intersections of lines aligned with a pair of vanishing points, we require that the mean angle between their pairs of
intersecting line segments be sufficiently large. In all experiments reported here, these angles were required to be in the
range 45◦ − 135◦.

For each pair of vanishing points, (vi, vj), we find all points of intersection between pairs of line segments where one
segment is aligned with vi and the other segment is aligned with vj . Only line segments that are spatially close in the
image, and with no other segments in between, are allowed to generate intersection points. One cannot simply examine
the segments whose endpoints are close, as an intersection point of two segments may be near the center of one of the
segments. Like most line segment detection algorithms, ours produces non-intersecting segments. To detect intersections
of segments that approach but don’t meet (at a corners or at a T-junctions), we first extend the ends of all segments byDext

pixels. Then, a straightforward approach to locating intersection points is to consider all pairs of line segments. However,
for high-resolution images such as ours (2048× 1536), there are often 5000 or more line segments in an image. Checking
on the order of 50002 pairs of line segments for intersections is a computationally expensive procedure. Instead, we create
a line segment index image by rasterizing the line segments. The index k of each extended line segment Lk is recorded
at each pixel in the index image over which segment Lk passes; multiple indices may be recorded at any pixel. Then, the
index image is searched for pixels at which two or more indices have been recorded. If indices k and m are recorded at
the same pixel in the index image, and one of Lk or Lm aligns with vi and the other with vj , then p = lk × lm (the exact
intersection of segments Lk and Lm) is recorded as a plane support point with label (i, j). This process allows all line
segment intersections to be found in time linear in the number of segments. Figure 3 shows the set of plane support points
for the image shown in Figure 1.

The labeled plane support points define local regions in the image that support planes of various orientations. We seek
maximal clusters of similarly labeled support points. These clusters define the largest spatial regions in the image that may
correspond to a single plane (a building facade) in the scene.

Note that multiple scene planes with the same orientation, corresponding to parallel but distinct building facades, will be
assigned the same labels. Separating these identically labeled support points into regions corresponding to separate scene
planes is one goal of the clustering process described next. The other goal of clustering is to remove spurious support
points. In general, the support points for one plane should not lie inside a cluster of support points for a different plane.
However, in most real images, intersecting line segments occur that do not correspond to orthogonal edges in the scene.
These are due to spurious and non-orthogonal line segments detected on planar surfaces, as well as line segments detected
on non-planar objects such as trees, vehicles, clouds, etc. The spurious plane support points generated by these segments
can occur anywhere in an image, including in the interior region of a cluster of support points for a true plane.
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Figure 4: (a) Spatial separation of two clusters of plane support points with the same label is insufficient to infer two
separate building facades. (b) The two clusters must also be divided by support points of a plane at some other orientation.

If two parallel scene planes are to be detected as separate planes, the support points for the two planes must group into
spatially separate clusters in the image. However, as shown in Figure 4, spatial separation is not a sufficient condition.
The two clusters of identically labeled support points must also be divided by the support points of a plane at some other
orientation. To carry out this clustering, a nonsymmetricN ×N binary adjacency matrix A is created whereN is the total
number of plane support points (for all labels). We set Ai,j = 1 to indicate that support point pi is allowed to be grouped
with the cluster that includes support point pj ; otherwise, Ai,j = 0. Given A, a symmetric adjacency matrix A′ of the
same size is created: if points pi and pj each agree to be joined to the others cluster, i.e., Ai,j = 1 and Aj,i = 1, then
A′

i,j = A′

j,i = 1. Finally, the connected components ofA′ are found from the Dulmage-Mendelsohnmatrix decomposition
[23] of A′. These connected components are the clusters of plane support points that define the building facades.

It remains to define when a support point pi is allowed to be grouped with the cluster that includes support point pj . The
values in row i of matrix A are assigned in order of increasing distance from pi: first column j1, then column j2, ..., and
finally column jN , where

∥∥pi − pj1

∥∥ ≤
∥∥pi − pj2

∥∥ ≤ · · · ≤
∥∥pi − pjN

∥∥. Note that for all i, j1 = i and Ai,i = 1. For
the remaining columns, Aijk
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is in the range of angles

from pi that does not include any previous support points (pj1
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, . . . , pjk−1
) whose labels are different from that of

pi. More specifically, let label
(
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vector v. Define
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[
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min (pi) , θk
max (pi)

]
.

Figure 5 illustrates this process. A number of optimizations to speed up this process are possible. One is to check the
adjacency of a support point only if the direction to that point differs from all previous points by more than some threshold
(i.e., 5 − 10◦). Also, a limit on the number of points checked or on the distance to points may be used to end the process
early. Figure 6 shows the connected components of the adjacency matrix A′ generated for the example image.
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V.
Figure 5: Calculation of support point adjacency. Support point pj is adjacent to pi (i.e.,Ai,j = 1) because pj is inside the
largest arc centered at pi (indicated by the cross hatching) which includes only red support points. However, support point
pi is not adjacent to pj (i.e., Aj,i = 0) because pi is outside the largest arc centered at pj (indicated by the gray shading)
which includes only red support points.

Figure 6: Initial connected components of plane support points for the example image.
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Figure 7: Smoothing a cluster of plane support points. (a) Rasterized adjacency graph for one cluster of support points. (b)
Eroded image of adjacency graph. (c) Smoothed region of plane support.

Figure 8: The final smoothed clusters of plane support points for the example image.

4 Fitting Quadrilaterals to Plane Support Clusters

As building facades are almost always rectangular, and because the image of a rectangle is a quadrilateral, we next fit
quadrilaterals to the clusters of plane support points. The clusters of plane support points, defined by the connected
components, usually provide a good estimate of the regions in an image corresponding to different scene planes. However,
occasional clustering errors do occur. The clustering errors that have the largest impact on the accuracy of detected facades
are those that occur near the cluster boundaries. Many of these clustering errors can be corrected by smoothing the
boundaries of the clusters. This is most easily accomplished by first rasterizing each connected component graph, that
is, by creating an image of the arcs connecting the nodes in the graph, and then applying the mathematical morphology
operations of erosion and dilation to this image. To reduce the occurrence of holes in the rasterized graph in dense regions
of the graph, the image of the graphs are created at a resolution that is a multiple ofRdec of the original image’s resolution.
Then, the morphological operations can be applied to this image. First the rasterized graph is eroded using a circular
structuring element of radiusRerode pixels, then the blob with the largest area is dilated with a circular structuring element
of size Rerode + 1. Given the smoothed rasterized image of a cluster, the final cluster is the set of support points in the
original cluster which lie inside the smoothed image of that cluster. Figure 7 illustrates the process of smoothing a cluster
of support points, and Figure 8 shows all of the smoothed clusters for the example image.

The final step in locating building facades is to fit a quadrilateral to the convex hull of each cluster of plane support points.
We assume that all building facades are rectangular, and assume that the boundaries of each facade are parallel to one of
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Figure 9: Building facades are determined by the vanishing point-aligned quadrilaterals that bound each smoothed cluster
of support points.

the two dominant orientations of edges on the surface of the facade. Therefore, opposite edges of a facade quadrilateral
are required to align with one of the two vanishing points associated with the point cluster. We determine the smallest
quadrilateral that encloses the point cluster’s convex hull such that each edge of the quadrilateral passes through one
vanishing point and one point on the convex hull of the cluster. When a vanishing point is finite, the two tangent lines
making up the opposite edges of the bounding quadrilateral are easily found by scanning through all points on the cluster’s
convex hull, and locating those lines through the vanishing point and the hull point that make the smallest and largest angles
with respect to the line from the vanishing point to the cluster centroid. When a vanishing point is at infinity, the distance
of hull points from the line through the centroid is used to determine the tangent lines. Figure 9 shows the quadrilaterals
corresponding to the building facades.

5 Experiments

Figure 10 shows additional examples of using our algorithm to detect building facades in urban environments. As shown
in these and the previous experiments, we obtain good results on images of a number of complex buildings. As seen
in Figure 10, not all of the final clusters of plane support points correspond to true building facades. Some clusters
correspond to building roofs, some to reflections of building facades in windows, and some clusters correspond to walls
inside of buildings. These false facades can easily be filtered out based on their small size when compared to the larger
facades that are detected.

The values of the parameters used in our experiments are Vmax = 5, Smin = 20, T = 50, Hseed = 15, Θseed = 40◦,
Dsup = 3 pixels, Θsup = 3◦, Dext = 4 pixels, Rdec = 0.125, and Rerode = 4. Although there are a significant number
of parameters, we have found it easy to set them so as to obtain good performance. Furthermore, the performance of our
algorithm is not highly sensitive to their values as small changes do not significantly affect the results.

6 Conclusions

We have demonstrated how a small amount of knowledge about the structure of an urban environment can be used to
effectively locate multiple planar building facades from a single image. The main advantages of our approach over existing
approaches are its improved performance in complex environments, the lack of a requirement for a single facade to be
dominant in the image, and the ability to detect facades even when clutter makes it difficult to detect the line segments that
form the facade boundaries. Our initial experiments show that the algorithm has good performance on a number of difficult
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Figure 10: Building facades (and their support points) detected in other urban scenes.

scenes. In the future, we will investigate alternate clustering algorithms which may require fewer parameters. Additional
experiments will be conducted to test the algorithm’s performance in a larger variety of urban environments. We also plan
to integrate this facade detection algorithm into a system for building recognition and autonomous navigation in urban
environments.
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