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Abstract

In 2000 the European Statistical Office published the guidelines for developing the
Harmonized European Time Use Surveys system. Under such a unified framework,
the first Time Use Survey of national scope was conducted in Spain during 2002–
03. The aim of these surveys is to understand human behavior and the lifestyle of
people. Time allocation data are of compositional nature in origin, that is, they are
subject to non-negativity and constant-sum constraints. Thus, standard multivariate
techniques cannot be directly applied to analyze them. The goal of this work is to
identify homogeneous Spanish Autonomous Communities with regard to the typical
activity pattern of their respective populations. To this end, fuzzy clustering approach
is followed. Rather than the hard partitioning of classical clustering, where objects are
allocated to only a single group, fuzzy method identify overlapping groups of objects
by allowing them to belong to more than one group. Concretely, the probabilistic fuzzy
c-means algorithm is conveniently adapted to deal with the Spanish Time Use Survey
microdata. As a result, a map distinguishing Autonomous Communities with similar
activity pattern is drawn.

Key words: Time use data, Fuzzy clustering; FCM; simplex space; Aitchison dis-
tance.



1 Introduction

As a branch of microeconomics, time allocation theory deals with the topic of how individuals
distribute their time among alternative activities. It has usually used the paradigm of the individual
as a producing and consuming unit which seeks to find an optimal combination of market work,
household work and leisure as to maximize its well-being—in terms of an utility function—subject
to constraints on the total amount of time available, income and the price of goods. The theoretical
modelling of time use patterns has been the subject of intense study for several decades. The
seminal paper by Becker (1965) forms the basis for most current work in this area. The works by
Juster and Stafford (1991), Klevmarken (1998) and Hamermesh and Pfann (2005), among others,
provide overviews of the major developments within this field.

From an empirical point of view, the Multinational Comparative Time-Budget Research Project,
promoted by Alexander Szalai in the middle of the 60’s, means the origin of the modern time use
studies. Thus, from the early 2000’s the official statistical institutes of the majority of the OECD
member countries—including the main European countries as well as the US and Canada—have
collected large national time use data. This kind of data has become more and more relevant to
understand human behavior and to monitor similarities, differences or changes in the way of life of
populations or social groups. Also, to analyze the trade-off between work and leisure, the gender
roles and obtaining valuable information in order to face problems related to urban environment,
transportation, health, etc. How time is allocated to activities and how the allocation changes
over time and across countries has implications for economic policy and welfare. Particularly, the
differences in time allocation across countries or regions can not only help explain variations in
economic growth, but can also clarify the influence of institutions and public policies on individual
and household decisions.

If we look at the ways time allocation data are usually analyzed, we find that common descrip-
tive, tabular and graphical methods are mostly applied. Converse (1972) introduces the use of
multivariate techniques on such data, but the techniques both in this research and in the great
majority of subsequent ones are used in its standard form, not taking into account the technical
peculiarities of the data. On the other hand, discrete choice econometric models (see Greene, 2008,
ch. 23) are the only generally used tool for modelling allocation of time among a set of alternatives
depending on exogenous variables. A glance to any volume of the specialized journal Electronic
International Journal of Time Use Research, to the collection in Pentland and others (2002) or to
the recent review in Michelson (2006) may serve as evidence of such situation. In short, although
some references are encountered, the mainstream literature on the subject has avoided the princi-
ples introduced in Aitchison (1986) to resolve the difficulties and incoherences of applying standard
statistical tools for the analysis of data of compositional nature—as time allocation data are.

Time allocation data are strictly compositional in the sense that they are already originally non-
negative data sum up to a constant—the total available time—which is exactly the same for all
the individuals. That is, the vector of time shares—which reflects the distribution of time across
D different tasks—does not require normalization to be defined on the simplex sample space.
Formally, we will denote such a vector as t = [t1, . . . , tD] defined on the (D − 1)-dimensional
simplex

SD = {t = [t1, t2, . . . , tD] : t1 > 0, t2 > 0, . . . , tD > 0;
D∑

i=1

ti = T},

where T represents the total available time, usually measured in hours—there are 24 hours in
everyone’s day. Nowadays, we know that the simplex SD has an Euclidean vector space structure
defined by two basic operations: perturbation and powering (see Billheimer and others, 2001;
Pawlowsky-Glahn and Egozcue, 2001a, or Aitchison and others, 2002). Such a structure allows
to define orthonormal bases from which any element of SD can be obtained. The coordinates of
a compositional vector t with respect to an orthonormal basis constitute a vector in RD−1. The



key is that an isometry is established between t and its corresponding real coordinates. Hence,
angles and distances in SD can be associated with angles and distances in RD−1. This allows
the analysis of data in the simplex to be based upon its associated real coordinates—using then
standard multivariate data analysis techniques for real Euclidean spaces—and afterwards translate
the results into the simplex. Such approach has become termed modelling on coordinates and it is
currently an area of active research (see Egozcue and others, 2003; Pawlowsky-Glahn, 2003).

The objective of this paper is making a comparison of living patterns between the Spanish Au-
tonomous Communities (from now on denoted by ACs) based upon determining a set of homoge-
neous clusters of them. For the clustering process we will follow the fuzzy approach which provides
gradual memberships of objects to clusters, instead of the hard cluster assignments in ordinary
clustering methods. This allows to express that objects—ACs for us—belong to more than one
cluster at the same time, and can be useful for assessing how natural the cluster structure is. Also,
fuzzy clustering offers a great flexibility in handling different types of distance measures. Con-
cretely, we focus on the fuzzy c-means (FCM) algorithm (Bezdek, 1981), a flexible, efficient and
broadly applicable algorithm which is here adapted to deal with time allocation data. As a result
we provide a map wherein homogeneous ACs are distinguished.

The paper is organized as follows. Section 2 is devoted to a brief description of the FCM algorithm
and of the way we will use it within a time allocation context. Section 3 presents the data set
and deals with the problem of zero observations in it. Next, the clustering procedure is applied
and a map of Spain distinguishing homogeneous ACs is drawn. Finally, Section 4 contains some
concluding remarks.

2 FCM algorithm on coordinates

The fuzzy clustering problem can be expressed as classifying a given set of objects into c fuzzy
subsets—from now on simply called clusters. In our context, let T = {t1, . . . , tn} be a time use
data set where ti is the row vector describing the typical time allocation pattern of the population
of an AC i, i = 1, . . . , n. A c-partition of T is a set of values {uik} that are arranged in a n × c
matrix U = [uik], being c the number of clusters, with 1 < c < n. We refer to U as a possibilistic
fuzzy c-partition of T if

n∑
i=1

uik > 0, k = 1, . . . , c. (1)

Then, uik is interpreted as a degree of typicality of AC i to cluster k. Alternatively, we refer to U
as a probabilistic fuzzy c-partition of T if, in addition to (1),

c∑
k=1

uik = 1, i = 1, . . . , n, (2)

holds. Condition (2) formally transform uik into a membership probability of AC i to cluster k
relative to all other clusters.

Procedures derived from the FCM algorithm are commonly used to obtain a possibilistic or prob-
abilistic partition in fuzzy clustering. The FCM recognizes a known or given number of c hyper-
spherical clouds of points in a data set. The clusters are assumed to be approximately the same
size, and each one of them is represented by its centroid νk, k = 1, . . . , c. The optimization problem
that defines the c-means model is given by

min
U,ν,w

c∑
k=1

n∑
i=1

um
ikd2(ti, νk) +

c∑
k=1

wk

n∑
i=1

(1− uik)m, (3)

where the elements of U satisfy (1), or both (1) and (2), depending on the approach; ν =
[ν1, ν2, . . . , νc] is the vector of cluster centroids; and w = [w1, w2, . . . , wc], where wk ∈ R+, is



the kth penalty term. This vector of penalties is included in the possibilistic case for avoiding the
trivial solution U = 0 (see Krishnapuram and Keller, 1993, for details). The parameter m ≥ 1 is
the degree of fuzzification. With higher values for m the boundaries between the clusters become
softer, with lower values they get harder. It has been found from empirical results that values
around 2 produce satisfactory results. Consequently m = 2 is usually chosen, and this will be
used throughout this paper. Finally, d(ti, νk) denotes the measure of dissimilarity between an AC
i—characterized by the vector ti—and the kth cluster centroid.

As for any other clustering method, fuzzy clustering is based on a distance measure. In classical
applications, the ordinary distances are either Euclidean or Mahalanobis. These ones are well-
behaved when dealing with real data, but this is not the case of time allocation data. In Aitchison
(1992) the author provides a detailed account of criteria which must be satisfied by a meaningful
measure of distance on the simplex space. We will not discuss here about the suitability of the
Euclidean distance, or others, for measuring dissimilarity between compositions. We refer the
reader to Bohling and others (1998), Mart́ın-Fernández and others (1998), Barceló-Vidal and others
(1999) Aitchison and others (2000), Rehder and Zier (2001) and Aitchison and others (2001) for
an in-depth debate on the subject. Under our point of view, the main conclusion drawn from
these papers is that assuming the fact that compositions contain only relative information—hence
the adequacy of a log-ratio representation of them—and also considering the algebraic-geometrical
structure of the simplex, the Aitchison distance (da) defined in Aitchison (1986) is a suitable
measure of difference between two time use patterns t and t∗:

da(t, t∗) =

√√√√ 1
D

∑
i<j

(
log

ti
t∗i
− log

tj
t∗j

)2

.

This distance satisfies the requirements of Aitchison (1992) and it can be derived from the own
Euclidean structure of the simplex (Egozcue and others, 2003). The Aitchison distance is equivalent
in the simplex to the standard Euclidean distance in real space, since geometrically speaking—
although not visually—it draws spheres around any point of the simplex. In fact, following the
modelling-on-coordinates approach, the next identity holds:

da(t, t∗) = de(y,y∗),

where y and y∗ denote the vectors of coordinates of, respectively, t and t∗ in relation to a given
orthonormal basis and de refers to the ordinary Euclidean distance. In this way, our clustering
problem in SD can be handle in the real space of coordinates RD−1.

In this paper we focus on the probabilistic FCM which will provide a vector of cluster membership
probabilities ui for each AC i, and a classification of them into a selected number of clusters. The
main difference with respect to the possibilistic approach is that probabilistic algorithms are forced
to partition data, that is, the total membership probability, 1, is distributed across all the clusters.
Thus, the membership probability of an AC to a cluster depends not only on the distance between
them, but also on the distance between that AC and the other clusters.

From all the above, the minimization problem (3) is now written as

min
U,v

c∑
k=1

n∑
i=1

um
ikd2

e(yi,vk),

where vk denotes the centroid νk in the space of coordinates. Notice that such an objective function
cannot be minimized directly. Both the cluster centroids, vk, and the membership probabilities,
uik, are then obtained by an iterative process. At the t-step they are calculated as follows:

v(t)
k =

n∑
i=1

u
m,(t−1)
ik yi

n∑
i=1

u
m,(t−1)
ik

, k = 1, . . . , c,



and
u

(t)
ik =

1
n∑

j=1

(
de(yi,v

(t)
k )

de(yj ,v
(t)
k )

)2/(m−1)
, i = 1, . . . , n, k = 1, . . . , c.

At the first iteration the membership probabilities are obtained from an initial set of centroids.
These could be either selected at random or determined according to prior information about the
groups structure. Note that the probabilistic FCM is quite insensitive to initial values and exhibits
good convergence properties. Once the algorithm converges, the commonly-used criterion is to
classify an object—an AC in our case—into the cluster with highest membership probability.

3 Application to regional time use pattern in Spain

3.1 The data and the problem of zero observations

In 2000 the European Statistical Office published the guidelines for developing the Harmonized
European Time Use Surveys system. Under such a unified framework, the first Time Use Survey
(TUS) of national scope was conducted in Spain during 2002–03. Time use data are collected by
the TUS, along with many other background variables, through a daily activities diary. Originally,
this diary concerns the activities collapsed in 10 primary activity groups exhaustive of all daily
activities. Respondents record its activity category in 10 minutes time slots during a day—144
time slots in total. In this way the daily time allocated to each one of the activity groups could be
obtained. Rather than deal with the large sample size of the complete TUS, attention is restricted
to the subsample T of occupied working population (employees or self-employees) aged between 18
and 65—respectively the age of majority and the legal age of retirement in Spain—with secondary
education or higher. So the size of the valid subsample is 6465 individuals. Note that this subgroup
of population has a significant bearing on the determination of economic growth and distribution
of national income inasmuch as they supply the most labour hours to the market. Thereby, the
study of their time allocation decisions is of some importance.

A problem arises if individuals write down zero for any activity group. The presence of zeros prevent
us for applying compositional data methods based upon ratios. Unfortunately in microeconomic
data, such as collected in expenditure surveys, in panel studies or also in time use surveys, the
occurrence of zero observations for shares is common. In fact, we have evidence that some time use
investigators have moved away from the log-ratio approach because of the zeros problem. Under
our point of view, investigating the reasons for the presence of zeros and applying a reasonable
procedure to remove them, which allows for conducting a coherent analysis of the data, is worth
more than using a misleading methodology.

In this paper we face the problem in two ways. On the one hand, the 10 primary activity groups
are aggregated—amalgamated in compositional terminology—into 6 major categories:

1. Personal care: including feeding and sleeping time or some other basic personal care activi-
ties.

2. Work : including both remunerated and volunteer work (collaboration in organizations, in-
formal casual work for family business, or similar). In this category we also include time to
education as an investment in human capital to get better position, higher wages, etc.

3. Household and family care: including cooking, childcare, household management, and so on.

4. Social life and entertainment : this includes leisure time for sports, outdoors activities, hob-
bies, interests, etc.

5. Mass media: time for radio, television, newspaper, etc.



6. Travel and unspecified time use.

By the above amalgamation, the number of zeros is reduced whereas relevant time allocation in-
formation is retained. However, one must be cautious in using amalgamation since an excessive
aggregation of shares might result in an unmeaningful data analysis. Table 1 contains the percent-
age of zero values for each of the new categories considered and also the overall percentage of zeros.
We can see that this latter is moderate (11.1%), and also that groups 1 and 2 do not contain zero
observations.

Table 1: Zeros in Spanish Time Use Survey microdata.

Activity group % zeros
1. Personal care 0%
2. Work 0%
3. Household and family care 20.8%
4. Social life and entertainment 25.3%
5. Mass media 17.8%
6. Travel and unspecified time use 2.7%
Overall % zeros 11.1%

On the other hand, an imputation procedure is applied for the zeros remaining. We assume that
these zeros are not truly zeros, but they result from the sampling process. For instance, it is the case
of an individual who has allocate less than 10 minutes to a certain activity group. Several composi-
tional zeros replacement procedures has been proposed in the literature (see Mart́ın-Fernández and
others, 2003; Palarea-Albaladejo and others, 2007; and Palarea-Albaladejo and Mart́ın-Fernández,
2008). Here we apply the maximization-restoration method proposed in Palarea-Albaladejo and
others (2007) by which zeros are replaced by estimated values taking into account the threshold
value—10 minutes in our case, the same for all the activity groups—and the valuable informa-
tion contained in the observed values. Only 16 iterations have been required by the algorithm to
converge.

3.2 Finding homogeneous time use patterns

Firstly, recall that the analysis is focused on ACs, not on individuals, so a measure of their typical
time allocation pattern is required. The mean vector is commonly used as such, but it is now
well-known that the ordinary arithmetic mean is not well-behaved when it is applied to data of
compositional nature. Instead, the closed geometric mean is proposed (Aitchison, 2001; Pawlowsky-
Glahn and Egozcue, 2001b):

g(Th) = C

[ nh∏
i=1

thi1, . . . ,

nh∏
i=1

thiD

]1/nh
 , h = 1, . . . , 17,

where h indicates the subsample of T refers to every one of the 17 ACs1 into which the Spanish
territory is divided. The closure operator C divides each component of a vector by the sum of all
the components, thus the vector is rescaled so that the sum of its components is T . Therefore, the
final data set used for clustering is a data matrix of size 17× 6 which comprises the representative
time allocation pattern—closed geometric mean time allocation pattern—of the population of every
AC among the D = 6 activity groups considered above. Note that for the whole country the mean
time allocation pattern—expressed in proportion of total available time—is

[0.4747, 0.3556, 0.0389, 0.0302, 0.0403, 0.0603].
1Note that the autonomous cities Ceuta and Melilla have not been considered in this study.



Consequently, the great majority of daily time is dedicated to personal care and work, whereas a
similar proportion of time is allocated to home care, leisure activities or media.

In order to apply the fuzzy clustering procedure described in the previous section, it is required to
express the data in coordinates with respect to an orthogonal basis in S6. For our case, no special
features of such a basis are demanded, so we will use that one provided by Egozcue and others
(2003). Then the corresponding set of coordinates Y = {y1, . . . ,y17} in R5 is obtained by

yij =
1√

j(j + 1)
log
∏j

k=1 tk

tjj+1

, j = 1, . . . , 5, i = 1, . . . , 17.

In clustering algorithms, it is usually assumed that the number c of clusters is known or given.
The automatical determination of the optimal number of cluster is not a trivial task, and a large
number of strategies has been proposed from different points of view. A simple procedure is to
try with several values for c in order to discover a stable classification of objects. Then we have
chosen a range of values for c from 3 to 6, and a set of stable homogeneous groups of ACs has been
observed. In the following, we take c = 4 as representative of the underlying cluster structure. In
this case the FCM algorithm converges in 14 iterations.

Table 2: Cluster membership probabilities for the Spanish Autonomous Communities.

Cluster membership probability
ACs 1 2 3 4 da(ti, νk)
1. Andalućıa 0.1280 0.5944 0.2104 0.0671 0.1332
2. Aragón 0.7885 0.0732 0.0945 0.0438 0.1151
3. Asturias 0.8165 0.0839 0.0699 0.0296 0.0914
4. Illes Balears 0.1664 0.4652 0.1914 0.1770 0.3414
5. Canarias 0.0874 0.1021 0.0471 0.7633 0.4864
6. Cantabria 0.2545 0.1970 0.4175 0.1310 0.7672
7. Castilla-León 0.2605 0.1749 0.5213 0.0432 0.4721
8. Castilla-La Mancha 0.1374 0.6632 0.1351 0.0642 0.1396
9. Cataluña 0.1091 0.1586 0.0707 0.6616 0.7048

10. Com. Valenciana 0.0988 0.7441 0.0915 0.0656 0.1294
11. Extremadura 0.2754 0.2182 0.4280 0.0785 0.8852
12. Galicia 0.0698 0.8348 0.0589 0.0365 0.0720
13. Madrid 0.0410 0.0490 0.0273 0.8827 0.6611
14. Murcia 0.8902 0.0434 0.0422 0.0241 0.0691
15. Navarra 0.0227 0.0244 0.9476 0.0053 0.6189
16. Páıs Vasco 0.0419 0.0489 0.8977 0.0115 0.5631
17. La Rioja 0.5908 0.2209 0.1391 0.0492 0.1358

Table 2 shows the membership probabilities for every AC. There are ACs which clearly belongs to
a certain cluster—as AC 15 to cluster 3—whereas this does not occur with ACs such as AC 6—due
to its low highest membership probability. Another possible problem for clearly classifying an
AC—which we have encountered for c = 6—is that of a highest and a second highest membership
probabilities which were very close between them. Table 2 also includes in the last column the
Aitchison distance between each AC and the centroid of its belonging cluster, and Figure 1 shows
it graphically. It is observed that clusters 1 and 2 are the most homogeneous ones. For those ACs
classified in the same cluster, one could expect an inverse relationship between both the magnitude
of the highest membership probability and the distance from the corresponding centroid. In fact,
this occurs for the members of clusters 1 and 2, but this is not true in all the cases. For example,
Navarra is classified in cluster 3 with probability 0.9476—the higher one among those ACs in the
same cluster—however the distance between Navarra and the centroid of cluster 3 is not the lowest



one. This is due to the fact that membership probabilities are calculated taken into account the
position of an AC with respect to all the clusters. Then a membership probability cannot be
understood as a measure of typicality as might appear on first acquaintance.

Figure 1: Aitchison distance between Autonomous Communities and cluster centroids.

Given the above membership probabilities, Figure 2 shows a map of Spain wherein ACs belonging
to each cluster—ACs with similar time allocation pattern—are distinguished by different colors.
There is not observed any definite geographical pattern—such as a north-south or coast-inland
pattern—in the way the available time is distributed among activity groups. We finally highlight
that our tests with several values of c have revealed some strong links between ACs in the sense
that they are always clustered together. Such links have been represented in Figure 1 by vertical
lines connecting those highly related ACs. Note that all the members of cluster 3 are highly related
each other.

4 Concluding remarks

Time allocation data give a complete picture of a society by providing detailed information about
how people use their time on different market and non-market activities. From a public policy point
of view, the analysis of time use data could say much on the socioeconomic profile of a population,
therefore a well-founded and well-conducted analysis is a must. Nevertheless, although compo-
sitional in nature, time allocation data are rarely analyzed using compositional data statistical
methods.

In this work we illustrate how to adapt fuzzy clustering techniques to deal with compositional data
by using microdata from the Spanish Time Use Survey. After treat the data for zero observations,
a set of homogeneous groups of Spanish Autonomous Communities is obtained. The methodology
is successfully applied and interesting information can be inferred from the results.

From an applied point of view, the immediate continuation of the work presented here consists
in finding out the socioeconomic reasons underlying the daily time use patterns that have been
discovered. Also, to analyze how that allocation might be affected by variables such as sex, age,
day of the week or similar.



Figure 2: Homogeneous Spanish Autonomous Communities in terms of time allocation pattern.
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