
A log-linear model of grain size influence on the geochemistry 
of sediments

H. v. Eynatten and R. Tolosana-Delgado
Dept. of Sedimentology and Environmental Geology, Geoscience Center, University of Göttingen, 

Germany; hilmar.von.eynatten@geo.uni-goettingen.de

Abstract

Sediment  composition  is  mainly  controlled  by  the  nature  of  the 
source  rock(s),  and  chemical  (weathering)  and  physical  processes 
(mechanical  crushing,  abrasion,  hydrodynamic  sorting)  during 
alteration  and  transport.  Although  the  factors  controlling  these 
processes are conceptually well understood, detailed quantification 
of compositional changes induced by a single process are rare, as are 
examples  where  the  effects  of  several  processes  can  be 
distinguished. The present study was designed to characterize the 
role of mechanical crushing and sorting in the absence of chemical 
weathering.  Twenty  sediment  samples  were  taken  from  Alpine 
glaciers  that  erode  almost  pure  granitoid  lithologies.  For  each 
sample, 11 grain-size fractions from granules to clay (φ grades <-1 to 
>9) were separated, and each fraction was analysed for its chemical 
composition. 
The presence of clear steps in the box-plots of all parts (in adequate 
ilr and clr scales) against  φ is assumed to be explained by typical 
crystal  size  ranges for the relevant  mineral  phases.  These scatter 
plots and the biplot suggest a splitting of the full grain size range 
into  three  groups:  coarser  than  φ=4  (comparatively  rich  in  SiO2, 
Na2O, K2O, Al2O3, and dominated by “felsic” minerals like quartz and 
feldspar),  finer  than  φ=8 (comparatively  rich  in  TiO2,  MnO,  MgO, 
Fe2O3,  mostly  related  to  “mafic”  sheet  silicates  like  biotite  and 
chlorite), and intermediate grains sizes (4≤φ <8; comparatively rich 
in P2O5 and CaO, related to apatite, some feldspar). 
To further test  the absence of  chemical  weathering,  the observed 
compositions were regressed against three explanatory variables: a 
trend on grain size in φ scale, a step function for φ≥4, and another for 
φ≥8. The original hypothesis was that the trend could be identified 
with weathering effects, whereas each step function would highlight 
those  minerals  with  biggest  characteristic  size  at  its  lower  end. 
Results  suggest  that  this  assumption  is  reasonable  for  the  step 
function, but that besides weathering some other factors (different 
mechanical  behavior  of  minerals)  have  also  an  important 
contribution to the trend.

Key  words:  sediment,  geochemistry,  grain  size,  regression,  step 
function



1   Introduction

Numerical modeling has become a powerful and versatile tool in several fields of 
theoretical  and  applied  geosciences  during  the  last  decades.  In  the  field  of 
sedimentology  and  basin  analysis,  such  modeling  usually  comprise  basin 
subsidence (and possibly inversion), heat and fluid flow, basin fill  (stratigraphic 
modeling) as well as climatic, oceanographic and biological forcing of sedimentary 
systems  (e.g,  Harbaugh  and  others,  1999;  Harff  and  others,  1999).  Basin-fill 
models, for example, are strongly controlled by sediment supply, subsidence and 
sea-level fluctuations. They are mostly designed to predict or reconstruct sediment 
distribution  (sedimentation  rates  in  space  and  time)  under  known  boundary 
conditions (e.g., Storms and Swift, 2003), and may include some rough information 
on basic lithologies (carbonates, evaporates, fine vs. coarse-grained clastics, etc.). 
Other  models  focus  on sediment  transport  (e.g.,  Bobertz  and  others,  2005)  or 
diagenetic modeling (e.g., Walderhaug, 2000). Compared to these quite detailed 
models,  little  has  been  done  so  far  concerning  a  comprehensive  numerical-
statistical model for describing the composition of clastic sediments, i.e. their grain 
size, mineralogy, and/or geochemistry.

The  mineralogical  and  geochemical  composition  of  sediments  and  sedimentary 
rocks is controlled by a range of factors from the composition of the source rocks 
to all the processes that modify the material coming from the source rocks such as 
chemical weathering (depending on climate and relief), mechanical crushing and 
abrasion  during  transport  of  the  sediment  from  source  to  sink,  grain-size 
fractionation  due  to  hydrodynamic  sorting,  and  the  specific  conditions  of  the 
depositional  environment  (e.g.,  Pettijohn  and  others,  1987;  Weltje  and  von 
Eynatten,  2004).  Therefore,  modeling  sediment  composition  requires  good 
knowledge of the source rocks and of the way and degree the various modifying 
processes were active.

Although  the  general  scheme  of  the  influences  of  the  controlling  factors  on 
sediment composition appears  to  be well  understood,  detailed  investigations of 
compositional changes induced by a single process are rare, because (i) data from 
natural  systems  are  mostly  ambiguous  due  to  the  complexity  of  separating 
chemical from physical effects (Johnsson, 1993), and (ii) laboratory data are almost 
non-existent due to the limitations of time. Therefore it needs investigations from 
natural laboratories where sediment generation is largely controlled by a single 
process, for example, chemical weathering or mechanical crushing (comminution). 
Whereas  chemical  weathering  in  general  has  received  high  attention  (e.g., 
Lovering, 1959; Nesbitt and Wilson, 1992; Nesbitt and Markovics 1997; Ohta and 
Arai, 2007) there is especially a lack of information on the effects of some physical 
processes on sediment formation (Nesbitt  and Young 1996).  Physical  processes 
generally  include  in-situ  disintegration  (e.g.,  rock  fracturing  and  loosening  of 
grains  by  changes  in  temperature and frost  action),  crushing (comminution by 
mechanical forces such as shear stresses at the base of glaciers), and mechanical 
abrasion or attrition (e.g. Blatt and others, 1972). Finally, hydrodynamic sorting 
separates the detrital material according to its grain size, shape, and density.

In this paper, we use chemical data from twenty sediment samples that were taken 
from three retreating Alpine glaciers  of  the Aar Massif  in  central  Switzerland. 
Samples range from fine-grained clay to coarse-grained granules. Our hypothesis 
is  that  these  sediments  were  not  affected  by  chemical  weathering  and,  thus, 
physical  comminution and subsequent  hydrodynamic  sorting exclusively  control 
the  composition  of  these  sediments.  A  log-linear  regression  model  is  used  to 
describe the compositional changes over the full grain size range. We further test 
the hypothesis of the absence of chemical weathering by comparing the observed 
compositional changes versus well-defined trends of chemical weathering known 
from the literature (e.g., Nesbitt and Markovics, 1997; von Eynatten and others, 
2003; Ohta and Arai, 2007).



Figure 1: Box-plots of the observed composition as a function of grain size (accessorily, symbols 
represent samples according to the legend in Figure 5). The number of samples for each grain size 
fraction, and their (geometric) averages are also displayed. Colours of the averages bars follow the 

legend in the box-plots. In these, several order statistics are represented (minimum and maximum as 
extremes of the wiskers, the boxes themselves enclose the 25-75% range of the data, and the central 

line is the median) for each grain size. Finally, below -1 we include the (geometric) average 
composition of hand rock specimens (triangle down) and of the bedrock (triangle up) reported by 

Debon and Lemmet (1999).



2   Data Base

The samples  were collected from moraines and glacio-fluvial  deposits from the 
Rhone,  Damma  and  Tiefer  Glaciers  (Cantons  of  Valais,  Uri  and  Schwyz, 
Switzerland). All these glaciers drain and erode almost pure granitoid lithologies 
(granites, granodiorites, orthogneisses, etc.) from the so-called central Aar granite 
(Aar massif,  Central Alps).  According to the compilation by Debon and Lemmet 
(1999),  the mineral  modal composition of the granitoids varies from quartz 21-
35%, feldspar 61-65% and mafics 1-14%. The monzogranites and granodiorites of 
the Central Aar granite s.str. exhibit a narrow range (quartz 30-34%, feldspar 58-
66%, mafics 4-8%). Characteristic mafic and accessory minerals are biotite, garnet, 
titanite, allanite (epidote group), and sometimes fluorite.

Twenty sediment samples and eight cobbles that reflect the primary source rocks 
were taken from the glacial deposits, either close to the front of the retreating 
glacier tongue or from side moraines. The sediments were separated into eleven 
grain-size fractions ranging from  ≤-1 to  >9 (from granules to clay grade) by 
sieving and centrifuge-aided settling. Grain size distributions were measured by 
both laser granulometry of the bulk sample and by weighing the individual grain-
size fractions of each sample. Each cobble and each sediment grain-size fraction 
was powdered, fused using lithium metaborate, and subsequently analysed using 
X-ray fluorescence for major oxides (SiO2, Al2O3, TiO2, total Fe as Fe2O3, MnO, MgO, 
CaO, Na2O, K2O, P2O5) , and several trace elements (Ba, Co, Cr, Cu, Ga, Nb, Ni, Pb, 
Rb, Sc, Sr, V, Y, Zn, Zr, Nd). In this contribution, only the major oxide composition 
is studied individually for each grain size category, without using the grain size 
distribution curves to bind them. Figure 1 shows a box-plot representation of the 
raw variables in the analyzed data set.

3   Methods

3.1   Brief summary of geometry of compositions

A composition is a row vector x=[x1, x2, ..., xD] of positive components carrying only 
relative information, i.e. scaling it by a non-negative constant does not change its 
meaning. For this reason, compositions are typically applied the closure operation 
C(·)―that is, rescaled to sum up to 100%―without losing any relevant information. 
The set of  compositions of  D parts is  called the  D-part  simplex,  denoted  SD.  A 
subcomposition is  just  the  closure  of  any  subset  of  2  or  more  parts  of  a 
composition, and it plays the role that marginals do with conventional vectors. The 
simplex  can  be  given  a  Euclidean  space  structure,  by  the  three  operations  of 
perturbation ( ), powering ( ⊙) and Aitchison scalar product (<·,·>A), respectively 
playing the roles of translation (addition), scaling (multiplication by a scalar), and 
Euclidean scalar product (inner product or projection). The original definitions of 
these operations can be found in Aitchison (1986, 1997, 2002), and the proofs that 
they indeed build  an Euclidean space structre can  be found in  Billheimer and 
others (2001) or Pawlowsky-Glahn and Egozcue (2001). These operations can be 
re-expressed as conventional addition, multiplication and inner product by the so-
called centered log-ratio transformation of Aitchison (1986), 

clri (x) = ln (xi) – 1/D ·j ln (xj).

This  operation  is  an  isometry,  i.e.  clr(xλ⊙y)=clr(x)+λ·clr(y)  and  <x,y>A = 
clr(x)·clrt(y), thus largely simplifying further computations (the superindex t means 
transposition, converting a row vector to a column vector). Note that the inverse 
clr transformation is the straightforward



x = C[ exp( clr (x) ) ],

where the exponential is applied component-wise.

3.2   Review of compositional statistics

To compute an average compatible with that structure, Aitchison (1986) proposed 
to take the closed geometric mean of the parts, which is equivalent to the inverse 
clr transformation of the average of the clr-transformed values,

m = clr-1( 1/N · n clr(xn) ).

This  is  the  average  used  in  this  paper  (e.g.  in  Figs.  1  and  3).  Regarding  the 
variance-covariance structure of a compositional data set, there are several ways 
to express it in a compatible way (Aitchison, 1986, 1997, Pawlowsky-Glahn and 
Egozcue, 2002, and Pawlowsky-Glahn, 2003). In our case, we are only interested in 
a way to represent it graphically, namely the compositional biplot. 

The clr transformation helped Aitchison (1997,  2002) to define a  compositional 
biplot, this is, an optimal bi-dimensional joint representation of the data samples 
and variables. It is based on a singular value decomposition (SVD) of the data set, 
after clr transformation and centering. Recall that in a compositional biplot, clr-
transformed parts are represented as arrows, and each sample as a point. In such 
a biplot,  a link between any two variables represent their  log-ratio:  orthogonal 
links suggest uncorrelated pairs of log-ratios, parallel links suggest well-correlated 
pairs of log-ratios; a short link suggests that its two parts are quasi-proportional or 
highly correlated, and a long link suggest that the two parts could be unrelated 
(although this should be taken as just a hint). Rays should not be analyzed, as they 
represent  the  clr  transformed  parts,  which  have  non-intuitive  one-to-many 
relationships with the original parts.

3.3   Linear compositional models

Thanks to the compositional operations of section 3.1, a compositional linear trend 
completely embedded in the simplex, can be defined as (e.g. Daunis-i-Estadella and 
others, 2002):

z(t1, ..., ts) = b0  t1⊙b1 ···  ts⊙bs  e() (1)

Here {t1, ...,  ts} can be any  real variables,  b0 represents a starting composition, 
{b1, ..., bs} are vectors of change, and z(t1, ..., ts) is the resulting composition. This 
is  particularly  suited to  regression problems:  let  z be a compositional  variable 
which we want to explain as a function of {t1, ..., ts}, a set of explanatory variables 
(time, depth, grain size, etc.). Let then T be a matrix containing a first column full 
of ones, and the rest with all explanatory variables by columns: in this matrix, each 
row represents an observation and each column a variable. Likewise,  let clr(X) 
contain the clr-transformed compositions, where each row gives a clr-transformed 
sample.  Then  multiple  regression  (e.g.,  Mardia  and  others,  1979)  provides  as 
estimate of the coefficients

clr(B) = (Tt·T)-1· Tt · clr(X)

for the vectors of change, where each compositional vector bi is in a row of B.



3.4   Weathering indexes based on a compositional geometry

These  compositional  techniques  have  been  used  to  derive  two  indices  of 
weathering. Working with principal components (SVD), von Eynatten and others 
(2003) derived an index of weathering alternative to the CIA (chemical index of 
alteration, Nesbitt and Young 1984), which is optimal for feldspar weathering but 
does not adequately capture other effects. As CIA, von Eynatten and others (2003) 
index is defined using just the subcomposition (CaO*+N2O) vs. K2O vs. A2O3 (CN-K-
A) expressed in moles, where CaO*=CaO –10/3P2O5 is the reduced Ca-oxide after 
removing  the  contribution  of  apatite.  These  authors  estimated  the  weathering 
direction as bt=[0.13, 0.34, 0.53]. Ohta and Arai (2007) took the approach one step 
further, working with the composition of SiO2, Al2O3, TiO2, total Fe as Fe2O3,  MgO, 
CaO* (reduced for apatite), Na2O and K2O. They collected from several references a 
data  set  of  weathering  profiles  on  several  types  of  rocks  together  with  well-
established standard analysis of fresh specimens of the most important igneous 
rocks on Earth, and identified the first principal component (of a SVD) as a global 
direction of weathering. Table 1 contains an expression of the coefficients of these 
two weathering indexes, normalized in a way that enhances comparison with the 
results exposed in the next section.

4   Results

4.1   Descriptive analysis

The measured chemical compositions of the coarse sand fractions ( between -1 
and +1) generally reflect the average composition of source rocks (Fig. 1). Only 
minor deviations are observed for Al2O3, Na2O, and SiO2. Note that for all oxides, 
the averages of rock specimens and reference bedrock are inside the range for the 
whole grain-size  spectrum. In other words,  one could obtain the reported rock 
averages as a mixture of the observed sediment compositions.

With  decreasing  grain  size  compositions  strongly  differ  from  the  initial 
composition,  with  some  major  element  oxides  showing  strongly  contrasting 
patterns, whereas others are very similar. For instance, the pattern of variability of 
MgO,  Fe2O3

(t),  and  MnO  percentage  data  with  grain  size  is  extremely  similar, 
suggesting that these elements largely derive from the same mineral phase (e.g., 
biotite).  A  strong  similarity  can  be  also  observed  between  CaO  and  P2O5, 
suggesting  a  significant  enrichment  of  apatite  in  silt  fractions  ( 4  to  8).  As 
expected, SiO2 and Al2O3 show reverse patterns with a pronounced maximum in 
SiO2 (minimum in Al2O3)  in  the very fine sand fraction.  Na2O and K2O show a 
largely similar pattern in the sand to coarse silt fractions (up to  =6). However, 
towards the finest grades K2O is strongly increasing (in a similar trend like e.g. 
MgO)  whereas  Na2O  decreases  again.  TiO2 shows  the  steadiest  increase  with 
decreasing grain size (with an exception at =8), and its pattern in the silt to clay 
fractions is quite similar to Al2O3. 

Figure 2A shows a general glance of the covariance structure of the whole data 
set, distinguishing samples according to their grain size. In the major oxide biplot, 
one can distinguish three groups of elements and of samples: “felsic” elements 
(K2O, Al2O3,  SiO2,  Na2O) plot together, on the cluster of coarser sediments with 
code from -1 to 3, and “mafic” elements (MnO, MgO, Fe2O3

(t)) clearly plot on the 
same direction, together with samples from the finest sediments (8 or 9). Finally, 
P2O5 marks the third pole, where samples of intermediate size with code from 4 to 
7 cluster together. Interestingly, CaO plot between P2O5 and the felsic group, and 
TiO2 between P2O5 and the “mafic” group. This disposition supports the hypothesis 
that grain size controls geochemistry through mineralogy, given that the “felsic” 
minerals  (quartz,  feldspars)  tend  to  be  coarser  than  the  rest  and  the  highest 
relative contribution of “mafic” oxides should come from fine-grained biotite and 



related sheet silicate minerals. Apatite and some TiO2 and/or CaO bearing phases 
are concentrated in an intermediate grains size range (code 4 to 7). A ternary 
diagram of a representative part of each group is reported in Figure 2B, showing 
that the grouping presented before is quite homogeneous in this subcomposition. 
In this case, hard rock samples tend to be similar to the coarse fractions, though 
there are some with higher Na2O content (relative to P2O5-MgO).

A B

Figure 2: (A) Biplot of major oxide composition, with numbers showing the lower limit of their grain 
size interval (e.g., 9 means  > 9). The first principal component (X axis) explains 70.21 % of the total 

variability, and the second (Y axis) another 18.8 %. 
(B) Centered ternary diagram of Na2O-MgO-P2O5, selected from the major oxide biplot to capture 
approximately the same distribution of samples. Approximate 95% probability regions following 

Aitchison (1986) are included, for the subcomposition split in three grain fractions: from -1 to 4 , 
between 4 and 8 , and higher than 8 . This ternary diagram contains as well the composition of rock 

samples (H for our samples, R for those of Debon and Lemmet, 1999).

If  represented  in  clr  scale,  the  box-plots  of  Figure  3  support  several  of  these 
conclusions.  There  are  fundamentally  two  types  of  behaviour  of  the  clr-
transformed elements against  . At first glance, it seems that most elements are 
approximately linearly related with  , either increasing―the “mafics” and TiO2―, 
or decreasing―the “felsics”―. But two of them (CaO and P2O5) show a quite good 
step structure,  with thresholds in  =4 and  =8, and with this in mind,  several 
other seem to have threshold effects: Fe2O3

(t),  for instance, looks quite constant 
below  =4, and increases quite linearly afterwards (with the exception of  =8, 
where very few samples are available). 

A comparison of Figures 1 and 3 allow to highlight several interesting issues. What 
at first glance could seem as a trend of enrichment for >3 of Al2O3 at the expense 
of  SiO2 (Fig.  1)  is  not  appearing  in  the  clr  scale,  where  they  are  rather 
proportional.  This  suggests  that  the  apparent enrichment is  not  related to  any 
alteration process, but due to two facts: that these two elements account together 
for 80-90% of the total mass and are, thus, prone to the closure effect; and that 
other silicates tend to crystallize in smaller grains and have higher Al/Si ratios. On 
the  contrary,  both  scales  show strongly  similar  increasing  patterns  for  Fe2O3

(t), 
MnO and MgO, suggesting a genetic relationship between them, confirmed by the 
biplot (Fig. 2) where they cluster together. 



Figure 3: Box-plots of the clr-transformed observed composition as a function of grain size 
(accessorily, symbols represent samples according to the legend in Figure 5). The number of samples 
for each grain size fraction, and their back-transformed clr-averages are also displayed. Colors of the 

averages bars follow the legend in the box-plots. In the box-plots, several order statistics are 
represented (minimum and maximum as extremes of the whiskers, the boxes themselves enclose the 
25-75% range of the data, and the central line is the median) for each grain size. All plots share the 

same vertical scale span, thus the variability among parts is comparable. Finally, below -1 we include 
the average composition of the sampled bedrock cobbles (triangle down) and of the bedrock samples 

(triangle up) reported by Debon and Lemmet (1999).



In summary, the composition of the grain size fractions can be split in three groups 
with boundaries at =4 and =8. This discontinuous behavior may be explained as 
inherited from typical crystal sizes of the major minerals of the source rock. This 
hypothesis is further explored in the next section.

4.2   Regression analysis: influence of grain size on major oxide 
composition

The goal  here is  to  predict the composition as a function of  grain size  .  This 
requires  a  linear  trend [Eq.  (1)],  which  is  conveniently  recasted  into  a  typical 
regression problem by means of the clr transformation,

clri [z()] = ai + bi·   + ci·I( 4)+ di·I( ) + ei(),

subject to zero sum constraints, 

i ai =0,       i bi =0,     i ci =0,     i di =0,    and   i ei()=0,

the last true for all  .  Further, the vector  e() of the residuals of all parts for a 
fixed value of  is taken as normally distributed, with zero mean and spread only 
on the plane orthogonal to the first orthant bisector,  e()~  ND(0,  ), thus with  
singular. The step functions I(0) are equal to 1 if 0, otherwise they are equal 
to 0.

Results are displayed in Figure 4, showing each clr plot as a function of grain size, 
and displaying the estimated model. The parameters (regression coefficients) are 
also  displayed,  in  the  form of  a  bar  plot  showing  the  relative  weight  of  each 
explanatory function (linear dependence, step at =4 and step at =8). This figure 
shows that there is no overall Al2O3 enrichment (indicative of weathering at these 
preliminary stages) towards the finer fractions, as the fitted slope is negative. On 
the other side, the trend is positive for TiO2 and the “mafic” elements (Fe2O3

(t), 
MnO,  MgO),  which  was  already  explained  as  the  effect  of  a  progressive 
concentration of biotite and similar feasible mafic minerals in the finer fractions. 
Nevertheless,  K2O  (a  major  constituent  of  biotite)  does  not  show  a  parallel 
behaviour. 

When interpreting compositional  trends like this,  one should bear in mind that 
(due to the relative character of compositions) it is not possible to distinguish e.g. 
between a  trend of  K2O depletion  keeping  Al2O3 constant,  or  a  trend  of  Al2O3 

enrichment with K2O constant. Table 1 shows a set of coefficients equivalent to 
those reported in Figure 4, but which have been forced to be all positive: in other 
words,  assuming  no  weathering/no  depletion  of  any  element  mass,  these 
coefficients would produce exactly the same dependence of the composition with 
grain size. In this representation of the trend, Al2O3 is being actually slightly (2.3%) 
enriched with respect to Na2O, though the intensity of weathering according to this 
proxy is minimal when compared with the mafic enrichment (~12-15% in Fe2O3

(t)-
MnO-MgO) or TiO2 (25%). With regard to the first step function coefficients, we 
can say that the silt fraction is 400% richer in P2O5 and 180% in CaO than the 
finest sand, 100% richer in MgO and Fe2O3

(t), ~75% in K2O, Al2O3 and MnO, and 
~50% in Na2O and TiO2, all these assuming SiO2 unchanged. These values suggest 
the existence in the characteristic size range of coarse silt of an important source 
of both P2O5 and CaO (most probably apatite), as well as a source of MgO, Fe2O3

(t), 
K2O,  Al2O3 and  MnO  (with  garnet,  biotite,  and  muscovite  being  reasonable 
candidates). Finally, the second step function coefficients suggest a Fe2O3

(t)-MgO 
source, with a significant contribution of Al2O3,  K2O and MnO, to the grain-size 



range of finest silt and clay (again biotite and possibly some chlorite are the likely 
mineral candidates for these elements). 

Table 1: Regression coefficients, recasted to zero minimum. Due to the properties of the clr 
transformation, adding a constant to each column of this coefficent matrix does not change the 

composition we finally predict with them. This particular case was obtained by substracting to each 
column its lowest value. The second set of columns report the exponential of these values, and 

represent a multiplicative factor to directly apply to the composition, e.g. passing =8 the concentration 
of K2O and Fe2O3

(t) are applied a factor of ~3, that of MgO is multiplied by 4, and the MnO concentration 
by 8/3, whereas P2O5 is kept constant. The last two columns give the equivalent compositional 

directions for the weathering indices of von Eynatten and others (2003) and Ohta and Arai (2007), to be 
compared with the  column.

clr coefficients equivalent composition indices
 I(>4) I(>8)    I(>4)  I(>8)    t  W 
Si  0.000  0.186  0.082  1.000  1.204  1.085    NA  0.662 
Ti  0.448  0.179  0.220  1.566  1.196  1.246    NA  0.809 
Al  0.576  0.738  0.023  1.779  2.092  1.023  4.08  1.046 
Mn  0.510  0.982  0.144  1.665  2.669  1.155    NA     NA 
Mg  0.682  1.370  0.143  1.978  3.936  1.153    NA  0.656
Ca  1.037  0.132  0.046  2.820  1.141  1.047  1.00  0.813 
Na  0.458  0.333  0.000  1.580  1.395  1.000  1.00  1.000
K  0.564  1.029  0.001  1.758  2.798  1.001  2.62  0.809 
P  1.631  0.000  0.074  5.107  1.000  1.077    NA     NA
Fe  0.676  1.112  0.120  1.966  3.039  1.126    NA  1.470

Discussion

As outlined in the introduction, the framework project of this study has as ultimate 
goal  the  development  of  a  comprehensive  model  of  the  evolution  of  the 
composition (abundance of each size and type of grains) of sediments from the 
source area to the depositional basin. A major goal in the present state of  the 
project is to model the influence of grain size on sediment composition. In this 
paper  the  focus  is  put  on  the  first  stages  of  sediment  generation  in  a  glacial 
mountainous  catchment  with  largely  homogeneous  felsic  crystalline  bedrock 
geology.  In  such  a  setting,  fluvio-glacial  sediments  are  thought  to  be  largely 
controlled  by  comminution  and  hydrodynamic  sorting,  with  no  significant 
contribution from chemical weathering (Nesbitt and Young, 1996).

Two of the processes that generally exert large control on sediment composition, 
comminution and chemical weathering, can be distinguished by their imprint on 
the relation between grain  size  and geochemistry.  Chemical  weathering should 
follow  linear  functions  similar  to  those  proposed  by  von  Eynatten  and  others 
(2003),  or  Ohta  and  Arai  (2007).  On the  contrary,  an ensemble  of  minerals  of 
similar size and mechanical properties undergoing comminution should exhibit the 
same  geochemical  composition  along  all  the  grain  size  spectrum  below  their 
common crystal size. Therefore, assuming that all mineral grains and assemblages 
in  sediments  have  similar  mechanical  properties,  mechanical  crushing 
(comminution) should not largely change the composition of sediments with grain 
size, except at those  thresholds where a new characteristic crystal size appears: 
this  relationship  grain  size-composition  should  thus  fundamentally  resemble  a 
step-function, reflecting the inherited grain size from the source rocks. Moreover, 
in the absence of weathering, the geochemical composition should be explained by 
simple endmember mixture of the typical bedrock minerals. The fit of these two 
process models was checked, using several geochemical indicators of alteration 
Ohta and Arai (2007) and compositional data analysis (Aitchison, 1986; Aitchison, 
1997: Buccianti and others, 2006).



Figure 4: Linear model of explanation of observed clr variability. Each plot reports a clr-transformed 
part against grain size (black-and-white symbols represent samples according to the legend in Figure 
5), together with the fitted model (coloured line) and the composition of reference hand rock samples 
(coloured triangles: pointing up for references, down for our rock samples). The bar plot represent the 

coefficients of the 3 explanatory variables.



Figure 5: Comparison of existing weathering indexes: CIA index of alteration of feldspar (Nesbitt and 
Young, 1984), W index (Ohta and Arai, 2007), and projection index t of von Eynatten and others 

(2003).

The significant steps at  =4 (very fine sand to very coarse silt) and  =8 (fine to 
very  fine  silt)  observed  consistently  in  percentage  raw  data  (Fig.  1),  clr-
transformed data (Fig. 3), and highlighted by the log-linear model (Fig. 4), call for 
a  major  influence  of  inherited  grain  sizes  from the  source  rocks  on  sediment 
composition: components with a significant positive step indicate that some related 
mineral phases massively appear at that size threshold. Consequently, the positive 
steps  observed  in  the  bar  plot  of  Figure  4  suggest  the  abrupt  occurrence 
(enrichment) of apatite (P2O5, CaO) and probably some garnet (MgO, Fe2O3

(t)) from 
the  =4 fraction on, and biotite (Fe2O3

(t),  MgO, MnO) after  =8.  Though other 
mafic  phases (garnet  and chlorite)  may play  a complementary  role  at  this  last 
threshold, the coeval positive step in K2O underlines biotite predominance among 
them. Finally, the fact that TiO2 shows a different behavior at  =8 implies that 
biotite is not the major Ti-bearing phase in the system. 

Apart of the step functions (an effect of pure comminution and inherited crystal 
sizes),  a  certain  progressive  enrichment/depletion  trend  is  visible  in  several 



elements: towards finer fractions, sediments are enriched in mafic elements, and 
depleted in felsic ones (Fig. 4). Weathering is nevertheless not its most satisfactory 
explanation for the following reasons. First  of  all,  the “older”  (longer exposed) 
samples  (RT1-7A,  7B,  8)  do  not  show  depletions  in  CaO,  Na2O  or  K2O,  nor 
enrichment in Al2O3 (Fig. 4). Furthermore, neither the CIA nor the t-index of von 
Eynatten and others (2003) do show any trend (Fig. 5). Only the weathering index 
of Ohta and Arai (2007) showed a slight increase with grain size, compatible with 
the  slight  enrichment  in  Al2O3 against  Na2O-K2O in  the  fitted  trend  (table  1). 
Finally, one has to remember that weathering is a process in time, and not in grain 
size: grain size influence should be an acceleration of weathering itself, as finer 
fractions offer higher specific surface and should thus be more rapidly altered. In 
other  words,  the   trend  may  be  an  indicator  of  the  increase of  weathering 
intensity in finer fractions, and not the weathering itself.

After considering the possible contribution of weathering in the observed trend as 
minor, another possible factor is the contrast in mechanical properties (hardness, 
fissility) of the individual minerals. This has already been invoked to explain why 
SiO2 (and  quartz)  is  concentrated  in  the  sand  fraction.  Contrast  in  hardness 
between phyllosilicates and the rest of the minerals could explain the constant 
enrichment trend observed in TiO2, Fe2O3

(t), MnO, MgO as well as K2O for phi > 4 
(as seen in Figs. 1-3), being mainly caused by preferential comminution and, thus, 
enrichment of biotite towards finer grain sizes. This may also explain the increase 
in the W index for phi >7 because this index includes Fe (and Ti) content as a 
significant measure of the degree of weathering.
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Appendix A:    mineral endmember unmixing

A.1   Endmember modeling with generalized inverses and the SVD

This  analysis  infers  a  possible mineral  composition,  which  accounts  for  the 
observed geochemical composition and allow to explain the step structure of its 
variability. Given known endmembers of  fixed chemical composition (in a matrix 
A), one can express the observed composition x as the classical linear combination 
of endmembers, 

 x = y · A,  (2)

with  unknown  mineral  proportions  y (row  vectors).  The  endmember  matrix  A 
contains as many column as geochemical parts are available (D), and one row for 
each endmember, giving the molar  weight of  each part  in that endmember. By 
definition these columns are compositions, and their sum is irrelevant. Take the 
number of endmembers as P. There are two main cases:

one  has  as  many  mineral  phases  as  oxides,  and  no  chemical  reaction  is 
algebraically possible within the chosen minerals (i.e., the matrix  A is square 
and of full rank); then inversion is immediate, as applied by Nesbitt and Young 
(1996),
one has different number of unknowns (mineral proportions) and equations 
(geochemical  variables);  then one must look for a “best” approximation,  for 
instance via least-squares.

The first case is quite straightforward, as A can be directly inverted. If the solution 
contains negative proportions of minerals, a necessary mineral phase was lost. If 
the  solution  is  valid,  it  does  not  mean  that  it  is  true,  but  just  informative, 
approximate. In the second case, when the number of endmembers is higher than 
the  number of  (geochemical)  components,  there  is  no  single  solution:  one can 
either  have  no  solution,  or  a  whole  (affine)  subspace  of  them.  To  find  these 
solutions and choose one of them, we use the following reasoning:

1.Look for y0 the minimal norm solution, obtained by using generalized inverses 
on Equation (2). The generalized inverse of  A is based on its singular value 
decomposition: this is  A=U·D·Vt, where  U and  V columns form two different 
orthonormal  sets  of  vectors  in  RP and  RD respectively,  and  D is  a  diagonal 
matrix, with (D 1) positive elements and (P–D+1) zeroes (we are assuming here 
D<P,  thus  more  mineral  endmembers  than  geochemical  components).  The 
matrix  A*=V·D*·Ut is the sought generalized inverse, where  D* is a diagonal 
matrix with the inverted, non-negative singular values of D. But given that the 
last (P–D+1) singular values are zero, one can take only the first  k=D–1 (the 
non-zero ones) and their  associated left  and right singular vectors,  in some 
reduced matrices Vk, Dk

 and Uk, as in Eckart and Young (1936) approximation of 
one matrix by another of lower rank, to obtain

y0 = x · A* = x · (Vk · Dk
-1 · Uk

t).

2.If no component of y0  is negative, we found a valid solution: do not continue 
with the next steps.
3.If some components of  y0  are negative, one has to look for a valid solution. 
From the left singular vectors, take the last (P–D+1), those corresponding to 
zero singular values. Denote them by ui, and the selected columns organized in 
a  matrix  as  U0.  These  vectors  form  a  basis  spanning  the  subspace  of  the 
mineral  compositions  that  are  solutions  of  Equation  (2).  Thus  all  possible 
solutions can be written as

y = y0 + P
i=D i · ui =  y0 +  · U0,



with some unknown =[DD,P. 
4.With standard quadratic programming routines, look for the vector   such 
that

the  norm ||y||  is  minimal;  given  that  y0 is  by  construction a linear 
combination  of  the  first  (D–1)  columns  of  U,  it  is  orthogonal  to  the 
columns of U0 and therefore Pythagoras Theorem applies, which gives ||
y||2=||y0||2+||||2;  since  y0 is  fixed,  minimizing  y is  equivalent  to 
minimizing  (or its square), which is the typical option implemented in 
quadratic programming algorithms (e.g. quadprog in R);
all components of y are positive, which is equivalent to force y0 ≥  · 
U0, an inequality to be read by components.

Note that the condition of minimal norm, given that  y sums up to one, promotes 
compositions with many non-zero components.  For this reason, the method can 
overestimate the number of endmember present. Or better said, it will result in a 
null  contribution  of  a  mineral  only  when  it  does  not  fit  by  any  means  in  the 
observed geochemical composition.

A.2   Results

The following minerals are considered as end-members (i.e., matrix At):

SiO2 Al2O3 Fe2O3 MgO MnO CaO Na2O K2O P2O5

qz  1  0  0  0  0  0  0  0  0
alb  3  0.5  0  0  0  0  0.5  0  0
ano  2  1  0  0  0  1  0  0  0 
kfs  3  0.5  0  0  0  0  0  0.5  0 
phl  3  0.5  0  3  0  0  0  0.5  0 
alm  3  1  3  0  0  0  0  0  0 
epi  3  1  0.5  0  0  1  0  0  0 
sps  3  1  0  0  6  0  0  0  0
apa  0  0  0  0  0  5  0  0  1.5 
mus  3  1.5  0  0  0  0  0  0.5  0 
bio  3  0.5  1.5  0  0  0  0  0.5  0 
prp  3  1  0  6  0  0  0  0  0 
clz  3  1.5  0  0  0  2  0  0  0 
fcl  5.67  2.67  4.5  0  0  0  0  0  0 
mcl  5.67  2.67  0  9  0  0  0  0  0
molar 
weights 

 60  102  160  40.3   71  56  62  94.2  142

Looking at Figure 6, it is interesting to note that the mineral composition for the 
coarsest grain fractions is quite constant, as was the geochemistry (Figures 1 and 
3). Also, muscovite is barely present in the sand fraction: the computations suggest 
that  this  mica  is  present  in  the  coarser  grains,  within  rock  fragments,  and 
reappears  again  in  the silt  fraction (> 5).  Biotite,  contrarily,  is  present  in  all 
fractions. In general the proportions of all phyllosilicates tend to increase in the 
finer fractions, though this does not seem to happen at the expense of feldspar, but 
of  quartz.  Assuming  the  computations  correct,  this  feldspar  permanence  is  an 
argument against the presence of a significant weathering: quartz would decrease 
in  the  finer  fractions  simply  because  it  cannot  easily  be  further  comminuted 
beyond the silt  spectrum, whereas phyllosilicates can easily  break down,  being 
more  feasible  than  the  rest.  Chemical  weathering  would  thus  again  become 
unnecessary.



Figure 6: Bar plots of the mineral composition obtained by considering the main endmember minerals 
of granites (quartz, several feldspars, biotite, garnet, apatite). The bar not summing up to 1 has 
negative components, thus the end-member model is not admissible for it (either due to badly 

characterized geochemitstry or because an important mineral was not considered).



Table 2: Statistics of the (absolute) negative values of the computed mineralogical composition: the 
first part of the table reports results from the first attempt, step 2, whereas the second part give results 

obtained in the refinement process of steps 3-5.
mineral  numbe

r 
 Min.  1st Qu.  Median  Mean  3rd Qu.  Max.

phl  5  0.0225  0.0028  0.0026  0.0060  0.0014  0.0006
alm  66  0.0199  0.0117  0.0088  0.0087  0.0049  0.0004
mus  7  0.0338  0.0162  0.0120  0.0148  0.0088  0.0077 
bio  7  0.0407  0.0098  0.0087  0.0109  0.0037  0.0002 
prp  40  0.0130  0.0079  0.0042  0.0056  0.0029  0.0003
clz  52  0.0522  0.0195  0.0092  0.0132  0.0048  0.0008 
fcl  61  0.0364  0.0112  0.0084  0.0087  0.0040  0.0004 
mcl  40  0.0238  0.0079  0.0050  0.0062  0.0037  0.0000
alm  1  0.0094  0.0094  0.0094  0.0094  0.0094  0.0094
mus  1  0.0086  0.0086  0.0086  0.0086  0.0086  0.0086
bio  1  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 
prp  1  0.0029  0.0029  0.0029  0.0029  0.0029  0.0029
fcl  1  0.0364  0.0364  0.0364  0.0364  0.0364  0.0364 
mcl  1  0.0238  0.0238  0.0238  0.0238  0.0238  0.0238

Figure 7: Upper half of the Streckeisen diagram, showing that the calculated quartz-plagioclase-K 
feldspar compositions correspond to typical granodioritic compositions (note: albite was considered to 
be 80% in plagioclase and 20% in K-feldspar). This is particularly clear for the coarse to medium grain 
fractions (the coarsest showed with bigger symbols). Fine sand to coarse silt fractions are enriched in 

quartz, and the finest fractions are depleted in quartz. A dashed line shows the range of 
feldspar/quartz ratios from the Aar Massif granitoids reported by Debon and Lemmet (1999).

Figure 7 casts some light on this problem, by showing where do the computed 
mineral compositions plot in several reference diagrams. It shows that the bulk 
rock should correspond to a granodiorite (as plotted in the Streckeisen diagram), 
and that grain size does not modifies in the relation plagioclase/alkali  feldspar: 
only  quartz  varies.  If  weathering  was  active,  one  should  expect  some  loss  of 
plagioclase  with  respect  to  alkali  feldspar,  and this  is  not  observed (only  very 
slighlty in the finest fraction).
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