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Abstract

By using suitable parameters, we present a unified aproach for describing four meth-
ods for representing categorical data in a contingency table. These methods include:
correspondence analysis (CA), the alternative approach using Hellinger distance (HD),
the log-ratio (LR) alternative, which is appropriate for compositional data, and the
so-called non-symmetrical correspondence analysis (NSCA). We then make an appro-
priate comparison among these four methods and some illustrative examples are given.
Some approaches based on cumulative frequencies are also linked and studied using
matrices.
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1 Introduction

A common problem in multivariate analysis is the excesive number of methods available for doing
practically the same. Often, several methods can be unified and made more flexible by using some
parameters that linked them.

There are several methods for the graphical display of the rows (and columns) of a contingency
table N. These methods aim to reinterpret N using a joint graphic for rows and columns. The
representation depends on the distance used.

Correspondence analysis (CA) uses the so-called chi-square distance between the profiles of rows
(and columns). This method is based in the decomposition of Pearson’s contingency coefficent
and is described in Greenacre (1984). As an alternative, Rao (1985) used canonical coordinates to
represent the rows of a contingency table N, using the Hellinger distance (HD) between the row
profiles.

For a contingency table, Goodman (1986) introduces the RC(M) association model. This model
takes log-ratios and fits parameters by ML. Tsujitani (1982) uses the same model but assuming
first independence, then fits a multiplicative model. Aitchison and Greenacre (2002) adapt biplot
methodology by taking log-ratios (LR) to represent compositional data, which can be used for the
same purpose.

Lauro and D’Ambra (1984) introduced non-symmetrical correspondence analysis (NSCA), a slight
modification of CA, which is based on the decomposition of Goodman-Kruskal’s tau.

In some way, all models can be considered as a particular case of the so-called generalized nonin-
dependence analysis (GNA) introduced by Goodman (1993).

This paper presents a general approach for several methods of visulization of contingency tables
by using a suitable parametrization.It extends the results by Cuadras et al. (2006), Cuadras and
Cuadras (2006) and Greenacre (2007).

2 General parametrization

Let N = (nij) be an I × J contingency table and P = n−1N the correspondence matrix, where
n =

∑
ij nij . Let K = min{I, J} and r = P1, Dr =diag(r), c = P ′1, Dc =diag(c), the vectors

and diagonal matrices with the marginal frequencies of P, where 1 is the column vector of ones of
appropriate dimension.

In order to represent the rows and columns of N the so-called generalized nonindependence analysis
(GNA), introduced by Goodman (1993), can be described as the SVD

D1/2
r (I − 1r′)(R[D−1

r PD−1
c ])D1/2

c = UΛV ′

where R(x), with x > 0, is any monotonically increasing function. The coordinates for rows and
columns are given by

A = D−1/2
r UΛ, B = D−1/2

c V Λ.

GNA reduces to CA when R(x) = 1.

A suitable choice of R(x) is the Box-Cox transformation, i.e., the function

R(x) = (xα − 1)/α if x > 0,
= ln(x) if α = 0.

With this function, we consider the following SVD depending on three parameters:
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Table 1: Four methods of representing rows and columns in a contingency table.

Method Uncentered Cente red
γ = 0 γ = 1

α β α β
CA 1 1/2 1 1/2
HD 1/2 1/2 1/2 1/2
LR 0 1/2 0 1/2
NSCA 1 1 1 1

Then the principal coordinates for the I rows and the standard coordinates for the J columns of
N are given in A and B0, respectively, where:

A = D−1/2
r UΛ, B0 = Dβ−1

c V Λ.

Implicit with this (row) representation is the distance between rows

δ2
ii′ =

J∑

j=1

[(
pij

ricj
)α − (

pi′j

ri′cj
)α]2c2β

j

The first principal coordinates account for a relative high percentege of inertia. These four methods
can be summarized in Table 1.

There are two overall measures of inertia, or dispersion between rows and columns.

2.1 Generalized Pearson contingency coefficient.

This parametric measure is given by:

φ2(α, β) =
I∑

i=1

J∑

j=1

[(
pij

ricj
)α − 1]2ric

2β
i .

2.2 Geometric variability

This is an average measure of the differences between rows:

v =
1
2
r′∆(2)r,

where ∆(2) = (δ2
ii′) is the I × I matrix of squared parametric distances. This measure was consid-

ered by Light and Margolin (1971) in categorical data analysis and by Cuadras et al. (1997) for
discriminant analysis.

Note that v = φ2(α, β) = 0 under statistical independence between rows and columns. Iin general
v 6= φ2(α, β).

Table 2 summarizes these inertias.

3 Testing independence

The test of independence between rows and columns can be performed with

φ2(α, 1) =
I∑

i=1

J∑

j=1

((
pij

ricj
)α − 1)2rici,



Table 2: Inertia expressions for four methods of representing rows in contingency tables. In CA and NSCA the
geometric variability coincides with the contingency coefficient.

Method Inertia (centered) Inertia (uncentered)
v =

∑
λ2

i φ2 =
∑

λ2
i

CA v =
∑

i,j(
pij

ricj
− 1)2ricj φ2(1, 1/2) = v

Pearson
HD v = 1−∑

j(
∑

i

√
pijri)2 φ2(1/2, 1/2)

Matusita-Rao = 2(1−∑
i,j

√
pijricj)

LR v =
∑

i,j cjri(ln(pij/ri))2 φ2(0, 1/2)
Aitkinson −∑

j cj(
∑I

i=1 ri ln(pij/ri))2 =
∑

i,j(ln
pij

ricj
)2ricj .

NSCA v =
∑

i,j(
pij

ri
− cj)2ri φ2(1, 1) = v

Goodma-Kruskal

Suppose α > 0 a fix value. Under independence we have

n2

α2
φ2(α, 1) → χ2

(I−1)(J−1)

as n →∞, where the convergence is in law.

To prove this asymptotic result, note that

(
pij

ricj
− 1)2rici =

(pij − ricj)2

ricj

and
(r−α

i pα
ijc

−α
j − rici)2

rici
=

(r−α
i pα

ijc
−α
j − 1)2

1/rici
= (xα − 1)2rici

with x = pij/ricj . Then

(xα − 1)2ricj = (
xα − 1
x− 1

)2(x− 1)2ricj

But limx→1[(xα − 1)/(x− 1)]2 = α2. Hence, under independence, x → 1 as n →∞. Thus

lim n2
I∑

i=1

J∑

j=1

((
pij

ricj
)α − 1)2rici = α2 limn2

I∑

i=1

J∑

j=1

(pij − ricj)2

rcj

= α2χ2

When α → 0 then
lim

x→1,α→0

1
α2

(
xα − 1
x− 1

)2 = 1

and the asymptotic limit reduces to

n2φ2(0, 1) → χ2
(I−1)(J−1).

4 Analysis based on Taguchi inertia

Let N = (nij) the I × J contingency table, ni· and n·j the row and column marginals. Given a
row i let us consider the cumulative frequencies

zi1 = ni1, zi2 = ni1 + ni2, . . . , ziJ = ni1 + · · ·+ niJ



and cumulative column proportions

d1 =
n·1
n

, d2 =
n·1 + n·2

n
, . . . , dJ =

n·1 + · · ·+ n·J
n

the so-called Taguchi statistic (Taguchi, 1974), is given by

T =
J−1∑

j=1

wj(
I∑

i=1

ni·(
zik

ni·
− dj)2

where w1, . . . , wJ−1 are weights. Two choices are possible: wj = (dj(1− dj))−1 and wj = 1/J.

With the (J − 1)× J matrix

A =




1− d1 −d1 · · · −d1 −d1

1− d2 −d2 · · · −d2 −d2

...
...

...
...

...
1− dJ−1 −dJ−1 · · · −dJ−1 −dJ−1




then T can be expressed as

T = ntrace(D−1/2
r NA′WAN ′D−1/2

r ).

Using the J × J triangular matrix

M =




1 0 · · · 0
1 1 · · · 0
· · · · · · · · · · · ·
1 1 1 1


 ,

and d = (d1, d2, · · · ) then

d = Mc, Z = NM ′, A = M − d1′, NA′ = NM ′ −N1d′ = NM ′ − nrC ′.

Thus if d = Mc, Taguchi’s T depends on PM ′ − rd′ = (P − rc′)M ′, i. e., the differences between
the cumulative frequencies of rows assuming P and independence rc′, respectively

T = ntrace(D−1/2
r (NM ′ − nrd′)W (NM ′ − nrd′)′D−1/2

r

= ntrace(D−1/2
r (nPM ′ − nrd′)W (nPM ′ − nrd′)′D−1/2

r

= n3trace(D−1/2
r (P − rc′)M ′WM(P − rc′)′D−1/2

r .

Now, taking into account the SVD in CA, with inertia

trace(D−1/2
r (P − rc′)D−1

c (P − rc′)′D−1/2
r ),

Beh et al. (2007) consider the following SVD

D−1/2
r (P − rc′)M ′W 1/2 = UΛV ′,

which is equivalent towhich is equivalent to

D1/2
r (D−1

r PM ′ − 1c′M ′)W 1/2 = UΛV ′.

Then the principal and standard coordinates are

A = D−1/2
r UΛ, B = W−1/2V Λ.



Table 3: Unified cumulative correspondence analysis.

SVD D
−1/2
r L(P − rc′)M ′W 1/2 = UΛV ′

DA L and M triangular, W weight
CA L = I, M = I, W = D−1

c

TA L = I, M triang, W weight

The initial matrix of coordinates and the distance between rows are:

Q = D−1
r (P − 1c′)M ′W 1/2, δ2

ii′ =
J∑

j=1

wj(
Pij

ri
− Pi′j

ri′
)2,

where Pij = pi1+· · ·+pij is the cumulative sum for row i. Matrix Q is centered. The decomposition
of inertia is

trace(D−1/2
r (P − rc′)M ′WM(P − rc′)′D−1/2

r =
∑I,J

i,j=1 wj(Pij − riCj)2/ri

=
∑K

i=1 λ2
i ,

Correspondence analysis can be approached by using cumulative frequencies for rows and columns,
Cuadras (2002).In this way, a more general approach based on double acumulative (DA) frequencies
is

D−1/2
r L(P − rc′)M ′W 1/2 = D−1/2

r (H −RC ′)W 1/2 = UΛV ′,

where L is triangular with ones. Then H = LPM ′, R = Lr,C = Mc are the cumulative frequencies.
Therefore DA, CA and Taguchi analysis can also be unified, see Table 3.

Acknowledgements

Work supported in part by grant MEC MTM-2004-00440.

References

Aitchison, J. and Greenacre, M. J. (2002). Biplots of compositional data. Applied Statistics 51,
pp. 375–392.

Beh, E., D’Ambra, L., and Simonetti, B. (2007). Ordinal correspondence analysis based on cumu-
lative chi-squared test. Correspondence Analysis and Related Methods, Rotterdam: CARME
2007.

Cuadras, C. M. (2002). Correspondence analysis and diagonal expansions in terms of distribution
functions. J. of Statistical Planning and Inference 103, pp. 137–150.

Cuadras. C. M., Cuadras, D. (2006). A parametric approach to correspondence analysis. Linear
Algebra and its Applications 417, pp. 64–74.

Cuadras, C. M., Fortiana, J. and Oliva, F. (1997). The proximity of an individual to a population
with applications in discriminant analysis. J. of Classification 14, pp. 117–136.

Cuadras, C. M., Cuadras, D., Greenacre, M. (2006). A comparison of different methods for
representing categorical data. Communications in Statistics-Simul. and Comp. 35 (2), pp. 447–
459.



Goodman, L. A. (1986). Some useful extensions of the usual correspondence analysis approach
and the usual log-linear models approach in the analysis of contingency tables. International
Statistical Review 54, pp. 243–309.

Goodman, L. A. (1993). Correspondence analysis, association analysis, and generalized noninde-
pendence analysis of contingency tables: Saturated and unsaturated models, and appropriate
graphical displays. In C. M. Cuadras and C. R. Rao. (Eds.), Multivariate Analysis: Future
Directions 2, Amsterdam: Elsevier.

Greenacre, M. J. (1984). Theory and Applications of Correspondence Analysis. London: Acade-
mic Press.

Greenacre, M. J. (2007). Power transformations in correspondence analysis. Presented at
Carme2007, Rotterdam, 2007.

Lauro, N. and D’Ambra, L. (1984). L’analyse non symetrique des correspondances. In E. Diday
et et al. (Eds.), Data analysis and informatics III, North Holland, Amsterdam, pp. 433–446.
rzneim. Forsch. (Drug Res.) 26, pp. 1295–1300.

Light, R. J., Margolin, B. H. (1971). An analysis of variance for categoricala data. J. of the
American Statistical Association 66, pp. 534–544.

Rao, C. R. (1995). A review of canonical coordinates and an alternative to correspondence analysis
using Hellinger distance. Qüestiió 19, pp. 23–63.
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