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Abstract

In this work we demonstrate that there is a continuum of different formulations for the

decomposition of 〈 Ŝ2〉 that fulfill all physical requirements imposed to date. We introduce

a new criterion based upon the behaviour of single-electron systems to fix the value of the

parameter defining that continuum and thus we put forward a new general formula applica-

ble for both single-determinant and correlated wave functions. The numerical implementation

has been carried out in the three-dimensional physical space for several atomic definitions. A

series of representative closed-shell and open-shell systems have been used to illustrate the per-

formance of this new decomposition scheme against other existing approaches. Unlike other

decompositions of 〈 Ŝ2〉, the new scheme provides very small local-spin values for genuine

diamagnetic molecules treated with correlated wave functions, in conformity with the physical

expectations.
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1 Introduction

The spin state of an atom or a group of atoms within a molecule is not a quantum mechanical

observable. Nevertheless, the concept of local spin is generally invoked when discussing spin-spin

interactions between magnetic centers in a molecule with Heisenberg Hamiltonian models or to

describe organic molecules with diradical character. For instance, the spin on transition metals

of bioinorganic complexes is particularly relevant for experimentalists and can be used for spin-

labeling functional groups. In addition, local-spin values could also be used as an stringent test for

DFT and DMFT functionals in order to analyze their ability to recover the spin distribution along

the molecular space.

In the last years there has been a growing interest in recovering local spins from ab initio wave

functions.1–14 These techniques are aiming to express the expectation value of the Ŝ2 operator as

a sum of atomic and diatomic contributions:

〈 Ŝ2〉= ∑
A
〈 Ŝ2〉A + ∑

A,B 6=A
〈 Ŝ2〉AB. (1)

In 2001 Clark and Davidson1 proposed a general framework based on the definition of local

(atomic) spin operators, ŜA, obtained by proper projections of the overall spin vector operator. The

expectation values of the atomic spin-square operators and diatomic products of spin-operators,

namely 〈 Ŝ2
A〉 and 〈 ŜAŜB 〉, can be considered as the atomic and diatomic contributions to the overall

〈 Ŝ2〉 value, respectively. Unfortunately, this formalism leads to significant local-spin contributions

for genuine closed-shell diamagnetic molecular systems such as the H2 molecule treated at the

RHF level of theory.

Later on, Mayer4 proposed an alternative strategy to partition the expectation value of the

Ŝ2 operator in the spirit of classical population analysis. In the case of single-determinant wave

functions Mayer obtained expressions for the atomic and diatomic contributions to 〈 Ŝ2〉 depending

only on the molecular spin-density matrix, ρs(~r;~r ′). Such a decomposition trivially leads to zero

atomic spins for any closed-shell restricted wave function. This decomposition was carried out
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originally in the framework of the so-called Hilbert-space analysis. The generalization of the

formulae to the 3D physical-space analysis was already outlined by Mayer4 and has also been very

recently explored by Alcoba et al.8 using both Bader’s QTAIM15 domains and Becke’s “fuzzy”

atoms.16

Many molecular species do not admit single-determinant description. In some singlet systems

such as diradicals or in the dissociation process of a molecule, where one can also recognize the ex-

istence of local spins, a proper spin description can be only accomplished using multi-determinant

wave functions, whose 〈 Ŝ2〉 decomposition is not straightforward. Indeed, in the recent years,

a number of different 〈 Ŝ2〉 decomposition schemes, exhibiting different features, have been pro-

posed.5–7,9 In the first scheme, proposed by Alcoba et al.,5 the components of 〈 Ŝ2〉 were expressed

in terms of the total spin-density matrix and therefore zero spins were obtained for every singlet

state system. Subsequently, Mayer6 proposed an alternative formulation on the basis of several

physical requirements: i) to obtain zero local spins for closed-shell restricted wave functions, ii)

proper asymptotics, i.e., in the dissociation limit the atoms/fragments should have the same local

〈 Ŝ2〉 value as the respective free atoms/fragment radicals, iii) the formula used for a general wave

function should reduce to that used in the single-determinant case if applied to single-determinant

wave functions.

In this formulation, the atomic and diatomic components of 〈 Ŝ2〉 were expressed in terms of

the value that they would have in the single-determinant case, plus correction terms arising form

the deviation of the first-order density matrix from the indempotency, as well as contributions from

the cumulant of the second-order density matrix. (Both vanish for single determinant wave func-

tions thus fulfilling requirement iii.) These correction terms were distributed between atomic and

diatomic contributions in such a way that the local spins obtained for atoms or other fragments at

large distances coincide with those of the free atoms. The Hilbert-space realization of the formal-

ism given in ref. 7 corroborated the physical expectations in all cases. For instance, small atomic

contributions were obtained for every closed-shell molecule at equilibrium distance, including e.g.

the carbon atoms of singlet π-conjugated systems such as benzene calculated at the CASSCF level
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of theory. At the same time, large local spins were found for the square cyclo-butadiene which is

known to be a “molecular antiferromagnet”. Furthermore, the CASSCF dissociation curves of O2

molecule for both singlet and triplet states lead to atomic atomic local-spin values that tend asymp-

totically to 2, as expected for the 3P2 state of the free oxygen atom. Similarly, ethylene dissociates

into two triplet methylene radicals, and so forth.

Although it seemed as there was no further freedom to choose another local-spin decomposition

scheme, Alcoba et al.9 have recently shown that this is not the case. These authors have introduced

yet another requirement for the partitioning of 〈 Ŝ2〉 for non-singlet states, according to which the

one and two-center components should be independent of the Sz value (in the absence of magnetic

field). Their partitioning scheme uses “spin-free” quantities such as the effectively unpaired density

matrix17 and the “spin-free cumulant matrix”, which depend on the spin-free first- and second-

order reduced density matrices.18,19 Their Hilbert-space local-spin results are similar to but not

identical with those obtained by Mayer and Matito in ref. 7, and keep the physical requirement of

Sz independence.

In this paper we shall show that there is actually a continuum of different formulations that

fulfill all physical requirements imposed to date to the decomposition of 〈 Ŝ2〉; and this applies to

both single- and multi-determinant wave functions. In order to find the best local-spin decomposi-

tion scheme, we impose a new, additional requirement related to the one-electron distribution, that

eliminates the ambiguity. The resulting local-spin decomposition it is thus unique and fulfills all

physical requirements found so far.

The paper is organized as follows: first we put forward the ambiguities associated with the

decomposition of 〈 Ŝ2〉 for any wave function, then we suggest a unique definition of the local

spin based on new theoretical considerations and finally we compare the results of the 3D-space

realization of our new local-spin definition against previous definitions.
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2 Theory

The Ŝ2 operator can be written as

Ŝ2 =
N

∑
i
~̂s2

i +
N

∑
i 6= j

~̂si~̂s j. (2)

The expectation value for an N-electron system described by a general wave function can be ex-

pressed in terms of the spinless first- and second-order density matrices as (see appendix AI for

further details)

〈 Ŝ2〉 =
3
4

∫
ρ(~r1;~r1)d~r1−

1
4

∫ ∫
ρ2(~r1,~r2;~r1,~r2)d~r1d~r2

−1
2

∫ ∫
ρ2(~r1,~r2;~r2,~r1)d~r1d~r2 (3)

where the first- and the second-order density matrices are normalized to N and N(N− 1) (Note

that this normalization is different from that used by Alcoba et al.9), respectively. The spinless

second-order density matrix is often expressed in terms of the first-order density matrix elements

and the so-called cumulant of the second-order density matrix, Γ(~r1,~r2;~r ′1,~r
′
2), (which vanishes for

single-determinant wave functions) as

ρ2(~r1,~r2;~r ′1,~r
′
2) = ρ(~r1;~r ′1)ρ(~r2;~r ′2)−

1
2ρ(~r1;~r ′2)ρ(~r2;~r ′1)

−1
2ρs(~r1;~r ′2)ρ

s(~r2;~r ′1)+Γ(~r1,~r2;~r ′1,~r
′
2) (4)

where ρs(~r;~r ′) is the first-order spin-density matrix, defined as the difference between the alpha

and beta components of the first-order density matrix

ρ
s(~r;~r ′) = ρ

α(~r;~r ′)−ρ
β (~r;~r ′). (5)

The spinless cumulant Γ(~r1,~r2;~r ′1,~r
′
2) represents the sum of the four respective spin-dependent

cumulants, and differs from the entity (Λ) that Alcoba et al.9 called “spin-free cumulant”.
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Substituting eq. (4) into eq. (3) one gets

〈 Ŝ2〉= 3
4

∫
ρ(~r1)d~r1−

3
8

∫∫
ρ(~r1;~r2)ρ(~r2;~r1)d~r1d~r2 +

1
8

∫∫
ρ

s(~r1;~r2)ρ
s(~r2;~r1)d~r1d~r2

+
1
4

∫
ρ

s(~r1)d~r1

∫
ρ

s(~r2)d~r2−
1
4

∫∫
Γ(~r1,~r2)d~r1d~r2 −

1
2

∫∫
Γ(~r1,~r2;~r2,~r1)d~r1d~r2 (6)

where ρ(~r1)≡ ρ(~r1;~r1) and Γ(~r1,~r2)≡ Γ(~r1,~r2;~r1,~r2).

The effectively unpaired electron density, u(~r), defined by Takatsuka17 as

u(~r) = 2ρ(~r)−
∫

ρ(~r;~r ′)ρ(~r ′;~r)d~r ′ (7)

can be used to transform eq. (6) to the form

〈 Ŝ2〉 =
3
8

∫
u(~r1)d~r1−

1
4

∫∫ [
Γ(~r1,~r2)− 1

2ρ
s(~r1;~r2)ρ

s(~r2;~r1)
]

d~r1d~r2

−1
2

∫∫ [
Γ(~r1,~r2;~r2,~r1)− 1

2ρ
s(~r1;~r1)ρ

s(~r2;~r2)
]

d~r1d~r2. (8)

The spin density, the cumulants and u(~r) vanish for restricted single-determinant wave func-

tions and, therefore, for such wave functions, the decomposition of eq. (8) leads to identically zero

spin components, thus fulfilling the requirement i. This is not the case for the expression (6), since

the first and second terms on the r.h.s. can be decomposed into non-zero one-center and one- and

two-center contributions, respectively, although their sum vanishes. In fact, the natural decomposi-

tion of eq. (6) into one and two-center terms leads to Clark and Davidson’s formulae.3 Moreover,

Alcoba et al.9 pointed out that since ρ(~r1) and ρ2(~r1,~r2) are spin-independent quantities, by virtue

of eq. (4), the sum

Γ(~r1,~r2;~r′1,~r
′
2)−

1
2

ρ
s(~r1;~r′2)ρ

s(~r2;~r′1) (9)

must be spin-independent too (It is essentially their “spin-free cumulant”.) . Also, they showed
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that (in the normalization used here)

∫ [
Γ(~r1,~r2)− 1

2ρ
s(~r1;~r2)ρ

s(~r2;~r1)
]

d~r2 =−1
2u(~r1). (10)

On this basis, they suggested the following general expression for 〈 Ŝ2〉

〈 Ŝ2〉= 1
2

∫
u(~r1)d~r1−

1
2

∫∫ [
Γ(~r1,~r2;~r2,~r1)− 1

2ρ
s(~r1;~r1)ρ

s(~r2;~r2)
]

d~r1d~r2. (11)

Both expression (8) and Alcoba’s (11) are natural starting points to derive 〈 Ŝ2〉 components that

fulfill the imposed requirement to be independent of the Sz projection. Upon integration over the

whole space both expressions are equivalent. However, the calculation of the one- and two-electron

integrals over one- and two-center atomic domains leads to different contributions. In fact, one can

freely modulate the relative weight of the first two terms on the r.h.s. of eq. (8) with a parameter a

and get a general expression like

〈 Ŝ2〉 = a
∫

u(~r1)d~r1− (1−2a)
∫∫ [

Γ(~r1,~r2)− 1
2ρ

s(~r1;~r2)ρ
s(~r2;~r1)

]
d~r1d~r2

−1
2

∫∫ [
Γ(~r1,~r2;~r2,~r1)− 1

2ρ
s(~r1;~r1)ρ

s(~r2;~r2)
]

d~r1d~r2 (12)

which leads to different decompositions of 〈 Ŝ2〉 that fulfill requirements i− iii. (The two equations

discussed above correspond to the values a = 3/8 and a = 1/2, respectively.) On this scenario,

one should find a sound argument permitting to choose the proper value of a, and thus the most

satisfactory decomposition of 〈 Ŝ2〉.

3 Atomic and diatomic spin components

The decomposition of physical quantities into one and two-center contributions is rooted on the

identification of an atom within the molecule. In the 3D-space analysis the atom is identified by a

region of the physical space or atomic domain and its nucleus. Atomic and diatomic contributions
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can be simply obtained by integration over the corresponding atomic domains ΩA as

∫
f (~r)d~r = ∑

A

∫
wA(~r) f (~r)d~r∫

f (~r1,~r2)d~r1d~r2 = ∑
A,B

∫∫
wA(~r1)wB(~r2) f (~r1,~r2)d~r1d~r2 (13)

where wA is a non-negative weight function defined for each atom and each point of the 3D space

satisfying ∑A wA(~r ) = 1. The one- and two-electron terms of (12) can be thus naturally decom-

posed into one- and two-center contributions, respectively, as shown in eq. (13), to obtain

〈 Ŝ2〉A = a
∫

wA(~r1)u(~r1)d~r1− (1−2a)
∫∫

wA(~r1)wA(~r2)

×
[
Γ(~r1,~r2)− 1

2ρ
s(~r1;~r2)ρ

s(~r2;~r1)
]

d~r1d~r2 (14)

−1
2

∫∫
wA(~r1)wA(~r2)

[
Γ(~r1,~r2;~r2,~r1)− 1

2ρ
s(~r1;~r1)ρ

s(~r2;~r2)
]

d~r1d~r2

and

〈 Ŝ2〉AB = −(1−2a)
∫∫

wA(~r1)wB(~r2)
[
Γ(~r1,~r2)− 1

2ρ
s(~r1;~r2)ρ

s(~r2;~r1)
]

d~r1d~r2

−1
2

∫∫
wA(~r1)wB(~r2)

[
Γ(~r1,~r2;~r2,~r1)− 1

2ρ
s(~r1;~r1)ρ

s(~r2;~r2)
]

d~r1d~r2. (15)

Eqns. (14) and (15) can be written more conveniently by using the matrix representations D,

Ps, Γ of the first-order density matrix, spin-density and second-order density matrices, respectively,

in terms of the molecular orbitals—and the atomic overlap matrix SA (see appendix AII for further

details). By using the definition of the effectively unpaired electron density, eq. (7), the atomic

contribution of the spin squared operator can be written as

〈 Ŝ2〉A = a
(

2Tr(DSA)−Tr(DSAD)
)
+

(
1
2
− a
)

Tr
(

PsSAPsSA
)

−(1−2a)∑
i jkl

Γi jklSA
kiS

A
l j−

1
2 ∑

i jkl
Γi jklSA

liS
A
k j +

1
4

Tr
(

PsSA
)2

. (16)
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Similarly, the diatomic terms can be expressed as follows

〈 Ŝ2〉AB =

(
1
2
− a
)

Tr
(

PsSAPsSB
)
− (1−2a)∑

i jkl
Γi jklSA

ikSB
jl

−1
2 ∑

i jkl
Γi jklSA

ilS
B
jk +

1
4

Tr
(

PsSA
)

Tr
(
PsSB) . (17)

4 Selection of parameter a

The expressions above illustrate what we referred in the introduction as a continuum of closely

related decompositions of 〈 Ŝ2〉 into atomic and diatomic components, which for any value of a

satisfy all the physical requirements introduced. For instance, Alcoba’s formulation9 is based on

the expression where a= 1/2, whereas Mayer’s original spin-dependent expression7 for correlated

wave functions can be easily rewritten in a form where a = 3/8 (plus some terms depending on the

spin-density that sum up to zero but can lead to changes in the one- and two-center components

for non-singlets).

Clearly, the requirements introduced so far for the decomposition of 〈 Ŝ2〉 are not sufficient. It

is necessary to introduce some additional external requirement, based on some physico-chemical

considerations, which permits to choose between these possibilities. This can be done by consid-

ering how these formulae behave if there is only a single electron in the system.

The value 〈 Ŝ2〉 = 3/4 is an intrinsic property of the electron, so if one locates an electron in

the space with the density (probability density) ρ(~r), that means that one locates a spin 〈 Ŝ2〉= 3/4

with that probability, too. Therefore, the density of distribution of the 〈 Ŝ2〉 for a single electron is

3/4 times the electron density:

〈 Ŝ2〉= 3
4

∫
ρ(~r)dr (18)

which is the only term on the r.h.s. of Eq.s (3) and (6) which does not disappear if there is only

one electron in the system. Therefore, for a single electron the atomic components of 〈 Ŝ2〉 should

be equal to the respective gross electron populations multiplied by 3/4. (No overlap populations
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may be considered in this case because that would result in a spurious self-coupling of the spin of

the given electron with itself.) Now, it is easy to see that in the special case of a single electron,

function u(~r) equals ρ(~r) as a consequence of the idempotency of the first order density matrix.

Therefore Eq. (12) reproduces Eq. (18) in the case of a single electron system if, and only if,

one chooses a = 3/4. Interestingly, a = 3/4 is also the only value for which 〈 Ŝ2〉A is always

positive in a general FCI wave function of a minimal-basis-set H2 model (see appendix AII for

further details). Another interesting conclusion drawn from this model system for a = 3/4 is that

one can anticipate small 〈 Ŝ2〉A values at equilibrium distances of singlet molecules, except for true

diradicals or systems with strong multireferencial character.

Finally, since for single-determinant wave functions the cumulants are zero by definition, in

that case Eqs. (16) and (17) can be expressed solely in terms of the spin-density matrix elements

as

〈 Ŝ2〉A = a Tr
(

PsSAPs−PsSAPsSA
)
+

1
2

Tr
(

PsSAPsSA
)
+

1
4

Tr
(

PsSA
)2

(19)

and

〈 Ŝ2〉AB =

(
1
2
− a
)

Tr
(

PsSAPsSB
)
+

1
4

Tr
(

PsSA
)

Tr
(
PsSB) . (20)

The original single-determinant formulation of Mayer,4 also used by Alcoba et al. in ref. 8,

corresponds to the particular case where a= 0. It is easy to see that the most recent general formula

proposed by Alcoba et al.,9 with a = 1/2, reduces for the single-determinant case to an expression

where for the diatomic terms one has 〈 Ŝ2〉AB = 〈Ŝz
2〉AB, which is to say, the x and y components

of the Ŝ2 operator would not contribute to the diatomic spin interactions.

Based on the considerations described above we suggest the choice a = 3/4 and hence the

following alternative formulation to be used for single-determinant wave functions

〈 Ŝ2〉A =
3
4

Tr
(

PsSAPs
)
− 1

4
Tr
(

PsSAPsSA
)
+

1
4

Tr
(

PsSA
)2

(21)
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and

〈 Ŝ2〉AB =−1
4

Tr
(

PsSAPsSB
)
+

1
4

Tr
(

PsSA
)

Tr
(
PsSB) . (22)

It is easy to see that in the case of a single electron or in that of an ROHF system with a single

unpaired electron, eq. 22 vanishes, thus avoiding spurious self-coupling of the single electron. In

the next section we provide also some numerical evidence supporting the choice a = 3/4.

5 Numerical results

We have implemented the decompositions of 〈 Ŝ2〉 described above in the framework of 3D-space

analysis for a variety of atomic definitions, namely Becke,16 Becke-ρ ,20 Hirshfeld,21 Hirshfeld-

Iterative22 and QTAIM15 (see appendix AII). The first- and second-order density matrices have

been obtained using a modified version of Gaussian-0323 and an auxiliary program24 that reads

and processes CISD and CASSCF outputs. All calculations have been carried out at the optimized

geometry of the molecule at the current level of theory.

First of all, in Table I we compare the values of 〈 Ŝ2〉A calculated for H2 at the equilibrium

geometry at the CASSCF(2,4) level for several basis sets and atomic definitions. As expected for

a 3D-space analysis, the contributions (in this case atomic spin-squared values) are rather basis set

independent. The effect of the atomic definition on the values of 〈 Ŝ2〉A depends upon de particular

choice for the parameter a. In the case of a = 0, the formula that reduces to the original Mayer’s

scheme for the single-determinant case, the values obtained for “fuzzy” atom definitions such as

Becke and Hirshfeld are ca. twice those obtained for QTAIM. The differences decrease for a= 3/8,

which conforms with Mayer’s general formula6 for singlets, and a = 1/2, which corresponds to

Alcoba’s formulation.9 In the case of a = 3/4 the values of 〈 Ŝ2〉A are very small, as expected

for a diamagnetic molecule, and are very similar for all basis sets and atomic definitions. The

Hilbert-space results (not shown) exhibit large basis set dependence. Interestingly, these effects

are minimal right when using a = 3/4, and for that case the values obtained are very similar to
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those reported in Table 1. The implementation and numerical realization in the case of Hilbert-

space analysis will be discussed elsewhere.

The effect of the atomic definitions in 3D-space analysis can be more relevant when different

type of atoms are present in the molecule, since the relative atomic sizes have a major influence

on the values originating from the decomposition of any physical quantity. In Table II we report

the atomic and diatomic spin components obtained for the NO molecule at the UHF/cc-pVTZ

level of theory using a = 3/4. It can be seen that the differences between the atomic definitions

are small and the overall picture is not modified. The molecule is a doublet and, even though

the atomic contributions are significant (roughly 0.5 for N and 0.25 for O atoms), the diatomic

contribution is essentially zero in all cases. This is a clear indication that there is essentially a

single unpaired electron in the system, causing a minor spin-polarization only, and no spurious

self-couplig appears. Since the effect of the particular atomic definition is very small, hereafter we

report only the values obtained using the Hirshfeld-Iterative scheme.

The one- and two-center contributions of 〈Ŝ2〉 obtained for a collection of representative singlet

systems are gathered in Table III. The optimized geometries and the wave functions were obtained

at the CISD/6-31G** level of theory (six cartesian d functions). Note that for these systems the

overall 〈 Ŝ2〉 value is zero, but small local atomic spins can be induced by correlation fluctuations.

A local-spin analysis is only useful if the genuine antiferromagnetic interactions of localized spins

can be clearly distinguished from the electron pairing of alpha and beta spins associated with bond

formation. All molecules in Table III are well described with single-determinant wave functions

(except perhaps Li2 and Be2), therefore one should expect very small atomic and diatomic spin

contributions. The atomic and diatomic spin values we obtain here are signficatively smaller than

those reported by Alcoba, arising from Hilbert-space analysis. The results indicate that among

all values of the parameter a, the choice a = 3/4 provides the smallest atomic spin values. For

instance, in the case of acetylene a significant, and rather unphysical, 〈 Ŝ2〉A value of 0.339 on

the C atom is obtained for a = 0, whereas for a = 3/4 the value decreases to the much more

reasonable 0.09. Interestingly, in the case of the less conventional Li2 and Be2 molecules the trend
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is the opposite.

We have also considered open-shell doublet and triplet molecules described at the UHF level,

in order to assess the effect of the parameter a on the single-determinant description. The one-

and two-center contributions of 〈 Ŝ2〉 using Hirshfeld-Iterative atomic definitions are collected on

Tables IV and V, respectively. The optimized geometries and wave functions were obtained at

the UHF/cc-pVTZ level of theory. The overall 〈 Ŝ2〉 value is also reported, since significant spin

contamination is present in some cases like the CN or CH radicals. Note that the case of a = 0

corresponds to the original formulation of Mayer4 for single-determinant wave functions, whereas

a = 1/2 would correspond to the “spin-free” formulation introduced by Alcoba.9

In the case of doublet systems, the differences in the atomic spin contributions for different

values of the parameter a are smaller than for the singlets. The sign of diatomic contributions often

changes going from a = 0 to the preferred a = 3/4 value but, except in the case of NO and CN rad-

icals, the spin is essentially localized on one atom and therefore the diatomic contributions are very

small. Interestingly, the atomic spin contribution on the H atoms for radicals like OH, CH, CH3

or NH2 is essentially zero when a = 0, yet there is significant (between 0.022 and 0.072) diatomic

contribution involving the H atom. This rather puzzling picture changes with a = 3/4, where the

local spin on H atom increases but the diatomic contribution between the atoms is essentially zero,

again in accordance with the model of a single unpaired electron which is significantly delocalized.

In the case of CH and CN radicals there is a significant spin contamination that results in atomic

spin contributions larger than the value of 3/4 of a single localized electron. In both cases, the

local spin on the C atoms is larger than 1, in line with an overall 〈 Ŝ2〉 values of 1.106 and 1.075,

respectively. The diatomic contribution in the case of CN is significant and negative (up to –0.23),

indicating some degree of antiferromagnetic coupling between the centers. However, it is difficult

to draw conclusions from a wave function with such amount of spin contamination.

The results for a set of molecules in their lowest triplet state are collected in Table V. The

UHF wave function exhibits small spin contamination for all molecules. In contrast to the rather

small differences found for the doublets, the local-spin contributions depend considerably on the
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value of the parameter a in the case of homonuclear diatomic molecules, especially for Li2 and O2.

Note that for a = 3/4 the atomic spin contribution on Li and O atoms is larger than the value of a

localized electron (3/4), whereas for a = 1/2 the atomic spin is very close to that number. In fact, it

can be easily seen that in the case of Li2 described at the ROHF level of theory, the value a = 1/2

yields exactly 〈 Ŝ2〉A = 3/4 and 〈 Ŝ2〉AB = 1/4 at any interatomic distance and for any atomic

definition. On the other hand, the results for the NF, NH and CH2 molecules are consistent with

the presence of two unpaired electrons located on the N and C atoms, respectively, with negligible

diatomic contributions.

Finally, Figure 1 displays the 〈 Ŝ2〉A values as a function of the parameter a along the dissocia-

tion curve of several homonuclear diatomic molecules, namely H2, N2 and O2, in their lowest-lying

singlet state described with a proper full-valence CASSCF wave function. As stated above, at the

dissociation limit the atomic spin values tend to the value of the corresponding free atoms, i.e. 3/4,

15/4 and 2 in the case of H, N and O atoms, respectively, for all values of a. In the case of N2, at

very short interatomic distances (ca. 0.8 Å), a small negative value of -0.012 has been obtained for

〈 Ŝ2〉A of the N atom; such a small value can be attributed to the integration error associated to any

3D-space analysis and is not considered to be of any special relevance.

6 Conclusions

We have shown that there is a continuum of different formulations for the decomposition of 〈 Ŝ2〉

that fulfill all physical requirements imposed to date. We have presented a new criterion based

upon the behaviour of single-electron systems and a simple two-electron model by which the value

of the parameter defining that continuum can be properly fixed, and based on this a new general

formula applicable for both single-determinant and correlated wave functions has been introduced.

The scheme has been realized in the three-dimensional physical space and implemented for Bader’s

QTAIM and a number of “fuzzy” atom definitions. We provide numerical data for a set of repre-

sentative closed-shell and open-shell systems and for the dissociation curves of several diatomic
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molecules. The results have been compared with other existing formulations. Contrary to the most

recent results, very small local-spin values are obtained for genuine diamagnetic molecules treated

at the correlated level, in conformity with the physical expectations.

7 Appendices

AI. Expectation value of the Ŝ2 operator

The Ŝ2 operator can be written as a sum of one- and two-electron operators acting on the spin

coordinates of an N-electron wave function

Ŝ2 =
N

∑
i

[
ŝ 2

x(i)+ ŝ 2
y(i)+ ŝ 2

z (i)
]
+

N

∑
i 6= j

[ŝ x(i)ŝ x( j)+ ŝ y(i)ŝ y( j)+ ŝ z(i)ŝ z( j)] . (23)

The action of the different individual one-electron spin operators over the corresponding alpha

and beta one-electron spin functions yields the well-know relations (in a.u.)

ŝx | α〉=
1
2
| β 〉 ŝy | α〉= i

2 | β 〉 ŝz | α〉=
1
2
| α〉 (24)

ŝx | β 〉=
1
2
| α〉 ŝy | β 〉=− i

2 | α〉 ŝz | β 〉=−
1
2
| β 〉.

The expectation value of a symmetric sum of Hermitian one-electron operators of the form

h1 = ∑
N
i h(i) for an antisymmetric wave function |Ψ〉 can be written in terms of the corresponding

one-electron reduced density matrix (1-RDM). In the case of the one-electron part of eqn. (23),

one can make use of the appropiate relations of eqn. (24) and integrate over the spin coordinates

to obtain
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〈Ψ |
N

∑
i
~̂s2

i |Ψ〉=
α,β

∑
σ ,σ ′

∫ [
ŝ 2

x(s1)+ ŝ 2
y(s1)+ ŝ 2

z (s1)
]

ρ
σσ ′(~r′1;~r1)

∣∣∣
~x′1=~x1

d~x1 = (25)

3
4

α,β

∑
σ

∫
ρ

σσ (~r1;~r1)dr1 ≡
3
4

∫ [
ρ

α(~r1)+ρ
β (~r1)

]
d~r1 =

3
4

∫
ρ(~r1)d~r1

where~x = (~r,s) stands for the spatial and spin coordinates of the electron.

In the case of a sum of two-electron operators, the expectation value can be expressed quite

analogously thought the second-order reduced density matrix (2-RDM)

〈Ψ |
N

∑
i 6= j

ĥ(i, j) |Ψ〉=
α,β

∑
σ ′1,σ

′
2

σ1,σ2

∫∫
ĥ(~x1,~x2) ρ

σ ′1σ ′2σ1σ2
2 (~r′1,~r

′
2;~r1,~r2)

∣∣∣~x′1=~x1
~x′2=~x2

d~x1d~x2. (26)

Let us consider first the two-electron contribution of eqn. (23) involving ŝz-type operators. In

this case, since the alpha and beta spin functions are eigenfunctions of the one-electron ŝz operators,

only those terms of the 2-RDM do not vanish after integration over the spin coordinates, for which

σ1 = σ ′1 and σ2 = σ ′2, leading to the expression

〈Ψ |
N

∑
i 6= j

ŝ z(i)ŝ z( j) |Ψ〉=
α,β

∑
σ ′1,σ

′
2

σ1,σ2

∫∫
ŝz(s1)ŝz(s2) ρ

σ ′1σ ′2σ1σ2
2 (~r′1,~r

′
2;~r1,~r2)

∣∣∣~x′1=~x1
~x′2=~x2

d~x1d~x2 =

=
1
4

∫∫
ρ

αααα
2 (~r1,~r2;~r1,~r2)d~r1d~r2 +

1
4

∫∫
ρ

ββββ

2 (~r1,~r2;~r1,~r2)d~r1d~r2 (27)

−1
4

∫∫
ρ

αβαβ

2 (~r1,~r2;~r1,~r2)d~r1d~r2−
1
4

∫∫
ρ

βαβα

2 (~r1,~r2;~r1,~r2)d~r1d~r2.

As for the terms involving either ŝx- or ŝy-type operators, each such operator flips the spin

function on which it acts; therefore only those terms of the 2-RDM do not vanish upon integration
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over the spin coordinates, for which σ1 6= σ ′1 and σ2 6= σ ′2:

〈Ψ |
N

∑
i 6= j

ŝ x(i)ŝ x( j) |Ψ〉=
α,β

∑
σ ′1,σ

′
2

σ1,σ2

∫∫
ŝx(s1)ŝx(s2) ρ

σ ′1σ ′2σ1σ2
2 (~r′1,~r

′
2;~r1,~r2)

∣∣∣~x′1=~x1
~x′2=~x2

d~x1d~x2 =

=
1
4

∫∫
ρ

αββα

2 (~r1,~r2;~r1,~r2)d~r1d~r2 +
1
4

∫∫
ρ

βααβ

2 (~r1,~r2;~r1,~r2)d~r1d~r2. (28)

It is easy to see that exactly the same terms originate from the contribution of the ŝy-type operator.

Adding up eqns. (25), (27) and twice (28) one obtains

〈 Ŝ2〉= 3
4

∫
ρ(~r1;~r1)d~r1 +

1
4

∫∫
ρ

αααα
2 (~r1,~r2;~r1,~r2)d~r1d~r2 +

1
4

∫∫
ρ

ββββ

2 (~r1,~r2;~r1,~r2)d~r1d~r2

−1
4

∫∫
ρ

αβαβ

2 (~r1,~r2;~r1,~r2)d~r1d~r2−
1
4

∫∫
ρ

βαβα

2 (~r1,~r2;~r1,~r2)d~r1d~r2 (29)

+
1
2

∫∫
ρ

αββα

2 (~r1,~r2;~r1,~r2)d~r1d~r2 +
1
2

∫∫
ρ

βααβ

2 (~r1,~r2;~r1,~r2)d~r1d~r2.

Moreover, since the 2-RDM satisfies

ρ
σ1σ2σ1σ2
2 (~r1,~r2;~r1,~r2) =−ρ

σ1σ2σ2σ1
2 (~r1,~r2;~r2,~r1) (30)

one can add and substract the terms 1
2
∫∫

ραααα
2 (~r1,~r2;~r1,~r2)d~r1d~r2 and

1
2
∫∫

ρ
ββββ

2 (~r1,~r2;~r1,~r2)d~r1d~r2 to eqn. (29) and make use of eqn. (30) to obtain a final for-

mula for 〈 Ŝ2 〉 conveniently expressed in terms of the spinless first- and second-order density

matrices as

〈 Ŝ2〉= 3
4

∫
ρ(~r1;~r1)d~r1−

1
4

∫∫
ρ2(~r1,~r2;~r1,~r2)d~r1d~r2−

1
2

∫∫
ρ2(~r1,~r2;~r2,~r1)d~r1d~r2 (31)

where

ρ2(~r1,~r2;~r1,~r2) = ρ
αααα
2 (~r1,~r2;~r1,~r2)+ρ

ββββ

2 (~r1,~r2;~r1,~r2)+ρ
αβαβ

2 (~r1,~r2;~r1,~r2)

+ρ
βαβα

2 (~r1,~r2;~r1,~r2). (32)
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AII. 3D-space analysis

In the classical Hilbert-space atomic partition each atom is identified by its nucleus and the sub-

space of the basis atomic orbitals centered on it. In the 3D-space analysis the atom is identified by

a region of the physical space or atomic domain (and its nucleus, of course). If the atomic domains

are disjoint, then the decomposition of a physical quantity into atomic contributions can be simply

carried out by integration over the corresponding atomic domains ΩA as

∫
f (~r)d~r = ∑

A

∫
ΩA

f (~r)d~r∫
f (~r1,~r2)d~r1d~r2 = ∑

A,B

∫
ΩA

∫
ΩB

f (~r1,~r2)d~r1d~r2, (33)

where one can see that a one and two-electron quantities quite naturally decompose into one-center

and one- and two-center contributions, respectively.

One may, however, consider also so called “fuzzy” atomic domains, having no strict bound-

aries. In order to treat the most different schemes in a common framework, one can introduce a

non-negative weight function wA(~r ) for each atom and each point of the 3D space satisfying the

requirement

∑
A

wA(~r ) = 1 (34)

In the case of the “fuzzy” atoms, the value of wA(~r ) is large in the vicinity of the nucleus of

atom A and quickly becomes negligible outside. In the special case of disjoint atomic domains,

such as those of Bader’s Atoms in Molecules theory,15 wA(~r ) = 1 for points inside the atomic

domain of A and wA(~r ) = 0 outside of it.

Then, the decomposition of a physical quantity into atomic contributions can be performed by

inserting the identity (34) one or two times for the one and two-electron integrals, respectively

∫
f (~r)d~r = ∑

A

∫
wA(~r) f (~r)d~r∫

f (~r1,~r2)d~r1d~r2 = ∑
A,B

∫∫
wA(~r1)wB(~r2) f (~r1,~r2)d~r1d~r2. (35)
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In the past we have made use of the simplest Becke’s atoms16 to show how several quanti-

ties such as bond orders, overlap populations or energy components can be obtained for “fuzzy”

atoms.25 The shape of such Becke atoms is determined by a “stiffness parameter” and by a set of

fixed atomic radii that define the relative size of the atomic basins. One can also use the position

of the minima of the total density along the internuclear axis26 for each pair of atoms to determine

the ratio of the atomic radii. Such a scheme, referred as Becke-ρ in ref. 20 can be considered as a

good and efficient adaptation of some ideas of Bader’s theory.

Hirshfeld21 defined another way to partition the molecular space using promolecular densi-

ties. Lately, the iterative-Hirshfeld approach,22 improving over classical Hirshfeld’s, has been

suggested. In both schemes the atomic weight of atom A at a given point in the space is determined

by the ratio

wA(~r ) =
ρ0

A(~r )

∑B ρ0
B(~r )

(36)

where ρ0
A(~r ) represents a promolecular density of the atom A.

In the classical Hirshfeld the resulting shape of the atoms in the molecule are strongly depen-

dent on the choice of the promolecular state of the atom. The improved Hirshfeld-Iterative scheme

corrects this problem by an iterative process to obtain promolecular atomic densities that integrate

to the same (usually fractional) number of electrons as do the atoms in the molecule.

We have made use of all “fuzzy” atom definitions mentioned above, as well as Bader’s atomic

domains, to obtain the one- and two-center contributions of 〈 Ŝ2〉. In this paper we show that

different atomic definitions induce only minor qualitative differences in the results.

Instead of using the formulae (35) to the first order density matrix, the spin-density matrix or
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the cumulant, one can express them in terms of the molecular (or natural) orbitals as

ρ(~r;~r ′) = ∑
i j

Di jφ
∗
j (~r)φi(~r ′), (37)

ρ
s(~r,~r ′) = ∑

i j
Ps

i jφ
∗
j (~r)φi(~r ′), (38)

Γ2(~r1,~r2;~r ′1,~r
′
2) = ∑

i jkl
Γi jkl φ

∗
k (~r1)φ

∗
l (~r2)φi(~r ′1)φ j(~r ′2) (39)

and reduce the integrations to calculating the atomic overlap matrix

SA
i j =

∫
wA(~r)φ∗i (~r)φ j(~r)d~r. (40)

in the basis of molecular orbitals.

AIII. The H2 model

A highly desirable requirement for the decomposition scheme of 〈 Ŝ2〉 is that the one-center contri-

butions should be non-negative. Let us consider the H2 molecule with minimal basis at the full-CI

level. The molecular orbitals are determined from symmetry considerations and the ground state

wave function can be written as Ψ=
√

1− c2
1Ψ0+c1Ψ1, where Ψ0 and Ψ1 are the ground-state and

double-excited Slater determinants, respectively. For this model system, taking SA
12 = −SB

12 = 1
2

for the atomic overlap matrix element (the exact value at the dissociation limit), eq. (16) can be

expressed as

〈 Ŝ2〉A = 4ac2
1(1− c2

1)+

(
3
2
−2a

)
c1

√
1− c2

1. (41)

In Figure 2 we plot 〈 Ŝ2〉A vs. c1 for several values of the parameter a. At the dissociation limit

of the ground state,
(

c1 =−
√

1
2

)
all curves tend to the proper value 〈 Ŝ2〉A = 3/4. Similarly, all

curves predict zero local spin for Hartree-Fock wave functions (c1 = 0). However, only for the
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special case of a = 3/4 are all values of 〈 Ŝ2〉A positive for any value of the mixing coefficient c1.

Another interesting property in the case of a= 3/4 is that the second term in eq. (41)—which is

linear in the coefficient c1 as c1 tends to zero—vanishes. Note that this is the leading term in singlet

systems that are well-described with a single closed-shell determinant wave function, as the first

term on the r.h.s. would be quadratic in c1. This shows that very small local-spin values are thus

obtained for genuine diamagnetic molecules, if the preferred value a=3/4 is used, in accordance

with the physical expectations.
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Tables and Figures

Table 1: CASSCF(2,4) atomic 〈 Ŝ2 〉A values for the H2 molecule at optimized geometries for
several atomic definitions and values of the parameter a.

Atom in Molecule a cc-pVDZ cc-pVTZ cc-pVQZ
Becke 0 0.109 0.111 0.109

3/8 0.072 0.073 0.073
1/2 0.059 0.060 0.061
3/4 0.034 0.034 0.036

Hirshfeld 0 0.122 0.124 0.122
3/8 0.079 0.080 0.080
1/2 0.064 0.065 0.066
3/4 0.035 0.036 0.038

QTAIM 0 0.059 0.060 0.058
3/8 0.044 0.044 0.045
1/2 0.039 0.039 0.040
3/4 0.028 0.029 0.031

Table 2: Comparison of the one- and two-center local-spin values for the NO molecule at the
UHF/cc-pVTZ level using different Atoms in Molecules definitions and a=3/4.

Molecule Atom/ Becke Becke-ρ Hirshfeld Hirshfeld QTAIM
Atom pair Iterative

NO N 0.540 0.497 0.531 0.527 0.547
O 0.232 0.272 0.241 0.244 0.229

N, O -0.003 -0.002 -0.002 -0.002 -0.005



Table 3: One- and two-center local-spin values for singlet systems at the CISD/6-31g** level for
different values of the parameter a.

Molecule Atom/ a = 0 a = 3/8 a = 1/2 a = 3/4
Atom pair

H2 H 0.054 0.041 0.037 0.029
H,H -0.054 -0.041 -0.037 -0.029

Li2 Li 0.091 0.116 0.125 0.141
Li,Li -0.091 -0.116 -0.125 -0.141

Be2 Be 0.122 0.136 0.141 0.150
Be,Be -0.122 -0.136 -0.141 -0.150

HF H 0.030 0.024 0.022 0.018
F 0.030 0.024 0.022 0.019
H,F -0.030 -0.024 -0.022 -0.019

H2O H 0.029 0.025 0.023 0.021
O 0.072 0.053 0.046 0.034
O,H -0.036 -0.026 -0.023 -0.017
H,H 0.007 0.002 0.000 -0.004

NH3 N 0.115 0.083 0.073 0.051
H 0.030 0.026 0.025 0.023
N,H -0.038 -0.028 -0.024 -0.017
H,H 0.004 0.001 0.000 -0.003

CH4 C 0.177 0.124 0.106 0.071
H 0.039 0.033 0.030 0.026
C,H -0.044 -0.031 -0.027 -0.018
H,H 0.002 -0.001 -0.001 -0.003

C2H6 C 0.198 0.124 0.100 0.051
H 0.038 0.031 0.029 0.024
C,C -0.057 -0.036 -0.029 -0.015
C,H -0.044 -0.028 -0.023 -0.013
C...H -0.003 -0.001 0.000 0.001
H,H 0.002 0.000 -0.001 -0.003
H...H 0.003 0.000 -0.001 -0.003

C2H4 C 0.261 0.169 0.138 0.077
H 0.037 0.032 0.030 0.026
C,C -0.175 -0.109 -0.087 -0.044
C,H -0.037 -0.027 -0.024 -0.017
C...H -0.007 -0.003 -0.002 0.000
H,H 0.002 -0.001 -0.002 -0.004
H...Hcis 0.003 0.000 -0.001 -0.003
H...Htrans 0.001 -0.001 -0.001 -0.002

C2H2 C 0.339 0.215 0.173 0.090
H 0.033 0.029 0.028 0.026
C,C -0.304 -0.185 -0.146 -0.067
C,H -0.027 -0.026 -0.026 -0.025
C...H -0.008 -0.003 -0.002 0.001
H,H 0.003 0.000 0.000 -0.002



Table 4: One- and two-center local-spin values for doublet systems at the UHF/cc-pVTZ level for
different values of the parameter a.

Molecule Atom/ 〈 Ŝ2〉 a = 0 a = 3/8 a = 1/2 a = 3/4
Atom pair

OH O 0.756 0.712 0.726 0.731 0.740
H 0.001 0.015 0.019 0.028

O,H 0.021 0.008 0.003 -0.006
NO N 0.767 0.475 0.449 0.370 0.317

O 0.087 0.166 0.192 0.244
N,O 0.155 0.076 0.050 -0.002

CN C 1.075 1.084 1.147 1.168 1.211
N 0.199 0.262 0.283 0.325

C,N -0.104 -0.167 -0.188 -0.230
NH2 N 0.759 0.649 0.681 0.691 0.712

H 0.001 0.018 0.024 0.035
N,H 0.026 0.010 0.005 -0.005
H,H 0.001 0.000 0.000 0.000

CH C 1.106 0.955 1.000 1.015 1.045
H 0.007 0.052 0.067 0.098

C,H 0.072 0.027 0.012 -0.018
CH3 C 0.761 0.544 0.601 0.620 0.658

H 0.003 0.025 0.032 0.046
C,H 0.033 0.014 0.007 -0.005
H,H 0.002 0.001 0.000 -0.001



Table 5: One- and two-center local-spin values for triplet systems at the UHF/cc-pVTZ level for
different values of the parameter a.

Molecule Atom/ 〈 Ŝ2〉 a = 0 a = 3/8 a = 1/2 a = 3/4
Atom pair

Li2 Li 1.988 0.497 0.683 0.745 0.870
Li,Li 0.497 0.311 0.248 0.124

O2 O 2.042 0.540 0.713 0.770 0.886
O,O 0.481 0.308 0.250 0.135

NF N 2.024 1.607 1.681 1.706 1.756
F 0.030 0.104 0.129 0.179

N,F 0.193 0.119 0.094 0.044
NH N 2.015 1.846 1.885 1.898 1.925

H 0.005 0.044 0.057 0.084
N,H 0.082 0.043 0.030 0.003

C2 C 2.009 0.677 0.735 0.754 0.793
C,C 0.327 0.269 0.250 0.211

CH2 C 2.016 1.612 1.696 1.724 1.780
H 0.006 0.052 0.067 0.097

C,H 0.095 0.053 0.039 0.010
H,H 0.006 0.003 0.002 0.000
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Figure 1: Change of 〈 Ŝ2〉A along the dissociation of H2, N2 and O2 molecules calculated at the full
valence CASSCF level with cc-pVTZ basis set for different values of the parameter a.



Figure 2: Change of 〈 Ŝ2〉A with respect to the mixing coefficient c1 for a 2x2 FCI H2 model for
different values of parameter a. Solid line a = 3/4, dotted line a = 1/2, thick dotted line a = 3/8.


