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Abstract 
 
In any discipline, where uncertainty and variability are present, it is important to have principles which 
are accepted as inviolate and which should therefore drive statistical modelling, statistical analysis of 
data and any inferences from such an analysis. Despite the fact that a single simple principle has ex-
isted over the last two decades and from this principle a sensible, meaningful methodology has been 
developed for the statistical analysis of compositional data, the application of inappropriate and/or 
meaningless methods persists in many areas of application. This paper identifies a number of common 
fallacies, confusions and misunderstandings in compositional data analysis with illustrative examples 
and provides readers with necessary, and hopefully sufficient, arguments to persuade the culprits why 
and how they should amend their ways. The paper is deliberately provocative in the hope that it may 
lead to constructive discussion. 
 
Keywords: Basic principle of compositional data analysis; relation of pure mathematics to statistical 
modelling and analysis, scattergrams (Fenner, Harker, Pearce, ternary diagrams), scientific method 
(data snooping and testing hypotheses suggested by the data), transformation methodology, staying-in-
the-simplex methodology.   
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0.  Introduction: Some basic principles 
 
 
0.1 The basic principle of compositional data analysis. 
 
In any discipline where uncertainty and variability are present it is important to have principles which 
are accepted as inviolate and which should therefore drive statistical modelling, statistical analysis of 
data and any inferences from such an analysis. When in any discipline we say that a problem is compo-
sitional we are recognizing that the sizes of our specimens are irrelevant. For example, a geologist talk-
ing about the composition of an object, such as the major oxide composition of a rock, is admitting that 
interest is in a dimensionless problem. There is no concern about whether the rock specimen weighs 
one gm or one lb. Similarly in the study of the dietary content of cows’ milk interest will focus on the 
dietary composition – proportions by weight of the total dietary content of the parts - protein, milk fat, 
carbohydrate, calcium, sodium, potassium – rather than on the size of the milk sample. Such trivial 
admissions have far-reaching consequences. Let us apply some clear thinking, as in Aitchison (1997), 
to acceptance of this fundamental scale invariance principle. 
   
A simple example can illustrate the argument. In Fig.0.1, which shows 3-dimensional positive space 

3
+R , the two points ]0.4,4.2,6.1[w  and ]5.7,5.4,0.3[W  represent the weights of the three 

parts [a, b, c] of two specimens of total weight 8 gm and 15 gm, respectively. If we are interested in 
compositional problems we recognize that these are of the same composition with the difference in 
weight being taken account of by the scale relationship wW )8/15(= . More generally two composi-
tions w and W are compositionally equivalent, written wW ~ , when there exists a positive proportion-
ality constant p such that pwW = . The fundamental requirement of compositional data analysis can 
then be stated as follows. Any meaningful construct or function f of a composition must be such that 

)()( wfWf = when wW ~  or, equivalently, 
 
   )()( wfpwf =  for every p>0.           (0.1) 
 
This is a common problem in mathematics in group theory: the requirement (0.1) is that the function f 
must be invariant under the group of scale transformations. A general result of group theory is that any 
group invariant function can be expressed as a function of a maximal invariant. Now a function h is a 
maximal invariant when  )()( whWh =  implies wW ~ . Here it is trivial to show that the (D-1)-vector 
function  
 

)/,,/()( 11 DDD wwwwwh −= K            (0.2) 
   

 
 is a maximal invariant. The important consequence of this is the following. 
 
Basic principle of compositional data analysis 
 

Any meaningful function of a composition can be expressed in terms of ratios of the com-
ponents of the composition. Perhaps equally important is that any function of a composition 
not expressible in terms of ratios of the components is meaningless. 

 
Note that there are many equivalent sets of ratios which may be used for the purpose of creating mean-
ingful functions of compositions. For example, a more symmetric set of ratios such as )(/ wgw , where  

D
Dwwwg /1

1 )()( L=  is the geometric mean of the components of w , would equally meet the scale-
invariant requirement. 
 
All that this blinding by mathematics is saying is surely the obvious. Compositions are concerned with 
relative values and so ratios of components.  
 
When I first became interested in compositional data I thought that this was self-evident, but apparently 
not. See, for example, the sequence of letters (Aitchison, 1989, 1990a, 1991a, b), Watson (1990, 1991) 
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in Math Geology, arising from Watson and Philip (1989) and ending with Aitchison (1992). 
 
 
0.2 The use of the subcompositional coherence argument 
 
In the past I have put forward subcompositional coherence as a second principle of compositional data 
analysis and have used it to emphasize the folly of using the Galton-Pearson correlation coefficient as a 
measure of dependence between raw components of a composition. My usual discussion is within the 
context of a practical situation.  
 

Consider two scientists A and B interested in soil samples, which have been divided into ali-
quots. For each aliquot A records a 4-part composition [animal, vegetable, mineral, water]; B 
first dries each aliquot without recording the water content and arrives at a 3-part composition 
[animal, vegetable, mineral]. Let us further assume for simplicity the ideal situation where the 
aliquots in each pair are identical and where the two scientists are accurate in their determina-
tions. Then clearly B's 3-part composition ],,[ 321 sss  for an aliquot will be a subcomposition 

of A's 4-part composition ],,,[ 4321 xxxx  for the corresponding aliquot related by  
 

)/(],,[],[ 3213213.21 xxxxxxsss ++= .   (0.3) 
    

 
It is then obvious that any compositional statements that A and B make about the common 
parts, animal, vegetable and mineral, should agree. This is the nature of subcompositional co-
herence. 

 
Consider the simple data set: 

  
Full compositions [x1, x2, x3, x4]  Subcompositions [s1, s2, s3]  

 [0.1, 0.2, 0.1, 0.6]   [0.25, 0.50, 0.25] 
 [0.2, 0.1, 0.1, 0.6]   [0.50, 0.25, 0.25] 
 [0.3, 0.3, 0.2, 0.2]   [0.375, 0.375, 0.25] 
 

Scientist A would report the correlation between animal and vegetable as corr(x1, x2) = 0.5 
whereas B would report corr(s1, s2) = -1. There is thus incoherence of the product-moment 
correlation between raw components as a measure of dependence. 

 
Note, however, that the ratio of two components remains unchanged when we move from full 
composition to subcomposition: si / sj =  xi / xj , so that, as long as we work with scale invariant 
functions, or equivalently express all our statements about compositions in terms of ratios, we 
shall be subcompositionally coherent. 

 
My reason for downgrading subcompositional coherence as a principle to a convenient way of counter-
ing the use of product-moment correlation between raw components is that there are many statistical 
procedures where we would not expect analyses of full compositions and of subcompositions to pro-
duce relatable results, for example in any eigen-analysis such as principal component analysis. We 
have only to look at such analyses in DR  to see that principal component analysis of subvectors would 
have no direct relation to a principal component analysis of the complete vectors. So my advice here is 
to limit use of subcompositional coherence as an argument against the many surviving users of product 
moment correlations of raw compositional components.  
 
This is probably the place to provide a caveat on the use of the symmetric centred log-ratio correlation 
matrix. It is tempting to think that  
 

))(/log(/))(/(log( 21 xgxxgxcorr ,   (0.4) 
 



 4

where )(xg  is the geometric mean D
Dxx /1

1 )( L  of the components of the D-part composition x, is a 
reasonable way to measure the dependence between parts 1 and 2 of the composition. But this is sub-
compositionally incoherent, as any simple example will show. The reason for this incoherence is, of 
course, that use of a subcomposition automatically changes the dividing geometric mean. 
 
 
0.3   Basic principles of statistical analysis 
 
I often lie awake at night and worry about the state of much data analysis and the extent to which basic 
scientific principles are broken. In my consultative experience it has not been uncommon to be con-
sulted after the experiment has been completed. The person consulting has collected data, filled the 
available filing space, does not know how to analyze the data and decides that the help of a statistician 
is required, with no clear idea of what specific questions are answerable by the experiment.  
 
The basic scientific principle, which is so often ignored, is that, prior to experimentation or data collec-
tion, the specific questions, which the observations are expected to answer, should be clearly identified. 
I have no need to apologize for using yet again a statement (Jeffreys, 1961) by a great scientist, 
mathematician and statistician, Sir Harold Jeffreys, which should be a mantra of every investigator of 
uncertainty and variability: 
 

It is sometimes considered a paradox that the answer depends not only on the observations 
but on the question: it should be a platitude. 

 
In Cambridge when I studied for the Diploma in Mathematical Statistics my knuckles would have been 
rapped if I had dared to look at the data before I had identified relevant hypotheses to test to answer the 
experimenter’s or observer’s question. Changed days! It now seems to be common practice to data 
snoop, to spot possible connections and so formulate a hypothesis which is then tested on the snooped 
data, and of course the test found to be non-significant and so the hypothesis supported. Can anything 
be further from good scientific practice? And sadly there have been a number of examples in our Co-
DaWork workshops here in Girona. I’ll look at one particular example later in this paper. 
 
So I suggest that a protocol for any experimental or observational investigation might run along the 
following lines.  
a) Before experimentation, specify all the questions of interest. 
b) Design an experiment which is capable of answering these questions      
c) Identify a sensible record set (sample space) for representation of the data? 
d) Identify any concomitant information?  And, if so, identify a sensible concomitant space? 
e) If a parametric approach is feasible, identify a parametric class of (conditional) distributions that 

may be suitable.   
f) Construct an appropriate lattice of hypotheses capable of answering all the questions. 
g) Apply estimation and testing procedures to arrive at a working model. 
h) If required, produce a predictive distribution for the working model.  
i) Explain in as simple terms as possible inferences and conclusions to the experimenter. 
   
Essentially this is a plea for good scientific practice and corresponding statistical design, modelling and 
analysis of experiments and observational studies. 
 
 
1 Fallacies relating to ‘traditional’ methods of analysis   
 
 
1.1 Fallacy 1a.  Standard multivariate statistical analysis designed for real data 
works on compositional data  
 
The thinking behind this fallacy is, I suppose, that compositions are vectors of real numbers and the 
constraint simply confines the vector to a subspace embedded in real space, so real analysis must be 
suitable. The fallacy is not confined to compositional analysis, but has applied to early analysis of di-
rectional data and still is prevalent in   the analysis of positive vectors, again since DD RR ⊂+ . I have 
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asked many fellow statisticians, particularly those involved in consultative work, if they have ever had 
multivariate consultative work involving vectors with negative components and the answer, on the 
whole, is a resounding ‘No’; and, when further asked whether they can envisage such data, the re-
sponses usually involve situations with arbitrary origins. The fact that the properties of real space are so 
familiar, even to school children, has made it easy to produce a statistical methodology relevant to real 
vectors, with the unfortunate consequence that any vector data that contains real numbers are flung into 
the DR  mill. It is, of course, now well known that positive multivariate data can be treated effectively 
by a logarithmic transformation, followed by standard DR  analysis or, equivalently, within DR+ , with 
appropriate operations of change (proportional change), of powering and the obvious logarithmic met-
ric.  
 
Historically it was Chayes (1960, 1962, 1971) who first persistently pointed out to geologists that the 
application of the then available multivariate statistical tools, designed for analysis of data vectors in 
D-dimensional real space DR , to compositional data was not only flawed but meaningless. Chayes 
tackled, in particular, the impossibility of interpreting the product moment correlation coefficient be-
tween two parts of a composition. Since the whole structure of standard multivariate statistical analysis 
depends on these concepts of product-moment covariance and correlation, it should have been obvious 
that standard multivariate statistical analysis should be placed in a compositional garbage bin. Chayes 
and colleagues attempted to study the pathology of the application of these standard methods to com-
positional data, presumably in the hope of finding adjustments which might alleviate the situation. Un-
fortunately, as Chayes and his colleagues soon found out, pathology does not cure a patient. Appropri-
ate treatment is required to ease his or her disease.     
 
To an extent at CoDaWork’08 this may seem to be preaching to the converted. But I think it is worth 
pointing out that this fallacy is still prevalent. I can assure you that a tour of the web under ‘composi-
tional data analysis’ will find many examples. What advice can be provided on how to counter such 
applications of inappropriate methodology? My first approach is always to point out the basic principle 
of compositional data analysis with illustrations. Probably the more powerful argument there is to dem-
onstrate, as in Section 0.2, subcompositional incoherence in the use of product moment correlation as a 
means of conveying a measure of dependence between two parts.   
 
A failure here may mean that you are not dealing with someone who can claim to be a scientist, though 
such a statement will get you nowhere. One of the difficulties, I think, is that many, probably most, 
scientists in their brush with statistics have been inculcated with the idea that correlation is the be-all-
and-end-all of the statistical measure of dependence. I have come across this is many forms. Unfortu-
nately it lingers with many referees of papers on compositional data. Let me relate a number of in-
stances.  
 
Many recent fallacies are subtle restatements of Fallacy 1a in convoluted language. They often typi-
cally arise in the refereeing of papers using the principle outlined above. In this refereeing there is 
commonly reference to knowledge derived from traditional methods, which can only mean the use of 
standard DR  multivariate statistics. One such fallacy is the following. 
 
 
1.2 Fallacy 1b.  The fallacy of hanging on to the concept of correlation in consider-
ing two parts of a composition 
 
Here are examples of such restatements. 
 
Subscribers to this fallacy clearly are attempting to defend themselves behind the bulwark of tradition. 
Inferences from past data analysis, however arrived at, are sacrosanct despite the fact that pre-1980 
they could have been based only on standard multivariate statistical analysis.     
 
I use my own experience of attempts to combat such refereeing experiences to demonstrate the nature 
of this type of fallacy.  
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In one paper I attempted to explain that when dealing with a typical D-part composition ],,[ 1 Dxx K , 
the nearest useful characteristic to the meaningless ),( ji xxcorr  is the characteristic 

}}/var{log{ jiij xx=τ , what I had called the relative variance. I had pointed out that a zero value 

of ijτ  means that the ratio ji xx /  is constant; in other words, component i is a fixed proportion of 
component j, surely the strongest form of dependence between the two parts when we recall from the 
basic principle that any meaningful function of two parts must involve this ratio. The practitioner of 
Fallacy 1b may say: OK, but you have not given me some means of saying when parts i and j are un-
correlated. The answer here is, of course, that the request is coming from someone who persists in the 
use of product-moment correlation. The only useful reply to this fallacy is to point out that when atten-
tion is restricted to two parts of a composition the larger the value of ijτ  the more ‘uncorre-
lated/independent’ they will appear to a traditionalist. 
 
Here is another comment from a referee. 
 

There is a major discrepancy between logratio modelling and the intuitive approach of the 
petrologist/geochemist. The authors state that ‘there is no hope of the product-moment corre-
lation serving as a usable substitute for the relative variation’. This is a very strong statement 
which is probably not correct because two variables with a relatively low relative variation 
could be strongly correlated in the product-moment sense. 

 
The following hypothetical example of a major oxide (x) and a trace element (y) illustrates 
this: 

 
  x   y   log(x/y) 
     (in weight %)       (in ppm) 
    2    1   0.69315 
             20             20         0 
             21             21         0 
             18             18         0 
 

The product moment correlation coefficient is 99997.0),( =yxcorr . The variance, unbiased 
estimate of the logratio (base e), is 0.120113. Consequently excellent ‘correlation’ between x 
and y is suggested by corr(x,y), but relatively poor correlation by the relative variation. This 
example is, of course, artificial. However a situation of this type could arise if the trace ele-
ment (y) would be chemically associated only with a single major-oxide (x).  

 
It is clear from my remarks above that the referee has missed the whole point of the relative variance, 
in that he expects a large value of relative variance to characterise some form of high dependence 
whereas the opposite is the case.  
 
My response to the referee is possibly worth recording. 
 

You seem to be suggesting that a low relative variation would be in conflict with a highly 
positive crude correlation; the contrary is the case. The lower the relative variation the more 
proportional the two components are and so, in so far as it is possible to place an interpretation 
on crude correlation, the lower the relative variation the higher the positive crude correlation. 
Your example therefore is not disturbing: a low relative variation and a high crude correlation. 
It does, however, suggest to me another avenue of persuasion that relative variation has got 
‘everything’ and crude correlation ‘nothing’. Consider the following three data sets of two-
part compositions and the corresponding relative variations and crude correlations. 

 
 
              1              2               3 

   21 xx             21 xx              21 xx  

             28  72       20        80        10       90 
             29       71       25        75         20       80 
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             30       70       30    70        30    70 
             31       69       35    65        40    60   
             32       68       40        60         50    50 
 

),( 21 xxcorr  -1   -1    -1 
relvar        0.0845           0.150            0.738 

 
Which of the measures contains useful information?  Answer: the relative variance, because 
it works with ratios and the range of ratios is very different for each sample, for (1) 0.39 – 
0.47; for (2) 0.25 – 0.67, for (3) 0.11 – 1.00. 

 
 
1.3 Fallacy 1c. The new methodology merely confirms what we already know about 
this situation through the use of traditional methods  
 
The only comment here is probably to say: Well, either you were lucky with your traditional methods, 
or at least the new methodology must be correct in this case. 
 
 
1.4 Fallacy 1d.  Any new methodology must surely support the results of long stand-
ing traditional analysis 
 
This, I have found, is a great weapon of destructive criticism by referees. If the new methodology does 
not support traditional views of a situation, then the only recourse is to question how the traditional 
view was arrived at. If previous data are available, analyse the data and go on from there. 
 
 
1.5 Fallacy 1e.  Knowledge of the discipline can overcome the constant-sum con-
straint and allow the use of DR multivariate methodology       
 
In my experience, consultative statisticians spend much time with their consultee – doctor, economist, 
geologist, biologist, whomever – in an attempt to make sure that the statistical modelling, analysis and 
inferences are appropriate to the nature of the discipline. Not so with two papers by Woronow (1997 a, 
b) stating the above fallacy (or conceit), with a cavalier dismissal of all the attempts by statisticians 
over a period of fifteen years to help the discipline of geology. There is little point in reviewing the 
many basic errors in these papers since they have been thoroughly dealt with in Aitchison (1999).  
 
We turn now to a number of graphical fallacies. 
 
 
2 Fallacies relating to graphical representations  
 
 
2.1 Fallacy 2a.  That scattergrams of two raw components provide useful infor-
mation about compositional variability  

Despite its sentence of death by Chayes and others in the 1960s, the Harker diagram (Harker, 1909), 
now almost a hundred years old, is still alive, though hardly well. A Google expedition under the entry 
“Harker diagram” at this time of writing (27 February 2008) found 623 sites. We might hope, even 
expect, that many of these sites would be continuing the Chayes exposure of the deceptiveness of 
Harker diagram use. Alas, this is not so, and many of the sites even consist of the instruction of geol-
ogy students on how valuable Harker diagrams are in understanding geochemistry, a sad reflection on 
geological instruction in some institutions. The Harker diagram in its geological version is essentially a 
scattergram of two raw components of compositions with 2SiO  as the horizontal variable. Other scat-
tergrams of two components, such as the Fenner diagram (Fenner, 1913) are also still in use. The 
Chayes condemnation was essentially based on the uninterpretable nature of the Galton-Pearson corre-
lation coefficient of raw components and there is little need here to reiterate the Chayes argument.  
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We shall take a recent misuse of Harker diagrams to illustrate this persistent fallacy, and to attempt to 
provide some ideas of how to combat the fallacious argument and provide a sensible analysis of the 
underlying compositional problems. At CoDaWork’03 Baxter et al (2003) considered problems in the 
compositional data analysis of 63 colourless Roman-British glass facet-cut beakers. In their analysis 
they presented in particular a scattergram of (Al, Fe) as in Fig. 2.1. In their interpretation of this scat-
tergram they commented that ‘it can be seen that there is a distinct compositional group of low Al and 
relatively high Fe facet-cut beakers, labelled (as in Fig. 2.1) with ‘o’ in the plot, that is also composi-
tionally distinct from other types labelled x in Fig. 2.1. But, if we pay attention to the basic principle of 
compositional data analysis, the scattergram allows only the investigation of the ratios Fe/Al. Fig.2.2 
allows this investigation by showing the origin of the Al, Fe scales and the ratios Fe/Al in the slopes of 
the lines from the origin to the compositional points. The situation is very different and there is less 
convincing separation. Baxter et al (2003) go on to create raw component and logratio biplots. They 
claim that inspection of their raw component biplot comfortably suggests their previously noted group-
ing from the Al-Fe scattergram. This is not surprising since their division of the 63 compositional 
points is made on a linear basis and the raw component biplot is based on linear mathematics. Their 
logratio biplot also shows separation; this would follow from the fact that there is separation of the ra-
tios in Fig.2.2. It is difficult to assess their statement that ‘separation is not as clearly seen as in the raw 
component biplot’, based on subjective visual judgment. The criticisms of these analysis are threefold. 

First and probably most important scientifically, is that the authors seem to have fallen into the trap of 
data-snooping, examining the data before they have framed a question or hypothesis about the situa-
tion. If the data suggest a hypothesis it is not uncommon for that hypothesis to be ‘accepted’ by analy-
sis of the data which suggested the hypothesis. In particular if such a compositional hypothesis is sug-
gested from the use of linear ideas applied to the data then it is not surprising that subsequent linear 
analysis will support the hypothesis.  
 
The construction of biplots for all 63 compositions does not address the ‘diagnostic’ problem of how 
separate the two ‘groups’ are and to what extent the separation may depend only on some subcomposi-
tional information. Of course, in the present case this is not a straightforward analysis. The suspect 
identifying of groups as in Figs 2.1, 2.2 above means that there is technically what is known as com-
plete separation and so, for example, a binary logistic approach to attempt to identify important sub-
compositions along the lines of Thomas and Aitchison (1998) is not available, although the methodol-
ogy of dealing with the complete separation problem in Aitchison, Kay and Lauder (2004) could be 
used. 
 
 
2.2 Fallacy 2b. The ternary diagram is better than the Harker diagram 
 
I think the way in which the ternary diagram is generally used is no better than Harker or Fenner dia-
grams. The reason for this is that the components of a 3-part composition are thought of as the perpen-
dicular distances from the representational point to the sides of the triangle. This is no more than view-
ing the ternary diagram as a scattergram of the raw components similar to the Harker diagram’s treat-
ment of two raw components. 
 
Let me illustrate what I mean by examining a particular ternary diagram. Table 1 records 40  3-part 
compositions with parts [1, 2, 3]. The corresponding ternary diagram is shown in Fig 2.3.  In the dia-
gram I have shown what might be considered an obvious separation of the points into groups, 13 iden-
tified by an o, those with A-component greater than 0.65 and 27 identified by an x, with A-component 
less than or equal to 0.65. Again we emphasize that any subsequent investigation of any hypothesis 
about this separation based on the snooped data is suspect. I need not give details except to say that the 
results would be similar to those for the British-Roman beakers above. 
 
The spurious nature of all this analysis is evident when I reveal that the 40  3-part compositions of Ta-
ble 1 arose from a simulation of 40  3-part compositions from a ),(3 ΤξL  distribution  with 

]2.0,3.0,5.0[=ξ  and  
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My biggest mistake when I became interested in compositional data and recognised that interest could 
only be in relative values was to be fixed on the simplex and its simple visual 3-part ternary diagram. 
What I should have done was to point out that a D-part composition should be recorded as a (D-1) vec-
tor of ratios in 1−

+
DR  .  

 
 
2.3 What are sensible compositional diagrams? 
 
The answer is easy: ratio scattergrams, Pearce diagrams, logratio scattergrams, and for a complete 
compositional picture, compositional biplots (Aitchison, 1990b; Aitchison and Greenacre, 2002) and 
conditional compositional biplots. Notice I have not included the recent coda dendrogram (Egozcue 
and Pawlowsky-Glahn, 2005) in this list. I will explain why later in this paper. 
 
 
2.4 One general word of caution about graphical approaches.   
In danger of being repetitive I make the following remarks about graphical approaches. When I was a 
statistics student in the 1950s great emphasis was placed on scientific method. Put simply, your hy-
pothesis preceded your experiment. The purpose of your experiment was to produce data whereby you 
could test your hypothesis. If the hypothesis was rejected you thought a bit more deeply; and hopefully 
were led to another hypothesis to test. If not rejected, you had a working hypothesis on which to build a 
more detailed theory, hopefully giving rise to further hypotheses to test. I have a feeling that there has 
been considerable slippage from this view of scientific method. After the experiment data snooping, 
including graphical methods, suggests hypotheses which are subsequently tested. To me that seems 
poor science.  
 
 
3 Fallacies involving ideas of unclosing or opening compositional data sets 
 
There have been various approaches to the statistical analysis of compositions by attempts to construct 
‘open data’ from which the closed sets may have arisen; and to infer some properties of the closed set 
by testing various hypotheses concerning the open set. Fortunately these, such as the early Chayes-
Kruskal (1966) approach, have now gone out of fashion, though it is worth pointing out a recent at-
tempt by Whitten (1995) to open up major oxide compositional data in proportions by weight by con-
verting the weights to volume by use of specific gravities. Let ],,[ 1 Dxx K  be a typical composition of 

D major oxides in weight proportions and let ],,[ 1 Dss K  be the specific gravities of the D major ox-

ides. Then the conversion to volumes produces the ‘open’ set ]./,,/[],,[ 111 DDD sxsxvvv KK ==  
The concept of the open set is illusory, since the unit-sum constraint on x is simply replaced by an 
equally awkward constraint on v, namely 111 =++ DDvsvs L . 
 
  
4.  Some necessary definitions, concepts and notation 
 
4.1 Introduction 
 
It is convenient here to set out definitions, concepts and notation which will be used in discussion of 
two main directions in which compositional data analysis has developed in the last three decades – 
transformation methodology and a staying-in-the-simplex methodology. These methodologies, simply 
and properly applied, lead to equivalent  inferences about any specific compositional question, and the 
choice of how to express and understand inferences seems to me to depend on how mathematically 
equipped the interpreter is. Despite this equivalence there have been some puzzling attempts to identify 
differences, which purport to suggest that the staying-in-the-simplex is somewhat superior. Later in this 
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paper I will attempt to specify where and why this staying-in-the-simplex approach has gone statisti-
cally wrong.   
 
 
4.2 A little history of transformation methodology 
 
My original, largely intuitive, approach to compositional data analysis in Aitchison (1981, 1982), 
Aitchison and Shen (1980), and in its extended form in Aitchison (1986a, b) was by way of a logratio 
transformation methodology. The rationale ran along the following lines: compositional vectors contain 
information only about relative values of their components, so first ‘think ratios’. Then, on realising 
that quotients are more difficult to handle than sums or differences, ‘think logratios’. The simplest lo-
gratio transformation seemed to be the additive logratio transformation  1: −→ DD RSalr   defined by  
 

)]/log(,...)./[log()( 11 DDD xxxxxalrz −== ,    (4.1) 
 
with inverse transformation DD SRalr →−− 11 :   defined by  
 

]1,,...,[)( 111 −=− Dzz eeCzalr ,     (4.2)  
 
where C is the familiar closure-to-unity operation.  
 
It is a one-to-one transformation between the unit simplex DS and 1−DR , and so any questions con-
cerning compositions are transferable to questions about the transformed compositions, and inference 
from analysis of the transformed data in real space by the use of standard multivariate analysis should 
be easily interpretable in terms of inverse transformations. This is a convenient place to define another 
useful transformation, the centred logratio transformation clr S UD D: → −1 , where U D−1  is the hy-
perplane { : . . . }u R u uD

D∈ + + =1 0  in R D , defined as follows: 
 
    ),()}](/log{,)},(/[log{)( 1

1
−∈∈== DD

D UuSxxgxxgxxclru K ,      (4.3) 
 
where D

Dxxxxg /1
21 )()( L=  is the geometric mean of the components of x. It has the advantage of 

treating the parts symmetrically.  
 
Transformation techniques have been very popular and successful for more than a century, from the 
Galton-McAllister introduction of such an idea in 1879, in their logarithmic transformation for positive 
data, through variance-stabilising transformations for sound analysis of variance, to the general Box-
Cox transformation and the implied transformations in generalised linear modelling. Nevertheless, they 
have had an interesting history and have not been without opposition. No less a scientist-statistician 
than Karl Pearson clearly misunderstood the nature of the transformation methodology.  
 

Supposing, as in English female crania, nasal breadth is asymmetrical, what is the quantity 
which is symmetrically distributed of which nasal breadth is a function? It has no reality in the 
organism at all.   

  
And yet he seemed happy to use his ‘frequency curves for all circumstances’ uncritically to describe 
similar types of variability. 
 
The logratio methodology, however, also drew fierce opposition from other disciplines, in particular 
from sections of the geological community. The opposition seemed to run roughly along the lines of 
the Pearson argument: what on Earth has log(MgO/CaO) to do with the geology of major oxides of 
rocks. The reader who is interested in following the arguments that have arisen may examine the letters 
to the Editor of Mathematical Geology over the period 1988 through 2002; in particular, see Watson 
and Philip (1989), Aitchison (1989, 1990a), Watson (1990), Aitchison (1991a), Watson (1991), Aitchi-
son (1991b, 1992b), Woronow (1997a, 1997b), Aitchison (1999), Zier and Rehder (1998), Aitchison et 
al. (2000), Rehder and Zier (2001), Aitchison et al. (2001, 2002). 
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Statisticians also seem to have difficulties with logratio transformation methodologies. An anonymous 
referee of Aitchison (1983), which introduced compositional logcontrasts as the means of providing the 
equivalent of DR  principal component analysis for compositions, dismissed the logcontrast idea as 
unnecessary since DR  principal component analysis would immediately recognize and eliminate the 
constant-sum constraint corresponding to the zero eigenvalue and the other principal components 
would reveal the nature of the compositional variability. Also there is confusion in Gower (1987), in 
which the claim is made that the logarithmic transformation will not straighten the data of a data set 
associated with the famous Hardy-Weinberg law. The confusion is that it is logratio, not logarithmic, 
transformations that are relevant to compositional data analysis, and any compositional data analyst 
applying the alr transformation to that data set would see linearity and arrive at the Hardy-Weinberg 
law from the data analysis. 
 
In many ways the adverse responses have helped to clarify the important principle underlying composi-
tional data analysis and to consolidate knowledge of the underlying algebraic-geometric structure of the 
simplex sample space, the subject of the next section.  
 
 
4.3 An algebraic-geometric structure on the simplex 
 
In the discussion of Aitchison (1982) Dr N. I. Fisher, in drawing analogies with modelling problems 
involving directional data, suggested that greater insights might be obtained into the interpretation of 
compositional data analysis if concepts and analysis could be confined to the simplex rather than a 
process of transformation and inverse transformation. Understanding of any algebraic-geometric struc-
ture of a sample space is certainly a potential help in modelling practical statistical problems and al-
though, in the case of the simplex sample space, the necessary ingredients appeared in Aitchison 
(1986), understanding has only gradually developed so that one structure is now that of a Hilbert space. 
Thus the way is now open for a full discussion of the relative merits, both from theoretical and practical 
viewpoints of two methodologies – transformation or staying-in-the-simplex. 
 
Discussion in later sections will be simpler if we record here a pure mathematical structure which can 
be placed on the unit simplex choice as a compositional sample space.  
 
The unit simplex as a vector space 
 
Fundamental operations of change in the simplex are those of perturbation and power motivated and 
spelt out by Aitchison (1986, pp. 42 and 120). In their simplest forms these can be defined as follows. 
Given any two D-part compositions DSyx ∈,  their perturbation is 
 

],,[ 11 DD yxyxCyx K=⊕     (4.4) 
 

Clearly, the operation ⊕  defines an Abelian group, with identity element  ]1,...,1)[/1( De =  and 
inverse  
 

]/1,,/1[ 1
1

DxxCx K=− .    (4.5) 
 
An important concept here is how perturbation is related to change in a composition x to a composition 
y. The perturbation p which changes x to xpy ⊕=  can be written as  
 

]/,,/[ 11 DD xyxyCxyp K=Θ= .   (4.6)  
 
Given a D-part composition DSx∈  and a real number 1Ra∈  the power transformed composition is  
 

],....,[ 1
a
D

a xxCxa =⊗ .    (4.7) 
 
Note that we have used the operator symbols ⊕  and ⊗  to emphasize the analogy with the operations 

),...,( 1
a
D

a xxCxa =⊗
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of translation and scalar multiplication of vectors in real space. It is trivial to establish that these opera-
tions define a vector or linear space structure on DS .  
 
Powering, as described above, may seem an esoteric operation, but it has importance for a number of 
reasons. First it may be of relevance directly because of the nature of the sampling process. For exam-
ple, in grain size studies of sediments, sediment samples may be successively sieved through meshes of 
decreasing diameters and the weights of these successive separations converted into compositions 
based on proportions by weight. Thus, though separation is based on the linear measurement diameter, 
the composition is based essentially on a weight, or equivalently a volume measurement, with a power 
transformation being the natural connecting concept. Later in Sections 5.1 and 6.2 we shall see that the 
powering operation plays a central role in techniques of singular value decompositions of composi-
tional data sets and can be useful in describing regression relations for compositions. 
 
The unit simplex as a metric vector space 
 
Aitchison (1983, 1986, p. 193) defined a simplicial metric principally to provide a duality between total 
variability of a compositional data set as measured by the trace of an estimated covariance matrix and 
the sum of mutual distances between compositions of the data set. The definition of the metric 

),( yxSΔ  as a distance between two compositions DSyx ∈,  has many equivalent forms. These can 
be expressed in terms of different logratio transformations of the composition to real spaces, in particu-
lar the centred clr and additive alr logratio transformations. In terms of these transformations the defi-
nitions are  
 

2/1

2/1

1

2

])}()(}{)()([{
)(

log
)(

log),( T
D

i

ii
S yclrxclryclrxclr

yg
y

xg
xyx −−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
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−=Δ ∑
=

,   (4.8)

  

,])}()({)}()([{),( 2/11 T
S yalrxalrHyalrxalryx −−=Δ −          (4.9) 

 
where ][ ijhH = , with )(1),(2 jihjih ijij ≠===  (Aitchison (1986, Section 4.7). Yet another 
equivalent definition is   
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D
yx .         (4.10) 

 
It is trivial to demonstrate that SΔ  satisfies all the requirements of a metric, namely  
 
M1. Positivity:    Δ S x y x y x y( , ) ( ), ( )> ≠ = =0 0 . 
M2. Symmetry:    ),(),( xyyx SS Δ=Δ .      
M3. Power relationship:   Δ ΔS Sa x a y a x y( , ) | | ( , )⊗ ⊗ = . 

M4. Triangular inequality: ),(),(),( yxyzzx SSS Δ≥Δ+Δ . 
 
Note that the power transformation property M3 is the analogue of the scalar multiple property of 
Euclidean distance in Rd. 
 
The fact that this metric has also desirable properties relevant and logically necessary, such as scale, 
permutation and perturbation invariance, and subcompositional dominance, for meaningful statistical 
analysis of compositional data, is now well established and the relevant properties are recorded briefly 
here, for future discussion. 
 

M5. Permutation invariance: Δ ΔS SxP yP x y( , ) ( , )= , for any permutation matrix P. 

,)}()({)}()({),( 12 TyalrxalrHyalrxalryx −−=Δ −
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M6. Perturbation invariance: ),(),( yxpypx SS Δ=⊕⊕Δ , where p is any perturbation. 
M7. Subcompositional dominance:  If sx and sy are similar, say (1,...,C)-subcomposi-tions of x and y, 

then ),(),( yxss SyxS C Δ≤Δ . 
 
It is worth noting here that M7, subcompositional dominance, the equivalent of the obvious DR  metric 
property that the Euclidean distance between two points cannot be less than the Euclidean distance be-
tween the projections of these points on some hyperplane, was crucial in dismissing the Watson and 
Philip (1989) persistent claim that the unique measure of difference between two compositions was the 
angle between their ray representations. 
  
The unit simplex as a Hilbert space 
 
The extension of the simplex structure from metric vector space to Hilbert space came almost simulta-
neously with the recognition of the definition of the inner product of two compositions DSyx ∈,  as 
 

)(
log

)(
log,

1 yg
y

xg
x

yx ii
D

i
∑
=

=〉〈     (4.11) 

 
and the associated norm as  
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by Aitchison  (2001), Billheimer, Guttorp and Fagan (2001), Pawlowsky-Glahn and Egozcue (2001). 
An interesting aspect of this extension is that an inner product 〈 〉b x,  can be expressed as  
 

          (4.13)  
 
where a b g b= log{ / ( )}  and so a aD1 0+ + =. . . . Thus, inner products play the role of logcon-
trasts, well established as the compositional ‘linear combinations’ required in many forms of composi-
tional data analysis such as principal component analysis, (Aitchison, 1983) and the investigation of 
subcompositions as concomitant or explanatory vectors (Aitchison and Bacon-Shone, 1984; Aitchison, 
1986, Chapters 8 and 12).  
 
It is convenient here to add simple results on calculus in the simplex – differentiation, rates of change 
and integration. Clearly, in compositional processes rates of change of compositions are important and 
here we define the basic ideas. Suppose that a composition )(tx  depends on some continuous variable 
t such as time or depth. Then the rate of change of the composition with respect to t can be defined as 
the limit 
 

))),(logdC(exp(=x(t)))((1lim)( 0 tx
dt

dttx
dt

tDx dt Θ+⊗= >−  (4.14) 

 
where d/dt denotes ‘ordinary’ differentiation with respect to t.  Thus, for example, if 
x t h t( ) ( )= ⊕ ⊗ξ β , then Dx t h t( ) ' ( )= ⊗ β .There are obvious extensions through partial dif-
ferentiation to compositional functions of more than one variable. We note also that the inverse opera-
tion of integration of a compositional function )(tx  over an interval ),( 0 TT  can be expressed as  
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In what follows I shall use an application which seems popular with compositional data analysts, par-
ticularly in discussing possible doubts and difficulties of the transformation methodology. This is the 
Arctic lake sediment problem discussed by Aitchison (1986, Sections 7.6-7.8 and Data 5) to illustrate 
how to relate compositions to concomitant data through compositional regression. 
 
 
5.  Confusions and fallacies relating to transformation methodology 
 
 
5.1 Confusions, fallacies and misunderstandings about alr transformation meth-
odology: a reassessment of the alr transformation methodology 
 
The alr transformation methodology has, in my view, withstood all attacks on its validity as a statistical 
modelling tool. Indeed it is an approach to practical compositional data analysis which I recommend 
particularly for non-mathematicians. The advantage of its logratios involving only two parts, in contrast 
to clr and ilr (isometric transformations discussed later in this section), which use logratios involving 
more than two and often many parts, makes for simple interpretation and far outweighs any criticism, 
more imagined than real, that the transformation is not isometric (I shall expand on this comment in 
Section 7). We first collect briefly a number of established results to allow discussion of the practicali-
ties of the transformation. 
 
Measure of ‘central tendency’: By analogy with definitions of centres of distributions associated with 
other sample spaces a least squares approach would identify )(xcen=ξ  as the DS∈ξ  which mini-

mises )),((E 2 ξxSΔ  and this can be expressed in a variety of ways as 
 

 x)}.log {exp(E())((E))}]((E[exp{)( 1 CxalralrxclrCxcen === −   (5.1)  
 
At first sight (5.1) seems a very unfamiliar object, until we realize that for any positive random vector 

DRz +∈ the formal definition of the geometric mean is exp{E(log z)}, the vector of marginal medians.  
Note here that, although it seems that we have abandoned in the use of log(x) our scale-invariant prin-
ciple of using only ratios, the complete expression for )(xcen  involves a closure operation which en-
sures ratios. 
 
It is worth digressing here to demonstrate the practical implications of this simple result. For a typical 
compositional data set 
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standard practice seems to be to take the arithmetic centre ],...,,[ .1. Dxxx = , where ∑
=

=
N

n
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. / . 

What is being advocated here is the use of   
 

      ],,[ 1 DggC K      (5.3) 
 
as centre of the compositional data set X, where  
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is the geometric mean of the ith component over all N cases.  
 
And there can be a substantial difference in the location of these centres. For example, Fig. 5.1 shows 
the arithmetic and geometric centres, A and G, for the 37 [sand, silt, clay] compositions of the Arctic 
lake sediment problem. It is clear that G is well within the distribution of compositions, whereas A ap-
pears to be an atypical composition.   
 
A question still frequently asked about the alr transformation is: Do we get different results if we use a 
divisor different from Dx  in the formation of logratios. The answer is no: all the statistical procedures 
are invariant under a permutation of the compositional parts. To a large extent I dealt with this question 
in Aitchison (1986, Chapter 7), but there remain doubts in some quarters about alr applications particu-
larly in compositional regression applications. I could deal with these points theoretically, but I feel it 
is almost more convincing to illustrate the veracity of the equivalence of approaches having in mind a 
concrete example to illustrate the veracity of the invariance assertion.  
  
Example. The relation of Arctic lake sediments compositions [sand, silt, clay] to lake depth. This was 
used as an illustrative example by Aitchison (1986, Sections 7.6 – 7.8). We first provide practical evi-
dence of the claim of permutation invariance. In that analysis it was found through consideration of a 
lattice of possible hypotheses that a reasonable working model would be the compositional regression 
form 
 
 errordepthdepthclaysiltclaysandxalr +++== )]log(),log([)]/log(),/[log()( 2211 βαβα , 
 
arriving, after standard multivariate regression analysis and omitting the error terms, 
    
     )log(10.180.4)/log(),log(74.270.9)/log( depthclaysiltdepthclaysand −=−= . 
 
From this we can derive 

 
 )log(64.190.4)/log( depthsiltsand −= .  

 
If instead of the order [sand, silt, clay] we permute the parts to [sand, clay, silt] the regression analysis 
produces  
 
    )log(10.180.4)/log(),log(64.190.4)/log( depthsiltclaydepthsiltsand +−=−= , 
 
in conformity with the earlier permutation result. Moreover the residuals transformed in each case back 
to the [sand, silt, clay] ternary diagram by 1−alr  are identical as shown in Fig. 5.2. 
 
Comparison with the use of a clr regression of the form  
 

)log(),log(),log([)( 332211 depthdepthdepthxclr δγδγδγ +++= ] + error 
 

provides after estimation and omitting the error terms, the regressor function vector 
 

[4.86 – 1.46 log(depth), -0.03 +0.18 log(depth), -4.83 + 1.28 log(depth)], 
 
again in conformity with the alr approach, for example giving the sand/clay relationship by subtraction 
of the third from the first regressor function as 9.80  - 2.74 log(depth). Again the [sand, silt, clay] re-
siduals are identical with those in Fig. 5.2. 
 
We compare these results with the use of an ilr regression. One of the simplest ilr transformations here 
is  
 
   ]6/))log(2)log()(log(,2/))log()[(log()( claysiltsandsiltsandxilr −+−= .  
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Regressing the transformed data against log(depth) produces a regressor function vector  
 

[3.46 –1.16 log(depth), 5.92 – 1.57 log(depth)]. 
 
To return to the result for the alr transformation applied to [sand, silt, clay] we have to post-multiply 
this vector by  
 

⎥
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⎤

⎢
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2/32/3

2/12/1
  ,  

 
 
yielding the alr regressor function 
 
      )log(10.180.4),log(74.270.9 depthdepth −− , 
 
in conformity with the direct alr approach. Again the [sand, silt, clay] residuals are identical to those 
already determined as in Fig.5.2. 
 
Each of these methods gives exactly the same results. In particular a measure of total variability of the 
sediments, prior to any regression analysis and as determined by the appropriate measure for each 
transformation, is 2.47. In each analysis the total variability of the residuals is 0.71, the amount of vari-
ability explained by the regression is 1.76, so that the proportion of the variability explained by each of 
the methods is 1.76/2.47 = 0.71.  
 
I would suggest that the simplest interpretation is provided by alr  transformations. As depth increases, 
sand gives way to silt and more so to clay, with differential effects decreasing with depth.  
 
 
5.2 Fallacy 6a.  There are better transformations than logratios for the analysis 
of compositional data 
 
There has been advocacy of the use of the sphere as a reasonable sample space for compositional data 
and the established methodology of directional data. See for example Stephens (1982) who converts the 
unit-sum constraint on composition x, namely 11 =++ Dxx L , by a square route transformation 

},,1( Dixy ii K−= , to a restriction of the y-vector to the D-dimensional unit sphere. Although 
Stephens manages to use the spherical von Mises distribution to give a reasonable discrimination be-
tween two groups of students, there is a fundamental flaw in the transformation in that the simplex and 
the sphere are topologically completely unrelated.  
 
Stanley (1990) goes even further away from simplicity, first going to the unit sphere and then continu-
ing by further transformation to spherical polar coordinates. Karl Pearson would have had a field day 
asking what relationship the angles studied after this transformation had with any reality.  
 
5.3  Confusion between logratio and logarithmic transformations 
 
A simple point is all that is necessary here. As already indicated, Gower (1987) in Section 5 above ap-
pears to believe that transformation methodology of compositional data analysis uses a logarithmic 
transformation ),,1(log Dixz ii K== . This, of course, only changes the unit-sum constraint on 

the compositional x-vector to a more complicated constraint  1)exp()exp( 1 =++ Dzz L  and 
achieves no insight into the compositional data.  
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5.4  Summing up on transformation methodology   
 
To sum up, I see my original transformation approach to compositional data analysis as fundamentally 
sound. This is not to say that other approaches may give different, possibly better, insights into the de-
scription and interpretation of compositional variability. 
 
Another personal comment here. All the early steps in the building of a methodology for compositional 
data analysis were intuitive, as I think has been the case in many advances in statistics. The formalisa-
tion of perturbation, powering, metric, inner product into an undoubtedly elegant geometric structure 
on S D  should not deceive us into thinking that this is the only structure relevant to resolving problems 
of compositional data analysis. It certainly plays a substantial role but, as we shall see, it  is by no 
means the only approach required in the discipline. 
 
 
6.  Confusions, fallacies and misunderstandings on the relation between pure 
mathematics and statistical modelling and analysis 
 
 
6.1  The relationship of pure mathematics and statistical science (informatics) 
 
Pure mathematics is a deductive activity. From definitions of entities of interest,  axioms or rules con-
cerning the behaviour of these entities, and following certain rules of logic, deductions such as lemmata 
or theorems are made, hopefully mathematically interesting and often elegant consequences are arrived 
at. An excellent example is the route to the Hilbert space structure of the unit simplex in Section 4.3 
above. The simple rules of perturbation, powering, metric and inner product fit together to ensure the 
Hilbert space property of the unit simplex. 
 
Statistics on the other hand is an inductive activity. Its interest is in dealing with uncertainty and vari-
ability. From a sample randomly selected in some way from a population, what can be inferred about 
the population? How can information consisting of 8-dimensional vectors of clinical measurements on 
31 patients, post-operatively found to have two forms, A and B, of an adrenal syndrome, 11 with A, 20 
with B, be used to infer the diagnostic form of a new patient whose vector of clinical information has 
been determined?  
 
The answer to such inductive problems clearly depends on statistical modelling, which essentially uses 
mathematical ideas in an attempt to describe in probabilistic terms how the variable data may have 
arisen, and to make inferences from what can be regarded as a reasonable working model. In this activ-
ity pure mathematics is surely the servant of the statistical problem. Too often it seems to have become 
the master and at times an indifferent, even an absurd, master. In the 1950s, when matrix algebra was 
becoming familiar in some disciplines, and automatic computing was making matrix inversion of mod-
est order a possibility, I was asked by my econometrics boss to invert a matrix of order 6 on EDSAC 1. 
The matrix consisting of prices which moved in so proportional a way (implying linear dependence of 
the matrix) that EDSAC hooted at me to indicate ill-conditioning. I tried to explain the folly of attempt-
ing to use such a model, but no, the computing staff in the department were set to apply a successive 
bordering technique to manually invert the matrix to N places of decimals. It was useless to explain that 
a change in the fourth significant digit in any of the prices would give a completely different inference. 
The econometrician went on to receive the Nobel Prize for Economics, hopefully not for this piece of 
work. 
 
I cite this example for the very important reason that there are among us some compositional data ana-
lysts who see pure mathematics as the master in statistical modelling of compositional problems. What 
seems to have happened is that they see the Hilbert space structure of the unit simplex as such an ele-
gant piece of pure mathematics that its use, and only its use, must be the source of solutions to all com-
positional data analysis. In this approach I think they are totally wrong and I will attempt to explain 
why in the discussion of a number of fallacies in the next few sections. Part of their approach seems to 
be to detect differences between results of transformation methodology and staying-in-the-simplex 
methodology, with, of course, the staying methodology found to be superior. Some of these differences 
are the results of staying enthusiasts asking the wrong questions about the situation. I emphasize that 
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transformation and staying methodologies applied properly to a given relevant question produce identi-
cal inferences.  
 
The remainder of this section is thus devoted to a series of fallacies involving the Hilbert space simplex 
as a driving master. Most of these fallacies are the results of ignoring the Jeffreys advice quoted in Sec-
tion 0.3, substituting an irrelevant question to suit the pure mathematics. A recent excellent television 
documentary The Dali Dimension analysed Dali’s considerable understanding and use of mathematical 
and scientific ideas. The programme involved a confrontation between two commentators. I was cer-
tainly on the side of the commentator who said that pure mathematics had no reality; it was only when 
used in an appropriate modelling situation in relation to some specific question that it touched reality. 
 
 
6.2  Fallacies and confusions relating to orthonormal coordinates and isometric 
transformations 
 
The Hilbert space associated with the D-dimensional unit simplex DS  is a (D –1)-dimension space and 
it is easy to construct a set of D – 1 orthonormal vectors as a basis for the representations of composi-
tions in terms of coordinates with respect to such an orthonormal basis (Aitchison et al., 2001). A num-
ber of papers (Egozcue and Pawlowsky-Glahn, 2004; Egozcue et al., 2004; Pawlowsky-Glahn, 2003; 
Pawlowsky-Glahn and Egozcue, 2001, 2002) have advocated that the perfect way to model a composi-
tional data problem is in terms of such an orthogonal coordinate vector 
 
   )](,),([],,[ 1111 xfxfzzz DD −− == KK .    (6.1) 
 
The use of these coordinates is equivalent to a transformation which is isometric in the sense that if u 
and v are the coordinates associated with compositions x and y then the simplicial metric ),( XxSΔ  is 

equal to the Euclidean metric in 1−DR , namely  
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ii vu .    (6.2) 

 
Such transformations have been termed isometric logratio abbreviated to ilr. All this is admirable and 
provides simple theoretical results, particularly in establishing least square type properties of certain 
estimators. Where things go wrong is an implicit belief that this is the only safe way to tackle composi-
tional problems. In my view such an approach to a practical problem is fraught with difficulties. The 
coordinates in any ilr transformation are necessarily a set of orthogonal logcontrasts. So imagine a con-
sultation with a urologist who has analysed the 4-part [1, 2, 3, 4] composition of renal calculi extracted 
from male patients at operation. The patients subsequently have been classified as of type R (repeater) 
or type S (single episode patient). The urologist now consults an ilr compositional data analyst to ask if 
there is any way of deciding whether a new patient, whose extracted kidney stone has composition  

],,,[ 4321 xxxx , is more likely to be R rather than S. So the ilr analyst explains to the urologist that it 
is necessary to examine an ilr transformation, say  

 

]12/)log3loglog(log,6/)log2log(log,2/)log[(log 432132121 xxxxxxxxx −++−+−
          (6.3)  
 
in order to answer his problem.  I know a number of urologists and I cannot imagine any of them un-
derstanding why such an elaborate transformation would be necessary. And why, they would sensibly 
ask, is this particular ilr transformation relevant. Why not another one? And an even greater stretch of 
the imagination would be required to envisage them bringing further compositional problems for analy-
sis. 
 
Indeed, ensuring isometry has little to do with this compositional problem. A simple model would be a 
logistic normal regression of type (R,S) with the regressor function  a logcontrast of the 4-part compo-
sition, along the lines of the analysis of limestone differences by Thomas and Aitchison (1998), which 
opens up the possibility of lattice testing to discover if any subcomposition is suitable for the purpose.   
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An argument from the advocates of the ilr coordinates approach is that the alr transformation to 1−DR  
is not an isometry. This is true but unimportant since, if there is any requirement to use metric argu-
ments in the transformed space, all that is required is to use the simplicial metric in its H form as in 
(4.9). Indeed, often in parametric modelling the appropriate metric is not the simplicial metric but the 
‘Mahalanobis metric’ of the form  
 

Txalrxalr ))(())(( 1 μμ −Σ− − .    (6.4) 
 
Also, in dealing with problems in the simplex where the data vectors are probabilities, the appropriate 
measure of distance between two vectors x and y may more appropriately be some form of the Kull-
back-Leibler (1951) divergence. See Aitchison (1974, 1981, 1985), Aitchison and Kay (1973, 1975), 
Aitchison, Kay and Lauder  (2004), Taylor, Aitchison and McGirr (1971) for some interesting applica-
tions of this divergence in assessing the ability of subjects to make inferences. 
  
At CodaWork’03 and CoDaWork’05, when countering this insistence on the use of ilr transformations, 
I said I would look forward to a convincing practical use of the method. As far as I know there has 
been no progress in demonstrating its applicability.  
 
A major difficulty with the ilr transformation approach is that practical compositional situations sel-
dom, if ever, seem to have a natural modelling in terms of a sequence of orthogonal logcontrasts. This 
is in contrast to the practical use of othogonality in the use of the simplicial singular value decomposi-
tion along lines similar to principal component analysis in DR  or principal logcontrast analysis in 
compositional data analysis (Aitchison, 1983, 1986 Sections 8.3, 8.4). Any DN × compositional data 
matrix X with nth row composition nx can be decomposed in a power-perturbation form as follows 
  

)()( 111 RRnRnn susux ββξ ⊗⊕⊕⊗⊕= L ,  (6.5) 
 
where � is the centre of the data set, the s’s  are positive ‘singular values’ in descending order of mag-
nitude, the �’s are compositions, R is a readily defined rank of the compositional data set and the u’s 
are power components specific to each composition. In a way similar to that for data sets in dR we 
may consider an approximation of order Rr < to the compositional data set given by  
 

)(...)( 111 RRnRnn susux ββξ ⊗⊕⊕⊗⊕=   (6.6) 
 
Such an approximation retains a proportion  
 

)(...)( 111 RRnRnn susux ββξ ⊗⊕⊕⊗⊕=   (6.7) 
            
of the total variability of the DN × compositional data matrix as measured by the trace of the centred 
logratio covariance matrix or equivalently in terms of total mutual distances as 
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<

− Δ−    (6.8) 

    
Use of the singular value decomposition is a form of data snooping, getting the data to suggest possible 
hypotheses. Sometimes it can, in a way similar to such graphical techniques as biplots, be useful in 
providing convincing evidence of already discovered connections. See, for example, Thomas and 
Aitchison (1998). 
 
We may also note here that the power-perturbation expression of the singular value decomposition has 
exactly the same form as regression of a composition on some set of variables. The form is exactly 
what would be obtained if the logratio form of regression analysis  in Aitchison (1986, Chapter 7) were 
transformed back into terms of the simplex. 
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6.3  The sub-fallacy of balancing to retain orthogonality 
 
      To make my point here about this pure-mathematically mindedness in compositional modelling I 
reproduce here an extract from my talk at CoDaWork’03. It illustrates how the Hilbert space view of 
the simplex may not be the appropriate one.  
 

Given the elegance of the algebraic-geometric (Hilbert space) structure of the simplex it is 
easy to fall into the pure-mathematical trap that all compositional problems must depend on 
this structure, that all statistical problems should be addressed in terms of coordinates associ-
ated with orthonormal, isometric bases, that orthogonality is closely associated with statistical 
independence. Let me say here that I think that many of these ideas are important in establish-
ing useful results. For example, such a structure is obviously central to establishing the coun-
terparts of the well known Markov least squares theory associated with R D . But while we 
may recognise the simplex as a compositional sample space we must ensure that the ways we 
place probability measures or distributions on that sample space are appropriate to the applied 
compositional problem we face. I take an example similar to the statistician’s day problem in 
Aitchison (1986, Sections 1.9, 10.3) for illustrative purposes. Time budgets have become a 
regular source of information in analysing behaviour patterns in many disciplines. Our exam-
ple concerns the behaviour pattern of the lesser goilbird, a garden bird whose territory is con-
fined to a particular garden. Its four activities (feeding, fighting | perching, sleeping) divide 
themselves into two natural divisions: active, including feeding and fighting, and passive, in-
cluding perching and sleeping. Obvious behavioural questions are whether active and passive 
patterns are independent and whether these patterns are independent of the division of the day 
between active and passive.  

 
      The time budgets of 60 goilbirds have been observed in 60 gardens over random days. 

 
      In terms of the generic composition [ ]x x x x1 2 3 4  we are here dealing with a partition 
[ | ]x x x x1 2 3 4  of order 1. The relevant question in terms of logratios is whether  

 
y x x y x x y x x x x1 1 2 2 3 4 3 1 2 3 4= = = + +log( / ), log( / ), log{( ) / ( )  (6.9) 

 
are distributed independently. 

 
      Now it has been put to me that amalgamation is not a proper operation in the simplex, pre-
sumably because it has no role to play in the Hilbert space structure, and I could have cited 
this as yet another fallacy: 
 
Fallacy 6c.  Amalgamation is not a proper operation within the simplex. 
 
This fallacy leads to tackling such problems by considering an isometric logratio transforma-
tion, acknowledging that an appropriate representation of the composition is in terms of coor-
dinates with respect to an orthonormal basis, resulting in  

 
x x x e x x e x x x x e= ⊗ ⊕ ⊗ ⊕ ⊗log( / ) log( / ) log( / )1 2 1 3 4 2 1 2 3 4 3 , (6.10)  

 
even suggesting that establishing that  

 
z x x z x x z x x x x1 1 2 2 3 4 3 1 2 3 4 3= = =log( / ), log( / ), log( / )   (6.11) 

 
are independent would imply independence of y y y1 2 3, , . This is simply not  
true, as our data set will demonstrate. 
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     The correlation matrices of y y y1 2 3, ,  and z z z1 2 3, ,  are as follows 
 
         1.0000   -0.0022   -0.0861 
        -0.0022    1.0000   -0.2457 
        -0.0861   -0.2457    1.0000 
 
  and 
 
      1.0000   -0.0022   -0.6227 
        -0.0022    1.0000   -0.6404 
        -0.6227   -0.6404    1.0000 
 

demonstrating clearly that there is independence associated with the real question, whereas the 
pseudo-question suggests dependence between the subcompositions and the partition. 

 
     Another line of the orthonormalists is that the appropriate modelling must indeed be in 
terms of the orthonormal coefficients z z z1 2 3, ,  and then it is simply a case of expressing the 
relevant variables y y y1 2 3, ,  in terms of these coordinates. The first two relations  are obvi-
ously straight forward but  
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z z z z z z
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1
2 1 2 3

1
2 1 2 3

2

3
1

=
+ + + − +

+
exp{ ( ) exp{ ( )

exp( )
.  (6.12) 

 
This will, of course, lead to a correct analysis but my point is why go to all  
this complexity, not addressing the problem of interest in its simplest terms. Statisticians have 
over the past century addressed problems of statistical independence correctly without being 
aware of any algebraic-geometric structure of their sample spaces. My complaint is not that 
such structure is unimportant, but that we must not let pure-mathematical ideas drive us into 
making the statistical modelling more complicated than is necessary. Simplicity in modelling 
is important, particularly when we have to explain the inferences to less numerate colleagues.    

 
6.4  The fallacy that the coda-dendrogram is a useful exploratory tool 
 
At CoDaWork’05 we met the coda-dendrogram, purporting to be a useful exploratory tool in composi-
tional data analysis. The problem here is still the insistence on predetermined orthogonality transforma-
tions, described as sequential binary partitions. Each of these requires a balance which is essentially a 
logratio of geometric means of components, which, as far as I am aware, has nothing to do with any 
question which has been posed about the real situation. A typical failure to address the real problem 
was, if my memory is correct, to address a benchmark problem  involving questions of differential di-
agnosis from blood compositions.  
 
 
6.5  The fallacy that transformation techniques and staying in the simplex can 
lead to substantially different inferences. 
 
This fallacy seems to have arisen because of confusions over density functions within spaces with dif-
ferent algebraic geometric structures. It is worth asserting here that density functions are little more 
than a means to an end, the computation of probabilities of events. Current practice, for example with 
the logarithmic transformation, in which the transformed variable xy log=  is regarded as distributed 

as ),( 2σμN  is to say that the density function of the original variable x is  
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Of course this density function is with respect to the Lebesgue measure on the real line. The tradition of 
including the Jacobian of the transformation is, I believe, to remind transformers, particularly students 
who often get it wrong, that the Jacobian plays a role in probability computations. For example, the 
computation here for determining the probability that bxa <<  would proceed as  

 
.   
(7.2) 
  

The fuss about density functions seems to be that if one transfers the x-density function (including the 
Jacobian) to the original space it produces isodensity contours which are different from those which 
would be produced by recognising that the original space has a natural measure different from the 
Lebesgue measure and so the appropriate density function would take the form  
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This is certainly the case, and the same will be true with logratio transformations and logistic-normal 
distributions in relation to the simplex, but so what. What purpose do such isodensity contours provide? 
I know of no practical statistical question in compositional data analysis where such distinctions would 
arise. Here the transformation methodology prevents such confusions. For example, an DN × compo-
sitional data set, with typical composition x  transformed by )(xalry =  to 1−DR  will provide either 

an estimative normal or predictive Student fit in 1−DR . In 1−DR , it is known that regions of minimum 
area (Lebesgue measure), whose normal or Student probability is given, say P, are ellipsoids of the 
form cyy T =−Σ− − )ˆ(ˆ)ˆ( 1 μμ , and c is easily determined to accommodate the preassigned P. Such an 
approach is reliable and can be found, for example, in Aitchison (1986, Section 7.10). 

 
My fear here is that this pure mathematical fussiness about what is and is not a density function leads 
only to confusion and seeks to find inference differences between transformation methodology and 
staying-in-the-simplex methodology where in reality none exists. I repeat my earlier comment that any 
density function is a tool to compute probabilities of events of interest. As long as probabilities are 
computed properly inferences will agree.  
 
 
 
 
7.  Conclusions and discussion 
 
There are many important aspects of compositional data analysis which have been omitted from this 
paper, for example the persistent and demanding problem of modelling situations with essential zero 
components, the question of whether the skew logistic-normal class of distributions on the simplex 
(Azzalini and Dalla Valle, 1996; Azzalini and Capitanio, 1999; Mateu-Figueras et al. 1998) has  
parameterisation suited to simple investigation of compositional hypotheses, questions of the develop-
ment of regionalised (spatial) compositions along the lines of Pawlowsky (1986), Pawlowsky et al. 
(1995), the underuse of existing tools (Aitchison and Thomas, 1998; Aitchison and Barceló-Vidal, 
2002) for the exploration of compositional processes, including compositional time series, the wide 
range of problems involving convex linear combinations of compositions.   
 
This paper may appear adversarial in many ways. This has been a deliberate device in the hope that it 
may lead to vigorous and, as usual at CoDa worshops, friendly discussion on how the statistical model-
ling tools now at our disposal may be best applied to answer real questions from the many disciplines 
where compositional data arise; and where these tools fail, how we may devise alternatives which are 
appropriate to dealing with the new situation. 
 
A main conclusion is that there still remain many fallacies, confusions and misunderstandings in com-
positional data analyses. Of these the ones that concern me most are  
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(a) the continuing use of standard DR  multivariate statistical analysis; 
 

(b) the obvious continuing misuse of scattergrams of raw components, particularly in student instruc-
tion in a number of disciplines;  

 
(c) the increasing use of data-mining, data-snooping, followed by confirmation  of suggested hypothe-

ses by analysis of the same data; 
 
(d) the view that every compositional data analysis must fit into the Hilbert space structure of the sim-

plex; 
 

(e) the view that the alr transformation is suspect because it is not a direct isometry; 
 
(f) the view that transformation and staying-in-the-simplex methods applied to the same real question 

can lead to different inferences. 
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Table 1.   Three part [1, 2, 3] compositions 
 
      1    2    3 
 
             0.16  0.48  0.36 
             0.43     0.27     0.30 
       0.16     0.74     0.10 
       0.69     0.15     0.16 
       0.91     0.02     0.07 
       0.80     0.13     0.07 
       0.58     0.03     0.40 
       0.46     0.30     0.24 
       0.70     0.14     0.16 
       0.71     0.15     0.14 
       0.53     0.34     0.14 
       0.45     0.38     0.17 
       0.35     0.34     0.31 
       0.38     0.26     0.36 
       0.24     0.66     0.10 
       0.28     0.48     0.24 
       0.32     0.26     0.42 
       0.49     0.35     0.16 
       0.13     0.58     0.29 
       0.54     0.26     0.20 
       0.70     0.20     0.10 
       0.55     0.23     0.22 
       0.31     0.41     0.28 
             0.46     0.19     0.35 
       0.47     0.33     0.20 
       0.42     0.34     0.24 
       0.39     0.13     0.48 
       0.83     0.03     0.14 
       0.70     0.21     0.09 
       0.51     0.23     0.26 
       0.72     0.15     0.13 
       0.54     0.19     0.27 
       0.86     0.07     0.07 
       0.30     0.32     0.38 
       0.14     0.84     0.02 
       0.68     0.22     0.10 
       0.82     0.04     0.14 
       0.35     0.52     0.13 
       0.74     0.14     0.12 
       0.87     0.08     0.05 
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Table 2. Time budgets of 50 goilbirds 
 
   feeding   fighting  perching  sleeping 
 
    0.5476    0.0107    0.0113    0.4303 
    0.5385    0.0253    0.0090    0.4271 
    0.4712    0.0175    0.0211    0.4902 
    0.4830    0.0091    0.0553    0.4526 
    0.4340    0.0031    0.1003    0.4627 
    0.5220    0.0169    0.0321    0.4290 
    0.5939    0.0027    0.0115    0.3919 
    0.5781    0.0229    0.0222    0.3767 
    0.4733    0.0047    0.0122    0.5098 
    0.4863    0.0309    0.0096    0.4732 
    0.5277    0.0220    0.0058    0.4445 
    0.4440    0.0128    0.0044    0.5389 
    0.5106    0.0076    0.0215    0.4603 
   0.5264    0.0016    0.0406    0.4313 
    0.5323    0.0088    0.0262    0.4327 
    0.4396    0.0119    0.0258    0.5227 
    0.5981    0.0067    0.0191    0.3761 
    0.5453    0.0312    0.0121    0.4115 
    0.3141    0.0063    0.1560    0.5236 
    0.4096    0.0049    0.0227    0.5628 
    0.4630    0.0112    0.0068    0.5190 
    0.3388    0.0073    0.0235    0.6304 
    0.6120    0.0095    0.0107    0.3679 
    0.5121    0.0063    0.0205    0.4611 
    0.5489    0.0020    0.0149    0.4341 
    0.4105    0.0011    0.0129    0.5755 
    0.5107    0.0048    0.0046    0.4798 
    0.5914    0.0396    0.0116    0.3574 
    0.5500    0.0071    0.0050    0.4378 
    0.5452    0.0171    0.0190    0.4186 
    0.5218    0.0257    0.0477    0.4048 
    0.4907    0.0046    0.1617    0.3429 
    0.4085    0.0047    0.0442    0.5425 
    0.6490    0.0143    0.0231    0.3136 
    0.3846    0.0101    0.0721    0.5333 
    0.5142    0.0218    0.0323    0.4317 
    0.4805    0.0504    0.0682    0.4009 
    0.6062    0.0520    0.0137    0.3281 
    0.4494    0.0251    0.0280    0.4975 
    0.5978    0.0162    0.0100    0.3759 
    0.4533    0.0070    0.0128    0.5269 
    0.5091    0.0075    0.0133    0.4701 
    0.5280    0.0314    0.0428    0.3978 
    0.4216    0.0040    0.0290    0.5454 
    0.5417    0.0066    0.0039    0.4478 
    0.6328    0.0029    0.0801    0.2842 
    0.4924    0.0146    0.0418    0.4512 
    0.6818    0.0126    0.0035    0.3021 
    0.4337    0.0131    0.0186    0.5346 
    0.7006    0.0065    0.0167    0.2762 
    0.4954    0.0032    0.0118    0.4895 
    0.5156    0.0059    0.0206    0.4579 
    0.4277    0.0006    0.0367    0.5350 
    0.3431    0.0073    0.0761    0.5734 
    0.4692    0.0057    0.0068    0.5183 
    0.4886    0.0578    0.0083    0.4453 
    0.5483    0.0169    0.0114    0.4234 
    0.3339    0.0367    0.0348    0.5946 
    0.3455    0.0070    0.0980    0.5495 
    0.4376    0.0279    0.1273    0.4072 
 
 
 
 
 


