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Abstract 
These days mobile robots are needed to interact within non-structured 
environments. They must deal with people, moving obstacles, perceptual aliasing, 

weather changes, occlusions, long term navigation and robot-human interaction in 
order to have high levels of autonomy from a decision-making point of view. These 

requirements are useful for service robots designed to conduct surveillance, 

inspect, deliver, clean and explore. Applications where robots need to collect sensor 
measurements from complex environments and extract meaningful information to 

achieve their tasks. 

Simultaneous Localization and Mapping (SLAM) is considered essential for mobile 
robots immersed in real world applications requiring any prior information about the 

environment. Robotics community has been trying to solve the SLAM problem in 
many ways, and using appearance or metric information to represent the 

environment. This thesis is concerned with the problem of appearance-based 

mapping and localization for mobile robots in changing environments. This 
introduces our research question: How can a mobile robot update its internal 

representation of the environment and its location on it when the appearance of the 
environment is changing? 

This work proposes an appearance-based mapping and localization method whose 

main contribution is the Feature Stability Histogram (FSH). The FSH is built using a 
voting schema, if the feature is re-observed, it will be promoted; otherwise it 

progressively decreases its corresponding FSH value. The FSH is based on the 

human memory model to deal with changing environments and long-term mapping 
and localization. The human memory model introduce concepts of Short-Term 

memory (STM), which retains information long enough to use it, and Long-Term 
memory (LTM), which retains information for longer periods of time or lifetime. If 

the entries in the STM are continuously rehearsed, they become part of the LTM 

(i.e. they become more stable). However, this work proposes a change in the 
pipeline of this model, allowing to any input be part of the STM or LTM considering 

the input strength (e.g. uncertainty, the Hessian value in the SURF descriptor, or 

the matching distance). The FSH stores the stability values of local features, stable 
features are only used for localization and mapping. This innovative feature 

management approach is able to cope with changing environments, long-term 
mapping and localization, and also contributes to the semantic environment 

representation. 

The mobile robot perception system plays an important role in SLAM, this must 
provide reliable information of the robot environment, taking advantage of its 

surroundings in order to reconstruct a consistent representation of the 

environment. Taking into account requirements as precision, real-time operation, 
wide field of view, long-term landmark tracking and robustness to occlusions, this 

work considered a perception system composed by the combination of 2D Laser 
Range Finder (LRF) and an omnidirectional camera. Monocular vision sensors have 

limited field of view, for this reason they are prone to occlusions and limited 

feature-tracking. Omnidirectional vision solves this problems but it introduces 
additional non-linearity due the mirror projection model. Despite the fact 2D LRF 

are limited to planar motion, 2D LRF can be combined with omnidirectional vision 

sensors providing a sensor model with enhanced information of the environment. 
This work describes a sensor model based in the extrinsic calibration between a 2D 

LRF and an omnidirectional camera in order to extract 3D locations of vertical 



 

 

edges. The vertical edges are the features used to describe the appearance of the 

environment. Data association is considered of crucial importance for any SLAM 

algorithm, this work proposes a matching method based on the unified spherical 
model for catadioptric sensors. This matching process improves the Joint 

Compatibility Branch and Bound (JCBB) test for data association considering the 
local appearance of the environment vertical edges. 

Experimental validation of this approach was conducted using two different SLAM 

algorithms, and with a long-term dataset collected during a period of 1 year. From 
the analysis of the experiments carried out the FSH model is able of: filtering out 

dynamic objects from laser scans and features present in the environment, 

increasing the map accuracy over the map updates, holding a model of the 
environment embedding the more stable appearance of the environment, 

increasing the localization accuracy over the map updates, dealing well with large 
environments, and reducing the data association effort in long-term runs. 

  



 

 

Resumen 
Actualmente, los robots móviles necesitan interactuar con ambientes no 
estructurados. Los robots móviles deben tratar con gente, obstáculos en 

movimiento, ambientes altamente similares, cambios climáticos, oclusiones, 
navegación a largo término y interacción humano-robot con el fin de tener altos 

niveles de autonomía en su toma de decisiones. Estos requerimientos son útiles en 

robots de servicio diseñados para llevar a cabo tareas de vigilancia, inspección, 
entrega de paquetes, limpieza y exploración. En estas aplicaciones los robots 

necesitan recolectar medidas de sus sensores en ambientes complejos y extraer 

información significativa para llevar a cabo sus tareas. 

Localización y construcción de mapas de manera simultánea (SLAM) es considerada 

una tarea esencial para los robots móviles inmersos en aplicaciones reales sin 
requerir información previa acerca del ambiente. La comunidad experta en Robótica 

ha tratado de solucionar el problema de SLAM de diferentes maneras, y usando 

información métrica o basada en apariencia para representar el ambiente.  Esta 
tesis se ocupa del problema de la localización y construcción de mapas basados en 

apariencia para robots móviles en ambientes complejos. Esto introduce la pregunta 
de investigación: ¿Cómo un robot móvil puede actualizar su representación interna 

del entorno y su localización en éste cuando la apariencia del ambiente es 

cambiante? 

Este trabajo propone un método de localización y construcción de mapas basados 

en apariencia cuya principal contribución es el Histograma de Estabilidad de las 

Características (FSH). El FSH es construido usando un sistema de votos, si la 
característica en el ambiente es re-observada, esta será promovida; de lo contrario 

ésta progresivamente disminuye su correspondiente valor en el FSH. El FSH en el 
modelo de memoria humano para hacer frente a ambientes cambiantes y tareas de 

localización y construcción de mapas a largo término. El modelo de memoria 

humano introduce conceptos como memoria a corto plazo (STM), la cual retiene 
información el tiempo suficiente para ser usada, y la memoria a largo plazo (LTM), 

la cual retiene información por largos periodos de tiempo o de por vida. Si las 

características almacenadas en la STM son continuamente re-observadas, éstas 
harán parte de la LTM (i.e. estas características son más estables). Sin embargo, 

este trabajo propone un cambio en el proceso de memoria humana, permitiendo 
que cualquier entrada sea parte de la STM o de la LTM al considerar la intensidad 

de la característica de entrada (e.g. incertidumbre, el valor de la Hessiana en el 

descriptor SURF, o la distancia de correspondencia). El FSH almacena los valores de 
estabilidad de características locales, las cuales son solamente usadas para 

localización y construcción del mapa. Este innovador método de administrar las 

características del ambiente es capaz de hacer frente a entornos cambiantes, 
localización y construcción de mapas a largo término y también contribuye a una 

representación semántica del ambiente. 

El sistema de percepción del robot juega un importante papel en SLAM, éste debe 

proveer de información certera del ambiente del robot, aprovechándose de los 

alrededores con el fin de construir una representación consistente del ambiente. 
Teniendo en cuenta requerimientos como precisión, operación en tiempo-real, 

amplio campo de visión, seguimiento de características por largo tiempo, robustez a 

oclusiones, este trabajo ha considerado un sistema de percepción compuesto por la 
combinación de un sensor de rango láser (LRF) en 2D y una cámara 

omnidireccional. Sensores de visión monocular tienen un limitado campo de visión, 



 

 

por esta razón son propensos a oclusiones y seguimiento de características 

limitado. La visión omnidireccional resuelve estos problemas per introduce otros 

como la no-linearidad debido al modelo de proyección en el espejo. A pesar del 
hecho que los LRF son limitados a movimientos planos, los LRF pueden ser 

combinados con la visión omnidireccional proveyendo un modelo de sensor con 
información mejorada del entorno. Este trabajo describe un modelo de sensor 

basado en la calibración extrínseca entre un LRF y una cámara omnidireccional con 

el fin de extraer la posición 3D de bordes verticales. Los bordes verticales son 
características usadas para describir la apariencia del ambiente. La asociación de 

datos es considerada de crucial importancia para cualquier algoritmo de SLAM, este 

trabajo propone un método para establecer la correspondencia entre características 
basado en el modelo unificado de proyección para un sensor catadióptrico. Este 

proceso de asociación mejora el método JCBB (Joint Compatibility Branch and 
Bound) considerando la apariencia local del ambiente como bordes verticales. 

La validación experimental de este método fue realizada usando dos algoritmos 

diferentes de SLAM, y con un dataset adquirido durante un largo periodo de 1 año. 
Del análisis de los experimentos realizados el modelo FSH es capaz de: filtrar 

objetos dinámicos de los datos del sensor láser y de las características del 

ambiente, aumentar la precisión del mapa a lo largo de las actualizaciones del 
mapa, manteniendo un modelo del entorno embebido en la apariencia más estable 

del ambiente, incrementar la precisión en la localización a lo largo de la 
actualización de los mapas, tratando así con grandes ambientes y reduciendo el 

esfuerzo de asociación de datos en ejecuciones de largo término. 
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This thesis addresses the problem of updating the robot internal representation of 
the environment when its appearance changes over time. This brings together 

aspects of mobile robots applied to service robotics, localization and mapping, and 

robot perception systems, which in this work is focused on combining 
omnidirectional vision and laser range finders. Section 1.1 presents the motivations 

behind this work. Section 1.2 describes the main objectives of this work. Finally, 

the structure of this thesis is presented with a short description of each chapter. 

1.1. MOTIVATION 

For centuries Science and Engineering have been working together in 

manufacturing (goods and tools), security and defense, and infrastructure 

construction (roads, railways, bridges, cities, dams, etc.) bringing great benefits for 
mankind. However, for many years, even after the industrial revolution, these 

economic service sectors did not take into account their impact to the environment 
and the human lifestyle, perturbing the natural balance that must exist between 

mankind and its surrounding environment. Throughout the XX century other big 

economic service sectors were added [The Robot Report, 2011]: healthcare, 
energy, logistics, entertainment and education. This growth of the responsibilities 

over the citizens, workers, environment, productivity monitoring, automating the 

energy acquisition and the dissemination of education at different levels, faces 
complex technical issues and limitations for mankind due the impossibility to have 

someone monitoring and / or building something in dangerous environments, or 
over long exhausting hours of work; dealing with the limited availability of 

specialized medical care at every home; guarantee the human survival in tough 

environments like volcanoes, oceans depths, mines, disaster areas, etc.; and 
handling with heavy loads repeatedly as in harbors, warehouses or stores. 

The technical issues presented above points to scientifically interesting research 

directions. These research directions and their applications have been becoming 
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part of the scientific community and governmental programs for innovation and 

science in the last decade. The strategic research agenda of the European Robotics 

Research Network (EURON) [EUROP, 2009] compiled the industry effort and 
academia knowledge in two big projects: The Coordination Action for Robotics in 

Europe (CARE) and The European Robotics Technology Platform (EUROP), in order 
to strength Europe‟s competitiveness in robotics research, development and global 

markets. The technical issues described earlier are mapped in Figure 1.1 taking into 

account sectors as: Industrial, Professional service, Domestic service, Security and 
Space. The application scenarios help in identifying the bottlenecks to progress, the 

scientific challenges and research activities to overcome the technological 

limitations and face the new responsibilities described above.  

 

Figure 1.1 Application scenarios of robotics and economical sectors [EUROP, 2009]. 

According to Figure 1.1 service robotics covers a huge field of action which includes 

the professional service, domestic service and security sectors, and from the robotic 
co-workers to the edutainment robots in the application scenarios. In [EUROP, 

2009] the application requirements to be fulfilled to successful overcome the 

scientific challenges are described: sustainability, configuration, adaptation, 
autonomy, positioning, manipulation and grasping, robot-robot and robot-human 

interaction, process quality, dependability, physical properties and standardization. 

Generally, the EURON document encourages the research of system architectures, 
especially the part of algorithmic software systems which in the end have great 

impact in the scientific challenges described earlier, instead of increasing the 
computing power or storage requirements. 

On the other hand, the Computing Community Consortium (CCC) and the 

Computing Research Association (CRA) at USA issued the Roadmap for US Robotics 
[Computing Community Consortium, 2009] where the application sector was 

classified as follows: Manufacturing, Logistics, Medical robots, Health care, Services 

and International cooperation. The service robotics covers from Logistics to 
Services, having as main goals the cost reduction in the production chain 

(transportation cost, energy consumption and product handling), improving the 
economic reliability of the public health system, guarantee full coverage of the 

public health system (patient rehabilitation, recovery and remote monitoring), 

home assistance for full time workers and professional assistance (mining, rescue, 
automated harvesters for agriculture and forestry, and cleaning of large scale 
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facilities). The CCC and CRA documents are focused on the creation of new jobs 

and companies using the technology in robotics as an important resource for 

emerging markets. 

More recently, the Seventh Framework Program – Information and Communication 

Technologies (FP7-ICT) of the European Commission was issued [Juretzki, 2011] in 
the context of the Unit E5 (Cognitive systems, Interaction and Robotics), 

responding to the current demanding of urban service robots and the necessity of 

integration cognitive capabilities to the service robots. The last FP7-ICT call had an 
indicative budget of $ 73M€ and the next ICT call (2012) will have a budget of $ 

82M€, showing an increase of 15% in a year-to-year comparison. 

Nowadays, thanks to the governmental, academic and industrial initiatives 
presented above several research projects in the service robotics field have been 

developed. In the application sector of Logistics (see Figure 1.2), research projects 
as DustBot [Sant'Anna, 2006] developed a system for improving the management 

of urban hygiene based on a network of autonomous and cooperating robots, 

embedded in an Ambient Intelligence infrastructure; in [Systems, 2007] the 
European Robotic Pedestrian Assistant (EUROPA) is presented to develop the 

foundations for service robots designed to autonomously navigate in urban 

environments outdoors as well as in shopping malls and shops to provide various 
services to users including guidance, delivery, and transportation; the CityMobil 

project [Bouraoui et al., 2011] describes a urban transport system to organize the 
motorized traffic, reducing congestions, pollution and getting safer driving. 

  

a)                                                    b)                                                     c) 

Figure 1.2 a) DustBot showcase. b) Traversability estimation in EUROPA project. c) CityMobil showcase, La 
Rochelle.  

 

   

a)                                                  b)                                                  c) 

Figure 1.3 a) Smart walker GUIDO. b) RoboMed project. c) NurseBot project. 

Regarding robotics co-working in the context of healthcare (see Figure 1.3), [Lacey 

& Rodriguez-Losada, 2008] presents the GUIDO project a smart walker developed 
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by Haptica (Dublin, Ireland); it is a robotic walking aid that addresses the needs of 

the frail visually impaired, providing them with a safe means of taking exercise 

independently as well as navigation assistance in new environments; at Spain, 
HispaRob [Ministerio de Ciencia e Innovación, 2011] is a technological platform to 

improve robotic competitiveness in the European market, in this context [Centro 
Tecnológico CARTIF, 2011] proposed the RoboMed project to automate the patient 

medicine delivery in hospitals avoiding dosing errors and improving the 

medicament management. Aging is a global problem and taking care of elderly 
people suffering from chronic disorders in their everyday life is a challenging task; 

[Carnegie Mellon University, 2003] describes the NurseBot project, a mobile robot 

platform which provides intelligent reminding, tele-presence and health monitoring 
in order to provide a better quality of life to elderly people. 

   

a)                                                  b) 

   

c)                               d)                          e) 

f)  

Figure 1.4 a) COMETS project. b) and c) URUS project (surveillance and transport of goods). d) Load handling. e) 

Route pavement cracks. f) GUARDIANS project. 

The professional service is an important sector with big impact day to day life of 

citizens. Robots for surveillance, inspection and exploration are part of the service 

robotics applications portfolio as depicted in Figure 1.4. Figure 1.4a shows the 
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COMETS project [Technologies, 2005] where a distributed control system for 

cooperative activities using heterogeneous Unmanned Aerial Vehicles (UAVs) is 

implemented for fire monitoring, traffic surveillance and terrain mapping 
applications. Figure 1.4b and 1.4c show the URUS project [Systems, 2007] focused 

on designing a network of robots that in a cooperative way interact with human 
beings and the environment for tasks of assistance, transportation of goods, and 

surveillance in urban areas. Handling heavy loads is a common task in store malls, 

warehouses and harbors where human capabilities are physically limited, and in 
long-term this task is unhealthy. Figure 1.4d shows an automated solution to this 

need where a skilled laser guided vehicle [C&D, 2011] is in charge of the 

transportation of different products and pallets, coming from different production 
lines, from and to the storage and trucking area. Inspection tasks have become in 

part of the current safety rules and regulations for any civil infrastructure. Figure 
1.4e shows a robot used for sealing pavement crack, this maintenance task 

performed on highways, roads or streets. Figure 1.4f shows the GUARDIANS 

project [University, 2010] devoted on designing a robot swarm to assist fire 
fighters in searching a large warehouse. In all these situations, using mobile robots 

can enhance worker safety, reduce maintenance costs, and improve operational 

efficiency. 

The application scenarios presented above are challenging tasks for mobile robots, 

since they have to deal with dynamic environments adapting their internal 
environmental representation (e.g. cluttered outdoor and indoor environments, 

change in appearance of domestic environments or parking lots); and they have to 

guarantee autonomous navigation and positioning (e.g. transporting goods or 
people, medicine delivery, load handling). These robot systems use complex control 

algorithms which allow them to navigate safely within difficult environments. One of 
the fundamental components of these control algorithms is the capability of 

localization and mapping.  

Localization is the problem of estimating the robot position given a map, and 
mapping is the problem of creating a map of the environment given the true 

position of the robot. When neither the map nor the true robot position is known, 

the problem is called Simultaneous Localization and Mapping (SLAM) [Durrant-
Whyte & Bailey, 2006]. The algorithms developed to solve the SLAM problem 

[Bailey & Durrant-Whyte, 2006] assume a static environment, however real-world 
environments as described above are not static, besides the applications mentioned 

require long-term operation and in many situations large-scale environments. 

Summarizing, service robotics has a high impact in our daily lives, improving our 
quality of life, the efficient usage of resources and the environmental health. 

However, to achieve these goals great scientific challenges have to be overcome; 

one of them is improving the robot internal representation of the environment to 
deal with dynamic environments, which is a common need considering the 

application sectors described. Finally, according to the Robot Report [Tobe, 2011], 
there is an increasing need of industrial and service robots (see Figure 1.5), 

encouraging the robotics community to enable technologies based on cognitive 

capabilities, to increase the quality of service of robotics systems and expanding 
their range of application domains. 
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Figure 1.5 Worldwide robotic stocks price performance. 

1.2. OBJECTIVE 

The SLAM problem is considered fundamental to build fully autonomous robotics 
systems in order to achieve a specific goal without requiring any prior knowledge of 

the environment. The real-world environments are complex and dynamic, and the 
robot must adapt to the new working conditions and fulfill its task. To do so, on-

board sensors and their associated model are the information used to estimate the 

robot state and the map of the environment. The essential aim of this work is to 
enable mobile robots to update its internal representation of the environment to 

cope with long-term mapping and localization. 

The evolution of the SLAM methods is linked to the sensor used and its model. 2D 
laser range finders (LRF) have been converted into fundamental sensors for 

mapping and localization. However, 2D LRF are limited to planar motion. Recently, 
rotation units combined to 2D LRF obtain 3D environmental representations, but 

these sensors are relatively slow and offer a delayed representation of the 

environment. Vision sensors have been used over many years due its rich 
representation of the environment. However, monocular or stereo vision setups 

have a limited field of view, affecting the robot mapping and localization due 
occlusions and limited feature-tracking. On the other hand, omnidirectional vision 

has received special attention recently due to its long-term landmark tracking, its 

wide field of view and its robustness to occlusions [Gaspar et al., 2007]. Combining 
these two sensors in order to extract salient features from the environment is one 

of the auxiliary techniques explored in this work. 

The SLAM algorithms usually perform the prediction-observation-update cycle. 
Prediction step depends of the motion model assumed, observation step concerns 

with the perception system and its model, and the update step is related with the 
filtering technique and it is high linked with data association. The latter is closely 

related with the number of landmarks present in the map. The SLAM algorithms 

consider all the map features equally important, but in long-term operation there is 
the opportunity to classify the map features according to the number of times a 

feature is re-observed. Here is where this work introduces the Feature Stability 

Histogram (FSH) concept, which is a histogram based on a voting schema, if the 
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feature is re-observed, it will increase its corresponding FSH value; otherwise this 

value is progressively decreased. This research work proposes this feature 

management approach to deal with changing environments and long-term 
operation, since the higher FSH value, the more stable a map feature is. 

The integration of the FSH in the SLAM framework introduces new challenging 
issues such as the feature classification criteria to being a more stable feature or 

not, or the voting schema to implement in order to take into account the feature 

reliability. This work proposes a straightforward method to solve these questions 
based on the feature strength (e.g. its uncertainty, the Hessian value in the SURF 

descriptor [Bay et al., 2008], or the matching distance). 

Incorporating salient features extracted from the combination of a 2D LRF and an 
omnidirectional camera and the FSH approach within a SLAM framework provides 

advantages that will be explored in this thesis. 

1.3. STRUCTURE OF THE THESIS 

The research work presented in this thesis is structured as follows: 

 Chapter 2 – Presents the state of the art of the SLAM algorithms and special 

attention is given to algorithms concerning with long-term operation and 
dynamic environments. Afterwards, a review of the different features used to 

represent the environments is introduced. At the end of this chapter a 

description of the robotic platform used is presented. 
 Chapter 3 – Describes the feature extraction and environment modeling 

used in this work. First the LRF sensor is considered; then the edge detection 

into the omnidirectional image is presented. Next, the extrinsic calibration 
between the omnidirectional camera and the LRF is introduced. Finally, the 

sensor model is proposed and tested using the FastSLAM algorithm 
[Montemerlo & Thrun, 2003]. 

 Chapter 4 – The FSH approach is presented considering: the original human 

memory model, the modifications made to it in order to overcome the 
original limitations, the probabilistic foundations of the FSH model to be able 

to integrate it into a SLAM solution, the LTM/STM feature classification 
criteria, the feature pruning approach and the voting schema are explained, 
some map building considerations are discussed, last the FSH experimental 

validation is presented. 
 Chapter 5 – Presents the long-term SLAM experiments conducted using the 

dataset described in Section 2.5.2. This Chapter includes qualitative and 

quantitative results.  
 Chapter 6 – The conclusions are given, as well as the future research work, 

the main contributions of this work, the list of publications and the scientific 
collaborations. 

 Appendix A – The Jacobians to estimate the corner uncertainty on the 

image plane are computed. This is an important part of Chapter 3. 
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Over two decades a solution for the SLAM problem (2D or 3D) has been the focus 

of a lot of research in the robotics community. Application fields of SLAM range 
from: service, industrial and professional co-workers, security, inspection and space 

sectors. However, the application fields mentioned also require an autonomous 
system deployed for long-term operation without human intervention. Section 2.1 

gives an overview of the SLAM problem and the implications of long-term 

operation. The most meaningful SLAM techniques are described in Section 2.2. The 
state of the art of lifelong (long-term) mapping and localization is described in 

Section 2.3. An overview of the most common environment representation 

techniques is shown in Section 2.4. Section 2.5 presents the mobile robot platform 
used as well as its perception system. Finally, Section 2.6 presents an overview of 

this work. 

2.1. INTRODUCTION 

SLAM is a fundamental task for an autonomous robot. The knowledge of the 
environment, and robot pose on it is essential to guarantee accurate and safe 

navigation. Initially, in real world applications robots do not have any knowledge of 
the environment. In this situation, robots have to solve the localization and 

mapping problem simultaneously, the former estimates the motion of the robot 
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given a map, and the latter builds an environmental representation from 

observations given the robot motion. The SLAM problem is challenging since 

observations gathered from the robot sensors and the robot motion are corrupted 
by noise.  

A solution of the SLAM problem involves finding the robot motion and the 
measurement model. However, the latter has a big impact in the effectiveness and 

reliability of the solution, because the measurement model determines how the 

environment is represented, how likely is to re-observe the environment features 
and how the uncertainty is handled since it depends on the robot sensors used (or a 

combination of sensors) according with the application needs. For instance, Figure 

2.1 shows different kind of applications where the application dictates the set of 
sensors used. Figure 2.1a shows an autonomous outdoor navigation system 

[Pandey et al., 2011] which was build to develop technologies for future automotive 
safety systems; this system involves using panoramic cameras, a 3D laser scanner, 

radar and IMU sensors in order to estimate the vehicle motion and accurate 

environmental representations. Figure 2.1b shows the set-up of an inspection dam 
application [Ridao et al., 2010,] using and underwater robot, which has a set of 

different sort of sensors compared with the ground vehicles: a mechanically 

scanned imaging sonar (MSIS), a Doppler velocity log (DVL), a motion reference 
unit (MRU) assisted with a fiber-optic gyro (FOG), a ultra-short base line (USBL) 

with a DGPS unit and a camera; this perception system is needed to build an 
accurate mosaic reconstruction of the wall of a dam to evaluate the state of the 

concrete or asses the quantity of vegetal residuals obstructing the water flow. 

Figure 2.1c shows the mapping an localization module of the URUS project 
[Systems, 2009], where 2D LRF, onboard vision systems and a networked camera 

system is used to interact with human beings and the environment for tasks of 
assistance, transportation of goods, and surveillance in urban areas. Figure 2.1d 

shows a mining exploration system [Thrun et al., 2004] where a robot is used to 

access to dangerous underground places with structural soundness; this system is 
composed basically with a 3D LRF depending on these measurements to fully 

autonomous operation since wireless communication are unreliable. 

 

a)  
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b)  

c)  d)  

Figure 2.1 SLAM applications. a) Autonomous outdoor navigation [Pandey et al., 2011]. b) Dam inspection [Ridao 
et al., 2010,]. c) Urban robot navigation [Systems, 2009]. d) Mining exploration [Thrun et al., 2004]. 

The relationship between the SLAM solution and the perception system is so strong 
that it allows classifying a SLAM algorithm as: visual based, range and bearing 

based, feature based and appearance based. Most of the real world SLAM 

applications shown in Figure 2.1 and those shown in Chapter 1 of this document 
require long-term operation with little or no human intervention. Many solutions of 

the SLAM problem presented in Section 2.2 assume a static environment 

representation, such that moving objects or in general the change of the 
environment is considered as noise or outliers that should be rejected by the SLAM 

algorithm [Durrant-Whyte & Bailey, 2006] [Bailey & Durrant-Whyte, 2006]. 

2.2. SLAM TECHNIQUES 

In this section the SLAM problem formulation is introduced as a probabilistic 
estimation, furthermore different kind of SLAM approaches are briefly presented, 

finally the map representation of the environment is described. 
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2.2.1. Problem Formulation 

For self-containment, the SLAM problem formulation is introduced here. The 

notation followed is the same used in [Durrant-Whyte & Bailey, 2006] and [Bailey & 
Durrant-Whyte, 2006], which can be summarized as shown in Figure 2.2. In Figure 

2.2, xt is the current robot position at time t; a control vector ut is applied to drive 
the robot from xt-1 to xt at time t; at each position xt the robot can make an 

observation zt, j corresponding to the j-th feature or landmark of the environment 

mj. Grouping these data, the following sets can be defined: a state vector 
composed by all past robot positions X0:t = {x0, …, xt}; a sequence of control 

inputs U0:t = { u1, …, ut}; the landmarks gathered so far M = { m1, …, mN} and 

corresponding landmark measurements Z0:t = {z1, …, zN}. 

 

Figure 2.2 Brief description of the SLAM problem and notation. 

The SLAM problem solution normally assumes the robot has not any knowledge of 

the surrounding environment, however the control input sequence and the initial 
position are the only prior information known by the robot. Using this information in 

conjunction with the measurements Z sequentially captured by the robot, the aim 
of the SLAM problem is to build a map of the environment M and simultaneously 

estimate the position xt of the robot. Given the correlations existent between the 

robot position and the landmarks, the concurrent estimation of the map 
environment and the robot pose is a challenging problem. In addition, control 

inputs U are not noise free, and different kind of sensors have diverse type of noise 

sources, if these noise sources are not kept in mind, the result is wrong robot 
position and map estimations. For this reason, probabilistic formulation of the SLAM 

problem is popular, since explicitly model different sensors and noise sources 
[Thrun et al., 2005].  
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A probabilistic formulation of the SLAM problem requires the estimation of the joint 

posterior density of the robot pose and the map, given the sensor measurements 

and the control inputs collected so far. This is expressed in Equation 2.1, which 
used the Bayes rule applied to the target posterior P(xt, M | Z0:t, U0:t, xo). 

𝑃 𝒙𝒕, 𝑴 𝒁𝟎:𝒕, 𝑼𝟎:𝒕, 𝒙𝟎 = 𝛼𝑃 𝒛𝒕 𝒙𝒕, 𝑴 𝑃 𝒙𝒕, 𝑴 𝒁𝟎:𝒕−𝟏, 𝑼𝟎:𝒕, 𝒙𝟎   2.1 

Where,  is a normalizing constant; P(zt | xt, M) is known as the sensor model and 

describes the probability to get an observation given the robot pose and the map; 

and P(xt, M | Z0:t-1, U0:t, x0) is known as the time update equation which gives the 

recursive formulation to the SLAM problem. Using the law of total probability and 
the Bayes rule, the time update equation can be expressed as Equation 2.2 shows. 

𝑃 𝒙𝒕, 𝑴 𝒁𝟎:𝒕−𝟏, 𝑼𝟎:𝒕, 𝒙𝟎 =  𝑃 𝒙𝒕 𝒙𝒕−𝟏, 𝒖𝒕 𝑃 𝒙𝒕−𝟏, 𝑴 𝒁𝟎:𝒕−𝟏, 𝑼𝟎:𝒕−𝟏, 𝒙𝟎 𝑑 𝒙𝒕−𝟏  2.2 

Where, P(xt | xt-1, ut) is known as the motion model describing the state transition 

between the position xt-1 to xt given a control input ut; and, P(xt-1, M | Z0:t-1, U0:t-1, 
x0) is the posterior one time step earlier. From equations 2.1 and 2.2, the 

probabilistic SLAM problem formulation is depicted in Equation 2.3. 

𝑃 𝒙𝒕, 𝑴 𝒁𝟎:𝒕, 𝑼𝟎:𝒕, 𝒙𝟎 = 𝛼𝑃 𝒛𝒕 𝒙𝒕, 𝑴  𝑃 𝒙𝒕 𝒙𝒕−𝟏, 𝒖𝒕 𝑃 𝒙𝒕−𝟏, 𝑴 𝒁𝟎:𝒕−𝟏, 𝑼𝟎:𝒕−𝟏, 𝒙𝟎 𝑑 𝒙𝒕−𝟏  2.3 

Solving Equation 2.3 implies to know three probability distributions: the sensor 
model, the motion model and the previous posterior. The following sections 

describe different solutions to the SLAM problem expressed in Equation 2.3. 

2.2.2. Kalman Filter-based SLAM 

Table 2.1 Summary of Kalman filter based solutions to the SLAM problem. 

KF Motion Model Time Update 
Sensor Model and 

Measurement Update 

EKF 𝒙𝒕 = 𝒇 𝒙𝒕−𝟏, 𝒖𝒕 + 𝒘𝒌 
𝒙𝒕 = 𝒇 𝒙𝒕−𝟏, 𝒖𝒕  

𝑷𝒕
   = 𝛻𝒇𝑷𝒕−𝟏𝛻𝒇𝑻 + 𝑹𝒕 

𝒛𝒕 = 𝒉 𝒙𝒕, 𝑴 + 𝒗𝒕 

𝑺𝒕 = 𝛻𝒉𝑷𝒕
   𝛻𝒉𝑇 + 𝑸𝒕 

𝑲𝒕 = 𝑷𝒕
   𝛻𝒉𝑇𝑺𝑡

−1 

𝒙𝒕 = 𝒙𝒕 + 𝑲𝑡 𝒛𝒕 − 𝒉 𝒙𝒕    

𝑷𝑡 = 𝑷𝒕
   − 𝑲𝒕𝑺𝒕𝑲𝒕

𝑻 

UKF 

𝝌𝒕 = 𝒇 𝝌𝑡−1, 𝒖𝑡  

𝝌𝑡−1 =  𝒙𝒕−𝟏, 𝒙𝒕−𝟏 + 𝛼, 𝒙𝒕−𝟏 − 𝛼  

𝛼 =   𝑛 + (𝛽2 𝑛 + 𝑘 − 𝑛) 𝑷𝑡−1 

n – Number of sigma points 

 and k – Scaling parameters 

𝒙𝑡 =  𝑤𝑚
𝑖 𝝌𝑡

𝑖

2𝑛

𝑖=0

 

𝑷𝒕 =  𝑤𝑐
𝑖(𝝌𝑡

𝑖 − 𝒙𝑡 )(𝝌𝑡
𝑖 − 𝒙𝑡 )𝑇

2𝑛

𝑖=0

+ 𝑅𝑡 

𝑤𝑚
0 =

𝛽2 𝑛 + 𝑘 − 𝑛

𝑛 + (𝛽2 𝑛 + 𝑘 − 𝑛)
 

𝑤𝑐
0 = 𝑤𝑚

0 + (1 − 𝛽2) 

𝑤𝑚
𝑖 = 𝑤𝑐

𝑖 =
1

2(𝑛 + (𝛽2 𝑛 + 𝑘 − 𝑛))
 

𝜡𝑡 = 𝒉 𝒙𝑡   

𝒛𝒕 =  𝑤𝑚
𝑖 𝜡𝑡

𝑖

2𝑛

𝑖=0

 

𝑺𝒕 =  𝑤𝑐
𝑖(𝜡𝑡

𝑖 − 𝒛𝑡 )(𝜡𝑡
𝑖 − 𝒛𝑡 )𝑇

2𝑛

𝑖=0

+ 𝑸𝒕 

𝑷𝑡
𝑥,𝑧     =  𝑤𝑐

𝑖(𝝌𝑡
𝑖 − 𝒙𝑡 )

2𝑛

𝑖=0

(𝜡𝑡
𝑖 − 𝒛𝑡 )𝑇 

𝑲𝒕 = 𝑷𝑡
𝑥,𝑧     𝑺𝑡

−1 

𝒙𝒕 = 𝒙𝒕 + 𝑲𝑡 𝒛𝒕 − 𝒛𝒕   

𝑷𝑡 = 𝑷𝒕−𝟏
      − 𝑲𝒕𝑺𝒕𝑲𝒕

𝑻 

EIF 
𝒙𝒕−𝟏 = 𝜴𝑡−1

−1 𝝃𝑡−1 

𝒙𝒕 = 𝒇 𝒙𝒕−𝟏, 𝒖𝒕  

𝜴𝑡
   =  𝛻𝒇𝜴𝑡−1

−1 𝛻𝒇𝑇 + 𝑹𝑡 
−1 

𝝃𝑡
 = 𝜴𝑡

   𝒇 𝒙𝒕−𝟏, 𝒖𝒕  

𝒙𝒕 = 𝒇 𝒙𝒕−𝟏, 𝒖𝒕  

𝒛𝒕 = 𝒉 𝒙𝒕 + 𝒗𝒕 

𝜴𝑡 = 𝜴𝑡
   + 𝛻𝒉𝑇𝑸𝑡

−1𝛻𝒉 

𝝃𝑡 = 𝝃𝑡
 + 𝛻𝒉𝑇𝑸𝑡

−1 𝒛𝒕 − 𝒉 𝒙𝒕  
+ 𝛻𝒉𝒙𝒕   

 

In general, the Kalman filter based solutions to the SLAM problem approximates the 

joint posterior (Equation 2.1) as a Gaussian distribution as well as the noise 

sources. This section briefly describes three popular Kalman filter based 
approaches: the Extended Kalman Filter (EKF) [Thrun et al., 2005], the Unscented 
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Kalman Filter (UKF) [Julier, 1997] and the Extended Information Filter (EIF) [Thrun 

et al., 2003]. Table 2.1 summarizes these SLAM solutions in terms of the motion 

model, the sensor model, the time update equations and the linearization method 
applied to the motion and sensor model. 

The EKF does not assume a linear state transition and measurement functions, if 
these are non-linear functions they are linearized using a Taylor series expansion. 

EKF represents the joint posterior density by a multivariate Gaussian distribution. 

However, it strongly depends on the state uncertainty, since the higher the state 
uncertainty, the bigger is the posterior density distortion and the approximation 

errors.  

For this reason, another linearization method is applied in the UKF algorithm using 
a weighted statistical linear regression process. The basic idea behind the UKF is to 

extract a set of points around the state mean (the sigma points), compute their 
exact value using the state transition function and then the linearized Gaussian is 

computed from the extracted sigma points.  

The measurement update of EKF and UKF is a complex step, since it requires 
matrix inversion which could be expensive from the computational point of view. 

This motivates the canonical parameterization of the Gaussian belief which is 

considered as the dual of the Gaussian representation based in their moments. The 
canonical representation is given by the information matrix (the inverted covariance 

matrix) and the information vector (the information matrix multiplied by the state 
mean). The pipeline process is the same as in the EKF and UKF; however the EIF 

presents some comparative advantages as the simplicity for computing conditional 

probabilities or the simplicity of the Kalman updating equations. Despite these 
advantages, a drawback of the EIF is the inversion of the information matrix to 

recover the robot state. 

The formulation of the SLAM problem involves some important issues as: 

convergence and consistency, scalability and data association. Convergence and 

consistency are related with linearization, from this point of view UKF computes the 
joint posterior with better accuracy than EKF, but the underlying problem of 

linearization of the state transition and measurement equations is not completely 

avoided. One of the well known problems of Kalman filters family is scalability; that 
is the ever increasing number of landmarks, such that soon or later there are not 

enough computer resources to update the map and the robot state in real time. 
This is an important problem for service robots, which have to operate over long 

periods of time. The data association problem is crucial to find correlations between 

the current features and the landmarks already stored in the map. According with 
Table 2.1 re-observing landmarks is fundamental to improve the robot state and 

the map. However, Kalman filters family work on a single joint posterior hypothesis, 

which means that incorrect associations of landmarks cause important or dramatic 
errors in the robot state and the map. 

Multi-hypothesis tracking and considering the state transition, the measurement 
function and the joint posterior as non-Gaussian distributions are part of the 

particle filter framework, which is introduced in the next section. 

2.2.3. Particle Filter SLAM 

Particle filter techniques represent the state estimate probability distribution in a 

non-parametric form, compared with the Gaussian representation of the Kalman 

based techniques. In this case, the state estimate is represented through a set of 
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samples; despite the fact that it is an approximated representation, using a suitable 

number of samples a wide number of probability distributions can be represented. 

According with this idea and keeping in mind that the observations are conditionally 
independent; the Equation 2.3 can be factored in a different way as depicted in 

Equation 2.4. 

𝑃 𝒙𝒕, 𝑴 𝒁𝟎:𝒕, 𝑼𝟎:𝒕, 𝒙𝟎 = 𝑃 𝒙𝒕|𝒁𝟎:𝒕, 𝑼𝟎:𝒕, 𝒙𝟎  𝑃 𝒎𝑛 |𝒙𝟎:𝒕, 𝒁𝟎:𝒕 
𝑁
𝑛=1   2.4 

Where, N is the total number of landmarks. Equation 2.4 states a high dimensional 
state-space if a set of samples want to be drawn from this distribution. Normally a 

Rao-Blackwellisation [Durrant-Whyte & Bailey, 2006] procedure is applied in order 

to reduce the state-space dimensionality. This is achieved representing analytically 
the rightmost part of Equation 2.4 and sampling the leftmost part of Equation 2.4. 

In general form, the basic algorithm of a particle filter is as follows: 

1. A state sample 𝒙𝑡
𝑘 is drawn from the motion model P(xt | xt-1, ut): 

𝒙𝑡
𝑘~𝛾 𝒙𝒕 𝒙𝑡−1

𝑘 , 𝒖𝒕   2.5 

Where, 𝒙𝑡−1
𝑘  is the posterior estimate for the robot pose at t-1 for the k-th 

particle. Given the robot position, all the observed features for each particle 

are updated and those non-observed features are copied without 

modification. 

2. The measurements are incorporated computing the importance factors 

𝑤𝑡
𝑘 = 𝑃 𝐙t|𝐱t

k , which in general are defined as the ratio of the target 

distribution and the proposal distribution. The target distribution is the true 

posterior distribution 𝑃 𝒙𝑡|𝒙0:𝑡 , 𝒁0:𝑡 . The proposal distribution approximates 

the target distribution, and it is used to generate the initial set of particles 
(e.g. Equation 2.5). 

3. The joint posterior approximation of a particle filter occurs in the re-sampling 

process. Here, a low variance sampler algorithm draws with replacement N 
particles from the particle set. The probability of drawing a particle depends 

on its importance weight. Such that, at the end, the particles are distributed 

approximately as the posterior distribution. 

Particle filters have mapped large areas [Montemerlo & Thrun, 2003] keeping in 
mind multiple map hypothesis, which is well suited for the SLAM problem. However, 
some known drawbacks are [Thrun et al., 2005]: memory use, particle deprivation 

and scalability. 

2.2.4. Appearance-based SLAM 

Appearance-based methods for mapping and localization have gained increasing 

attention in recent years. These mapping techniques can be classified according to 

the environmental representation method used. Table 2.2 reviews some remarkable 
studies of appearance-based mapping and localization, where the type of sensor 

used was also kept in mind.  

Appearance-based mapping approaches model the environment extracting feature 

descriptors, which are well known in the computer vision community as SIFT and 

SURF features [Angeli et al., 2008] [Segvic et al., 2009] [Newman et al., 2006] 
[Zivkovic et al., 2007] [Andreasson et al., 2008] [Dayoub et al., 2011], Discrete 

Cosine Transforms (DCT) [Porta & Krose, 2004], multidimensional histograms 
(color, edge, texture, gradient and rank) [Zhou et al., 2003], and Fourier 

transforms [Gross et al., 2005]. All these methods use L1 (Manhattan distance) or 

L2 (Euclidean distance) metrics to match feature descriptors, and in general terms 
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the mapping and localization process is done assuming a static environment, where 

its local appearance is not updated over time. 

Other approaches take advantage of the type of sensor used (omnidirectional or 
standard camera, LRF, etc.) and environmental structures surrounding the mobile 

robot in order to represent the environmental appearance. Intuitively, the 
appearance-based model of the environment describes the environment as it is, 

taking advantage of its natural features. That is the case of [Sujan et al., 2006] 

which uses image information content implementing quad-tree decomposition to 
find interesting places, or [Linaker & Ishikawa, 2006] which proposes a new 

descriptor focused on omnidirectional images called Polar High-Order Local Auto-

correlation (PHLAC) and tested using a particle filter framework. An interesting case 
is reported in [Goedemé et al., 2007] and [Murillo et al., 2007] which use 

omnidirectional vision and vertical lines as landmarks projected on the image plane. 
These landmarks have promising results because in omnidirectional vision they can 

be tracked for long baselines, decreasing the probability of being occluded and 

increasing the probability of being visible. 

In contrast to the above approaches, which use one sensor, [Gallegos & Rives, 

2010] uses sensor fusion between an omnidirectional camera and a 2D LRF. This 

approach takes advantage of the metric information provided by the LRF and mixes 
it with the omnidirectional vision [Bacca et al., 2010]. 

Table 2.2 Review of appearance-based mapping and localization approaches. 

Appearance-based Mapping and Localization 

Rich Sensor Information 

Environment Representation 

Classical 
Closer to Environment 

Appearance 

 Standard camera [Angeli et 
al., 2008] [Porta & Krose, 
2004] [Zhou et al., 2003] 
[Segvic et al., 2009] [Sujan 

et al., 2006] 
 LRF (2D and 3D) [Magnusson 

et al., 2009] [Nieto et al., 
2007] [Nachter & Hertzberg, 
2008] 

 Standard camera + LRF 
[Mozos et al., 2006] 

 Omni-camera [Gaspar et 
al., 2007] [Linaker & 
Ishikawa, 2006] [Goedemé 
et al., 2007] [Gross et al., 

2005] [Dayoub et al., 2011] 
[Murillo et al., 2007] 
[Zivkovic et al., 2007] 
[Andreasson et al., 2008] 

 Omni-camera + LRF 
[Gallegos & Rives, 2010] 

 Scale-Invariant Feature 
Transform (SIFT) [Angeli et al., 
2008] [Segvic et al., 2009] 
[Newman et al., 2006] [Zivkovic 

et al., 2007] [Andreasson et al., 
2008] 

 Speeded-Up Robust Features 
(SURF) [Dayoub et al., 2011] 

 Direct Cosine Transform (DCT) 
[Porta & Krose, 2004] 

 Principal Component Analysis 

(PCA) [Gaspar et al., 2007] 
 Multidimensional Histograms 

[Zhou et al., 2003] 
 Fourier [Gross et al., 2005] 

 Normal Distribution Transform 
(NDT) [Magnusson et al., 2009] 

 Quad-tree [Sujan et al., 2006] 
 Object saliency and Iterative 

Closest Point (ICP) [Nieto et al., 
2007] [Nachter & Hertzberg, 

2008] 
 Machine learning approaches 

[Mozos et al., 2006] 
 Polar Higher-order Local Auto-

Correlations (PHLAC) [Linaker & 
Ishikawa, 2006] 

 Vertical edges [Goedemé et al., 

2007] [Murillo et al., 2007] 
[Gallegos & Rives, 2010] 

 

The goal of appearance-based methods is to use rich information of color, texture, 
or environment structure in order to find an association between two data sets, 

such that reducing the false positives in robot localization. This technique has been 

successful used in [Cummins & Newman, 2009] to map and detect loop closing 
situations over large and complex areas. In the context of the SLAM problem, 

appearance-based methods are useful to predict a possible landmark association 
which afterwards could be metrically validated. In addition, close a large loop in 

Kalman based and Particle Filters techniques is a very challenging task; however, 
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appearance-based methods provides additional discrimination information which 

can be taken into account to improve the detection of loop closures. 

2.2.5. Map Representation 

Once the robot state and the map of the environment given by the observed 

landmarks are estimated, the robot‟s internal representation of the environment 
can be essentially described in four categories: 

1. Topological – Topological maps are compact, consume less computer 

memory, can be stored in efficient data structures, and speed up the 
navigation process. They use graphs for environmental modeling, where each 

vertex often contain appearance descriptions of the environment as well as 

other relevant information; and each edge indicates a traversable path 
between two environment locations, they often include information obtained 

from odometry, epipolar geometry or in general the resulting change in the 
position given by the motion model. 

2. Metric – Metric maps represent the environment using specialized features 

which depends on the sensor model and the distance measurement method 
used. Features such as lines, planes, points and curves are often used to 

represent the map. This kind of maps has the advantage to provide direct 

information about the free collision trajectories for safe robot navigation. 
3. Hybrid – Hybrid map representation combines the better of two worlds: the 

topological and metric maps. Topological maps can represent large areas in a 
compact form, which makes them a suitable solution for large scale mapping 

situations. Metric maps directly consider the state and landmark uncertainty 

providing the means to estimate spatial relationships between the topological 
maps elements. 

4. Occupancy Grids – Occupancy grid map representation generates a map able 
for path planning and navigation, and generally they are computed after 

solving the SLAM problem since occupancy grid maps require all the 

measurements and the robot path estimate. Occupancy grid maps divides 
the space into many grid cells of fixed size, then each cell contains basically 

three possible values: one for occupied, zero for free and p (e.g. 0.5) for 

unknown. 

Choosing a topological representation of the environment encourages the 

identification of key areas and the paths to reach them. Metric and hybrid map 
representations depends on the map features, that is, the sensor model; in this 

case, given the high dimensionality of the SLAM problem feature extraction is 

better than raw sensor data. Occupancy grids use raw sensor data (LRF in most 
cases) providing local and global estimation of the free space. 

2.3. LIFELONG MAPPING AND LOCALIZATION 

These days mobile robots are needed to interact within non-structured 

environments. They must deal with people, moving obstacles, perceptual aliasing, 
weather changes, occlusions and robot-human interaction in order to have high 

levels of autonomy from a decision-making point of view, and to resolve mapping, 

localization and navigation issues as well as possible. These requirements are useful 
for service robots designed to conduct surveillance, inspect, deliver, clean and 

explore. In addition to localization, mapping and navigation problems, they have to 
guarantee a high level of autonomy through long-term navigation using stable 

features, which can be extracted from the environment structure or detected using 

artificial landmarks. 
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Typical techniques to solve the SLAM problem assume a static environment, and 

they build a map without taking into account the real-world conditions described 

above. This drives us to the initial question stated in the abstract: How can a 
mobile robot update its internal representation of the environment and its location 

on it when the appearance of the environment is changing?. In the two past 
decades many approaches to resolve the SLAM problem have been proposed, and 

basically the last eight years the SLAM problem in dynamic environments has been 

increasing the attention of the robotics community. Table 2.3 presents a review of 
the most relevant techniques with respect to SLAM in dynamic environments.  

Table 2.3 Review of SLAM techniques in dynamic environments. 

SLAM in Dynamic Environments 

Classification Approaches 

Memory 

management 
models 

[Dayoub et al., 2011] STM/LTM human memory model to update reference views in hybrid 
topological maps. 

[Labbe & Michaud, 2011] WM/LTM human memory model for loop closure detection. 

[Abrate et al., 2010] Uses recency weighted averaging to detect changes in the environment. 

Landmark 

visibility and 
rating 

[Pirker et al., 2011] Uses the Histogram of Oriented Cameras descriptor to extract landmark 

visibility and reduce the matching candidates. 

[Hochdorfer & Schlegel, 2009] Quantify landmarks contribution to localize the robot based on 
their visibility and rating. 

[Hochdorfer et al., 2009] Basically same approach described in [Hochdorfer & Schlegel, 2009] 
but it uses DBSCAN clustering algorithm for better results. 

[Andrade-Cetto & Sanfeliu, 2002] Combines the landmark strength and EK filtering for map 
updating. 

Detecting/using 
dynamic objects 

[Meyer-Delius et al., 2010] Uses temporary maps built from unexpected objects in the 

environment. 

[Burgard et al., 2007] Probabilistic framework to identify spurious measurements and then 
filter them out from the map process. 

[Wang et al., 2003] Probabilistic framework for the detection and tracking of mobile objects 
and the SLAM problem. 

[Montesano et al., 2005] Detection and tracking of mobile objects is included in the SLAM 
process. Based on the work presented in [Wang et al., 2003] 

Dynamic changes 
integrated in 

SLAM  

[Glover et al., 2010] Fuses the probabilistic local feature based data association method of 

FAB-MAP with the pose cell filtering and experience mapping of RAT-SLAM. 

[Milford & Wyeth, 2009] Presents the RAT-SLAM approach which is a biologically inspired 
solution for the SLAM problem. 

Pruning methods 

[Kretzschmar et al., 2010] Discards observations that do not provide relevant new information 

with respect to the map built so far. Observation removal is based on the entropy reduction 
caused. 

[Konolige & Bowman, 2009] Learns cluster of views that represent a persistent visual 
environment and it removes those views which are redundant. 

Multiple map 

representations 

[Biber & Duckett, 2009] Uses a multiple map representation over time using the median of 

recency instead of the recency weighed averaging to update the map. 

 

The most common strategy to deal with dynamic environments is detecting 

dynamic objects and considering them as spurious measurements. A seminal work 
using 3D LRF in outdoor environments was proposed in [Wang et al., 2003], here 

the detection and tracking of mobile objects (DTMO) is performed in advance to 
SLAM. The probabilistic framework proposed in [Wang et al., 2003] is based on 

estimating the constant velocity motion of mobile objects and differentiating static 

from moving observations. In contrast, [Burgard et al., 2007] proposes a 
probabilistic framework based on occupancy grid maps estimating for each 
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individual beam whether of or not it has been reflected by a dynamic object. Once 

these laser beams are identified, they are filtered out from the range registering 

process. This technique also learns quasi-static environmental configurations 
clustering local grid maps. [Burgard et al., 2007] and [Wang et al., 2003] do not 

use the dynamic changes in the environment in the SLAM process, however 
[Meyer-Delius et al., 2010] temporary integrates the observations caused by semi-

static objects in the SLAM process. Nevertheless, the aim of [Meyer-Delius et al., 

2010] is not generating a consistent representation of the environment, since 
temporary maps are discarded as soon as the current observation cannot be 

explained with the current temporary map. 

Service robots are normally operated by users who are not skilled robotics 
programmers. Thus, a service robot has to learn relevant information of the 

environment where it is deployed. One way to do it is through landmark visibility 
and rating. In this context, [Andrade-Cetto & Sanfeliu, 2002] developed and EKF-

based map building system which incorporates the measurement of landmark 

strength and quality allowing the elimination of unreliable observations. However, 
the removal criteria were based on user supplied strength and quality thresholds. In 

[Hochdorfer & Schlegel, 2009] and [Hochdorfer et al., 2009] the landmark quality is 

quantified based on its contribution to the ability of the robot self-localization. In 
these approaches the landmark uncertainty and its observability are taken into 

account to quantify the landmark quality, and then used to avoid the ever growing 
number of landmarks. A clustering step is performed to indentify the landmark 

spatial distribution, this computes their observability. Another interesting idea is 

presented in [Pirker et al., 2011], where the landmark visibility is computed using 
the Histogram of Oriented Cameras (HoC) in order to reduce the average of 

matching candidates per frame.  

A logical consequence of landmark rating is pruning of unreliable or useless 

landmarks. In this sense, [Kretzschmar et al., 2010] is focused on removing 

observations which do not provide relevant information with respect to the map 
built so far. To do so, the entropy of an observation given the past measurements 

is computed to obtain its information gain, if this information gain is zero the 

observation is discarded. In [Kretzschmar et al., 2010] a graph-based SLAM 
solution is used and the observations are the node positions. In [Konolige & 

Bowman, 2009] a lifelong mapping solution is proposed using the FrameSLAM 
approach [Konolige et al., 2009] and a view deletion model based on removing 

views with low matching measures. In spirit this work is similar to [Burgard et al., 

2007], but in this case learning clusters of views is done to represent similar and 
persistent places of the environment. These pruning techniques have the tendency 

to introduce delayed map updates, since the optimization of large maps could take 

more time than the observation time window. 

A characteristic which has gained attention for lifelong mapping is multiple map 

representations. A seminal contribution on this context was [Burgard et al., 2007] 
and afterwards [Konolige & Bowman, 2009]. Nevertheless, a particularly different 

approach is done in [Biber & Duckett, 2009], where the environment is 

simultaneously represented at multiple timescales and at each timescale a different 
learning rate is used to obtain a map of the environment.  However, a drawback of 

[Biber & Duckett, 2009] is that the timescales were experimentally found, which 

limits the robot autonomy compared with [Burgard et al., 2007] and [Biber & 
Duckett, 2009]. 
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In general, the approaches described so far solve the SLAM problem independently 

from the detection and tracking of dynamic changes in the environment. 

Decomposing the whole problem in two separate estimations is understandable 
given the high dimensionality of the estimation problem, and in many situations the 

dynamic objects do not provide relevant localization information for the robot. 
However, in [Milford & Wyeth, 2009] the RatSLAM algorithm is presented and its 

system architecture is inspired on the rat hippocampus place cells. RatSLAM is 

composed by an experience space, each experience is associated with a local view 
cell and each local view cell is associated with a set of pose cells. In RatSLAM, the 

map is maintained up to date due continuously experience adding. The data 

association method in RatSLAM is strongly dependent on lighting conditions, on the 
other hand FAB-MAP [Cummins & Newman, 2009] is a probabilistic appearance-

based mapping technique with a reliable data association approach, as a result in 
[Glover et al., 2010] is presented a hybrid mapping system combining the better of 

both algorithms but integrated them in one SLAM solution. 

Biologically or psychologically inspired models have been used over many years in 
the robotics community. For instance, the human memory model proposed by 

[Atkinson & Shiffrin, 1968] or [Baddeley, 2003], and the weighed recency 

averaging approach are good examples of memory management models inspired 
on psychological and neuroscience models. In [Abrate et al., 2010] the weighted 

recency averaging approach is used to update the map of the environment; 
however the results presented only consider simulations and small environments. 

In [Dayoub et al., 2011] the Atkinson and Shiffrin memory model [Atkinson & 

Shiffrin, 1968] is considered in order to update the reference view of a particular 
place. However, they assume the robot is able to self-localize using other means, 

since their main goal is to maintain the reference views of the topological map up to 
date. Using the human memory model proposed in [Baddeley, 2003] a real-time 

loop closure detection approach is presented in [Labbe & Michaud, 2011] evaluating 

the number of times a locations has been matched or consecutively viewed. This 
evaluation is done using a Bayesian filter to estimate the probability that the 

current topological location matches one of an already visited stored in the Working 

Memory (WM). 

The lifelong SLAM approaches reviewed in this section can integrate the dynamism 

of the environment in the estimation process or not. Moreover, given the high 
number of SLAM solutions available nowadays, it is worth designing and 

implementing lifelong SLAM methods in a way that it can be applied to the current 

SLAM solutions.  

2.4. ENVIRONMENT MODELING 

As described in the first section of this chapter, the perception system plays a 

crucial role in how the SLAM problem is solved. Furthermore, the perception system 

defines how the environment is modeled and what kind of resources can be used 
for data association, or loop closure situations. The robot perception system yields 

a considerably high amount of raw data, if it is directly processed the data high 

dimensionality will make any estimation procedure unfeasible for real-time 
operation. On the other hand, feature extraction allows a trade-off between 

detecting relevant information from the environment and keeping low the amount 
of sensor data and the computational time required for processing this information. 

The features extracted from sensor data range between low-level to high-level 

features. For instance, corners, circles and lines extracted from 2D range data can 
be considered as low-level features; general image descriptors, object descriptors, 
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vertical edges image descriptors and image histograms can be considered as high-

level features. In this work, the LRF and the omnidirectional camera are the two 

main sensors used. The following two sections will describe the most common 
features used with these kinds of sensors. 

2.4.1. Range Data Features 

Laser range finders have been used over many years in the robotics community. 

They provide direct range and heading measures centered in the robot frame, 

resolving the scale problem presented if the scene is analyzed using a sequence of 
images. Range data can be 2D or 3D, 2D range data is directly captured from a 

LRF, but 3D range data is captured using a standard LRF mounted on a pan/tilt 

mechanism.  

 

a)                                                                             b) 

Figure 2.3 a) Detected corners on a LRF trace. Circle-shaped marks represent the extreme points of the 
homogeneous regions. The robot frame origin is represented by the rectangular-shaped point. b) Line segments 
estimated from the same LRF trace. 

Typical features extracted from 2D range data include corners, circles and line 
segments. Corner features can be estimated as a tracking-like problem [Castellanos 

& D., 1999], which can be formulated using a Kalman filter. Figure 2.3a shows an 

example of a LRF trace and the detected corners represented in the circle-shaped 
marks. Afterwards, line segments can be estimated using the sub-divided groups of 

laser points using and iterative line fitting algorithm. A detailed comparison of line 
segment extraction algorithms can be found in [Nguyen et al., 2005]. Split-and-

merge [Pavlidis & Horowitz, 1974] is the most popular algorithm to accomplish this 

task. In this implementation, the basic algorithm was modified to increase its 
robustness. One way to do that is modifying the cost function, in this work the cost 

function was implemented using the dot product of each line segment point and the 

line segment normal. Figure 2.3b shows the line segments obtained. 

However, 2D range data is constrained to planar motions which in indoor 

environments are not an issue, but in outdoor environments this assumption is not 
longer valid. Although, 3D range data allows overcomes this constraint, the amount 

of data to analyze is increased considerably. For this reason, fast plane 

segmentation techniques have been implemented to reduce the dimensionality 
problem. In [Nachter & Hertzberg, 2008] a plane segmentation technique based on 

the normal computed from raw data is presented (Figure 2.4). Nevertheless, this 

method requires an exhaustive processing of the raw data. On the other hand, 
plane segmentation techniques based on cell decomposition are becoming popular 

[Weingarten & Siegwart, 2005] [Xiao et al., 2011]. In this case, the 3D range point 
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cloud is decomposed by regular cells, a local plane is fitted and then a recursive 

region growing algorithm is used to fuse similar planes [Weingarten & Siegwart, 

2005]. The latter technique does not estimate the resulting plane parameters due 
the region growing algorithm used, but in [Xiao et al., 2011] a new recursive region 

growing algorithm is proposed in order to obtain the final plane parameters. 

a)  

b)  

c)  

Figure 2.4 a) 3D range point cloud and extracted planes [Nachter & Hertzberg, 2008]. b) Plane segmentation 
proposed in [Weingarten & Siegwart, 2005]. c) Plane segmentation proposed in [Xiao et al., 2011]. 

2.4.2. Image Features  

2D or 3D range data provide direct geometric information of the environment and a 

reasonable level of the environment structure. Nevertheless, a vision system 

provides richer appearance information as color, texture, edges (horizontal, vertical 
and curved) and shapes. Despite the fact that geometric information is difficult to 

extract and often requires more than two consecutive views to obtain accurate 

measurements, vision plays an important role in SLAM. Table 2.4 shows a general 
classification of some image features extraction techniques widely used. Table 2.4 

divides the feature extraction techniques used in standard images, and those used 
in omnidirectional images. 
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The most relevant image feature is its color, texture and shapes. A common way to 

quantify the color distribution along the image is using histograms. For instance, 

image retrieval systems have been using histogram matching for long time due 
their compact representation and their invariance to small rotations and 

translations. In [Zhou et al., 2003] not only color histograms are extracted, but 
edge, texture and gradient histograms are also computed for appearance-based 

robot mapping and localization. However, in general histograms are not invariant 

when important movements are involved. In addition, histograms define a global 
property of image; they do not allow extract interesting points.  

Table 2.4 General classification of image features in standard and omnidirectional images. 

Features in standard images Features in omnidirectional images 

Classification Approaches Classification Approaches 

Histogram-based 

[Zhou et al., 2003] 
Multidimensional histograms 
(color, edge, texture, gradient 
and rank) applied to robot 

localization. 

Scale space based 

[Scaramuzza et al., 2009] Vertical 
edge descriptor in omnidirectional 
images. 

[Hansen et al., 2007] Scale space 
images as the solution to the heat 
diffusion equation on the sphere which 
is implemented in the frequency 
domain using spherical harmonics. 

[Lourenco et al., 2010] Enhanced SIFT 
detector by introducing radial 
distortion into the scale space 
computation. 

[Arican & Frossard, 2010] Scale 
invariant feature for omnidirectional 
images. 

Corner based 

[Harris & Stephens, 1988] 
Harris corner detector. 

[Rosten & Drummond, 2006] 
FAST 

Scale space 
based 

[Lowe, 2004] SIFT descriptor. 

[Bay et al., 2008] SURF 
descriptor. 

[ForssÃ©n & Lowe, 2007] 

MSER descriptor. 

Custom designed 

[Linaker & Ishikawa, 2006] Polar High-
Order Local Auto-correlation 
descriptor. 

[Hansen et al., 2010] Proposes a 

spherical diffusion using stereographic 
projection. 

[Goedemé et al., 2007] Proposes a 
vertical edge descriptor using the 
global colour moments and seven 
intensity variants using DCT. 

[Murillo et al., 2007] Features from 
[Goedemé et al., 2007] for robot 
localization using omnidirectional 
images and pyramidal matching. 

[Briggs et al., 2006] Features are 

extracted from 1D panoramas using 
interest operators in scale-space. 

[Tapus et al., 2004] Finger print of 
places is introduced. It is a circular list 
of features extracted from panoramic 
images. 

[Guerrero, 2011] Scale-space 
computation using the Laplace-Beltrani 
operator. 

Sub-space based 

[Porta & Krose, 2004] Direct 
cosine transform (DCT) 
applied to appearance-base 
localization. 

[Gaspar et al., 2007] Principal 
component analysis (PCA) 
applied to robot localization. 

[Porta et al., 2005] PCA 
applied to appearance-based 
localization. 

[Gross et al., 2005] Fourier 
transforms for adaptive 
appearance maps. 

[Siggelkow, 2002] Haar 
integrals applied to robot 
localization. 

 

On the other hand, corner and scale-space based approaches allow extracting 

points of interest (Harris corners [Harris & Stephens, 1988], FAST detectors 
[Rosten & Drummond, 2006], SIFT/SURF/MSER descriptors [Lowe, 2004] [Bay et 

al., 2008] [ForssÃ©n & Lowe, 2007]) from images; in this way, one image can be 
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represented by a set of features reducing the amount of data to represent it. An 

alternative approach for image dimensionality reduction is using sub-space based 

techniques. The aim of sub-space methods is compute compact representations 
using approaches as direct cosine transform (DCT), principal component analysis 

(PCA), Fourier transforms, or Haar integrals. Once the lower-dimensional image 
representation is computed, important robot tasks as: motion estimation and 

topological localization can be performed. 

In this work an omnidirectional camera is one of the main sensors used. Therefore, 
it is important to review the state-of-art of the feature extraction in this kind of 

images. Omnidirectional vision has received special attention recently due to its 

long-term landmark tracking, its wide field of view, its robustness to occlusions, its 
ability to be fused with range data, and its reduced noise sensitivity [Gaspar et al., 

2007]. However, the mirror shape introduces important radial distortions into the 
image plane; as a result the computer vision community has proposed novel image 

descriptors considering this situation. Table 2.4 shows two classifications: firstly, 

feature extraction techniques based on the SIFT detector applied to omnidirectional 
images, although it is not designed to work with them. Particularly, [Scaramuzza et 

al., 2009] proposes a descriptor for tracking vertical edges onto omnidirectional 

images which allows performing appearance-based mapping and localization; and 
[Lourenco et al., 2010] proposes a modified SIFT detector which considers the 

radial distortion in omnidirectional images, but preserving the invariance to scale 
and rotation. 

Secondly, a novel set of feature descriptors designed to cope with the challenging 

distortions presented onto the omnidirectional images. To start with, [Goedemé et 
al., 2007] and [Tapus et al., 2004] proposes features extracted from vertical edges, 

which are not deformed by the mirror shape. A particularly different approach is 
presented in [Briggs et al., 2006], where the omnidirectional image is converted in 

a panoramic image, and then a 1D circular image is formed by averaging the scan-

lines of the panoramic image. Basically, it is a data reduction technique to 
represent panoramic images and used for robot localization. The Polar High-Order 

Local Auto-correlation descriptor proposed in [Linaker & Ishikawa, 2006] presents a 

set of masks which consider the radial distortion since they are polar-based and 
rotation invariance. Last, [Hansen et al., 2010] and [Guerrero, 2011] propose key-

point detectors which work on the sphere model representation and using spherical 
Gaussian techniques for feature extraction. 

2.5. PLATFORM DESCRIPTION AND DATASETS 

For the work reported here, the experimental platform used is composed by the 

Pioneer 3DX mobile robot and a perception system consisted of a URG-04LX LRF 
and an omnidirectional camera. Both are briefly explained in Section 2.5.1. 

Furthermore, Section 2.5.2 describes the collected datasets used to test part of the 

results reported in this work are explained in detail. 

2.5.1. The Mobile Robot and the Perception System 

Figure 2.5a presents the Pioneer 3DX mobile robot and the coordinate frames of the 

LRF and the omnidirectional camera. The relevant characteristics of the mobile 
robot platform, the omnidirectional camera and the LRF are mentioned below. 

 Pioneer 3DX mobile robot. 

o Computer – On board PC computer at 1.5Ghz running Linux Ubuntu 

10.0 
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o Sensors – 8 ultrasound sensors (4 rear and 4 front) and motors with 

1/500 tick encoders. 

o Mechanics – Two drive wheels in differential drive arrangement and 
one rear caster wheel.  

o Communications – Wireless Ethernet 802.11 
o Power supply – 3 batteries of 12V providing an autonomy of 3hours 

approximately. 

o Dimensions – Width 38cm, height 21.5cm, depth 45cm and weight 
9kgr. 

o Other technical data – Payload 17Kgr, maximum velocity 5.76 km/h. 

 Omnidirectional vision system. 
o Optics – RemoteReality. 

o Mirror diameter – 74mm. 
o Camera - UI-2230SE-C camera with a resolution of 1024x768 pixels. 

Data interface USB. 

o FOV – Vertical 90º (15º up and 75º down), horizontal 360º. 
 Laser Range Finder (LRF)  

o Range – 0.02m to 4m. 

o Operation – Indoors. 
o Scan angle – 240º. 

o Scan time – 100ms. 
o Resolution – 1mm (0.02m to 1m) and 1% between 1m and 4m. 

o Interface – Data RS232, power supply using USB ports. 

a) b)   
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c)  

Figure 2.5 Robot platform and perception system. a) Pioneer 3DX robot and coordinate frames of the LRF and the 
omnidirectional camera. b) Detail of the omnidirectional camera. c) Hokuyo URG-04LX LRF. 

2.5.2. Datasets 

The datasets available online contains one run of different places which is not useful 

for long-term mapping and localization. Since, it requires data recorded under 

various illumination conditions, over several days and presence of dynamic 
obstacles. Recently, the COLD database [Pronobis & Caputo, 2009] includes data 

recorded in the conditions described above. However, the sensor data of the COLD 
database was designed to be used separately, this means that sensor fusion cannot 

directly be used. For instance, the range data cannot be projected onto the 

omnidirectional image (or standard camera) since the extrinsic calibration 
information is missing. Therefore, a dataset was collected at the PIV building of the 

University of Girona which has three floors. These data sets include the LRF 

readings, the corresponding omnidirectional images and the robot odometry. The 
dataset was collected at different time of the day and between seasons. The 

relevant characteristics of the dataset are described below. 

 Directory structure – The directory structure of the collected dataset is 

divided by year seasons, each season is divided in times of day, each time of 

day holds separate directories for each floor, and finally each floor contains a 
different sequence of data ordered by date. This directory structure is 
presented below: 

o UDG-Montilivi-P4-VICOROB 
 Autumn 

 1-Morning 
o P0 

 DS-2010-10-28 

 imgData 
 dataLaser.mat 

 dataOdometry.mat 

 dataOmni.mat 
 dataSonar.mat 

 dataTXT.zip 
 DS-2010-11-03 

o P0+P1+P2 

o P1 
o P2 

 2-Afternoon 

 3-Night 
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 Spring 

 Summer 

 Winter 

 Filenames and data format – The data sequence is presented in MAT files 

(dataLaser.mat, dataOdometry.mat, dataOmni.mat, dataSonar.mat), but the 
original data sequence is stored in the „dataTXT.zip‟ file. In addition, the 

„imgData‟ stores the omnidirectional image sequence. The internal formats of 

each data file is presented below: 

o Odometry data format – Odometry data is stored in a matrix of Nx6, 

where N is the number of sequences. Each row is formatted as follows: 

timestamp Xr Yr ThetaR V W 

where, timestamp is the number of milliseconds elapsed from the 

acquisition started; Xr, Yr and ThetaR are the current robot position 
variables; V and W are the robot linear and angular velocity. 

o Laser scan data format – Laser scans are stored in a matrix of 

Nx1367, where N is the number of sequences. Each row is formatted 
as follows: 

timestamp scan-size range-value theta-value … 

where, scan-size is the number of range/theta values in the current 
row; range-value is the range value measured at the orientation given 

by theta-value. Range-value is measured in m and theta-value is 
measured in degrees. 

o Sonar data format – Sonar data is stored in a matrix of Nx33. Each 

row is formatted as follows: 

timestamp range-value theta-value … 

where, range-value is the range value measured at the orientation 
given by theta-value. There are sixteen pairs of range/theta values 

corresponding to the sixteen sonar sensors installed in the Pioneer 

3DX. 

o Omnidirectional image data format – Omnidirectional image name data 

is stored in a matrix of Nx2. Each row is formatted as follows: 

timestamp image-filename 

where, image-filename is the image filename which has the following 

template: imgData/img_XXX.png, XXX means the image consecutive 
number. All the omnidirectional images are stored in the relative sub-

directory „imgData‟. 

 Coordinate systems – The coordinate systems assumed at each floor of the 
PIV building are presented in Figure 2.6. 
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a)  

b)  
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c)  

Figure 2.6 Coordinate systems of the three floors of the PIV building at the University of Girona. a) P0 level. b) P1 

level. c) P2 level. 

2.6. DISCUSSION 

In the second section of this chapter the SLAM problem and the most common 

solutions were introduced. Afterwards, special attention was focused on lifelong 
mapping and localization motivated by the long-term operation involved in service 

robots. Furthermore, a brief review of the environment modeling techniques relying 

on LRF and optical images was presented. 

The review of lifelong mapping and localization methods presented in Section 2.3 

shown different approaches to deal with dynamic environments. Some of them 

relying on filtering out dynamic objects, others focused on pruning techniques, a 
couple of them integrate the dynamic changes of the environment into the SLAM 

formulation and alternative approaches are inspired on biological/psychological 
concepts. Since, lifelong mapping and localization is a relatively new problem in the 

robotics community, there is not a common option to solve it. However, it seems 

worthwhile designing and implementing lifelong SLAM techniques able to use the 
high number of SLAM solutions. 

In this context, this work proposes a mapping and localization method whose main 

contribution is the Feature Stability Histogram (FSH). This is inspired on the human 
memory model [Atkinson & Shiffrin, 1968] to deal with changing environments and 

long-term mapping and localization. The main idea behind this is building a 
histogram using a weighted voting scheme. Each histogram bin is related with a 

map feature and it is incremented if the feature is re-observed. The weights 

associated to each feature are computed according to their strength, which can be 
the feature uncertainty the Hessian value in the SURF descriptor, or the matching 

distance in an epipolar geometry framework. The Atkinson and Shiffrin memory 

model considers basically two main components: the Short-Term Memory (STM) 
which retains information long enough to use it; and the Long-Term Memory, which 

retains information for longer periods of time or lifetime. Depending on the feature 
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strength, it can be part of the STM or LTM. In this work, distinguishing between 

STM from LTM features (non-stable from stable features) is performed through k-

means clustering or exponential decay identifying the mean lifetime. Once the LTM 
features are identified, they are only used for mapping and localization. 

 

Figure 2.7 System overview emphasizing on the typical estimation loop and on affected parts when the FSH model 
is used. 

 

The FSH model can be used as part of any SLAM solution; this can be observed in 

Figure 2.7. In this figure the typical steps of the robot pose and map estimation 
processes are depicted: prediction, observation, data association, update and loop 

closure detection. The proposed FSH model affects the data association, update and 

loop closure processes, as a result the map representation are particularly 
influenced. Once the motion and sensor model are applied, the LTM and STM 

features are extracted from the current map representation to obtain the re-
observed landmarks after the data association process. The re-observed and new 

landmarks are used by the FSH approach to update the LTM and STM features, in 

this way the map is updated in changing environments reflecting its alterations in 
the LTM or STM. Furthermore, the robot pose is updated considering only the LTM 

features. Regarding loop closure detection, the loop closure hypothesis validation is 

implemented using the LTM features. Subsequent runs uses the LTM scans and LTM 
features to correct the predicted pose obtained from the robot motion model.  

Therefore, using a memory management model to improve the mapping and 
localization capabilities of current SLAM solutions in long-term operation is the aim 

of the approach presented in this work. 
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The aim of the robot sensors is to model the environment, these sensors normally 
yield large amount of raw data which are hard to process in real time. For this 

reason and compactness feature-based environment models are preferred than raw 

data-based models. Feature-based environment models are normally used in SLAM 
solutions due the limited of information used and consequently the less 

computational time required for process it. However, the SLAM solution works 

properly if the feature extraction and matching process work accordingly, since the 
feature re-observation is crucial to correct the map information and the robot pose. 

Therefore, in this chapter feature extraction approaches for two different kinds of 
sensors are presented. Afterwards, combining them a range-augmented 

omnidirectional sensor is presented to extract vertical edge features from indoors 

scenes. The performance is analyzed through experimental validation. 
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3.1. INTRODUCTION 

One of the most important problems in the context of map building and robot 

localization is to find correspondences between the observations taken at different 

places in the environment. These correspondences are crucial to simultaneously 
estimate the robot position and the map of the environment. For this reason, the 

environmental feature representativeness and the matching process reliability are 

important factors in solving the SLAM problem.  

In Section 2.1 several examples were presented where depending on the robot 

environment and the application needs, different measurement models are used. 
The feature representativeness depends on the robot environment, and then the 

robot sensors have to take advantage of the environment structure to extract the 

more suitable features. For instance, office environments are full of planes (walls), 
lines (horizontal and vertical), doors, squares (paintings, posters), or circles 
(garbage cans); house environments have doors, paintings, stairs, furniture, 

different kind of windows, and ornaments; outdoor environments have trees, lines 
(vertical and horizontal), roads, polygons, buildings, civil structures, etc. The 

rationale behind this is given the robot sensors and the robot environment, the 
feature extraction process has to be focused to take out the environment 

landmarks with high representativeness. 

Feature representativeness by itself does not ensure robustness [Lowe, 2004]. 
Feature robustness is normally evaluated in the context of its invariant 

characteristics, for instance rotation and translation invariance, color invariance, or 

illumination invariance. These characteristics ensure the feature can be observed 
again when the vehicle is revisiting a previously mapped area, which is the key to 

improving the vehicle localization and the map of the environment. 

In this work, the LRF and the omnidirectional camera are the two main sensors 

used. They are combined to extract vertical features from indoor real-world images. 

The vertical edge features are predominant in indoor structured environments, and 
they are not deformed by the non-linear distortions introduced by the 

omnidirectional camera mirror. Section 3.2 describes the LRF features extraction 
process. Section 3.3 is focused on the vertical edge detection process. Combining 

the LRF and omnidirectional vision data is used to extrinsically calibrate these 

sensors, which is presented in Section 3.4. Finally, Section 3.5 explains the sensor 
model used, the image descriptor extracted and their matching process. 

3.2. LASER RANGE FINDER FEATURES 

LRF devices have been used over many years in the robotics community to obtain 

range/bearing measurements. The most common used LRF is a 2D scanner and 
suitable for planar motions. However, attaching a rotational mechanism to a 2D LRF 

or using more than one LRF with different orientation are common solutions to 

obtain 3D range/bearing measures. In this work, the LRF used is the Hokuyo URG-
04LX, which has maximum range of 4m, a measurement area of 240º and an 

accuracy of ±1cm to ±4cm. The LRF features will be combined with vertical edges 
extracted from omnidirectional images, to do so breakpoint and horizontal lines 

detection are needed. The latter allows the sensor model to obtain an accurate 

estimation of the range/bearing of the vertical edge. 

3.2.1. Laser Range Finder Calibration 

This kind of sensors base its operation on the measurement of time-of-flight of a 

laser beam, which is emitted by a transmitter, reflected by a rotating mirror and 
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then received again due its reflection on an object surface. The angular resolution 

of the scanner and communication speed to a host can be selected by users, 

minimum and maximum range values are predefined by manufacturer, but 
systematic errors as laser tilt/pan angle, surface reflectance properties, surface 

angle, and imperfect calibration, between others can affect the range 
measurement.  

Literature offer few works measuring these properties, however [Reina & Gonzales, 

1997] and [Ye & Borenstein, 2002] show a good characterization of a custom made 
equipment (Explorer scan laser made by Schwartz Electro-Optics Inc.), and the 

popular SICK LMS200 respectively. These works explore characteristics as: laser 

alignment, drift effect, surface reflectance properties, incident beam angle, and 
laser model. In our case, we focus on laser alignment, drift effect and laser model, 

since these properties affect directly the laser measure quality. Nowadays SICK 
LMS200 laser range finder sensors still are expensive, but HOKUYO made a set of 

variety of relatively low cost laser range finders, then in this work a URG-04LX laser 

range finder will be used, and the results achieved are accordingly to [Okubo, 
2009]. 

3.2.1.1. Laser alignment 

Figure 3.1a shows the experiment setup for the laser range finder calibration. Laser 

alignment is an important issue, since if the LRF is no properly aligned it will be an 
incident angle different to a right angle between the laser beam and the calibration 

target, this could cause a range measure variation, and if the LRF central beam 
does not show the closer distance to the calibration target whole 2D laser points 

scanned will be rotated. 

The URG-04LX has an angle range of 240º and an angle resolution of 0.36º, a total 
of 683 angle steps, and accordingly the manufacturer the central beam is placed at 

the 384 angle step. In order to achieve so, the laser alignment procedure 

performed is based on [Ye & Borenstein, 2002], but with a slightly difference: 

 Calibration target was placed at distance D1 from the laser range finder, then 

using a C/Matlab software for laser continuous data acquisition the laser 
tilt/pan angle was modified. At this laser tilt/pan angle a total of 50 measures 

were taken, and its average was calculated. 

 Calibration target was placed at distance D2 from the laser range finder, and 
then the laser tilt/pan angle was modified using the software for laser 

continuous data acquisition. At this laser tilt/pan angle a total of 50 

measures were taken, and its average was calculated. 

 Taking the difference of D2-D1 two things must be observed: first the 

minimum value must to be the real D2-D1 value which is known; second the 
laser beam at which this minimum is reached must be 384 or as close as 

possible to it.  This manual procedure is repeated until these two conditions 

been satisfied. 

In this work, D1 = 600mm, D2 = 1150mm, then D2-D1 = 550mm. It was found 

that the 382th beam produced a minimum of 548mm. Then, for further proposes 

the 382th laser beam was selected to work with. Figure 3.1b and 3.1c show an 
example of a typical data acquisition for laser alignment. 
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a) 

 

b)                                                                   c) 

Figure 3.1 a) Experimental setup for the laser range finder calibration. Arrows show how the laser tilt/pan angle 
can be modified. b) Laser alignment, it shows the difference between two distances. c) Laser alignment, It shows 
the average result of 50 measures for each distance. 

3.2.1.2. Drift effect 

 

Figure 3.2 Laser range finder drift effect over time. 

Range fluctuations could be present at laser range finder power-up, in practical 
situations these fluctuations are not keep in mind, but in the case of camera/laser 

calibration they are a source of error that must to be avoided. In order to reduce 
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the laser range finder drift effect the following process was implemented [Ye & 

Borenstein, 2002]: the calibration target was placed at 1000mm away from the 

laser range finder, then at time Ti 50 samples were taken and its average distance 
calculated, and so on for Tk > Ti until a total of time of 3 hours in permanent 

operation was reached. 

Figure 3.2 shows after 90 minutes of continuous operation the range fluctuations 

decrease up reasonable levels less than 2.5mm. Therefore, before use this laser 

range finder for camera/laser calibration tests, it was turned on and used for 
90minutes. 

3.2.1.3. LRF linear model 

In order to find the laser range finder model, experimental data were used and 

acquired as follows: the calibration targets were placed at 19 different positions, at 
each position 50 measures were taken, and its average was calculated. It was 

found a linear trend between the real distance and the mean at each position, 

which agrees with [Reina & Gonzales, 1997], [Ye & Borenstein, 2002] and [Okubo, 
2009]. A linear laser range finder can be assumed, as Equation 3.1 shows. 

𝑦 = 𝑚𝜇 + 𝑏  3.1 

Where, 𝑦  is the estimate true distance, µ is the mean of measured range at each 

position, and m and b are the model parameters, which can be estimated using 

regular linear regression methods, then its values are given by Equation 3.2 and 
3.3. 

 

Figure 3.3 Range error Vs. real distance of calibrated (top) and non-calibrated (bottom) laser readings. 

𝑚 =
  𝑦𝑖−𝑦   𝜇 𝑖−𝜇  𝑛

𝑖=1

  𝜇 𝑖−𝜇  𝑛
𝑖=1

  3.2 

𝑏 = 𝑦 − 𝑚𝜇   3.3 

Where, 𝑦  and 𝜇  are the mean values of yi and µi respectively. After run 10 different 

tests and consolidate its results, it was found that: m = 1.0088 and b = -9.1322. 

Then, for further laser range finder measurements we apply the Equation 3.4 as the 
laser model. 

𝑑 = 1.0088𝑙 − 9.1322  3.4 

Where, l is the range given by the laser range finder, and d is the estimated range. 

Figure 3.3 shows the range error, or 𝑦 − 𝑦 the difference between the estimated 
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distance and real distance, vs. the real distance. In this figure can be appreciated a 

considerable reduction of the range error. 

3.2.2. Breakpoint Detection 

The LRF returns a set of range/bearing raw data points, which can be processed to 

obtain features as corners or lines. This section is focused on the corner extraction 
problem formulated from the point of view of breakpoint detection, which is the 

detection of homogeneous regions represented by a state space model. On the 

other hand, other detection techniques based on the split-and-merge algorithm are 
described in [Einsele, 2001] and [Pfister et al., 2003]. They use a recursive line 

fitting method followed by line intersection point estimation. The problem with 

those methods is the line model, since they have to deal with infinite slopes. To 
mitigate this problem the line model has to be changed resulting in more complex 

estimation process. 

The stochastic breakpoint detector described earlier has been formulated in 

[Castellanos & D., 1999] and it is briefly described here. The state space model is 

described by Equation 3.5. 

𝒙𝒌+𝟏 = 𝑭𝒌𝒙𝒌 + 𝒘𝒌   

𝒛𝒌 = 𝑯𝒌𝒙𝒌 + 𝒗𝒌  3.5 

Where, 𝒙𝒌 =  𝑟𝑘 𝜕𝑟𝑘 𝜕𝑡   is the state vector composed by the range measurement 

and its rate of change; wk and vk are uncorrelated Gaussian noise with zero mean 

and covariance Qk and Rk respectively; Rk is related with the sensor range error 

and matrices Fk and Hk are depicted in Equation 3.6.  

𝑭𝒌 =  
1 𝜕𝑡
0 1

   

𝑯𝒌 =  1 0   3.6 

Where, t is 1 since the time passed between k and k+1 is the same for all instants. 

The stochastic model proposed in Equation 3.5 assumes constant acceleration 

motion, for which the Qk matrix can be described as Equation 3.7 shows.  

𝑸𝒌 =  

𝜕𝑡 4

4

𝜕𝑡 3

2

𝜕𝑡 3

2
𝜕𝑡2

 𝜍𝑞
2  3.7 

Where, q
2 in this work has the same value of the sensor range error. The 

formulation of [Castellanos & D., 1999] considers a Kalman filter estimation 
process; the Algorithm 3.1 implements the breakpoint detection using the Kalman 

filter framework. 

 Algorithm 3.1 Breakpoint detection algorithm. 

1. . 

2. . 

3. . 

4. . 

5. . 

6. . 

7. . 

8. . 

9. . 

10. . 

k = 2; // Initializes the current LRF index 

ki = 2; // Initializes the last breakpoint detected index. 

Rb = [0 0 … 0]; // Initializes a Boolean array indicating if the range point is a breakpoint or not. 

While k <= Np // Iterates over all the range points (total of points: Np) 

If ki == k 

xk = x0; // Filter reset 

Pk = P0; 

else 

// Prediction 

xk|k-1 = Fk * xk-1; 
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11. . 

12. . 

13. . 

14. . 

15. . 

16. . 

17. . 

18. . 

19. . 

20. . 

21. . 

22. . 

23. . 

24. . 

25. . 

26. . 

27. . 

28. . 

29. . 

30. . 

31. . 

Pk|k-1 = Fk * Pk-1 * Fk + Qk; 

// Measurement 

Vk = rk – Hk*xk-1; // Innovation 

Sk = Hk * Pk|k-1 * Hk
T + Rk; 

// Breakpoint detection 

If (Vk
2 / Sk)  1

2 

// Breakpoint detected 

Rb(k) = 1; 

Rb(k-1) = 1; 

ki = k; 

k = k – 1; 

Else 

// Update the state model 

Kk = Pk|k-1 * Hk
T * (1 / Sk); 

Xk = xk|k-1 + Kk * Vk; 

Pk = Pk|k-1 – Kk * Hk * Pk|k-1; 

end 

end 

 

k = k + 1; 

end 

 

 

Figure 3.4 Corner extraction results. 

The breakpoint detection process described above is applied each time a new 

observation is performed. Figure 3.4 shows the resulting breakpoints detected 

applying Algorithm 3.1, where the red circles are the corners detected, the dot data 
points represent the LRF trace and the square shaped dot is the robot position. The 
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dotted circles in Figure 3.4 show two regions where the algorithm used has 

mistaken. However, in this work the detected corners are used to initializing the 

split-and-merge algorithm for the laser line estimation, which is proposed in the 
next section. 

3.2.3. Laser Lines Detection 

Line extraction algorithms from 2D laser scans has been proposed over many 

years. They include the widely known split-and-merge [Pavlidis & Horowitz, 1974], 

line-tracking approaches [Forsyth, 2003], Hough transform based methods [Pfister 
et al., 2003], line regression algorithms [Arras & Siegwart, 1997,], and RANSAC 

[Fischler & Bolles, 1981] based methods [Forsyth, 2003]. An interesting 

comparison of these algorithms is done in [Nguyen et al., 2005]. According to 
[Nguyen et al., 2005], the split-and-merge and line-tracking based approaches 

showed best performances taking into account speed and correctness. However, 
the split-and-merge methods strongly depend on the cost function and the line 

model assumed. In this work, the split-and-merge approach was implemented 

using a director vector line model and a cost function based on the geometrical 
constraint between the normal vector and the points of the line to be fit. 

 

Figure 3.5 Director vector line model and the line normal vector. 

Figure 3.5 shows the director vector based line model, where the line L can be 

parameterized using: P0 a point which belongs to L and 𝒖    a unitary vector 

representing the direction of L. The laser segmentation approach followed in this 
work is based on two fundamental steps: firstly, transforming the laser trace to a 

common coordinate frame; and secondly, recursive split-and-merge taking into 

account a cost function which measures the data variation along the line normal. 

The inputs to the laser line segmentation algorithm are the breakpoints detected 

and the LRF points. LRF points between two consecutive breakpoints are analyzed 

for line segmentation. Figure 3.6a shows the case for the first and the second 
breakpoint of Figure 3.4. The {L} local coordinate frame is defined with the X axis 

oriented to the next breakpoint. The base coordinate frame {B} is the current robot 
position. A transformation between {L} and {B} is defined as depicted in Equation 

3.8. 

𝑻 =  
𝑐𝑜𝑠⁡(𝜃) 𝑠𝑖𝑛⁡(𝜃)
−𝑠𝑖𝑛⁡(𝜃) 𝑐𝑜𝑠⁡(𝜃)

  𝑷𝑳 −  
𝑃𝑏𝑥

𝑃𝑝𝑦
    3.8 

Where,  is the X axis orientation of the frame {L} with respect to the {B} frame, 

PL is a 2xN matrix with the LRF points (N is the total of LRF points considered), and 

[Pbx Pby]
T are the coordinates of the first breakpoint. 

Once the LRF points are transformed to the {B} frame, a line model is built in 
parametric form considering that described in Figure 3.5 and showed in Equation 
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3.9. Using the director vector of the line defined between the two breakpoints, a 

normal vector is built as denoted in Equation 3.10.  

𝑳𝑳𝑹𝑭 = 𝑷𝒃 + 𝒖 ∗ 𝑡  3.9 

𝒖𝑵 =  −𝑢𝑦 𝑢𝑥 𝑇   3.10 

Where, Pb is the first breakpoint, u is the director vector and t is the parameter. 

Taking advantage of the vector definition of the laser line, the cost function to 
evaluate if the LRF points match the line model is defined by the dot product of the 

transformed LRF points and the normal vector. This is depicted in Equation 3.11. 

a)  

b)  

Figure 3.6 a) Laser trace transformation. b) Laser trace segmentation. 

𝑑 𝑷𝑳
𝑩 = 𝑚𝑎𝑥𝑖 𝑷𝑳,𝒊

𝑩  . 𝒖𝑵   3.11 

Where, 𝑷𝑳,𝒊
𝑩  is the LRF point in the {B} frame and d is the maximum value of the dot 

product. If d remains below of a threshold value, the LRF points are accepted as 
belonging to a line, otherwise the laser trace is decomposed in two chains of laser 

points and the process is repeated. Figure 3.6b shows the LRF trace in dotted line; 

the normal vector placed in the origin and depicted in non-continuous line, the 
threshold values in continuous lines, and the non-continuous lines shows the laser 

points decomposition. The Algorithm 3.2 sums up the line segmentation process 

described above. 

Algorithm 3.2 Laser line segmentation algorithm. 

1. . LRFsegments = []; // Where the point line, director vector and length is stored 
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2. . 

3. . 

4. . 

5. . 

6. . 

7. . 

8. . 

9. . 

10. . 

11. . 

12. . 

13. . 

14. . 

15. . 

16. . 

17. . 

18. . 

19. . 

20. . 

foreach pairBP  LRFbreakpoints // LRFcorners stores the breakpoints detected 

xyLRF = getPointsBetweenCorners(pairBP); 

doSegmentEstimation(xyLRF); 

end 

 

function doSegmentEstimation(xyPts) 

[Po u L] = getLinePointDirectorVectorAndLength(xyPts); // Eq. 3.9 

LineTheta = getLineOrientation(u); 

xy = getTransformedPoints(Po, LineTheta);                   // Eq. 3.8 

uN = getNormalVector(u);                                           // Eq. 3.10 

[costValue costValueID] = doEvaluateLine(xy, uN);       // Eq. 3.11 

If costValue < THRESHOLD                                         // Evaluate model or Split. 

LRFsegments  [Po u L]; 

else 

[xyPts1 xyPts2] = doSplit(xyPts, costValueID); 

doSegmentEstimation(xyPts1); 

doSegmentEstimation(xyPts2); 

end 

end 

 

The laser line estimation process described in the Algorithm 3.2 is applied each 

time the robot obtains a new observation. Figure 3.7 shows the lines extracted 

considering the breakpoints detected in the previous Section. Observing the original 
laser trace depicted in Figure 3.6b, the URG-04LX LRF used in this work has a 

considerably amount of noise which is significantly reduced using the laser line 

estimation proposed in this Section. 

 

Figure 3.7 Extracted laser lines applying Algorithm 3.2. 
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3.3. OMNIDIRECTIONAL VISION FEATURES 

The Table 2.4 from Section 2.4.2 presents a review of the feature extraction 

methods for omnidirectional images. Despite of the classification done in Table 2.4, 

a closer view of the features extracted to model the environment allows to notice 
that many techniques are supported in methods inherited from those used in 

standard vision devices as [Hansen et al., 2007], [Lourenco et al., 2010], [Hansen 

et al., 2010] and [Arican & Frossard, 2010]. On the other hand, other techniques 
use appearance-based information as the vertical edges of the environment for 

feature extraction [Scaramuzza et al., 2009] and [Goedemé et al., 2007]; using 1D 
panoramas as in [Briggs et al., 2006]; combining vertical edge positions in the 

panoramic image with color information as in [Tapus et al., 2004]; and, tracking 

planes which are detected using a LRF and an omnidirectional camera as in [Mei, 
2007]. Appearance-based signatures have advantages as providing rich 
environmental information (color, shape, texture), however the features descriptors 

have high dimensions (e.g. 128 or 64) compared with geometric landmark 
descriptions. From SLAM point of view, appearance-based features are very useful 

estimating associations between places, which are valuable for loop closing or re-
localization situations. 

Intuitively, the appearance-based model of the environment describes the 

environment as it is, taking advantage of its natural structure. In this work, the 
omnidirectional camera is used to extract vertical edges, which afterwards will be 

combined with the LRF data projected onto the omnidirectional image to estimate 

the edge position. For this aim, this section presents the vertical edge detection 
algorithm implemented and the results obtained. 

3.3.1. Central Catadioptric Edge Detection Algorithms 

A central catadioptric camera consists of a perspective or orthographic camera, and 

a mirror. The latter have to be conic, hyperbolic, or parabolic in order to obtain a 

single view point vision system. Projective models for these cameras have been 
developed by [Geyer & Daniilidis, 2000], [Barreto & Araujo, 2005] and [Mei & 

Rives, 2007]. Catadioptric vision systems have received special attention recently 
due to its long-term landmark tracking, its wide field of view, its robustness to 

occlusions, its ability to be fused with range data, and its reduced noise sensitivity 

[Gaspar et al., 2007]. However, many useful classical image processing algorithms 
are no longer valid on omnidirectional images, because the image deformations 

induced by the mirror. Edge extraction is one of those algorithms, since 

environmental edges are projected as conics on the omnidirectional image instead 
of lines as in the perspective case. 

Catadioptric edge detection methods can be divided in two basic categories. Firstly, 
methods based on conic fitting techniques as [Zhang, 1997], and more recently [J. 

Bermúdez, 2010]. These methods have the advantage to deal with calibrated and 

un-calibrated catadioptric cameras. Secondly, methods based on classical image 
processing techniques as the Hough transform or classical edge operators (e.g. 

Laplacian, Sobel masks, Canny, etc.). This is the case of [Tapus et al., 2004] and 

[Scaramuzza et al., 2009] which use classical edge detectors as the first step of 
processing, afterwards custom approaches are applied as image unwrapping and 

radial histograms to detect the most reliable vertical edges; in [Mei & Malis, 2006] 
the randomized Hough transform [Xu & Oja, 1993] is used to extract vertical 

edges. Related with this category, in [Bazin et al., 2007] an alternative approach is 

proposed. It consists in building chains of connected pixels which correspond to 
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catadioptric edges. The proposed solution is analytic; as a result it does not 

depends on sampling the edge parameter space as in Hough based techniques. 

The edge detection algorithm used in this work is a modified version of that 
presented in [Bazin et al., 2007]. This technique has the following advantages: 

first, it does not depend on parametric constraints as those presented in the Hough 
based approaches; second, it uses the standard projection model for catadioptric 

images proposed by [Geyer & Daniilidis, 2000] and it proposes a closed solution to 

define which pixels belongs or not to an edge; last, it uses well know image 
processing techniques, which aids in its implementation. The next two sub-sections 

explain the implemented algorithm in detail and show the results achieved using 

real-world images. 

3.3.2. Vertical Edge Detection 

The main topics of the approach proposed in [Bazin et al., 2007] will be briefly 
described here, as well as the modifications done in order to optimize the 

implementation for real-time operation. To start with, it is important to briefly 

describe image formation model for catadioptric cameras using the unified 
projection model of [Geyer & Daniilidis, 2000] and [Mei & Rives, 2007]. The basic 

steps are depicted in Figure 3.8a and described as follows: 

 

a)                                                                                         b) 

Figure 3.8 a) Image formation model in catadioptric cameras. b) Projection of a 3D line using unified model. 

 

1. A world point given by 𝑿𝟏
𝑾 =  𝑥1 𝑦1 𝑧1 𝑇 is projected onto the unitary sphere 

centered at 𝑶𝟏
𝑴; as a result, a point onto the unitary sphere can be defined as 

Equation 3.12 shows. 

𝐗𝐬
𝐌 =

𝐗𝟏
𝐖

 𝐗𝟏
𝐖 

=  
x1

 𝐗𝟏
𝐖 

y1

 𝐗𝟏
𝐖 

z1

 𝐗𝟏
𝐖  

T
  3.12 

2. Using the calibration parameter  the new projection point is changed to 𝑶𝟐
𝑷; 

doing this, the sphere point of Equation 3.12 changes to 

𝑿𝒔
𝑷 =  𝑋𝑠,𝑥

𝑀 𝑋𝑠,𝑦
𝑀 𝑋𝑠,𝑧

𝑀 + 𝜁 
𝑇
. 
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3. The sphere points 𝑿𝒔
𝑴 are projected to the plane at infinity Ω using the function 

𝒉 𝑿𝒔
𝑴  defined in Equation 3.13. This function is bijective, since points residing in 

the plane Ω can be lifted onto the unitary sphere. Equation 3.14 shows the 

inverse 𝑕 𝑿𝒔
𝑴  function. 

𝑿𝒄
𝛀 = 𝒉 𝑿𝒔

𝑴 =  
𝑋𝑠,𝑥

𝑀

𝑋𝑠,𝑧
𝑀 +𝜉

𝑋𝑠,𝑦
𝑀

𝑋𝑠,𝑧
𝑀 +𝜉

1 
𝑇

  3.13 

𝑿𝒔
𝑴 = 𝒉−𝟏 𝑿𝒄

𝛀 =

 
 
 
 

𝑋𝑐,𝑥
Ω

𝑋𝑐,𝑦
Ω

1 − 𝜉
𝑟+1

𝜉+ 1+ 1−𝜉2 𝑟 
 
 
 

, where 𝑟 = 𝑋𝑐,𝑥
Ω 2

+ 𝑋𝑐,𝑦
Ω 2

  3.14 

4. Last, using the intrinsic camera parameters the 𝑿𝒄
𝛀 are projected onto the image 

plane, which is depicted in Equation 3.15. 

𝑿𝒐
𝚷 = 𝑲𝑿𝒄

𝛀 =  

𝛾1 𝛾1𝑠 𝑢𝑜

0 𝛾2 𝑣𝑜

0 0 1
 𝑿𝒄

𝛀   3.15 

Where, 1 and 2 are the generalized focal lengths [Mei & Rives, 2007], s is the 

skew and [uo, vo] is the principal point. 

In this work, the omnidirectional camera parameters such as , the principal point, 

the generalized focal lengths, the skew and the distortion parameters were 
obtained using the C. Mei calibration toolbox [Mei, 2006]. Table 3.1 shows their 

values and uncertainties. 

Table 3.1Omnidirectional camera calibration parameters. 

Name Symbol Value and uncertainty 

Mirror parameter  0.96651 0.00599 

Principal point u0, v0  510.61716 1.43172, 420.61415 1.68635 

Generalized focal lengths 1, 2  402.97909 0.67177, 403.55496 0.67395 

Skew s 0 

Distortion parameters K1, k2, k3, k4, k5  -0.01934 0.00623, 0.00229 0.00362, -

0.00016 0.00183, -0.00017 0.00046, 0 

 

Using the projection model described above, a 3D line can be projected onto the 

image plane. To do so, the 3D line and the center of the unitary sphere 𝑶𝟏
𝑴 define a 

plane. This plane intersects the unitary sphere defining a great circle onto it. The 

great circle points are projected from 𝑶𝟐
𝑷describing a cone, which intersects the 

image plane describing a conic line. Having described the projection model process, 
and particularly the projection of 3D lines onto catadioptric images, the vertical 

edge detector is described below. 

The Algorithm 3.3 outlines the vertical edge detector implemented in this work. The 
edge detection algorithm receives three control parameters: the minimum edge 

length (minEdgeLength), the minimum angle between edges to split (merge) them 

(minAng2Split) and the maximum error to define what pixels belong to an edge 
(maxError2Split). The main steps of the algorithm are as follows: Firstly, the 

algorithm works with edge images, which can be extracted using various methods, 
in this work the Canny detector was used. In [Bazin et al., 2007] the authors used 

the Matlab implementation of the Canny detector, but to improve the computing 

time the edge detection was implemented using OpenCV [Bradski, 2000] and 
Matlab MEX files (line 4). Secondly, using the binary image and the minimum 

edge length chains of connected pixels are extracted (line 5). The computational 
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time of this chaining process is very high to be used in real-time. For this reason, in 

this work the chaining process was implemented entirely in C++ and accessible 

through Matlab using MEX files.  

Thirdly, the list of edges is evaluated to find which edges are catadioptric line 

projections (lines 6-12). The criterion to consider a point part of a catadioptric line 
is based on geometrical constraints. The plane defined by the center of the unitary 

sphere 𝑶𝟏
𝑴 and the edge projection onto this sphere can be parameterized by its 

normal vector 𝒏   , which is shown Figure 3.8b. Any point which belongs to this plane 

has to satisfy the geometric relationship give by Equation 3.16, which is called the 

great circle constraint.  

𝑿𝒔,𝒊
𝑴 𝑻

𝒏𝒔 = 0  3.16 

Where, ns is the plane normal vector; and 𝑿𝒔,𝒊
𝑴 𝑻

 is the i-th point on the sphere with 

respect to the mirror frame, which are obtained through a lifting process (e.g. take 
an image point and find its corresponding sphere point) using a look-up-table (LUT) 

improving the computational time for real-time operation (line 10). The normal 

vector ns can be extracted using the extreme points of the current line on the 
sphere, which is the method done in [Bazin et al., 2007] (line 11). However, it is 

not accurate enough since it does not take into account the other edge points. In 
this work, the normal vector is computed using singular-value-decomposition (SVD) 

as depicted in Equation 3.17. 

 

𝑥𝑠1 𝑦𝑠1 𝑧𝑠1

… … …
𝑥𝑠𝑁 𝑦𝑠𝑁 𝑧𝑠𝑁

 𝒏𝑺 = 𝑨 ∗ 𝒏𝑺 = 0  3.17 

Where, 𝑿𝒔,𝒊
𝑴 𝑻

=  𝑥𝑠𝑖 𝑦𝑠𝑖 𝑧𝑠𝑖   is a point on the sphere, N is the total number of points 

belonging to a chain, and ns is the normal vector. Using SVD, A = USVT, ordering 

the eigenvalues of S in decreasing order, the third column of V contains the least-
squared solution of Equation 3.17. 

Last, the method presented so far detects any edge; hence, in this work the 
pipeline process was modified in order to detect only the vertical edges (lines 30-

38). One additional constraint given by the cross-product between the sphere 

projection of the edge (parameterized by the normal vector ns) and the normal 
ground plane (nG) was included (line 31). The process to obtain the normal vector 

nG is as follows: the reference frame of the laser points is changed to the camera 

frame using the extrinsic calibration described in Section 3.4; using Equation 3.17 
applied to these points, the current normal vector nG is found. 

Algorithm 3.3 Vertical edge detection algorithm implemented. 

1. . 

2. . 

3. . 

4. . 

5. . 

6. . 

7. . 

8. . 

9. . 

10. . 

11. . 

// CATADIOPTRIC EDGE DETECTION PROCEDURE. 

function [eNormals, eSphEdges, eImgEdges] = getCatadioptricEdges(I, minEdgeLength, 
minAng2Split, maxError2Split) 

// Getting image edges and pixel chains. 

Ibin = getBinaryEdgeImage(I); 

allPixelChanins = getPixelChains(Ibin, minEdgeLength); 

// Edge detection on omnidirectional image through recursive split. 

foreach pixelChain  allPixelChanins 

edgeImgPixels = getImgPixels(pixelChain); 

edgeSphPoints = getShperePoints(pixelChain); 

[eNormals, eSphEdges, eImgEdges] = doEdgeDetection_Split(edgeImgPixels, 
edgeSphPoints, minEdgeLength, minAng2Split, maxError2Split); 
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12. . 

13. . 

14. . 

15. . 

16. . 

17. . 

18. . 

19. . 

20. . 

21. . 

22. . 

23. . 

24. . 

25. . 

26. . 

27. . 

28. . 

29. . 

30. . 

31. . 

32. . 

33. . 

34. . 

35. . 

36. . 

37. . 

38. . 

End 

// Merging edges 

[eNormals, eSphEdges, eImgEdges] = doEdgeDetection_Merge(eNormals, eSphEdges, eImgEdges, 
minAng2Split); 

End 

 

// MAIN PROCEDURE. 

// Initialization parameters. 

I  getGrayScaleImage(); 

minEdgeLength  0.3*(OUTTER_RADI – INNER_RADI); 

minAng2Split  1º: 

maxError2Split  0.01; 

// Getting all the normals, sphere points and image points of the edges detected. 

[eNormals, eSphEdges, eImgEdges] = getCatadioptricEdges(I, minEdgeLength, minAng2Split, 
maxError2Split); 

// Extracting vertical edges. 

veNormals = []; 

veSphEdges = []; 

veImgEdges = []; 

foreach edgeNormal  eNormals 

costValue = doEvaluateVerticalEdge(edgeNormal); 

if costValue < VERTICAL_EDGE_THRESHOLD 

veNormals  edgeNormal; 

veSphEdges  getRespectiveShpereEdge(edgeNormal); 

veImgEdges  getRespectiveImageEdge(edgeNormal); 

end 

end 

 

3.3.3. Results 

The Algorithm 3.3 described in the section above was tested using the dataset 

described in Section 2.5. It is worth noting that the images used correspond to 

real-world images captured in a mobile robot on motion. The vertical edge 
detection algorithm has three basic parameters namely the minimum edge length 

(minEdgeLength), the minimum angle between edges to split (merge) them 
(minAng2Split), the maximum error to define what pixels belong to an edge 

(maxError2Split) and the vertical edge threshold. In this work, they were fixed as 

follows: the minEdgeLength is the third part of the effective omnidirectional area 
given by the difference between the outer (taken from the omnidirectional camera 

calibration files) and inner radii; the minAng2Split was set to 1º; the 
maxError2Split and the VERTICAL_EDGE_THRESHOLD were set to 0.01. 
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a) 

 

b) 

 

c) 

Figure 3.9 Vertical edge detection onto omnidirectional images. Each row shows a different scenario of the dataset. 

Figure 3.9 shows three different scenarios of the same dataset (level zero-building 
PIV-summer-morning). The leftmost image is the binary edge image obtained using 

the Canny edge detector, the central image shows all the pixel chains projected 
onto the omnidirectional image (blue lines), and the rightmost image shows all the 

vertical edges found (blue lines).  

Taking into account the calibration parameters of the omnidirectional image, the 
minEdgeLength has a value of 112 pixels, which means that long and prominent 

chains of pixels are only extracted. As a result, observing the edge images not all 

the obvious edges are shown in the central images. Despite the fact that the 
omnidirectional camera mechanical support was carefully ensured, the robot motion 

causes a blur in the images. For this reason, and considering the pixel chaining 
algorithm analyzes the image using an 8-neighbour area, various edges are 

discarded since either they do not satisfy the Equation 3.16, or after successive 

splitting the resulting chain is not long enough. 

The environment modeled so far includes: a set of corner points and line segment 

extracted from the LRF data, and a set of vertical edges detected onto the 
omnidirectional image. The close relationship between the perceptual system used 

and the effectiveness of the SLAM solution was previously mentioned. In this work, 
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the LRF and the omnidirectional camera are not taken as separate sensors 

generating separate feature sets; instead they are combined to obtain a more 

reliable feature set. To do so, the extrinsic calibration between these sensors is 
needed, which is described in the next section. 

3.4. RANGE-AUGMENTED OMNIDIRECTIONAL VISION SENSOR 

The aim of this section is to explain how to embed range information in 

omnidirectional images. To do this the extrinsic calibration of a 2D LRF and a 
catadioptric camera is computed. A state of art about the extrinsic calibration of 

these sensors is shown in Table 3.2. Works such as [Mei & Rives, 2006] report 
interesting methods for visible laser traces, but this approach clearly cannot be 

applied to a 2D LRF with an invisible trace as mostly used in robotics (SICK or 

HOKUYO). Other works like [Sooyeong Yi, 2007] and [Orghidan et al., 2003] build a 
minimization function based on the re-projection error, or obtain a closed form 
solution based on conics, since they use visible laser traces but their results show 

they have a limited range of operation. 2D LRFs are commonly used to build 3D 
range scans by adding a pan/tilt mechanism. This is the case with [Scaramuzza et 

al., 2007], where a 3D range scan and a catadioptric camera are used in 3D 
indoor/outdoor environmental reconstruction adopting a camera/laser calibration 

based on [Weingarten, 2006], which does not reveal enough details of the 

calibration process. In terms of perspective cameras, [Zhang & Pless, 2004] has a 
general non-linear approach unlike [Wasielewski & Strauss, 1995]. The method 

proposed in [Zhang & Pless, 2004] can be extended to omnidirectional cameras, 

and the methods of this paper are based on that approach. A Matlab toolbox is 
included in [Unnikrishnan & Hebert, 2005], but does not give enough details of its 

model. 

Table 3.2 State of art summary for LRF and camera calibration 

Ref. Sensors Observation 

[Wasielewski & 
Strauss, 1995] 

Perspective camera + 2D 
LRF 

Calibration using linear models. 

[Zhang & Pless, 
2004] 

Perspective camera + 2D 
LRF 

Adaptable to central catadioptric cameras  

[Antone & 

Friedman, 2007] 

Perspective camera + 2D 

LRF 

Calibration based on specific target 

[Mei & Rives, 

2006] 

Omnidirectional camera 

+ 2D LRF (visible, 

invisible) 

Several methods for visible laser, but not clear for 

invisible laser 

[Unnikrishnan & 
Hebert, 2005] 

Perspective camera + 3D 
LRF 

Fast calibration using a Matlab toolbox 

[Scaramuzza et 
al., 2007] 

Omnidirectional camera 
+ 3D LRF 

One shot calibration 

[Sooyeong Yi, 
2007] [Orghidan 

et al., 2003] 

Omnidirectional camera 
+ 2D LRF (visible) 

Closed solution based on conics. 

[Weingarten, 

2006] 

Perspective camera + 3D 

LRF 

Not enough details about calibration 

 

The methods described in Table 3.2 use perspective or catadioptric cameras and a 
2D laser with approaches applicable to visible laser traces. The method presented in 

this document embeds range information in omnidirectional images using the 
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extrinsic calibration of a 2D LRF with an invisible laser trace and an omnidirectional 

camera using checkerboard patterns, and laser data points on these patterns. 

Unlike [Zhang & Pless, 2004] or [Mei & Rives, 2006], two calibration methods and 
three initial guess options are proposed. The calibration methods proposed are 

evaluated at pixel error level using ground truth data from the calibration patterns 
projected onto the omnidirectional image. In this work, the omnidirectional camera 

was calibrated with the C. Mei toolbox [Mei, 2006], and the 2D LRF with invisible 

trace was calibrated following the procedure specified in Section 3.2.1. 

3.4.1. Problem Formulation 

The LRF readings are distance measurements, belonging to a 2D plane parallel to 

the floor. The coordinate system used has the Z axis points upwards, the Y axis 
points forward, and is centered on the laser projection point. This is the same axis 

configuration as for the catadioptric camera, but centered on the mirror‟s central 
projection point. 

Figure 3.10 shows the experimental setup. There are three coordinate systems, 

those of the laser, the calibration pattern and the camera. The problem focuses on 
finding R and T so that laser points PL can be represented in the camera coordinate 

system, and then projected onto the omnidirectional image. The authors in [Zhang 

& Pless, 2004] base their model finding a rotation matrix R and a translation vector 
T in a simultaneous manner for perspective cameras, the approach described here 

finds R and T through a simultaneous and non-simultaneous way, and three 
different methods to get the initial guess for the non-linear minimization were 

explored. A point PC in the camera coordinate frame can be described by Equation 

3.18. 

 

Figure 3.10 Problem description and experimental setup. 

𝑷𝑪 = 𝑹𝑷𝑳 + 𝑻  3.18 

Where, PL is a point in the laser coordinate frame, R is a 3x3 rotation matrix, and T 

is a 3D translation vector of the camera center of projection with respect to the 

laser frame. The aim is to find R and T using the checkerboard planes, which are 
visible from the laser and camera point of view. This work shows two methods to 
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find R and T. The first, which tries to find them simultaneously performing two non-

linear minimization processes, it has the advantage of arriving at a solution 

regardless of any alignment constraint between the LRF and the omnidirectional 
camera, but it involves 6 degrees of freedom (DOF) estimation. The second tries to 

find the translation vector T, and then the rotation matrix R. This decoupled 
parameter estimation has the advantage to reduce the problem estimation to 3DOF 

+ 3DOF, which requires less training data in comparison with a simultaneous 

parameter estimation. In both cases a Levenberg-Marquardt (LM) optimization 
algorithm was used because it is easy to implement, and it generally has a fast 

convergence rate. However, this algorithm is sensitive to the initial guess [Madsen 

et al., 2004]. Then, three different ways to calculate this initial guess were 
implemented unlike [Zhang & Pless, 2004]. The initial guess methods are described 

as follows: first, one of the calibration poses available was selected and a set of 
linear least squares (LLS) equations were defined using these laser points. Second, 

two calibration poses were selected and the LLS equations were defined using these 

points. And third, a sub-set of the central laser points of each calibration pose was 
used to build the LLS equations. 

3.4.2. Simultaneous Parameter Estimation 

Data acquisition for this method includes images with checkerboard calibration 
planes and 2D laser points which belong to the calibration plane. Using these 

images camera calibration was performed and the extrinsic parameters were then 
used to define a vector parallel to the normal calibration plane as described by 

Equation 3.19 [Zhang & Pless, 2004]. 

𝑵𝑪 = 𝑹𝟑𝑾 𝑹𝟑𝑾
𝑻 . 𝑻𝑾   3.19 

Where, R3W and TW are the third column of the rotational matrix and the translation 

vector of the calibration plane pose with respect to the omnidirectional camera. 
Since, the laser points belong to the calibration plane there is a geometric 

constraint based on the distance between the camera and the calibration plane. 
This constraint can be expressed by Equation 3.20 [Zhang & Pless, 2004]. 

𝑵𝑪.  𝑹𝑷𝑳 + 𝑻 =  𝑵𝑪 
2  3.20 

Where, R and T are the parameters to estimate, and PL is a laser point. This 

expression differs from that proposed in [Zhang & Pless, 2004] since in this work 

the camera frame was selected as the base frame rather than the laser frame. 
Using Equation 3.20 a non-linear minimization function can be expressed as in 

Equations 3.21 and 3.22. 

𝑓 𝑹, 𝑻, 𝑷𝑳 = 𝑵𝑪.  𝑹𝑷𝑳 + 𝑻 −  𝑵𝑪 
2  3.21 

𝛻𝑄,𝑇𝒇 𝑹, 𝑻, 𝑷𝑳 = 𝑵𝑪.  𝜵𝑹𝑸,𝑷𝑳
𝜵𝒏𝑸, 𝑰3𝑥3   3.22 

Where, ∇𝑄,𝑇𝒇(𝑹, 𝑻, 𝑷𝑳)𝑷𝐿 is the gradient of the minimization function using 

quaternions instead rotational matrix, 𝛁𝑹𝑸,𝑷𝑳
 is the quaternion‟s gradient evaluated 

at point PL, and 𝛁𝒏𝑸 is the gradient of the quaternion‟s normalization factor. A LM 

algorithm was used to minimize 3.21, and we described three different ways to 

obtain the initial guess. By organizing the laser points in an AX=B system, and 

using Equation 3.21, the LLS equations for the initial guess are given by Equations 
3.23, 3.24 and 3.25. 

[𝑁𝐶𝑋𝑃𝐿𝑋 , 𝑁𝐶𝑋𝑃𝐿𝑌 , 𝑁𝐶𝑋𝑃𝐿𝑍 , 𝑁𝐶𝑌𝑃𝐿𝑋 , 𝑁𝐶𝑌𝑃𝐿𝑌 , 𝑁𝐶𝑌𝑃𝐿𝑍 , 𝑁𝐶𝑍𝑃𝐿𝑋                   𝑁𝐶𝑍𝑃𝐿𝑌 , 𝑁𝐶𝑍𝑃𝐿𝑍 , 𝑁𝐶𝑋 , 𝑁𝐶𝑌 , 𝑁𝐶𝑍] =  𝑨𝒊  3.23 

 𝑟11 , 𝑟12 , 𝑟13 , 𝑟21 , 𝑟22  , 𝑟23 , 𝑟31 , 𝑟32 , 𝑟33  , 𝑡𝑥  , 𝑡𝑦  , 𝑡𝑧 
𝑇

= 𝑿  3.24 

 𝑵𝑪 
2 = 𝐵𝑖  3.25 



 

50 

Where, Ai is a row of the A matrix, Bi is a row of the B vector, X is the vector 

parameters to estimate, NCX, NCY and NCZ are the NC vector components of Equation 

3.19, r11 to r33 are the 9 terms of the rotation matrix, tx, ty and tz are the translation 
vector, and PLX, PLY and PLZ are the i-th laser point components. The solution to 

these simultaneous equations gives a rank-2 rotation matrix for all three methods 
to obtain the initial guess. This happens when the training points are planar [Eggert 

et al., 1997] like the laser points, which are constrained to a 2D plane parallel to 

the floor. Due to this, the resulting matrix is not a proper rotation matrix, since it 
does not satisfy RRT = I. In order to resolve this problem, [Eggert et al., 1997] 

propose finding the nearest rotation matrix which satisfies RRT = I, by calculating 

the eigen-values and eigen-vectors of the resulting matrix, the nearest proper 
rotation matrix can be expressed by Equation 3.26. 

𝑹 = 𝑴𝑆+ ±
𝑿

  𝑇𝑟𝑎𝑐𝑒(𝑿) 
  3.26 

𝑆+ =  
𝒖𝟏𝒖𝟏

𝑻

 𝛿1
+

𝒖𝟐𝒖𝟐
𝑻

 𝛿2
   3.27 

𝑋 =   𝑴𝑆+  𝑴𝑆+ 𝑇 − 𝑰 𝒖𝟑𝒖𝟑
𝑻  3.28 

Where, u1 and u2 are the eigen-vectors corresponding to the non-zero eigen-values 

δ1 and δ2, and u3 is the eigen-vector associated with the zero eigen-value. The sign 

in Equation 3.26 is chosen in line with the determinant of 𝑹  being +1; and M is the 

LLS resulting matrix. After the LLS and the first non-linear minimization are solved, 
a second non-linear minimization is performed using and Euclidean constraint 

rather than a geometrical one. This is shown in Equation 3.30. 

𝑓 𝑹, 𝑻, 𝑷𝑳 =   
1

2
 

𝑵𝑪𝒊

 𝑵𝑪𝒊 
 𝑹𝑷𝑳𝒊𝒋 + 𝑻 −  𝑵𝑪𝒊  

𝑀
𝑗=1

𝐾
𝑖=1   3.30 

Where, K is the total number of calibration poses, M is the total number of laser 

points in the i-th checkerboard pattern, and NCi is the vector defined by Equation 
3.19 for the i-th calibration plane. The minimization algorithm used was LM, but 

with an initial guess given by the first minimization stage. 

3.4.3. Non-simultaneous Parameter Estimation 

The second approach consists of performing decoupled parameter estimation. First, 

the translation vector is found, and then the rotation matrix is estimated using this 
information. This decoupled problem statement is common in mobile robotics 

[Unnikrishnan & Hebert, 2005] and [Mei, 2006]. In general, this method uses the 
same minimization and geometrical constraints as above. In the translation vector 

estimation Equations 3.19 to 3.21 are still valid. But, the Jacobian is now described 

by Equation 3.31. The initial guess for the LM algorithm can be re-written as shown 
in Equations 3.32 to 3.34. 

𝛻𝑄,𝑇𝒇 𝑹, 𝑻, 𝑷𝑳 = 𝑵𝑪.  𝑰3𝑥3   3.31 

 𝑁𝐶𝑋  𝑁𝐶𝑌  𝑁𝐶𝑍 = 𝑨𝒊   3.32 

 𝑡𝑥  𝑡𝑦  𝑡𝑧 
𝑇

= 𝑿  3.33 

 𝑵𝑪 
2 − (𝑁𝐶𝑋𝑃𝐿𝑋 + 𝑁𝐶𝑌𝑃𝐿𝑌 + 𝑁𝐶𝑍𝑃𝐿𝑍) = 𝐵𝑖  3.34 

Where, Ai is a row of the A matrix, Bi is a row of the B vector, X is the parameters 
to estimate, NCX, NCY and NCZ are the NC vector components of Equation 3.19, tx, ty 

and tz are the translation vector, and PLX, PLY and PLZ are the i-th laser point 

components. The second parameter estimation calculates the rotation matrix using 
the translation vector found above. Equations 3.19 to 3.21 are still valid, but their 

Jacobian is described by Equation 3.35. The initial guess of the rotation matrix 
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changes too, and the LLS equations can then be expressed as shown in Equations 

3.36 to 3.38. 

𝛻𝑄,𝑇𝒇 𝑹, 𝑻, 𝑷𝑳 = 𝑵𝑪.  𝜵𝑹𝑸,𝑷𝑳
𝜵𝒏𝑸   3.35 

[𝑁𝐶𝑋𝑃𝐿𝑋 , 𝑁𝐶𝑋𝑃𝐿𝑌 , 𝑁𝐶𝑋𝑃𝐿𝑍  , 𝑁𝐶𝑌𝑃𝐿𝑋 , 𝑁𝐶𝑌𝑃𝐿𝑌 , 𝑁𝐶𝑌𝑃𝐿𝑍 , 𝑁𝐶𝑍𝑃𝐿𝑋 ,   

                𝑁𝐶𝑍𝑃𝐿𝑌 , 𝑁𝐶𝑍𝑃𝐿𝑍 , 𝑁𝐶𝑋 , 𝑁𝐶𝑌 , 𝑁𝐶𝑍] =  𝑨𝒊  3.36 

 𝑟11  , 𝑟12 , 𝑟13 , 𝑟21 , 𝑟22 , 𝑟23  , 𝑟31 , 𝑟32 , 𝑟33 
𝑇 = 𝑿  3.37 

 𝑵𝑪 
2 − (𝑁𝐶𝑋𝑇𝑋 + 𝑁𝐶𝑌𝑇𝑌 + 𝑁𝐶𝑍𝑇𝑍) = 𝐵𝑖  3.38 

Where, Ai is a row of the A matrix, Bi is a row of the B vector, X is the vector 

parameters to estimate, NCX, NCY and NCZ are the NC vector components of Equation 
3.19, r11 to r33 are the 9 terms of the rotation matrix, PLX, PLY and PLZ are the i-th 

laser point components, and tx, ty and tz are the translation vector components of 

the first minimization stage. The resulting rotation matrix has the same rank-2 
problem as described previously, so the nearest proper rotation matrix is found 

following the same procedure as shown above. In similar way as the simultaneous 

parameter estimation, a second minimization is performed using Equations 3.26 to 
3.28. 

3.4.4. Results 

The calibration methods proposed were tested on a dataset composed by seventeen 

different images and LRF data points. Each image contains the calibration plane at 

different positions and orientations. The data acquisition process had 6 main steps: 
first, laser alignment was performed; second, there was a warm-up period of 

90minutes; third, the checkerboard calibration pattern was placed; fourth, 15 laser 

readings were taken and corrected according to the laser model; fifth, an 
omnidirectional image was captured; sixth, steps 3 to 5 were repeated until 

acquisition was completed.  

The omnidirectional camera was calibrated, and its intrinsic and extrinsic 

parameters were used to get the “ground truth” of the laser points on the 

calibration planes only. It is difficult to get a reliable ground truth data. However, 
taking advantage of the experimental setup (Figure 3.10), and defining: h = D – d, 

where D is the distance from the laser to the floor, d is the distance from the 

bottom right corner on the calibration pattern to the floor, and h is the relative 
distance from the laser trace to the calibration pattern origin. D and d were 

measured with a LLB-60D laser (±1.5mm). Then, using the intrinsic and extrinsic 
camera parameters a very close “ground truth” data can be obtained.  In this way, 

unlike with [Zhang & Pless, 2004] and [Mei & Rives, 2006] the methods proposed 

are able to get the pixel error associated to the laser point‟s projection onto the 
omnidirectional image. Using the ground truth and the experimental laser points 

projected onto the omnidirectional image, the results for the three initial guess 

methods were tested. 

Figure 3.11 graphs the results for the simultaneous parameter estimation method. 

Figure 3.11a shows the mean-squared-error (MSE) when each pose was taken to 
perform the extrinsic calibration, and tested over all other images. In the same 

way, Figure 3.11b shows the MSE for the central points of each calibration pose. On 

the other hand, Figure 3.11c shows the MSE when each pose is combined with 
other to obtain the extrinsic calibration, and tested over all other images. Observing 

Figure 3.11, the shape of the error curves is similar which suggest the calibration 
procedure is stable. The standard deviation at each point is plotted as a bar. In 

general, the two first guess methods offer less uncertainty compared with the third 

one. However, the total of successful calibration results for the first and second 
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guess method was eight over seventeen calibration poses (giving a successful rate 

of 47%); nevertheless, the total of successful calibration results for the third guess 

method was 111 over 136 (total combinations of 2 calibration poses over 17) 
calibration poses (giving a successful rate of 82%). Therefore, despite the fact that 

the calibration results for the third guess method appear noisier considering their 
uncertainty bands, it is more likely to get a successful calibration result combining 

the LRF points of two calibration positions. 

a)  

b)  

c)  

Figure 3.11 Results for simultaneous estimation with a total mean-squared-error less than 5px over all poses. a) 
Using a single calibration pose. b) Using the central points of all calibration poses. c) Using a combination of two 
calibration poses. 

Figure 3.12 shows the results for the non-simultaneous parameter estimation 
method. It should be noted that the initial guess method which takes the central 

points of all the calibration planes is not present. In this case, even with a total MSE 
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of less than 20px (extremely high and with no practical use) it was not possible to 

obtain any calibration result with this initial guess method. Observing the shape of 

the error graphs in Figure 3.12, it is worth noting less noisy results. However, the 
successful rate is less compared with the results of the simultaneous parameter 

estimation. In the case of the first guess method, it yields seven successful 
calibration results over seventeen poses (giving a rate of 41%); and in the case of 

the third guess method, it yields forty successful results over 136 (giving a rate of 

29%).  

a)  

b)  

Figure 3.12 Results for non-simultaneous estimation with a total mean-squared-error less than 5px over all poses. 

a) Using a single calibration pose. b) Using a combination of two calibration poses. 

It can be observed that in case of the simultaneous parameter estimation is more 

likely to get a successful calibration result. In addition, it does not assume any 
alignment constraint between the LRF and the omnidirectional camera. Another 

important advantage of this method is considering the intrinsic coupling between 

rotation and translation. However, the simultaneous parameter estimation is nosier 
compared with the non-simultaneous parameter estimation due the difference in 

the degrees of freedom (DOF). The former performs a calibration process 

considering 6DOF, while the latter considers two successive calibrations of 3DOF. In 
the both methods proposed the calibration poses between the 6th and the 10th show 

low MSE. This may be due to the relative inclination of the checkerboard pattern 
with respect to the LRF frame, particularly in these calibration poses. 

It is worth noting that the URG-04LX LRF is a low power device with a limited 

range, and noisy laser readings. It makes difficult to get a good enough initial 
guess due its geometrical constraint. For instance, there are missing laser readings 
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on the black squares of the checkerboard pattern, with which the lesser LRF points 

the lesser accurate calibration results. 

Using the best result found for the simultaneous parameter estimation method, the 
LRF points can be projected onto the omnidirectional image. Figure 3.13 shows two 

cases using real-world images of the dataset collected. In both images, the blue 
trace shows the LRF points which a range value less than the maximum measured 

by the URG-04LX laser scanner; the red trace shows those LRF points bigger than 

the maximum range. The latter is useful to observe the limited measurement 
capability of the URG-04LX.  

In Section 3.2 the LRF data points were segmented, and their corners found. In 

Section 3.3 the vertical edges of the environment were detected from the 
omnidirectional image and its projection model. In this Section the extrinsic 

calibration of the LRF and the omnidirectional camera was computed. The next 
Section is focused on using the methods described and proposed up now to define 

the sensor model used in this work, which uses metric data as well as appearance-

based information to extract reliable environmental features.  

a)   b)  

Figure 3.13 LRF points projected onto the omnidirectional image. a) Level 1 of the PIV building. b) Level 2 of the 

PIV building. 

3.5. TEXTURED VERTICAL EDGE FEATURES 

The most relevant solutions to SLAM are focused on the feature-based approach, 

where feature descriptors are extracted from laser scans or images to solve the 
problem of matching observations to landmarks. Other alternative approaches are: 

in [Nieto et al., 2007] 2D raw range data is used to extract saliency using the 

Iterative Closest Point (ICP) [Besl & McKay, 1992] algorithm regardless the 
geometric representation of the environment; [Silveira et al., 2008] computes the 

camera pose and the scene structure considering illumination changes using the 

entire image intensities to extract saliency regions, and then perform a non-linear 
minimization.  

In recent years, appearance-based mapping and localization has gained special 
attention since these methods use a richer description of the environment giving 

more cues to improve robot mapping and localization as [Cummins & Newman, 

2009] and [Ranganathan & Dellaert, 2011]. These approaches are featured-based 
(e.g. SIFT [Lowe, 2004], SURF [Bay et al., 2008], Harris corners [Harris & 

Stephens, 1988], etc.) and they present a probabilistic framework to build 

appearance-based topological maps, assuming environments with enough texture 
information to extract the image features.  
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Appearance-based methods also exploit the environment structure given mainly by 

vertical and horizontal edges, such as doors, planes, etc. to obtain a better 

representation of the robot surroundings. In this sense, [Wongphati et al., 2008] 
proposed a solution using omnidirectional images and bearing information of 

vertical edges to solve SLAM, but this approach needs two consecutive frames to 
extract the position of the vertical edges, delaying the robot pose estimation. The 

authors in [Scaramuzza, 2008] proposed a vertical edge descriptor which robustly 

matches catadioptric vertical edges. This descriptor is valid locally, requiring two or 
more views to extract the scene vertical edges position. 

Besides, common available laser range finders work in a plane parallel to the 

ground, and then it limits the environment representation to 2D. Combining vision 
sensors with laser range finders increase the perceptual information, but monocular 

or stereo cameras have limited field of view affecting their perception due to 
occlusions and feature lifetime observation. However, omnidirectional cameras have 

important advantages as long-term landmark tracking, wide field of view, and 

robustness to occlusions. Therefore, combining an omnidirectional camera with a 
LRF for feature extraction has many advantages: all the laser trace can be used to 

extract environment features on the image plane, depth information can be 

embedded into the omnidirectional image, 3D feature information can be 
recovered, and once the calibration between these sensors is performed it can be 

used in real time. In [Gallegos et al., 2010] a system based on a LRF and an 
omnidirectional camera is described to obtain a map of the environment using scan 

matching and vertical edges; however the authors neither solve the SLAM problem 

nor define a data association method. In [Mei, 2007] a hybrid sensor is presented 
and composed of an omnidirectional camera and a LRF, where the laser trace is 

projected onto the omnidirectional image and it is used to extract salient features 
on the image plane using 1D intensity signals around the detected vertical edge as 

a local data association method; however, pixel intensity based methods need short 

base-line movements to be used with custom similarity metrics and do not produce 
discriminative enough features for data association. 

In this work, a sensor model based on the extrinsic calibration between a LRF and 

an omnidirectional camera [Bacca et al., 2010] in order to extract the 3D position 
of vertical edges in indoor environments is presented. This extrinsic calibration was 

obtained using the Simultaneous Parameter Estimation method, which was 
described in Section 3.4.2. Data association is very important for probabilistic 

frameworks which deal with mapping and localization. The proposed approach uses 

a two-step algorithm to solve data association: first, a Joint Compatibility Branch 
and Bound test (JCBB) [Neira & Tardos, 2001] is performed; second, a geometric 

constraint based on the catadioptric projection of the scene vertical edges and a 

rigid transformation is considered in order to resolve the ambiguous associations 
obtained from the JCBB test. The experimental validation was performed 

integrating our sensor model into the FastSLAM [Montemerlo & Thrun, 2003] 
framework and using a dataset collected as describe in Section 2.5. 

3.5.1. Sensor Model 

The Algorithm 3.4 depicts the basic steps to build the sensor model proposed in this 
work. It consists of six stages as follows: firstly, using Algorithm 3.1 to 3.3 the LRF 

corners, the LRF segments and the vertical edges are detected; secondly, using the 

line projection model and its conic representation [Barreto & Araujo, 2005] the LRF 
segments are projected on the sphere and the image plane, being able to compute 

their normal vectors and conic matrices respectively; thirdly, the LRF corners are 
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projected on the image plane and their uncertainties found; fourthly, the vertical 

edge model on the image plane is computed and their intersections found with the 

conic corresponding to the LRF segment; fifthly, using the corner uncertainties in 
the image plane and the intersects computed above, the data association vector is 

found relating each corner with the vertical edge intersect; last, the vertical edge 
observation is performed. 

Algorithm 3.4 Sensor model algorithm. 

1. . 

2. . 

3. . 

4. . 

5. . 

6. . 

7. . 

8. . 

9. . 

10. . 

11. . 

12. . 

13. . 

14. . 

15. . 

16. . 

17. . 

18. . 

19. . 

20. . 

21. . 

22. . 

23. . 

24. . 

25. . 

26. . 

27. . 

28. . 

29. . 

30. . 

31. . 

32. . 

33. . 

34. . 

35. . 

36. . 

37. . 

38. . 

lrfSegments = getLRFsegments(); 

lrfCorners = getCornersFromSegments(); 

veList = getCatadioptricVerticalEdges(); 

veListFOV = getVerticalEdgesInFOV(veListSmooth); 

veListSmooth = doVerticalEdgeSmooth(veList); 

// Computing the segment normals in the sphere and their conic matrix on the image plane. 

lrfSegNormals  []; 

lrfSegConic  []; 

foreach S  lrfSegments 

lrfSeg = doTransformLRFsegment(S); 

lrfSegSph = doProjectSegment2Sphere(lrfSeg); 

lrfSegNormals  getNormalVector(lrfSegSph); 

lrfSegConic  getConicMatrix(lrfSegSph); 

end 

// Computing the corners uncertainty on the image plane. 

Jp = getPolarCartesianJacobian(lrfCorners); 

lrfCornersCamera = getTransform2CameraFrame(lrfCorners); 

Jr = getTransformationJacobian(lrfCornersCamera); 

Js = getInfinitePlaneJacobian(lrfCornersCamera); 

lrfCornersUnd = getPointsOnInfinitePlane(lrfCornersCamera); 

Jd = getDistortionJacobian(lrfCornersUnd); 

lrfCornersDist = getDistortedPoints(lrfCornersUnd); 

Ji = getCameraProjectionJacobian(); 

lrfCornersImg = getPointsOnImage(lrfCornersDist); 

sensorSigma = getSensorSigma(lrfCorners); 

lrfCornersSigma = getUncertaintyOnImagePlane(Jp, Jr, Js, Jd, Ji, sensorSigma); 

// Vertical edge intersection with the LRF segment conics on the image plane. 

veMeasurement  []; 

foreach ve  veListFOV 

// Computing edge model on image plane. 

xyImg = getVEimagePoints(ve); 

veImgModel = doComputingVEmodel(xyImg); 

// Computing segment conics and their intersection with the vertical edge. 

foreach Ns  lrfSegNormals; Cs  lrfSegConic 

// Computing intersections. 

[conicCenter, conicRadii] = getConicCenterRadii(Cs); 

[conicI1 conicI2] = getConicIntersects(coniCenter, conicRadii, veImgModel) ; 

// Validating intersections with the corner uncertainties. 
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39. . 

40. . 

41. . 

42. . 

43. . 

44. . 

45. . 

46. . 

47. . 

H = getCornerIntersectsDataAssociation(conicI1, conicI2, lrfCornersImg, 
lrfCornersSigma); 

If empty(H) 

Continue; 

else 

veMeasurement  doMeasurement(H, lrfCorners); 

end 

end 

end 

 

The first stage corresponds to lines 1 to 5 in the Algorithm 3.4. Line 1 considers the 
LRF data process considered in Section 3.1. However, after segmenting the LRF 

data additional possible corners are introduced (Line 2), since the LRF data is 
branched at the point specified by the cost function defined in Equation 3.11. 

Afterwards, the vertical edges are detected using the process described in Section 

3.2 (Line 3). The vertical edges detected are spread in the 360º field of view of the 
omnidirectional image. However, the LRF has a limited field of view of 240º. Then 

those vertical edges on the image out of the field of view of the LRF are filter out 

(Line 4). Furthermore, the vertical edges are smoothed computing their line model 
on the image plane. The line model used is the standard slope-intersect, which is 

computed in the least squares sense using singular value decomposition (SVD) 
considering all the vertical edge points (Line 5). 

The second stage is performed between lines 7 and 14. In line 10, the LRF segment 

is transformed with respect to the camera frame using the extrinsic calibration 
described in Section 3.4. Afterwards, using the projection model explained in 

Section 3.3 the world points are projected onto the sphere (Line 11). There, using 

SVD as explained in Section 3.3.2 the normal vector corresponding to the plane 
(PS) defined by the LRF segment and the mirror projection center is computed 

(Line 12). And then, using the conic projection model proposed by [Barreto & 
Araujo, 2005] and the intrinsic camera parameters the catadioptric projection of the 

LRF segment is defined by the conic Equation 3.39. 

𝑪𝑰 =  

𝛾1 𝛾1𝑠 𝑢0

0 𝛾2 𝑣0

0 0 1
 

−𝑇

 

𝑛𝑥
2 1 − 𝜉2 − 𝑛𝑧

2𝜉2 𝑛𝑥𝑛𝑦(1 − 𝜉2) 𝑛𝑥𝑛𝑧

𝑛𝑥𝑛𝑦(1 − 𝜉2) 𝑛𝑦
2 1 − 𝜉2 − 𝑛𝑧

2𝜉2 𝑛𝑦𝑛𝑧

𝑛𝑥𝑛𝑧 𝑛𝑦𝑛𝑧 𝑛𝑧
2

  

𝛾1 𝛾1𝑠 𝑢0

0 𝛾2 𝑣0

0 0 1
 

−1

  3.39 

Where, the first and third matrix correspond to the intrinsic camera parameters, 

and the second one correspond to the projection of the conic on the image plane at 
infinity; [nx ny nz]

T is the normal vector which parameterizes the plane PS, and  is 

the mirror parameter. 

The third stage corresponds to lines 16-26. Here, the projection model described in 

Section 3.3.1 is used to extract the Jacobians in order to estimate the LRF corners 
uncertainties on the image plane. Also, it is worth recalling that given two random 

variables a and b related by a non-linear function a = f(b), then the variance a 

may be approximated by the variance of b using Equation 3.40. 

𝚺𝐚 = 𝛁𝐟𝐛𝚺𝐛𝛁𝐟𝐛
𝐓  3.40 

Where fb is the Jacobian of f(.) taken with respect to b. Applying Equation 3.40 

successively over all the projection process the corners uncertainties on the image 

plane can be estimated. To do so, the Jacobians corresponding to the following 

functions have to be computed: the transformation from polar to Cartesian 



 

58 

coordinates, the transformation to the camera frame, the projection to the infinite 

image plane, the distortion model and the camera projection model. The Jacobians 

of these functions are evaluated in the corresponding mean value obtained 
evaluating each non-linear function. The corners uncertainties on the image plane 

can be defined as depicted in Equation 3.41. 

𝚺𝑪𝒊
𝑰 = 𝑱𝑲𝑱𝑫𝑱𝑺𝑱𝑹𝑱𝑷  

𝜍𝑟
2 0 0

0 𝑟𝜍𝜃𝑐
2 0

0 0 0

 𝑱𝑷
𝑻𝑱𝑹

𝑻𝑱𝑺
𝑻𝑱𝑫

𝑻 𝑱𝑲
𝑻   3.41 

Where, 𝜍𝑟
2 and 𝜍𝜃𝑐

2  are the variances of the range and orientation of the LRF, r the 

range of the i-th corner in the LRF frame, JP is the Jacobian of the polar to 

Cartesian coordinate transformation, JR is the Jacobian of the transformation to the 
camera frame, JS is the Jacobian of the projection function to the image plane at 

infinity, JD is the Jacobian of the distortion function which was taken from the 

calibration toolbox presented in [Mei, 2006] and JK is the Jacobian of the camera 
projection function. These Jacobians can be found in the Appendix A. Figure 3.14 

shows how the uncertainty projection works. In this figure, the dominant vertical 

edges are displayed in magenta, the LRF trace is projected using the extrinsic 
calibration discussed in Section 3.4 (dotted blue trace), the LRF corners are 

displayed using red crosses and their uncertainties correspond to the ellipses 
painted in green. 

 

Figure 3.14 Catadioptric projections. In magenta the dominant vertical edges are displayed, the LRF trace is 
projected in blue, the LRF corners are drawn using red crosses and their uncertainties are shown in green. 

The fourth stage corresponds to lines 36 and 37. The SVD is used to compute the 

slope and intersect of each vertical edge, and using the conic matrix computed in 

second stage the conic center and radii are extracted. The intersection between the 
vertical edge line model and the conic corresponding to the catadioptric projection 

of the LRF segments is computed as follows: 



 

59 

1. A point PL which belongs to the conic has to satisfy the equality 𝑷𝑳
𝑻𝑪𝑰𝑷𝑳 = 0, 

where CI is defined by Equation 3.38. As a result of operating over the conic 

equality, and adding the vertical edge line model, the system to solve is 
depicted in Equation 3.42. 

 𝑥𝐿 𝑦𝐿 1 𝑇  
𝐴 𝐵 𝐷
𝐵 𝐶 𝐸
𝐷 𝐸 𝐹

  
𝑥𝐿

𝑦𝐿

1
 = 𝐴𝑥𝐿

2 + 𝐵𝑥𝐿𝑦𝐿 + 𝐶𝑦𝐿
2 + 𝐷𝑥𝐿 + 𝐸𝑦𝐿 + 𝐹 = 0   

𝑦𝐿 = 𝑀𝑥𝐿 + 𝑘  3.42 

Where, PL = [xL yL 1]T is the intersection point, M and k are the slop and intersect 

of the vertical edge. 

2. Simplifying Equation 3.42, it can be expressed in form of a quadratic equation of 

xL as shown in Equation 3.43, which can be solved in closed form. 

𝑥𝐿
2 𝐴 + 𝑀𝐵 + 𝐶𝑀2 + 𝑥𝐿 𝐵𝑘 + 2𝐶𝑀 + 𝐷 + 𝐸𝑀 +  𝐶𝑘2 + 𝑘𝐸 + 𝐹 = 0  3.43 

3. Taking into account the limitation of the slope-intersect model for the vertical 
edges, if the vertical edge slope is high the vertical edge model is switched to 

𝑥𝐿 = (𝑦𝑙 − 𝑘)/𝑀. By doing this, the quadratic equation has the form of Equation 

3.44. 

𝑦𝐿
2  

𝐴

𝑀2
+

𝐵

𝑀
+ 𝐶 + 𝑦𝐿  

𝐷

𝑀
−

𝐵𝑘

𝑀
−

2𝐴𝑘

𝑀2
+ 𝐸 +  

𝐴𝑘2

𝑀2
−

𝐷𝑘

𝑀
+ 𝐹 = 0  3.44 

4. As a result, there are two intersects PL1 = [xL1 yL1]
T and PL2 = [xL2 yL2]

T for each 

catadioptric projection of the LRF segment. 

 

Figure 3.15 Vertical edges and their LRF corner associations. Diamond-shaped points represent the LRF corners; 
circle-shaped points represent the conic intersections; and the cross-shaped points the associated LRF corners. 

The fifth stage is depicted in line 39 of the Algorithm 3.4. At this point of the 
process there are a set of LRF corners mapped on the image plane, and a set of 

intersects corresponding to the solution of Equation 3.43 or 3.44. The data 
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association is done using the Joint Compatibility Branch and Bound (JCBB) test 

[Neira & Tardos, 2001]. By doing this, the data association vector has the length of 

the observations and in each field the associated corner ID. To do so, it is 
necessary define the uncertainty of the vertical edge intersects in the image plane. 

This is not an easy problem, however in [Meltzer & Soatto, 2008] a wide baseline 
correspondence method using edges is proposed, and the initial guess of the edge 

region of interest was based on the size mask used to detect the edges on the 

image plane. In this way, the uncertainty of the intersect points between the 
vertical edge and the catadioptric projection of the LRF segments is defined as a 

diagonal matrix of W = ceil(WINDOW_CANNY / 2). In this work, the edge Canny 

detector works with a image window of 7. Figure 3.15 shows an example of the 

resulting data association described above. In this figure, the conic intersects are 
shown using circle-shaped points and the associated LRF corners are shown using 

cross-shaped points. The remaining LRF corners are also shown using diamond-

shaped points.  

 

Figure 3.16 Vertical edge position measurement. 

Once the data association of the vertical edge / conic intersects and the projected 

corner points are done, the measurement process starts. The aim of this process is 
to find the 3D initial and ending points of the vertical edge, the vector director and 

the vertical edge length. This information is joined to the range and bearing 
measurements performed above. Figure 3.16 shows how the vertical edge 

properties described above can be computed. In this figure two typical vertical 

edges are presented. The edge L1 crosses the LRF trace (dotted line) and the edge 
L2 does not. AL1 and CL1 are the initial and ending points of L1. BL1 is the range of L1 

and taken from the LRF corner associated to L1.  

The process described here is based on the following angle definitions: A1 =  

zOAL1 and C1 =  zOCL1. The initial and ending points of the vertical edge on the 

image plane are lifted and projected on the sphere. This process is done using the 

same LUT mentioned in Section 3.3.2 to speed-up the computation time. These 
sphere points are used to compute the angles A1 and C1, from which the scene 

points AL1 and CL1 can be expressed as depicted in Equations 3.45 and 3.46. 
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𝑨𝑳𝟏 =  

𝑥𝐴

𝑦𝐴

𝑧𝐴
 =  

𝜌𝐵cos⁡(𝜃𝐿1)
𝜌𝐵sin⁡(𝜃𝐿1)

𝜌𝐵

tan ⁡(𝜋−𝜃𝐴1)

   3.45 

𝑪𝑳𝟏 =  

𝑥𝐶

𝑦𝐶

𝑧𝐶
 =  

𝜌𝐵cos⁡(𝜃𝐿1)
𝜌𝐵sin⁡(𝜃𝐿1)

𝜌𝐵

tan ⁡(𝜋−𝜃𝐶1)

   3.46 

Where, B is the range of the vertical edge and L1 is the bearing information of the 

vertical edge with respect to the camera frame. It is worth noting that the SLAM 

algorithm will receive the typical range and bearing measurement model, however 
the environmental representation is performed using Equations 3.45 and 3.46. As a 

result, the LRF data, the range/bearing data of the vertical edges and their 3D 

initial and ending points give an enriched representation of the environment, in 
other words an appearance-based representation. 

The observation model used by the SLAM algorithm is shown in Equation 3.47. This 
is a non-linear function in terms of the vertical edge position mL1 = [mx, my] and 

the state vector of the mobile robot Xt = [xR, yR, R]. Most of the SLAM techniques 

estimate robot position and the features position through the linearization of the 

measurement model. For self-containment, the Equations 3.48 and 3.49 show the 
Jacobians with respect to the vertical edge position and the robot state vector 

respectively. 

𝒁𝒏 =  
𝑟𝑛
𝜙𝑛

 =  
 (𝑚𝑥 − 𝑥𝑅)2 + (𝑚𝑦 − 𝑦𝑅)2 + 𝑚𝑧

2

atan2  
𝑚𝑦−𝑦𝑅

𝑚𝑥−𝑥𝑅
 − 𝜃𝑅

   3.47 

𝐉𝐦 =  

𝑑𝑥

𝑟𝑛

𝑑𝑦

𝑟𝑛
−𝑑𝑦

𝑑

𝑑𝑥

𝑑

   3.48 

𝑱𝒙 =  

−𝑑𝑥

𝑟𝑛

−𝑑𝑦

𝑟𝑛
0

𝑑𝑦

𝑑

−𝑑𝑥

𝑑
−1

   3.49 

Where, 𝑑𝑥 = 𝑚𝑥 − 𝑥𝑅, 𝑑𝑦 = 𝑚𝑦 − 𝑦𝑅 and 𝑑 = (𝑚𝑥 − 𝑥𝑅)2 + (𝑚𝑦 − 𝑦𝑅)2.  

3.5.2. Data association 

 

Figure 3.17 Resolving ambiguous data association. 
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In this work, the JCBB [Neira & Tardos, 2001] was considered to solve the data 

association problem, such that the correlations between innovations are explicitly 

taken into account to determine the joint compatibility of a set of pairings. The 
sensor model proposed in this Section is focused on finding the range and bearing 

of the vertical edges. However, JCBB associate features depending on the 
innovations, their covariance and the innovation gate distance metric used 

(Mahalanobis distance), which are no longer valid when the uncertainty becomes 

important. Therefore, in this work a method for distinguishing vertical edge features 
which are close to each other when the measure of uncertainty is not sufficient is 

proposed in order to obtain a better data association. 

In first place, the JCBB test is used. If a current vertical edge feature is associated 
with two or more landmarks in the map a second step is performed. Figure 3.17 

shows a typical situation, where two views are involved: the current view with one 
observation associated with two map landmarks. This view is placed at the 

predicted robot pose OC, where a scene vertical edge ZLn is observed and projected 

onto the sphere as ZLns using the unified projection model; a plane is defined 
between ZLns and OC, which can be parameterized by the normal vector Nns, since 

for all points ZLk belonging to ZLns the dot product property ZLk
T * Nns = 0 is 

satisfied. On the other hand, two landmarks candidates (i.e. mLi and mLj) 
corresponding to the map view placed at Om have their analogous spherical 

projections (i.e. mLis and mLjs) and planes parameterized by the vector normal mNis 
and mNjs respectively. In this work, the robot pose in which a feature was seen for 

the first time is saved; this allows us to relate OC and Om through a transformation 

defined by R and T. 

The intuitive idea behind our method is: given the current observation 

parameterized by the vector normal Nns and the map landmarks candidates, in this 
case parameterized by mNis and mNjs in the map view, associate the observation 
ZLns with the closer landmark map parameterized by the transformed vector normal 
CNis and CNjs in the current view. This is formally described by Equation 3.50. 

𝑐𝑖 = min𝑖   𝒁𝑳𝒌
𝑻. 𝑵𝒏𝒔−

𝑪𝑳𝒊,𝒌
𝑻 .𝑪 𝑵𝒊𝒔 

𝐹
𝑘=1   3.50 

Where, F is the total number of points of the observed feature, ZLk is the k-th 
observed point, CLi,k is the k-th point of the i-th landmark candidate with respect to 
OC and ci is the resulting associated map feature index. Equation 3.50 selects the 

landmark candidate with the minimum difference between the projection of the 
observed points ZLk on the plane parameterized by Nns, and the projection of the i-

th map feature on the plane parameterized by CNis as the final feature association. 

3.5.3. Results 

The dataset collected for this work and described in Section 2.5.2 was used to 

obtain the results shown in this Section. It is worth noting that the dataset images 
were collected in diverse environmental conditions, as those shown in Figure 3.18. 

In this figure, it can be observed that there are illumination changes and occlusions 

caused by pedestrians assuring in this way a real-world experiment. The data set 
corresponding to the first floor has a path length of 100m and that on the third 

floor a length of 65m. In addition, the robot mobile platform and the perception 

system were described in Section 2.5.1.  
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Figure 3.18 Omnidirectional images samples taken from the collected data set. Each row corresponds to the first 
and third floor of the PIV building, respectively. 

a)  
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b)  

Figure 3.19 First experiment: SLAM at the first floor of PIV building. a) Scan matching map. b) Estimated map 
using our approach. 

Simultaneous mapping and localization for mobile vehicles is a challenging task 
which depends on the filter (EKF, UKF or particle filter), but in which the sort of 

perception system used and the method to extract the salient features are crucial. 

Generally speaking, the SLAM problem can be solved using iterative methods 
(Kalman filters, particle filters and occupancy grids), or using global minimization 

methods (Bundle adjustment and expected maximization) [Durrant-Whyte & Bailey, 
2006]. The family of Kalman filters assumes a high dimensional Gaussian 

distribution of the error source, the robot pose and the map features, however the 

mapping and localization problem involves non-linear functions and unknown error 
sources, the latter cannot be modeled using an exact mathematical representation. 

In this context, particle filters can handle this kind of problems sampling from an 
estimate probabilistic distribution and improving it recursively. These reasons 

motivate the integration of the sensor model proposed in this Section within a 

popular SLAM algorithm as FastSLAM [Montemerlo & Thrun, 2003], which uses 
particle filtering and it has been adapted to support the sensor model described 

above. 

The results shown in this section were divided in two groups. Firstly, a qualitative 
comparison between the map obtained using a standard scan-matching technique 

[Besl & McKay, 1992] and the map obtained using the FastSLAM algorithm with the 
sensor model described above. Secondly, a quantitative comparison between this 

work and the G2O framework [Kummerle et al., 2011] in terms of the robot pose 

error. 

Figure 3.19 shows two maps, the first one (Figure 3.19a) was built using scan 

matching and the second one (Figure 3.19b) depicts the estimated map using the 

approach exposed above, both on the CAD map of the first floor of the PIV building 
in order to see their correspondence. The estimated map in Figure 3.19b shows the 
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robot path and the landmarks estimated positions of the best particle. Comparing 

these both maps is clear that the approach proposed above obtains a better match 

with respect to the CAD drawing. The dataset was taken in presence of pedestrians, 
who are shown by the arrows in both maps. Despite of this fact, the FastSLAM 

algorithm integrated with the sensor model proposed obtains a coherent 
representation of the environment. 

Figure 3.20 shows a zoomed region of Figure 3.19b. This figure shows the 

consistency between the laser scan matching and the corresponding vertical edges 
in the scene. The vertical edges depicted in this figure correspond to the most 

predominant ones. In this figure the vertical edge position uncertainties are also 

shown, as well as the measured length of the vertical edges. 

 

Figure 3.20 Detailed view of the predominant vertical edges of the map depicted in Figure 3.19. 

 

a)  
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b)  

Figure 3.21 a) X-Y error in meters along the robot trajectory. b) Heading error in radians along the robot 
trajectory. 

In order to obtain the ground truth data the G2O framework was used. This 

algorithm provides a solution for batch optimization of graph-based nonlinear error 

functions. The robot trajectory of the first experiment as a graph was introduced, 
including nodes, edges and constraints. The output of the algorithm is an estimate 

of the robot trajectory obtained after a nonlinear minimization using Levenberg-

Marquardt. Using this output the X-Y error and the heading error of the robot along 
its path can be extracted. 

Observing the X-Y and heading error shown in Figure 3.21a and Figure 3.21b, it is 
worth noting the error decreasing at steps 50, 150 and 225 approximately due the 

loop closure as depicted in Figure 3.19 within the circles with solid line. After step 

240 approximately, the particle filter depends of the sensor model for accurately 
detect the vertical edges and associate them with map features. This can be 

observed in the shape of the error graphs, since periodically there is a rise and fall 
of the X-Y and heading error due to vertical edge features coming into and leaving 

from the field of view. 

3.6. DISCUSSION 

In this chapter, the feature extraction approach to model the environment was 
presented. In this work, the environment modeling is composed by a set of vertical 

edges detected combining two different kind of sensors: an omnidirectional camera 

and a LRF. The sensor model presented is based on the extrinsic calibration of a 
LRF and an omnidirectional camera. Using this calibration, 3D vertical edges were 

extracted and considered as observations in the implementation of the FastSLAM 

algorithm. The sensor model described provides metric information and 
appearance-based environmental description using one omnidirectional image and 

the corresponding LRF trace.  

The feature extraction method proposed included several important steps: firstly, 

the LRF data was segmented in corners and lines, the latter using a modified 

implementation of the popular split-and-merge algorithm. Secondly, the vertical 
edges were detected on the image plane using an algorithm based on that 

proposed by [Bazin et al., 2007]. Thirdly, using the extrinsic calibration proposed in 

[Bacca et al., 2010] the LRF points can be projected onto the omnidirectional 
image. Last, using the LRF corners uncertainties on the image plane, the 

catadioptric projections of the LRF line segments and a robust data association 
method as the JCBB, the range and bearing measurements of each vertical edge 
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were found. Also, an extra data association method was proposed using a 

geometrical constraint and the lifted vertical edges on the sphere.  

Partial analysis of results were presented, particularly those regarding the extrinsic 
calibration between the LRF and the omnidirectional camera, the LRF corners 

uncertainties, and the vertical edges / LRF corners data association. However, a 
complete test was performed in the context of the robot mapping and localization, 

due its importance within the robotics community and the big impact the sensor 

model has over the performance of the SLAM solutions. The sensor model proposed 
was shown to perform well in a very challenging environment, where illumination 

changes and occlusions by pedestrians were part of the data set used. 
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CHAPTER 4 

4. FEATURE STABILITY HISTOGRAM MODEL 
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Typical SLAM techniques assume static environments, and they build a map without 

taking into account the real-world conditions as pedestrians, moving obstacles, 
perceptual aliasing, weather changes, occlusions and robot-human interaction. 

Then, how can a mobile robot update its internal representation of the environment 

and its location on it when the appearance of the environment is changing?. The 
Feature Stability Histogram (FSH) is a solution proposed in this work to deal with 

changing environments and long-term mapping and localization. The main idea 
behind this is to classify the features of the environment as stable and non-stable. 

To do so, the FSH is inspired on the human memory model proposed by [Atkinson 

& Shiffrin, 1968] in order to sequentially build a histogram of the feature strengths 
which is updated once the feature is re-observed. Stable features, belonging to the 

Long-Term Memory (LTM) are used for localization and mapping. On the other 

hand, non-stable features belonging to the Short-Term memory (STM), can be part 
of the LTM depending on their strength. The use of the FSH method indicates that it 

can adapt the internal map representation over time to localize the robot. Two real-
world experiments were carried out to validate the FSH approach: firstly, a static 

LRF-based experiment to show that the proposed method is able to update the 

environmental representation; last, an appearance-based topological mapping 
experiment whose results include a comparison with the approach proposed in 
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[Dayoub et al., 2011] and the popular Bag-of-Words approach [Sivic & Zisserman, 

2003].  

4.1. INTRODUCTION 

The motivation of this work is to improve mapping and localization in long-term 
operation and in dynamic environments. The Feature Stability Histogram (FSH) 

[Bacca et al., 2011] is the main contribution of this work in order to be used in 

conjunction of typical SLAM solutions. This innovative feature management 
approach for mapping and localization is able to cope with changing environments, 

long-term operation, and also contributes to the semantic environment 
representation. 

Considering the long-term techniques reviewed in Section 2.3, the human memory 

model proposed by [Atkinson & Shiffrin, 1968] has been an inspiration for many 
works in the robotics community. In this work, the FSH model modifies the 

[Atkinson & Shiffrin, 1968] model in order to consider the criticism drawn to it by 

psychologists and neuroscientists [Baddeley, 2003] [Llinas, 2002]. Furthermore, 
the rehearsal process which defines the method to promote STM features to LTM 

features was adapted to its use in the SLAM context. Last, using the rehearsal 
method proposed the STM feature pruning can be carried out considering the oldest 

feature timestamp. 

This chapter is organized as follows: Section 4.2 presents the human memory 
model basis; the FSH model inspired on the modified human memory model is 

described in Section 4.3; Section 4.4 describes the probabilistic foundations in 

order to integrate the FHS model to typical SLAM solutions.; Section 4.5 shows the 
experimental results which test the main operating principle of the FSH model; last, 

the final remarks are presented in Section 4.6. 

4.2. HUMAN MEMORY MODEL  

 

Figure 4.1 Atkinson and Shiffrin model of human memory [Atkinson & Shiffrin, 1968]. 

For years the scientific community has been finding inspiration in nature, even 

though probabilistic localization models have their origins in how the “place cells” in 
the hippocampus works. In this work, the Atkinson and Shiffrin memory model 

[Atkinson & Shiffrin, 1968] was used to distinguish stable features from unstable 
ones, and then use the stable features for robot mapping and localization. Figure 
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4.1 shows this model, where four main components are shown: the Short-Term 

Memory (STM) which retains information long enough to use it; the Long-Term 

Memory, which retains information for longer periods of time or lifetime; the 
Sensory Model, which was added afterwards and was experimentally demonstrated 

to have the capability of the sensing organs to discriminate information for 
subsequent processing; and the forgetting module, which affects all other 

components since it was experimentally demonstrated that memories can be 

forgotten through trace decay. This model proposes entering stimuli inputs in the 
STM. If these inputs are continuously rehearsed, they become part of the LTM. 

Information retained in LTM is recalled continuously in lifetime, but it does not 

reside permanently; if it is not rehearsed it can be forgotten. This memory model 
has been applied in robot mapping [Dayoub & Duckett, 2008], and in robot control 

architectures [Barber Castaño, 2000]. 

4.3. METHOD OVERVIEW 

The memory model proposed in [Atkinson & Shiffrin, 1968] has drawn criticism 
from psychologists and neuroscientists due to its extremely linear representation of 

the memory process [Baddeley, 2003] [Llinas, 2002]. They argue that the Atkinson 
and Shiffrin model does not take into account the ability of many people to recall 

information despite the fact this information has not been rehearsed. This 

phenomenon is more accentuated in autistic savants. In other words, apparently 
stimuli inputs can bypass STM to achieve LTM. In addition, this memory model does 

not consider different levels of memory [Baddeley, 2003] [Llinas, 2002]. From the 

robotics point of view, it would be useful to take into account levels of memory 
represented in the strength of the feature information. 

 

Figure 4.2 The modified human memory model used in this work. 

In this work, a map update approach for robot mapping and localization inspired by 

the Atkinson and Shiffrin memory model is proposed (see Figure 4.2). The 
reference view is composed of both memories, the STM and LTM. It has two main 

advantages: first, an input feature can bypass the STM and become a LTM, keeping 
in mind the feature strength, e.g., the feature uncertainty, the Hessian value in the 
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SURF descriptor, or the matching distance; second, using the FSH as the reference 

view, the feature classification (STM or LTM) is not linear since the rehearsal 

process can take into account the feature strength. The rehearsal process 
implemented in this work is based on the number of times a feature has been 

observed, but weighted by a function of the feature strength. In this way, the 
appearance of the environment represented for the FSH is updated according to the 

presence or absence of pre-observed features, or the inclusion of new features. 

When the robot starts the mapping and localization a method to distinguish STM 
and LTM features is needed. The approach proposed in this work considers this 

situation because the voting scheme is weighted by a feature importance value. 

Once the environment representation is updated, the FSH can be used for mapping 
and localization. To do so, the recall process distinguishes between STM and LTM 

features, i.e. differentiating the most stable features (LTM) from the STM features. 
A feature is defined as an LTM if it has a high value in the FSH; otherwise it is 

considered an STM feature. This classification has two main advantages: first, it is a 

straightforward method to deal with temporal occlusions because, when using the 
voting scheme of the rehearsal process the FSH value of the corresponding feature 

suffers a relative decrease, or an increase if the feature is re-observed; and second, 

it is a suitable method to deal with changing environments where illumination 
changes and pedestrians cause feature appearance or disappearance. In the end, 

the more stable features will belong to the LTM and will only be used for mapping 
and localization. The recall process implemented in this work is based on k-means 

clustering and exponential decay, such that the feature mean lifetime is identified. 

Once the LTM features are found, they are used crucial SLAM situations as loop-
closing. In loop-closing situations, the observed LTM features are used to impose 

constraints in the loop. As a result, considering the LTM features into the typical 
SLAM tasks, the map of the environment can be updated accordingly and the robot 

can deal with long-term operations due the reduced computational cost. 

4.4. LOCALIZATION AND MAPPING USING THE FEATURE STABILITY 
HISTOGRAM 

The FSH model can be viewed as a transversal method to the current SLAM 

solutions, providing them long-term operation and map updating skills. To do so, 
the SLAM problem formulation and the feature stability degree (provided by the 

FSH) are considered to re-formulate the SLAM problem as shown in Section 4.4.1. 
The environmental features are classified as LTM or STM regarding their strength, a 

detailed description of this process is done in Section 4.4.2. Also, Section 4.4.2 

discusses the ever increasing number of features in long-term operations problem, 
which is common in service robotics. The integration of the FSH model in a SLAM 

method involves the modification of the data association, update and loop closure 

processes, which is described in Sections 4.4.3. 

4.4.1. Probabilistic Foundations 

Figure 2.7 is shown again in Figure 4.3 in order to take into account the modules 
affected by the integration of the FSH model in a typical SLAM method. Basically, 

the data association, map update and loop closing processes are involved. The FSH 

model depends of the data association process to update the histogram of weighted 
votes. Afterwards, all the re-observed features are estimated, new features are 

initialized as LTM and only the current re-observed LTM features are used to 

estimate the robot position. Furthermore, loop closing situations require a reliable 
landmark shared between the current robot position and the re-visited one to close 



 

72 

the loop; LTM features surrounding the re-visited position are used to impose 

reliable constraints and start the preferred non-linear minimization method. 

 

Figure 4.3 Typical estimation loop and the affected processes when the FSH model is integrated in a SLAM 

method. 

To begin with, the probabilistic derivation is based on the SLAM problem 
formulation, which was modified in order to introduce a hidden variable ct as 

depicted in Equation 4.1. This variable indicates if the measurement zt belongs to 

the LTM or not. 

𝑝 𝒙𝒕, 𝑴𝑡 𝒁𝒕, 𝑼𝒕, 𝑪𝒕 ∝ 𝑝 𝒛𝒕, 𝒄𝒕 𝒙𝒕, 𝑴𝒕, 𝒁𝒕−𝟏, 𝑼𝒕, 𝑪𝒕−𝟏 𝑝 𝒙𝒕, 𝑴𝒕 𝒁𝒕−𝟏, 𝑪𝒕−𝟏, 𝑼𝒕   4.1 

Where, xt is the robot state at time t, Mt is the map built so far, Zt are the 

measurements taken up time t, Ut are the control inputs up time t, Ct are the 

correspondence variable with respect to Zt indicating the map landmarks that 
belong to the LTM, and zt is the last measurement performed. The measurement 

can be factorized out as Equation 4.2 shows. 

𝑝 𝒛𝒕, 𝑐𝑡 𝒙𝒕, 𝑴𝒕, 𝒁𝒕−𝟏, 𝑼𝒕, 𝑪𝒕−𝟏 = 𝑝 𝒛𝒕 𝑐𝑡 , 𝒙𝒕, 𝑴𝒕, 𝒁𝒕−𝟏, 𝑼𝒕, 𝑪𝒕−𝟏 𝑝 𝑐𝑡 𝒛𝒕, 𝒙𝒕, 𝑴𝒕, 𝒁𝒕−𝟏, 𝑼𝒕, 𝑪𝒕−𝟏   

𝑝 𝒛𝒕, 𝑐𝑡 𝒙𝒕, 𝑴𝒕, 𝒁𝒕−𝟏, 𝑼𝒕, 𝑪𝒕−𝟏 = 𝑝 𝒛𝒕 𝑐𝑡 , 𝒙𝒕, 𝑴𝒕 𝑝 𝑐𝑡    

𝑝 𝒛𝒕, 𝑐𝑡 𝒙𝒕, 𝑴𝒕, 𝒁𝒕−𝟏, 𝑼𝒕, 𝑪𝒕−𝟏 = 𝑝 𝒛𝑡 𝑐𝑡 = 𝐿𝑇𝑀, 𝒙𝒕, 𝑴𝒕 𝑝 𝑐𝑡 = 𝐿𝑇𝑀   4.2 
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Where, the standard Markov assumption was considered, as well as, zt and ct are 

independent given xt and Mt; also, in the last line, the LTM features are only 

considered for mapping and localization. Furthermore, considering the LTM features 
only the rightmost term of Equation 4.1 can be further developed as depicted in 

Equation 4.3. 

𝑝 𝒙𝒕, 𝑴𝒕 𝒁𝒕−𝟏𝑪𝒕−𝟏
𝑳𝑻𝑴, 𝑼𝒕 = 𝑝 𝒙𝒕 𝑴𝒕, 𝒁𝒕−𝟏𝑪𝒕−𝟏

𝑳𝑻𝑴, 𝑼𝒕 𝑝 𝑴𝑡 𝒁𝒕−𝟏𝑪𝒕−𝟏
𝑳𝑻𝑴, 𝑼𝒕   

𝑝 𝒙𝒕, 𝑴𝒕 𝒁𝒕−𝟏𝑪𝒕−𝟏
𝑳𝑻𝑴, 𝑼𝒕 =  𝑝 𝒙𝒕 𝒙𝒕−𝟏, 𝑴𝒕, 𝒁𝒕−𝟏𝑪𝒕−𝟏

𝑳𝑻𝑴, 𝑼𝒕 𝑝 𝒙𝒕−𝟏 𝑴𝒕, 𝒁𝒕−𝟏𝑪𝒕−𝟏
𝑳𝑻𝑴, 𝑼𝒕 𝑝 𝑴𝒕 𝒁𝒕−𝟏𝑪𝒕−𝟏

𝑳𝑻𝑴, 𝑼𝒕 𝑑𝒙𝒕−𝟏  

𝑝 𝒙𝒕, 𝑴𝑡 𝒁𝒕−𝟏𝑪𝒕−𝟏
𝑳𝑻𝑴, 𝑼𝒕 =  𝑝 𝒙𝒕 𝒙𝒕−𝟏, 𝒖𝒕 𝑝 𝒙𝒕−𝟏, 𝑴𝒕 𝒁𝒕−𝟏𝑪𝒕−𝟏

𝑳𝑻𝑴, 𝑼𝒕−𝟏 𝑑𝒙𝒕−𝟏   4.3 

Last line of Equation 4.3 depicts the well known SLAM prediction step, considering 

only the LTM correspondence variables. The final filter equation is obtained putting 

Equations 4.2 and 4.3 into Equation 4.1. This is shown in Equation 4.4. 

𝑝 𝒙𝒕, 𝑴𝒕 𝒁𝒕, 𝑼𝒕, 𝑪𝒕
𝑳𝑻𝑴 ∝  𝑝 𝑐𝑡 = 𝐿𝑇𝑀 𝑝 𝒛𝒕 𝑐𝑡 = 𝐿𝑇𝑀, 𝒙𝒕, 𝑴𝒕  𝑝 𝒙𝒕 𝒙𝒕−𝟏, 𝒖𝒕 𝑝 𝒙𝒕−𝟏, 𝑴𝒕 𝒁𝒕−𝟏𝑪𝒕−𝟏

𝑳𝑻𝑴, 𝑼𝒕−𝟏 𝑑𝒙𝒕−𝟏 

 4.4 

Equation 4.4 shows the SLAM posterior weighted by the term p(ct = LTM), which is 

the likelihood that a measurement zt corresponds to a LTM feature. Exploiting the 

fact that ct is conditional independent of zt given xt and Mt, p(ct = LTM) is extracted 
from the normalized FSH and regarded as a probability distribution. The FSH values 

are related with the information content of a landmark, which can be computed by 
the sum of the reciprocals of the main diagonal elements of the covariance matrix 

as suggested by [Dissanayake et al., 2000], and depicted in Equation 4.5. 

𝑓𝑠𝑕 𝒛𝒕,𝒊, 𝜮𝒛𝒕

𝒊  =  
1

𝜍𝑛𝑛
2

𝑅
𝑛=1   4.5 

Where, zt,i is the i-th feature of the measurement performed at time t, R is the rank 

of zt,i and 𝜍𝑛𝑛
2  is the n-th value of the covariance matrix 𝚺𝒛𝒕

𝒊 . However, the feature 

strength not always can be expressed in terms of the covariance matrix. In this 

case, alternative options may be the Hessian value in the SURF descriptor, or the 
matching distance when epipolar geometry is used. By doing this, the FSH values 

can be updated using Equation 4.6 [Bacca et al., 2011]. 

𝑓𝑠𝑕 𝒛𝒕,𝒊, 𝑚 = 𝑒
−

𝑚 2

𝜍𝑚
2
  4.6 

Where, m is the matching distance between each corresponding feature and 2
m is 

the variance of the matching distances. Equations 4.5 and 4.6 are part of the 
rehearsal process depicted in Figure 4.2, which is in charge of rating the map 

landmarks when updating the FSH values. 

The aim of the probabilistic derivation done in Equations 4.1 to 4.5 is to show the 
FSH model proposed can be implemented on different SLAM solutions. The 

rightmost term of Equation 4.4 is basically the SLAM problem formulation 
considering the LTM features as observations in the filtering process. This means 

that parametric (EKF-based) and non-parametric filters (e.g. particle filters) are 

able to implement the FSH model. 

4.4.2. LTM / STM Feature Classification and STM Features Removal 

The FSH model discussed up to now considers two types of features, namely LTM or 

STM. Taking into account the FSH model depicted in Figure 4.2 and the human 
memory model proposed by [Atkinson & Shiffrin, 1968], it is important to define a 

discrimination method to classify the environmental features as LTM or STM. As a 
result, useless STM features can be removed in order to increase the SLAM 

algorithm scalability. 
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According to how the FSH is built, a good way to differentiate LTM from STM 

features is using a threshold such that FSH values greater than the threshold are 

considered LTM features, and those less than the threshold are STM features. But, 
the FSH values change continuously, so an arbitrary threshold (e.g. 0.5) could 

cause some problems: firstly, very few LTM features could be obtained which is not 
good for the mapping and localization process, because the robot position 

uncertainty increases and causes lack of representativeness of the environment; 

last, a high number of LTM features could increase the data association complexity 
and decrease scalability. Within the FSH model, the map features have an 

additional parameter given by the feature strength, which can be computed by 

Equations 4.5 or 4.6. Taking advantage of this parameter and how it is used to 
build the FSH, the LTM/STM feature classification problem can be solved using k-

means [Lloyd, 1982]. The clustering problem has low dimensionality (rank-2), and 
the number of data points is low. The latter can be achieved using many well 

known SLAM techniques as: topological mapping [Thrun et al., 2005] or sub-

mapping methods [Estrada et al., 2005] [Aulinas et al., 2010]. 

Then, given a set of observations (sf1, sf2, …, sfN) where each observation is the 

feature strength, the aim of the clustering problem is to classify the N features into 

LTM or STM sets, S = {SLTM, SSTM}. The within-cluster sum of squares cost function 
yields as depicted in Equation 4.7. 

𝑚𝑖𝑛𝑺    𝒔𝒇𝑖 − 𝝁𝒋 
2𝑁

𝑖=1
𝐾
𝑗=1   4.7 

Where, K is the number of sets which in this case is 2; and j is the mean of the 

data points belonging to the set Sj (j stands for LTM or STM). Once the 

minimization of the Equation 4.7 is done, all those features which belong to the 
highest mean are considered as LTM. 

 

a)                                               b)                                                    c) 

Figure 4.4 a) LTM and STM features selection using k-means. b) Normalized feature time stamp with respect to the 
current viewing step. c) STM feature candidates to be removed (circle-shaped). 

Figure 4.4a shows a typical normalized FSH where the data points depicted using 

diamonds correspond to the LTM features, and those points drawn with circles 
correspond to the STM features. This classification was done applying the Equation 

4.7 to the FSH values, which is directly related with the feature strengths. 
Algorithm 4.1 summarizes the basic steps to classify the environmental features as 

STM or LTM. A well known drawback of k-means is that the number of clusters has 
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to be known in advance; however as a rule of thumb the number of sets can be 

estimated as Equation 4.8 shows [Mardia et al., 1980] (line 2). 

𝑘 ≈  
𝑁

2
  4.8 

Where N is the number of data points. In this way, if there are not enough data 

points, the LTM/STM classification is performed using exponential fitting in order to 
estimate the mean lifetime as threshold value to distinguish LTM from STM features 

(lines 4 to 6). Otherwise, the threshold value is obtained from the set centroid 

locations computed by the k-means algorithm (line 9). This threshold value is 
calculated using the maximum value of the centroid locations and its corresponding 

data points (line 10). 

Algorithm 4.1 LTM / STM features classification. 

1.   

2.   

3.   

4.   

5.   

6.   

7.   

8.   

9.   

10.   

11.   

12.   

13.   

14.   

15.  

FSHvalues = getFSHvalues(); 

numClusters = getNumClustersEstimation(FSHvalues); 

if numClusters == 1 

% LTM/STM classification using exponential decay. 

[N0 ] = getExponentialDecayParameters(FSHvalues); 

LTM_STM_threshold = getMeanLifeTime(N0, ); 

else 

% LTM/STM classification using k-means. 

[setCentroid setIndexes] = doKMeans(FSHvalues, numClusters); 

LTM_STM_threshold = getThresholdFromMaxCentroid(setCentroid, setIndexes, 
FSHvalues); 

end 

 

LTM_FeaturesIndex = getLTMfeatures(LTM_STM_threshold, FSHvalues); 

STM_FeaturesIndex = getSTMfeatures(LTM_STM_threshold, FSHvalues); 

 

Observing Figure 4.4a, particularly the STM features, their strengths are 
comparatively low with respect to the LTM features strength. Basically, this is due 

to two main reasons: the features are recently incorporated to the map and their 

strength is not high; or, the features are old and they have not been re-observed 
inducing a relative decreasing of their strength. Taking advantage of this, a STM 

feature removal algorithm can be proposed considering the following requirements:  

1. Limiting the ever growing number of STM features. 

2. Preserving the newest features despite the fact that they have low strengths. 

3. Removing the oldest and weak features. 

To do so, the FSH model also considers the time stamp at which the feature was 

first measured, and it is updated each time the feature is re-observed. Figure 4.4b 

shows the normalized time stamp corresponding to those features in Figure 4.4a. 
The higher the values, the younger the feature is. Observing the normalized time 

stamp values for features 7 to 15, the weakness of features 11 to 14 is not enough 

justification to be removed since they are new features. On the other hand, 
features 14 or 15 could be candidates to be removed, since they have low strengths 

and they are the oldest. Formally, assuming that the normalized feature time stamp 
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and the feature strength stored in the FSH are independent given the robot 

position, the likelihood model for the STM feature removal is given in Equation 4.9. 

𝑝 𝑠𝑓𝑖
𝑆𝑇𝑀 , 𝑡𝑓𝑖

𝑆𝑇𝑀  𝒙𝒕 = 𝑝 𝑠𝑓𝑖
𝑆𝑇𝑀  𝒙𝒕 𝑝 𝑡𝑓𝑖

𝑆𝑇𝑀  𝒙𝒕   4.9 

Where, xt is the robot position, 𝑠𝑓𝑖
𝑆𝑇𝑀 is the i-th STM feature strength and 𝑡𝑓𝑖

𝑆𝑇𝑀 is 

the i-th STM feature time stamp. Figure 4.4c shows the resulting likelihood model 

given by Equation 4.9 for the typical FSH model and time stamps of Figure 4.4a and 
Figure 4.4b. Here, the classification problem is to group the STM features into two 

sets, those STM features to be removed and those not. To this end, the k-means 
algorithm can be used as depicted in Equation 4.7 doing the appropriate changes in 
the variables. As a result, the circle shaped points in Figure 4.4.c show the STM 

features to be removed.  

Algorithm 4.2 STM Feature removal. 

1.   

2.   

3.   

4.   

5.   

6.   

7.   

8.   

9.   

10.   

11.   

12.   

13.   

14.   

FSHvalues = getFSHvalues(); 

STMfeatureStrength = getSTMstrengths(FSHvalues, STM_FeatureIndex); 

FeatureTimeStamps = getFSHtimeStamps(); 

STMfeatureTimeStamps = getSTMtimeStamps(FeatureTimeStamps, STM_FeatureIndex); 

STMlikelihood = doComputeSTMLikelihood(FeatureTimeStamps , 
STMfeatureTimeStamps); 

numClusters = getNumClustersEstimation(STMlikelihood); 

if numClusters > 1 

% STM feature using k-means. 

[setCentroids setIndexes] = doKMeans(STMlikelihood, numClusters); 

STMremovalThreshold = getThresholdFromMaxCentroid(setCentroids, setIndexes, 

STMlikelihood); 

% Delete features. 

removeSTMfeatures(STM_FeatureIndex, STMremovalThreshold, STMlikelihood); 

end 

 

Algorithm 4.2 summarizes the STM feature removal. In this case, the exponential 
fitting is not performed when the number of data points is not enough, since 

feature deleting has to be carried out once enough evidence is collected. 

4.4.3. Map Building  

The previous sections have described the essential characteristics of the FSH model 

such as: its structure based on the human memory model, the probabilistic 
foundation to be adapted to the current SLAM solutions, the rehearsal procedure to 

promote features from the STM to the LTM, the STM / LTM feature classification 

method and the STM feature removal. However, considering Figure 4.3 additional 
insights have to be described in order to carry out the FSH model implementation 

into any SLAM solution. 

To start with, the following assumptions have to be considered: 

1. The features can be decomposed into LTM (zLTM) and STM (zSTM), such that 

they can be conditionally independent given the robot position (xt). This is 
important since Equation 4.4 was derived base on this assumption. 
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2. The posterior over the map and robot poses are estimated regarding the LTM 

features (zLTM), however in order to update the FSH model the STM features 

(zSTM) are considered in the data association process. 

3. The FSH model is computed once the SLAM solution has finished the update 

stage.  

4. The LTM/STM feature classification is performed at each time step, however 

the STM feature removal is performed each time the corresponding area is 

re-visited. The latter includes: loop closure situations or further SLAM runs. 

According with Figure 4.3, the FSH model is involved in the data association, map 

and state update and loop closure detection processes. However, before explaining 

the influence of the FSH model in these stages, the FSH model computation pipeline 
is described first. Following with the notation used in Table 2.1, Table 4.1 lists the 

main variables that will be used and their meaning. 

Table 4.1 Notation. 

Variable Description 

𝒙𝒕−𝟏, 𝒙𝒕 , 𝒙𝒕+𝟏  Previous, estimated and corrected robot pose. 

𝑷𝒙𝒕−𝟏, 𝑷𝒙𝒕
 , 𝑷𝒙𝒕+𝟏  Previous, estimated and corrected robot pose covariance matrix. 

𝒖𝒕  Current motion command. 

𝑹𝒕, 𝑸𝒕 Process and observation uncertainty matrix. 

𝑴𝒕, 𝑴𝒕+𝟏 Current and updated map 

𝑭𝑺𝑯𝒕, 𝑭𝑺𝑯𝒕+𝟏   Current and updated FSH values. 

𝒁𝒊𝒏𝒅𝒕
𝑳𝑻𝑴, 𝒁𝒊𝒏𝒅𝒕

𝑺𝑻𝑴 Current LTM and STM feature indexes. 

𝒁𝒊𝒏𝒅𝒕+𝟏
𝑳𝑻𝑴, 𝒁𝒊𝒏𝒅𝒕+𝟏

𝑺𝑻𝑴 Updated LTM and STM feature indexes. 

𝑯𝒕  Current data association vector. 

𝒁𝒕, 𝒁𝒕+𝟏  Estimated and corrected re-observed set of features. 

𝒁𝒕
𝑳𝑻𝑴, 𝒁𝒕

𝑺𝑻𝑴 Current LTM and STM landmarks. 

𝒛𝑮,𝒕+𝟏
𝒊   Corrected i-th feature, G stands for LTM or STM. 

𝑷𝒛𝑮,𝒕+𝟏
𝒊   Corrected i-th feature covariance matrix, G stands for LTM or STM. 

𝑺𝒛𝑮,𝒕+𝟏
𝒊   i-th feature strength, G stands for LTM or STM. 

𝑷𝑺𝒕−𝟏, 𝑷𝑺𝒕 Previous and computed FSH model for the laser scans. 

𝑷𝑺𝒕−𝟏, 𝑷𝑺𝒕 Previous and computed FSH model for the laser scans. 

𝒁𝟎:𝒕
𝑳𝑻𝑴, 𝑷𝑺𝟎:𝒕

𝑳𝑻𝑴, 𝑨𝟎:𝒕
𝑳𝑻𝑴 LTM landmarks, FSH model for the laser scans and appearance-based image 

descriptors from t=0 to t=t. 

 

Algorithm 4.3 shows how the FSH model can be integrated as part of a SLAM 

solution, and it summarizes the description of the FSH model done so far. The SLAM 

prediction and measurement stages are not affected by the FSH model; however, 
the data association process keeps in mind the current LTM and STM feature 

indexes in order to perform its work hierarchically, i.e. the LTM features are 
associated first, and then the STM features. Data association of the STM features is 

important because depending on it the FSH values corresponding to the STM 

features can be updated. 
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Other SLAM stage affected is the filter update process. Here, the LTM features are 

only considered to correct the robot pose and covariance. On the other hand, the 

re-observed STM features are updated in order to estimate their covariance matrix 
and in this way compute their strength in further time steps. Once the SLAM filter 

finishes, the FSH model is computed using the data association vector, the current 
FSH values and the updated covariance matrices of the re-observed features. 

Afterwards, the LTM/STM feature classification take place as well as the STM 

features removal process.  

Algorithm 4.3 SLAM and FSH model computation. 

1.   

2.   

3.   

4.   

5.   

6.   

7.   

8.   

9.   

10.   

11.   

12.   

13.   

14.   

15.   

16.   

17.   

18.   

19.   

20.   

21.   

22.   

23.   

24.   

25.   

26.   

27.   

28.   

29.   

30.   

31.   

32.   

33.   

while operating  

% SLAM prediction. 

 𝒙𝒕 𝑷𝒙𝒕
   = doSLAMprediction(𝒙𝒕−𝟏, 𝒖𝒕, 𝑷𝒙𝒕−𝟏, 𝑹𝒕); 

 

% SLAM measurement. 

𝒁𝒕  = doMeasurement(𝒙𝒕 , 𝑷𝒙𝒕
 , 𝑴𝒕, 𝑸𝒕); 

𝒔𝒕  = getCurrentScan(); 

 

% Current FSH model. 

𝑭𝑺𝑯𝒕  = getFSHvalues(); 

 

% SLAM data association. 

𝑯𝒕  = getDataAssociationVector(𝒁𝒕, 𝑴𝒕, 𝒁𝒊𝒏𝒅𝒕
𝑺𝑻𝑴, 𝒁𝒊𝒏𝒅𝒕

𝑳𝑻𝑴); 

 

% SLAM update. 

[𝒙𝒕+𝟏, 𝑷𝒙𝒕+𝟏, 𝒁𝒕+𝟏, 𝑴𝒕+𝟏] = doSLAMupdate(𝒙𝒕 , 𝑷𝒙𝒕
 , 𝑴𝒕, 𝒁𝒕, 𝑯𝒕, 𝑭𝑺𝑯𝒕, 𝒁𝒊𝒏𝒅𝒕

𝑺𝑻𝑴, 𝒁𝒊𝒏𝒅𝒕
𝑳𝑻𝑴); 

 

% FSH model computation – Rehearsal process.  

for 𝒛𝑮,𝒕+𝟏
𝒊  = 𝒁𝒕+𝟏 ( 𝑯𝒕 ) 

𝑺𝒛𝑮,𝒕+𝟏
𝒊   = getFeatureStrength(𝑷𝒛𝑮,𝒕+𝟏

𝒊 ); 

𝑭𝑺𝑯𝒕+𝟏  = updateFSHvalues(𝑺𝒛𝑮,𝒕+𝟏
𝒊 , 𝑭𝑺𝑯𝒕); 

end 

% FSH model computation – LTM/STM feature classification. 

[𝒁𝒊𝒏𝒅𝒕+𝟏
𝑳𝑻𝑴, 𝒁𝒊𝒏𝒅𝒕+𝟏

𝑺𝑻𝑴] = doLTM_STM_Classification(𝑭𝑺𝑯𝒕+𝟏); 

% FSH model computation – STM pruning  

doSTMfeaturePruning(𝑭𝑺𝑯𝒕+𝟏, 𝒁𝒊𝒏𝒅𝒕+𝟏
𝑺𝑻𝑴); 

% FSH model computation – LRF readings. 

𝑷𝑺𝒕 = doFSHoverLRFreadings(𝑷𝑺𝒕−𝟏, 𝒔𝒕); 

 

% Loop-closure detection. 

LC_Alert = doLoopClosureDetection(𝒙𝒕+𝟏, 𝑷𝒙𝒕+𝟏, 𝑴𝒕+𝟏, 𝑯𝒕, 𝒁𝒊𝒏𝒅𝒕+𝟏
𝑺𝑻𝑴, 𝒁𝒊𝒏𝒅𝒕+𝟏

𝑳𝑻𝑴, 𝑷𝑺𝒕); 

if (LC_Alert) 

doConstraintLoop(𝒙𝒕+𝟏, 𝑷𝒙𝒕+𝟏, 𝑴𝒕+𝟏, 𝑯𝒕, 𝒁𝒊𝒏𝒅𝒕+𝟏
𝑳𝑻𝑴); 
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34.   

35.  

end 

end 

 

LRF sensors are popular in the robotics community. The FSH model described so far 

can be applied to any kind of observation. In this work, the laser scan is also 

processed by the FSH model (line 28). By doing this, the more stable local 
environmental structure can be obtained, filtering out pedestrians and moving 

objects. Formally, given a sequence of LRF readings 𝑺𝒕 =  𝒔𝟏 … 𝒔𝑵 , where N is the 

total number of LRF scans and sj corresponds to a m x N matrix being m the rank 

of the data points, a set of votes 𝑣𝑠𝑗
𝑖 can be computed for each i-th point in the j-th 

laser scan.  

Using the previous filtered robot positions the st-1 LRF readings are sequentially 

registered, yielding a local map patch PSt-1. At each step, the PSt-1 is aligned with 

the current LRF reading st using the filtered robot position xt+1 and the set of votes 
for the FSH model is computed using the nearest-neighbor (NN) approach. The vote 

of a data point can is defined as depicted in Equation 4.10. 

𝑣𝑠𝑗
𝑖 =  1 𝑖𝑓  𝒔𝒕

𝒊 − 𝑷𝑺𝒕−𝟏
𝒌  

2
< 𝐿𝑅𝐹𝑟𝑒𝑠𝑇𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑

0 𝑂𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
   4.10 

Where, 𝒔𝒕
𝒊 is the i-th point in the current laser scan, 𝑷𝑺𝒕−𝟏

𝒌  is the k-th point in the 

previous map patch, and LRFresThreshold depends on the LRF resolution. In this 

work, the URG-04LX is used and its range resolution is 0.04m [Hokuyo, Automatic 

Co., 2009], then the LRFresThreshold value was set to 0.04m. 

Detecting loop closure situations is a challenging task. Generally, loop closing 

techniques take advantage of the topological representation of the environment 
[Thrun et al., 2005], in this way the computation time, the uncertainty estimation 

and scalability are improved. In this work, a global stochastic map representation is 

stored using the relative locations between nodes. A new node is started when the 
number of features in the current node reaches a maximum, or no matchings were 

found by the data association stage. 

There are two ways in which the FSH model is used for loop closure detection: 

firstly, the map patches PSj and the current scan st are used to get a similarity 

measure using the Hausdorff fraction [Rucklidge, 1996], which is a metric used to 
measure the distance between two sets of points; secondly, an observed LTM 

feature is used to close the loop, yielding a set of constraints which include the 

robot positions, the LTM feature and the base position of the node which closes the 
loop. The similarity between the map patches and the current scan, and the 

amount of overlapping features are considered to issue a loop closing alert (line 
31).  In this work, an overlapping of 60% [Estrada et al., 2005] [Aulinas et al., 

2010] (both map patches and landmarks) is used to issue a loop closing alert. 

Finally, in line 33 the detected loop closure is processed using the graph 
representation of the robot poses, their uncertainties, and the additional constraint 

over the observed LTM feature. The non-linear optimization is done using TORO 

[Grisetti et al., 2008], which has been adapted to work in incremental mode and 
through Matlab MEX files. 

4.5. EXPERIMENTAL RESULTS 

This section presents a set of experimental results with the aim to test the 

operating principle of the FSH model. The experiments conducted to test the FSH 
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model were classified in two groups: firstly, a static LRF-based experiment in order 

to show how the FSH model works with range data, and how the appearance 

representation of the environment is updated in presence of dynamic objects. In 
addition, a static vision-based experiment is performed in order to observe the 

image similarity behavior with and without the environment appearance 
representation update. The aim of the static vision-based experiment is to show 

how dynamic environments affect similarity measures, and how the FSH model 

properly updates the appearance representation of the environment. 

Secondly, the FSH model is used to build a vision-based topological map [Bacca et 

al., 2011]. Here, the FSH model is compared with the method proposed by [Dayoub 

et al., 2011] and the Bag-of-Words technique [Sivic & Zisserman, 2003] that 
nowadays is becoming popular for appearance-based mapping and localization 

[Bazeille & Filliat, 2010]. The localization and topological map building method used 
was a Bayesian-based simulation framework, where the motion model and sensor 

model are defined by Equations 4.11 and 4.12. To define the motion model the 

temporary coherence of the node position estimation was enforced, and it was 
assumed that transitions between closer places are more likely than transitions 

between more distant node locations. 

𝑝 𝑥𝑡 𝑥𝑡−1 = 𝛾𝑒
−

 𝑥𝑡−𝑥𝑡−1 

𝜍𝑥
2   4.11 

𝑝 𝑧𝑡 𝑥𝑡 = 𝛿𝑒
−

𝑠𝑖𝑚  𝑧𝑡 ,𝑍𝐿𝑇𝑀  

𝜍𝑧
2   4.12 

Where, xt is the current node,  is a normalization constant, ||xt – xt-1|| is the 

distance between two nodes in the topological map, 2
x is the variance of the 

distances on the map, zt is the current set of image descriptors,  is a normalization 

constant, sim(zt, ZLTM) is the similarity measure defined by matching candidates and 
feature correspondences ratio, ZLTM is a set of LTM features stored in the topological 

map, and 2
z is the variance of this measure. 

In the results reported here, the method proposed by [Dayoub et al., 2011] was 

implemented with 4 and 5 stages in STM and LTM finite-state-machine respectively. 
The feature extraction was done using the SURF algorithm over the original 

omnidirectional image; these features were not computed over the unwrapped 

panoramic image as in [Dayoub et al., 2011]. Bag-of-Words methods based their 
environmental representation on a set of unordered features (the visual words) 

taken from a dictionary. The dictionary is built using a clustering technique, 

commonly k-means, and then image classification is based on the occurrence of the 
visual words in an image to infer its class. The dictionary is built beforehand in an 

offline process. The matching process is based on a Nearest-Neighbor (NN) search 
among the distance separating the corresponding visual words. The Bag-of-Words 

toolbox used was the Caltech large scale image [Aly et al., 2011]. The FSH model 

was implemented to use SURF features computed on the original omnidirectional 
image. The clustering process involves 80 different classes corresponding to each 

node in the topological map. Each time the map was updated, the dictionary and 

clustering process were generated. The motion model assumed was defined by 
Equation 4.11, and the sensor likelihood model was the term-frequency-inverse 

document frequency (tf – idf) weighting depicted in Equation 4.13. 

𝑡𝑓 − 𝑖𝑑𝑓 =
𝑛𝑤𝑖

𝑛 𝑖
𝑙𝑜𝑔

𝑁

𝑛𝑤
  4.13 

where, nwi is the number of occurrences of word w in an image Ii, ni is the total 

number of words in Ii, nw is the number of images containing word w, and N is the 
total number of images seen so far. 
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4.5.1. Static LRF-based and Vision-based Experiment 

The static LRF-based experiment took place in a crowded corridor in the building 

PIV of the University of Girona. In this experiment the Pioneer 3DX mobile robot as 
depicted in Figure 2.5a was used. Basically, the robot was acquiring data over 30 

minutes, the robot surroundings were composed by static objects (walls, door and 
one window); during the data acquisition the appearance of the environment was 

changed along with many pedestrians were passing by. Figure 4.5 shows the initial 

appearance of the environment, where Figure 4.5a shows the FSH model of the 
range data (the darker a point is, the more stable it is) and Figure 4.5b shows the 

LTM laser readings. In the following figures the complete laser readings, as well as 

the LTM laser readings are shown in order to observe how the approach discussed 
in this chapter filter out spurious readings. 

 

a)                                                                        b) 

Figure 4.5 Initial appearance of the environment. a) FSH model of the range data. b) LTM laser readings on the 
plane XY. 

Using Algorithm 4.1 and Equation 4.10, the laser readings are continuously 
classified as LTM or STM. Figure 4.6a and 4.6b show the time in which the box No. 

1 is placed modifying the appearance of the environment. The FSH model starts 

assigning votes to those laser readings belonging to the box No. 1, however they 
are not immediately classified as LTM. This can be observed in Figure 4.6c and 4.6d 

where the appearance of the environment slightly changes. From Figure 4.6b and 
4.6d it can be observed that the range data corresponding to pedestrians (brighter 

blobs in Figure 4.6b) are filter out in the LTM laser readings.  

  

a)                                                                      b) 
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c)                                                                           d) 

Figure 4.6 Modifying the environment when the box No. 1 is placed. a) FSH model at the moment of placing the 
box No. 1. b) FSH model projected on the XY plane. c) LTM laser readings. d) LTM laser readings on the XY plane. 

Figure 4.7 shows the time in which the box No. 2 is placed. The scene structure is 

changed again, and after some time the LTM laser readings reveal this change once 
the laser readings have gained enough votes to be classified as LTM. Comparing 

Figure 4.7b and 4.7d, despite the fact that the corridor selected is very crowded, 
those spurious laser readings do not appear in the LTM laser points. 

Afterwards, the two boxes are removed from the environment as can be observed 

in Figure 4.8a and 4.8c where their corresponding FSH votes start decreasing. At 
the end, the environment is restored to its initial state, however despite the fact 

that its appearance changed over the time, only those changes which were 

considered by the FSH model as stable were shown in the LTM laser readings. 

 

a)                                                                       b) 

 

c)                                                                       d) 

Figure 4.7 Modifying the environment when the box No. 2 is placed. a) FSH model at the moment of placing the 

box No. 2. b) FSH model projected on the XY plane. c) LTM laser readings. d) LTM laser readings on the XY plane. 
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a)                                                                           b) 

 

c)                                                                        d) 

Figure 4.8 Final appearance of the environment. a) FSH model of the range data. b) LTM laser readings on the 
plane XY. c) LTM laser readings. d) LTM laser readings on the XY plane. 

 

On the other hand, the static vision-based experiment took place in another 

corridor close to a big window ensuring real world conditions due to illumination 
changes. Figure 4.9a compares the similarity percentage of the captured images. 

The 180 images were acquired over five days. Figure 4.9a shows both similarity 
measures: the dashed curve was made using the FSH model, whereas the 

continuous curve was created without updating the environment appearance. 

Figure 4.9b shows three examples of the typical omnidirectional images obtained at 
this place, where one can observe the changes in illumination and occlusions due to 

passers-by. The image similarity means were 88.82% and 58.15% for the FSH 

model and without the appearance update, respectively. Dynamic environments as 
shown in Figure 4.9b cause low similarity measures when the representation of the 

environment is not updated accordingly, but in the case of an LTM-based similarity 
measure, this effect is reduced because most LTM features remain and a good 

representation of the environment is maintained. A second place was also selected. 

It is close to a cafeteria area. In this place a second static vision-based experiment, 
whose results are shown in Figure 4.9c and 4.9d took place. Again, the FSH model 

performed better than the classical approach without appearance update. 
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a)                                                                                            b) 

  

c)                                                                                            d) 

Figure 4.9 Static image similarity test. a) Similarity measure of place No. 1. b) Typical omnidirectional images of 
place No. 1. c) Similarity measure of place No. 2. b) Typical omnidirectional images of place No. 2. 

4.5.2. Appearance-based and Topological Mapping Experiment 

As described at the beginning of this section, comparative global and local 

topological localization was performed, including the approach proposed by 
[Dayoub et al., 2011], the Bag-of-Words method and the FSH model. Four type of 

test were done: the first one used the original set of test images, without noise or 

artificial occlusion; in the second a Gaussian noise with  = 0 and  = 0.15 was 

added to the current image, but without artificial occlusion; and in the third and 

fourth tests a Gaussian noise with  = 0 and  = 0.15 and artificial occlusion was 

added by randomly removing 25% and 50% of the current image features, 
respectively.  

To evaluate the localization performance, 100 random image sequences were 

generated from the test dataset for each experiment. In both global and local 
localization, the estimated location was selected using the winner-takes-all 

approach. Since we have the real node that each image belongs to, the mean 
position error in the topological space can be obtained using the 100 random image 

sequences. Successful position estimation means that the maximum value of the 
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posterior Gaussian belief is within ±1.25 nodes around the real node location in the 

map. At each random image sequence, global localization was evaluated using the 

first image of the sequence. In this way it is ensured that no previous knowledge 
about the location was available, since this is the first localization attempt for each 

image sequence. The remaining images in the sequence were used to evaluate local 
localization, since in this case the localization algorithm deals with tracking the 

robot motion along subsequent poses. 

4.5.2.1. Global and local localization without noise or artificial occlusion 

Figure 4.10 shows the mean position error of global and local localization along the 
map updates and its uncertainty bounds (3). Figure 4.10a, 4.10b and 4.10c 

correspond to the results obtained using the FSH model, the method proposed in 
[Dayoub et al., 2011] and the Bag-of-Words approach implemented using the 

Caltech toolbox [Aly et al., 2011] respectively. The left and right side of each figure 
shows the mean position error for global and local localization, respectively. 

Because the global localization error was measured using the first image in the 

random sequence, wide uncertainty bounds are expected to be present. It is also 
expected that the mean pose error will approach zero as the map updates increase. 

The experimental results for global localization of Figure 4.10 show that the FSH 

model, which uses only visual information to figure out where the robot is placed in 
the topological map, presents a lower position error uncertainty than the others. In 

the FSH model, the mean error position for global localization tends to approach 
zero as the map updates increase. In the method proposed by [Dayoub et al., 

2011] the effect of the number of states in the finite-state-machine for the STM 

features (4) can be seen, because when the map update 5 was presented to the 
system, it started to decrease the mean position error and was approaching zero, 

which is not the case for the FSH model. The Bag-of-Words method holds a more or 

less constant global position error, but its uncertainty bounds are greater than the 
FSH model. 

a)  

b)  
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c)  

Figure 4.10 Mean position error of global and local localization along map updates without noise or artificial 
occlusion. a) The FSH model. b) The method proposed in [Dayoub et al., 2011]. c) The Bag-of-Words method. 

The mean error for local localization behaves in a similar way. As the map updates 
increase, the mean error tends to decrease. However, in the FSH model the effect 

of the environmental appearance update is more evident than in the other 

approaches. The method proposed by [Dayoub et al., 2011] is highly affected by 
the number of states in the STM finite-state-machine; and in the Bag-of-Words 

approach there is an increase of the mean position error between map updates 4 

and 6, which belong to spring and summer according to our dataset. This caused 
big changes in illumination and bright spots which were considered as features but 

without meaningful environmental appearance information. It is worth noting that 
we are dealing with real world images, where natural changes in illumination, 

walking people and occlusions influence the feature extraction and cause increases 

and decreases of the mean position error for the three methods tested. However, 
Figure 4.10 shows that the FHS model deals with these situations better. 

Figure 4.11 shows the percentage of successful and non-successful global and local 

position estimations. Note that in this case the FSH model performs the mapping 
and localization in the topological space. Successful position estimation means that 

the maximum value of the posterior Gaussian belief is within ±1.25 nodes of the 
real node location in the map; this position estimation was also considered for the 

other methods tested. Figure 4.11 has the same visualization format as the one for 

Figure 4.10 described above. The global localization results of Figure 4.11 show 
that the FSH model outperforms the method proposed by [Dayoub et al., 2011] and 

the Bag-of-Words method, because the LTM features obtained from the reference 

representation in the FSH model are able to maintain the representativeness of the 
environmental appearance from the beginning.  This is done thanks to the weighted 

voting scheme proposed in Equations 4.5 and 4.6.  

a)  
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b)  

c)  

Figure 4.11 Successful and non-successful global and local position estimation along map updates without noise or 
artificial occlusion. a) The FSH model. b) The method proposed in [Dayoub et al., 2011]. c) The Bag-of-Words 
method. 

The method proposed by [Dayoub et al., 2011] tends to increase it‟s the 

percentage of successful position estimations, but after the features state 
overcomes the STM finite-state-machine. Indoor datasets are full of perceptual 

aliasing. This becomes a great challenge for the Bag-of-Words method, because in 
global localization it finds many position hypothesis within the internal Bag-of-

Words environment representation, which is given by the voting schema over the 

visual words. 

Observing the experimental results for the successful and non-successful local 

position estimations, the FSH model holds its tendency to increase the successful 
position estimations as the map updates increase. The method proposed by 

[Dayoub et al., 2011] suffers again the consequences of the delayed appearance 

update representation, but in the end its percentage increases drastically. Despite 
the fact the map updates 4 to 6 are challenging, the Bag-of-Words method shows a 

positive difference between the successful and non-successful position estimations 

along the map updates. Figure 4.11a and Figure 4.11b show clear experimental 
differences between the FSH model and the method proposed by [Dayoub et al., 

2011]; these differences are the consequence of changing the reference view model 
at each node in the topological map for the FSH, which considers the strength of 

the environment features and then classifies them as STM or LTM features.  

4.5.2.2. Global and local localization with Gaussian noise, no artificial occlusion 

Figure 4.12 shows the mean position error for global and local localization using a 
corrupted input image, but without artificial occlusion. This section and the two 

following it aim to evaluate the FSH model in the presence of Gaussian noise and 

occlusions. These occlusions are artificially generated by randomly removing a 
percentage of the input features. Note that these occlusions are in addition to the 

ones naturally present in the original omnidirectional images in our dataset. For the 

mean position error in global localization, the end the three approaches have a 
mean error close to zero, but the levels of uncertainty are lower in the FHS model. 
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This also means that the matching and outliers removal method used in the 

topological map building stage is performing well despite the Gaussian noise added. 

a)  

b)  

c)  

Figure 4.12 Mean position error of global and local localization along map updates with Gaussian noise, and without 
artificial occlusion. a) The FSH model. b) The method proposed in [Dayoub et al., 2011]. c) The Bag-of-Words 
method. 

From the local localization point of view, Figure 4.12 shows that in the end the 
mean position error is similar to that achieved without adding Gaussian noise in the 

three methods tested, but again the levels of uncertainty are lower in the FSH 

model. The method proposed by [Dayoub et al., 2011] shows the negative effect of 
having a hard-wired finite-state machine for the rehearsal stage in the STM. The 

Bag-of-Words method shows an increase of the uncertainty as in both the global 
and the local mean position error between map updates 4 and 6, despite a two-

view geometry check is being done. 

Figure 4.13 shows the percentage of successful and non-successful global and local 
position estimations in the presence of Gaussian noise in the input image. For 

global localization, it is observed that at the beginning the noise added has a 

negative impact in the FSH model, but one map update more is enough to have a 
positive difference between successful and non-successful position estimation. This 

difference increases as the map updates increase, which does not happen with the 
other two approaches. This demonstrates that the FSH model coherently deals with 
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the original illumination changes and occlusions, and the Gaussian noise added. 

This can be observed in the continuous curve going up and down on the left side of 

Figure 4.13b and 4.13c.  

The right part of the Figure 4.13 shows the local position estimations. Clearly, the 

FSH model outperforms the other two approaches, since it always shows a positive 
difference between the successful and non-successful position estimations. 

Observing the experimental results between Figure 4.11 and Figure 4.13, the Bag-

of-Words method performs better than the method proposed by [Dayoub et al., 
2011], whose major weakness is the finite-state machine conception, which adds a 

highly sequential component to the feature classification process. 

a)  

b)  

c)  

Figure 4.13 Successful and non-successful global position estimation along map updates with Gaussian noise, and 
without artificial occlusion. a) The FSH model. b) The method proposed in [Dayoub et al., 2011]. c) The Bag-of-
Words method. 

4.5.2.3. Global and local localization with Gaussian noise and artificial occlusion of 25% 

This section describes the performance of the FSH model when the input images 

are corrupted with Gaussian noise and artificial occlusion of 25%. The artificial 
occlusion was implemented by randomly removing features from the input image. 

As described earlier, this occlusion is in addition to what is naturally present in the 
original omnidirectional images, and is caused by pedestrians, bright spots or 

illumination changes due season or time of the day. The left part of Figure 4.14 
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shows the mean position error for global localization with Gaussian noise and 

artificial occlusion of 25%. The FSH model maintains a decreasing error position to 

zero along the map updates, and has a lower uncertainty level than the other 
approaches. In terms of local localization error, the method proposed by [Dayoub 

et al., 2011] still presents an error peak at map update 5, and the Bag-of-Words 
method behaves similarly to the FSH model. Comparing the experimental results of 

Figure 4.12 and Figure 4.14, the FSH model and the method proposed by [Dayoub 

et al., 2011] behave in an especially similar way.  

a)  

b)  

c)  

Figure 4.14 Mean position error of global localization along map updates with Gaussian noise, and with artificial 

occlusion of 25%. a) The FSH model. b) The method proposed in [Dayoub et al., 2011]. c) The Bag-of-Words 
method. 

Despite the noise and artificial occlusion added, the FSH model maintains a good 

representativeness of the environment‟s appearance encoded in the LTM features, 
which allows it to better estimate the robot position than the other approaches. This 

position estimation is done saving time, computing resources and storage, because 

the Bag-of-Words method requires the creation of a new dictionary each time the 
map is updated, and the size of the dictionary greatly depends of the number of 

images and features. For instance, the FSH model applied to the computed 

topological appearance-based map has a size of 7.73Mbytes at the eighth update, 
while in the Bag-of-Words method the map at the eighth update has a size of 

64.9Mbytes. 
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The percentages of successful and non-successful global and local position 

estimations are presented in Figure 4.15. Here, the FSH model has some difficulties 

at the beginning, but after the third map update the successful position estimations 
are better.  

Given these challenging conditions of noise and artificial occlusion, the method 
proposed by [Dayoub et al., 2011] increases the peak values of non-successful 

position estimations, since less features in the STM finite-state-machine are 

promoted to the LTM. Despite the fact the Bag-of-Words method finally achieves a 
positive difference between the successful and non-successful position estimations, 

the noise and the artificial occlusion added increases the effect of its main 

weakness: dealing with perceptual aliasing, which is very common in indoor 
environments. 

a)  

b)  

c)  

Figure 4.15 Successful and non-successful global position estimation along map updates with Gaussian noise, and 
with artificial occlusion of 25%. a) The FSH model. b) The method proposed in [Dayoub et al., 2011]. c) The Bag-
of-Words method. 

4.5.2.4. Global and local localization with Gaussian noise and artificial occlusion of 50% 

Figure 4.16 shows the experimental results for the global and local mean position 
errors when the input images were corrupted with noise and artificial occlusion of 

50%. Figure 4.16a shows how the FSH model performed well on this challenging 

test, the global position estimation approaches zero and the local position 
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estimation decreases as the map updates increase. The similitude of the results 

presented for the FSH model in all four of these tests is evidence of the importance 

of getting a suitable appearance representation of the environment.  

a)  

b)  

c)  

Figure 4.16 Mean position error of global and local localization along map updates with Gaussian noise, and with 

artificial occlusion of 50%. a) The FSH model. b) The method proposed in [Dayoub et al., 2011]. c) The Bag-of-
Words method. 

Figure 4.16b shows the global and local position error for the method proposed by 

[Dayoub et al., 2011]. The error peak at map update five is still present, but one 

might wonder what happens if the rehearsal stages at the STM are reduced? This 
test was performed, but the mean position error did not decrease at the same rate 

as the FSH model, because many LTM features were considered as a reference view 
and most of them did not deserve to be promoted. In addition, the discrete 

increments of the state in the finite-state machine framework do not support a real 

value, which causes a lack of flexibility choosing the more suitable number of 
states. Figure 4.16c shows the results for the Bag-of-Words method which has 

some similarities with the results of the FSH model, but it involves an offline 

process, the uncertainty levels are bigger and as described in Section 4.5.2.3 the 
time, computing and storage costs are high. 

Figure 4.17 shows the percentages of successful and non-successful position 
estimation in the presence of Gaussian noise and artificial occlusion of 50%. Figure 

4.17a shows the experimental results for the FSH model, which after the fourth 
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map update achieve a positive difference between the successful and non-

successful global position estimation. This figure also shows evidence of how the 

assumed sensor model allows progressive improvements in the local position 
estimation. The increasing tendency of the successful local position estimation 

curve is also evidence of how the posterior Gaussian belief progressively shrinks. 

Figure 4.17b and Figure 4.17c show the experimental results for the method 

proposed in [Dayoub et al., 2011] and the Bag-of-Words method. The former 

recovers in the end, but while the reference view at each node does not take into 
account the LTM features the non-successful position estimations prevail. The latter 

has no successful global position estimation at all, but the local position estimations 

are not reliable. 

a)  

b)  

c)  

Figure 4.17 Successful and non-successful global and local position estimation along map updates with Gaussian 
noise, and with artificial occlusion of 50%. a) The FSH model. b) The method proposed in [Dayoub et al., 2011]. c) 

The Bag-of-Words method. 

4.6. DISCUSSION 

In this chapter the basis of the FSH model has been described and tested. The FSH 

model, based on a modified human memory model, implements concepts such as 
Long-Term (LTM) and Short-Term Memory (STM) as mechanisms to classify 

features as either stable or non-stable. Unlike other approaches, the FSH model 

considers a weighted voting scheme to outperform the Atkinson and Shiffrin 
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memory model linearity. STM and LTM features are distinguished using a well 

known clustering technique as k-means, such that only LTM features were used for 

robot mapping and localization. Using the weighted voting scheme implemented to 
compute the FSH, it can deal with temporal occlusions caused by dynamic 

environments and illumination changes caused by time of the day and seasons.  

The FSH model was tested in static and dynamic environments. The former 

included one set of LRF readings and two sets of images acquired over a long 

period of time; this experiment was the aim to show that the FSH model and the 
image similarity measure proposed offer better results than a static description of 

the environment. The latter used a topological map which was updated as many as 

eight times and a Bayesian-based localization approach for global and local 
localization experiments. According with these results, the FSH, the weighted voting 

scheme and the classification of STM and LTM features seems like a promising way 
to improve appearance-based mapping and localization. The LTM features obtained 

from the FSH model reference representation are able to maintain the 

representativeness of the environmental appearance from the beginning of the map 
creation, which does not happen with the other methods compared here.  

Pure topological maps give coarse localization estimations, but they behave very 

well in long-term navigation and large environments, and they are a suitable 
method for appearance-based environment models. However, the FSH model can 

be applied to other SLAM solutions as depicts Equation 4.4, and with the aid of sub-
mapping methods such as [Estrada et al., 2005], [Paz et al., 2008], [Pinies & 

Tardos, 2008], [Aulinas et al., 2010] or classical topological solutions [Thrun et al., 

2005] the FSH model can be implemented using parametric and non-parametric 
SLAM filters. This is the aim of the next chapter, where the FSH model is tested in 

the context of the FastSLAM algorithm [Montemerlo & Thrun, 2003]. 
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CHAPTER 5 

5. LONG TERM SLAM 
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This chapter presents experimental results obtained using the mobile robot and the 
dataset described in Section 2.5.1 and 2.5.2 respectively. An important property of 

the dataset collected is it includes many runs of the same environment at different 

environmental conditions. The latter covers pedestrians and changes in illumination 
due time of the day and seasons. Under these changing environmental conditions, 

the experimental validation of the FSH model was done in terms of qualitative 
results such as: filtering dynamic objects, map quality over updates and map 

update. In addition, quantitative results are also included: scan likelihood given the 

estimated robot position, scalability and matching effort. 

5.1. INTRODUCTION 

The experimental evaluation of this work was carried out at the University of Girona 

using the indoor dataset described in Section 2.5.2, which was recorded due to the 

lack of publicity of datasets in dynamic environments. The more recently work in 
this sense is the COLD database [Pronobis & Caputo, 2009], however the detailed 

intrinsic and extrinsic calibration parameters of the sensors involved are not 

available. This does not allows testing the sensor model proposed in this work 

The collected dataset includes seven (7) runs of each floor of the building PIV at the 

University of Girona. These runs were collected over a period of a year and a total 
distance of 550m, 445m and 640m for the first, second and third floor respectively. 

The experimental validation was conducted as follows: 
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1. At each floor, the initial map built by the SLAM algorithm. In this work, a 

FastSLAM algorithm [Montemerlo & Thrun, 2003] was used. At global level, a 

stochastic topological map was built with a maximum of features per node of 
10. 

2. Seven further runs were performed for each map. At each run a new map is 
generated, which considers the respective changes in the environment. This 

new map is loaded in the next run. 

Map update and localization accuracy experimental validation show qualitative and 
quantitative results. Qualitative results were designed to illustrate the following 

properties: firstly, filtering dynamic objects which appear into the LRF scans and 

environment features when the FSH model is used; secondly, the map quality and 
stability are not degraded when the robot re-enters to a known region due position 

estimation errors, or changes in the environment; thirdly, relevant changes in the 
environment are accordingly updated in the map, particularly it is important to 

show how new and relevant features can be easily become part of the LTM due the 

weighted vote method described in Section 4.4.1.  

In the absence of ground-truth, quantitative results involve measuring the 

performance of the SLAM algorithm using the average likelihood of the range scan 

reading given the estimated robot position [Biber & Duckett, 2009], and the LTM 
scan model. Furthermore, to demonstrate the system scalability, the number of 

LTM and STM features along the map updates was considered. The aim of this test 
is to show the performance of the STM pruning method discussed in Section 4.4.3, 

and that the FSH model can deal with large environments and long periods of 

operation. Last, the average matching effort was measured over the map updates. 
In this case, the percentage of LTM and STM features with respect to the data 

association vector is compared with the full matching effort, which takes into 
account all the available features without using the FSH model. 

Chapter 3 was devoted to describe the sensor model proposed in this work. The 

next two Sections describe the robot motion model used for the Pioneer 3DX, and 
for self-containment the FastSLAM probabilistic foundations. 

5.1.1. Robot Motion Model 

The Pioneer 3DX is a differential mobile robot which is commanded using a linear 
and angular velocity through its Aria software interface [AdeptTechnology, 2012]. 

The robot state can be defined in terms of the velocity motion model [Thrun et al., 
2005] as depicted in Equation 5.1. 

𝒙𝒕 = 𝒇 𝒙𝒕−𝟏, 𝒖𝒕 =  

𝑥𝑡

𝑦𝑡

𝜃𝑡

 =  

𝑥𝑡−1

𝑦𝑡−1

𝜃𝑡−1

 +  

𝑣

𝑤
 − sin 𝜃𝑡−1 + sin(𝜃𝑡−1 + 𝑤∆𝑡) 

𝑣

𝑤
 cos 𝜃𝑡−1 − cos(𝜃𝑡−1 + 𝑤∆𝑡) 

𝑤∆𝑡

   5.1 

Where, xt and xt-1 are the current and previous robot states, v and w are the linear 

and angular velocities of the robot, and t is the elapsed time between instants t-1 

and t. The velocity motion of Equation 5.1 is valid for w  0, then at the limit when 

w  0 the velocity motion model can be adapted for straight movement using the 

L‟Hopital‟s rule on the rightmost term of Equation 5.1, the velocity model for w = 0 

can be defined as Equation 5.2 shows. 

𝒙𝒕 = 𝒇 𝒙𝒕−𝟏, 𝒖𝒕 =  

𝑥𝑡

𝑦𝑡

𝜃𝑡

 =  

𝑥𝑡−1

𝑦𝑡−1

𝜃𝑡−1

 +  
𝑣 ∆𝑡 𝑐𝑜𝑠(𝜃𝑡−1)
𝑣 ∆𝑡 𝑠𝑖𝑛(𝜃𝑡−1)

0

   5.2 
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Equation 5.1 and 5.2 are non-linear functions of the robot state, thus they need to 

be linearized in order to estimate the robot pose in the prediction stage of most 

common SLAM solutions. To do so, the Jacobian with respect to the robot state xt 
and the input controls ut = [v w]T have to be defined. Equations 5.3 to 5.6 depict 

these Jacobians. 

𝛁𝒇𝒙
𝒘≠𝟎 =  

1 0
𝑣

𝑤
 − cos 𝜃𝑡−1 + cos(𝜃𝑡−1 + 𝑤∆𝑡) 

0 1
𝑣

𝑤
 −sin 𝜃𝑡−1 + sin(𝜃𝑡−1 + 𝑤∆𝑡) 

0 0 1

   5.3 

𝛁𝒇𝒖
𝒘≠𝟎 =  

−sin  𝜃𝑡−1 +sin ⁡(𝜃𝑡−1+𝑤∆𝑡)

𝑤

𝑣(sin  𝜃𝑡−1 −sin ⁡(𝜃𝑡−1+𝑤∆𝑡))

𝑤2 +
𝑣∆𝑡(cos ⁡(𝜃𝑡−1+𝑤∆𝑡))

𝑤
cos  𝜃𝑡−1 −cos ⁡(𝜃𝑡−1+𝑤∆𝑡)

𝑤

−𝑣(cos  𝜃𝑡−1 −sin ⁡(𝜃𝑡−1+𝑤∆𝑡))

𝑤2 +
𝑣∆𝑡(sin ⁡(𝜃𝑡−1+𝑤∆𝑡))

𝑤

0 ∆𝑡

   5.4 

𝛁𝒇𝒙
𝒘=𝟎 =  

1 0 −𝑣 ∆𝑡 sin⁡(𝜃𝑡−1)
0 1 𝑣 ∆𝑡 cos⁡(𝜃𝑡−1)
0 0 0

    5.5 

𝛁𝒇𝒖
𝒘=𝟎 =  

∆𝑡 cos⁡(𝜃𝑡−1) 0
∆𝑡 sin⁡(𝜃𝑡−1) 0

0 0

   5.6 

5.1.2. FastSLAM Probabilistic Foundations 

In this work, the FastSLAM 2.0 algorithm [Montemerlo et al., 2003] was used for 
map building and localization. It uses particle filtering and it has been adapted to 

support the sensor model described in Chapter 3. In this SLAM algorithm, 
conditionally independence is assumed given the robot poses, and then the 

posterior can be factored as depicted in Equation 5.7. 

𝑝 𝒙𝒕, 𝑴 𝒛𝟏:𝒕, 𝒖𝟏:𝒕 = 𝑝 𝒙𝒕 𝒛𝟏:𝒕, 𝒖𝟏:𝒕  𝑝 𝒎𝒏 𝒙𝒕, 𝒛𝟏:𝒕 
𝑁
𝑛=1   5.7 

Where, t is the current time step and N is the current number of features. In 

FastSLAM each particle is denoted by 𝒚𝒕
𝒌 =  𝒙𝒕

𝒌, 𝝁𝟏,𝒕
𝒌 , 𝜮𝟏,𝒕

𝒌 , … , 𝝁𝑵,𝒕
𝒌 , 𝜮𝑵,𝒕

𝒌   where, k is the 

particle index, 𝒙𝒕
𝒌 is the path estimate of the robot, and 𝝁𝒏,𝒕

𝒌   and 𝜮𝒏,𝒕
𝒌  are the mean 

and variance of the Gaussian representing the n-th feature location of the k-th 

particle which are estimated using independent Kalman filters. The filtering process 
overview is explained as follows: 

1. Getting measures – Vertical edge positions with respect to the LRF are 

gathered: zn,t = [n,t n,t]
T, where n,t and n,t are the range and the azimuth 

of the n-th vertical edge at time t (Chapter 3). 

2. Sampling new poses – A new pose xt is sampled using the motion model 

described in Section 5.1.1. This is done drawing a sample according to the 

motion posterior 𝒙𝒕
𝒌 ~𝑝 𝒙𝒕

𝒌 𝒙𝒕−𝟏
𝒌 , 𝒖𝒕  where, 𝒙𝒕−𝟏

𝒌  is the posterior estimate for the 

robot location at time t-1 in the k-th particle, and ut is the command motion. 

3. Data association – Given the current set of features for the k-th particle, 

the current set of observations zt and the current predicted pose 𝒙𝒕
𝒌 , the data 

association method described in Section 3.5.2 and Section 4.4.3 is used to 

find the observed features Ht.  

4. Update observed features – For each observed feature in each k-th 
particle, the standard EKF expressions were applied to obtain the mean 

(𝝁𝑯𝒕,𝒕
𝒌 ) and covariance (𝜮𝑯𝒕,𝒕

𝒌 ) of these features as shown Equations 5.8 to 

5.10. 
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𝑲𝒕
𝒌 = 𝚺𝑯𝒕,𝒕−𝟏

𝒌 . 𝑱𝒎,𝒕
𝒌.𝑻 𝑱𝒎,𝒕

𝒌 . 𝚺𝑯𝒕,𝒕−𝟏
𝒌 . 𝑱𝒎,𝒕

𝒌.𝑻 + 𝑸𝒕 
−1

  5.8 

𝝁𝑯𝒕,𝒕
𝒌 = 𝝁𝑯𝒕,𝒕−𝟏

𝒌 + 𝑲𝒕
𝒌(𝒛𝒕 − 𝒛𝒕

𝒌 )  5.9 

𝚺𝑯𝒕,𝒕
𝒌 =  𝑰 − 𝑲𝒕

𝒌𝑱𝒕
𝒌 . 𝚺𝑯𝒕,𝒕−𝟏

𝒌   5.10 

Where, 𝑱𝒎,𝒕
𝒌  is the Jacobian of the measurement model with respect to the 

feature coordinates (see Section 3.5.1) and Qt is the sensor uncertainty. 

5. Re-sampling – The low variance re-sampling method is used in this work, 
where the importance factor of each particle depends on their measurement 

probability. 

5.2. EXPERIMENTAL CONDITIONS 

Figure 5.1 shows the estimated maps of level P0, P1 and P2 of the building PIV at 
the University of Girona, a set of typical images and the map graph. These maps 

are on the corresponding CAD maps in order to observe the match of the registered 

LRF scans, the environmental features colored in red with respect the CAD map. 
The maps shown in Figure 5.1 correspond to the first SLAM run of the seven runs 

performed to obtain the results discussed in this chapter. It can be observed from 
Figure 5.1a, 5.1d and 5.1g that the mapped area for each floor corresponds to an 

area of 30m by 40m (height x width) for level P0, 20m by 40m (height x width) for 

level P1 and 40m by 40m (height x width) for level P2. 

 

a)  
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b)  

c)  
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d)  

e)  

f)  
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g)  

h)
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i)  

Figure 5.1 Building PIV of the University of Girona. a-c) Map, typical images and graph of level P0.d-f) Map, typical 

images and graph of level P1.g-i) Map, typical images and graph of level P2. 

As can be observed from Figure 5.1, the size of the map is large causing 

visualization problems if a detailed view is needed. For this reason, Figure 5.1c, 
5.1f and 5.1i show the equivalent graph of each map. This topological 

representation of the environment makes easy the visualization of the results 

presented in this chapter, because it allows observing how the dynamic objects are 
filtered out, or detailing the map quality or how the map is repaired in further SLAM 

runs can be better analyzed using portions of the whole map. Particularly, portions 

of the map where pedestrians and changes in illumination are more present. 

The typical omnidirectional images shown in Figure 5.1b, 5.1e and 5.1h display the 

change of the environment illumination, and the pedestrians crossing by. For 
instance, each row of Figure 5.1b corresponds to nodes 7, 26 and 33 of the map of 

level P0; where big windows are present modifying the appearance of the 

environment from the illumination point of view. In these situations the vertical 
edge detection is not easy. Each row of Figure 5.1e corresponds to nodes 10 and 21 

of the map of level P1; here, the camera cannot find the right gain due the big 

changes in illumination, which is low along the corridor but it is high through the 
left window. Each row of Figure 5.1h corresponds to nodes 29 and 41 of the map of 

level P2; in these images as well as in the previous ones, it can be observed that 
the environment does not stay static, some doors are open and later these are 

closed, or the trash cans change their position. 

5.3. FILTERING DYNAMIC OBJECTS 

Dynamic objects cause basically two main problems: firstly, if they are not handled 
properly, these objects introduce localization errors [Burgard et al., 2007]; and 

secondly, the measurements of dynamic objects carry no information in order to 

estimate the vehicle pose [Wang et al., 2003], in addition these measurements 
cause spurious features which consume computing time in the data association 

process if they are not filtered out properly. 

Figure 5.2 show the LRF readings of the map of level P0, particularly the nodes 1, 
13 and 33 of the topological map. Observing Figure 5.1a and 5.1c, these nodes 

corresponds to populated places. The left column of Figure 5.2(a, c, e) shows the 
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LRF readings without considering the FSH model. Here, the dotted circles show the 

pedestrians crossing by, and these graphs show the alignment errors of the laser 

scans which tends to generate thick and blurred walls.  

On the other hand, the right column of Figure 5.2(a, c, e) shows the LTM laser 

scans extracted from the FSH model. As a result of applying the FSH model, not 
only the pedestrians are filtered out, but the more stable laser readings persist 

showing a more accurate appearance of the environment. Particularly, Figure 5.2c 

which corresponds to node 13 shows in the dotted circles a group of persons sitting 
on a bench, and moving around; this situation cause evident registration errors, 

however the LTM laser scans shows a more accurate scan alignment. 

a)  

b)  
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c)  

d)  

e)  
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f)  

Figure 5.2 LRF readings of the map of level P0 without (left column) and with (right column) the FSH model. a) 

Node 1. b) LRF votes for Node 1. c) Node 13. d) LRF votes for Node 13. e) Node 33. f) LRF votes for Node 33. 

Figure 5.2b, 5.2d and 5.2f correspond to the LRF votes from which the LTM scans 

were computed. Observing these figures, a common property is the wide thickness 
of the walls, which is not observed in the right column of Figure 5.2a, 5.2c and 

5.2e. In addition, in Figure 5.2b, 5.2d and 5.2f the lighter the color the more 
spurious is the LRF reading; however, despite of the high value of the LTM scan 

votes, the spurious LRF readings can be appreciated. 

a)  

b)  

c)
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d)  

Figure 5.3 STM (left column) and LTM (right column) features of the corresponding nodes in Figure 5.2. a) Node 1 
of the map of level P0. b) Node 13 of the map of level P0. c) Node 33 of the map of level P0. d) Omnidirectional 
images corresponding to the Node 1, 13 and 33. 

Figure 5.3 shows the STM and LTM features of the corresponding nodes in Figure 
5.2 in the left and right column respectively. STM features can be temporarily 

created by dynamic objects; however they are not part of the map until they are 

rehearsed (re-observed) and then become part of the LTM. Comparing the 
pedestrian in Figure 5.2a (left column) and the Figure 5.3a (left column), it can be 

observed that a spurious vertical edge was created. Nonetheless, the LTM version 
of the map does not show this spurious feature, even though this spurious feature 

is likely to be deleted. 

This situation is repeated in the map of the node 13 (Figure 5.3b) and in the map of 
the node 33 (Figure 5.3c). Focusing the attention on the right column of Figure 5.3, 

it is worth noting that the LTM scans and the LTM vertical features are consistent 

with the corresponding vertical edges in the scene. Figure 5.3d shows three 
omnidirectional images corresponding to nodes 1, 13 and 33 of the map of level P0. 

These images show the environmental conditions when the LRF readings and the 
vertical edges were taken. Note that these disturbances do not appear in the LTM 

scans of Figure 5.2 or the LTM features of Figure 5.3. 

5.4. MAP QUALITY OVER UPDATES 

SLAM solutions are not error free, this causes erroneous feature position 
estimations and in consequence LRF scan alignment errors. After this first error, 

further errors are more likely. In long runs, this situation probably could make the 

filter diverges [Kretzschmar et al., 2010]. Therefore, an important result is that the 
FSH map model of the environment is stable over time.  
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a)  

b)  

Figure 5.4 a) STM and LTM map versions of node 5 at level P0. Each row corresponds to one different map update. 

The left and right columns show the STM and LTM map respectively (laser scans and features). b) Omnidirectional 
images corresponding to each row in part a). 
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a)  

b)  

Figure 5.5 a) STM and LTM map versions of node 24 at level P0. Each row corresponds to one different map 

update. The left and right columns show the STM and LTM map respectively (laser scans and features). b) 
Omnidirectional images corresponding to each row in part a). 

In this work, three different maps were estimated namely the level P0, P1 and P2 of 

building PIV of the University of Girona. However, observing the map quality of 
these maps as a whole is difficult. For this reason, Figure 5.4 to Figure 5.8 show a 

set of local maps and their change over the map updates. These figures show only 

3 of 7 map updates performed (update 1, 4 and 7). The left and right columns of 
these figures correspond to the STM and LTM map versions respectively. Figure 5.4 

and 5.5 show the node 5 and 24 of the map at level P0. Both figures show the 
complete map: the LTM laser scan registered using the estimated pose of the 

mobile robot, and the STM and LTM vertical edge features. Observing the laser 
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scans only, the accuracy of the local maps increased over the map updates. For 

instance, despite the fact that various map updates were performed, the 

straightness of the walls remains consistent. From the vertical edge features point 
of view, Figure 5.4a and 5.5a show a clear evidence of the difference between the 

STM and LTM features, which can be observed comparing the uncertainty ellipses 
draw on the 2D plane of the laser scan. At the end of the map updates, the more 

stable vertical edges are shown, and they are consistent with the appearance of the 

environment. Figure 5.4b and Figure 5.5b give an idea of the environmental 
appearance at the moment of capturing the corresponding LTM scans and features. 

a)  

b)  

Figure 5.6 a) STM and LTM map versions of node 23 at level P1. Each row corresponds to one different map 
update. The left and right columns show the STM and LTM map respectively (laser scans and features). b) 
Omnidirectional images corresponding to each row in part a). 
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Figure 5.6 show the node 23 of the map at level P1. The environment structure of 

this level is very similar to the level P2, however the node 23 of this level is 

challenging because the mobile robot faces a small fence outside a window, which 
not only causes changes in illumination but spurious laser reflections. Observing the 

evolution of the LTM map (laser scan and vertical edge features) over the map 
updates, it is clear that the local map accuracy is improved. The STM map of the 

last update also shows many vertical edge candidates with high uncertainties, 

which is the effect of the illumination changes through the window and the spurious 
laser reflections. Nevertheless, these features disappear in the LTM map version.  

a)  

b)    

Figure 5.7 a) STM and LTM map versions of node 12 at level P2. Each row corresponds to one different map 
update. The left and right columns show the STM and LTM map respectively (laser scans and features). b) 

Omnidirectional images corresponding to each row in part a). 
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Figure 5.6b shows three omnidirectional images corresponding to each row of 

Figure 5.6a. These images show the drastic changes in illumination caused by the 

window in front of the robot. 

a)  

b)  

Figure 5.8 a) STM and LTM map versions of node 31 at level P2. Each row corresponds to one different map 
update. The left and right columns show the STM and LTM map respectively (laser scans and features). b) 
Omnidirectional images corresponding to each row in part a). 

Figure 5.7 and 5.8 show the STM and LTM maps of nodes 12 and 31 of the level P2. 

This map is the largest of all three maps. Despite the fact that in these nodes big 
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changes of illumination and pedestrians are present due the door with a big window 

placed across the corridor, the evolution of the LTM map shows a laser scan and a 

set of vertical edge features consistent with scene. Figure 5.7b shows three 
omnidirectional images that give an idea of the environmental conditions, 

particularly the changes in illumination due the big window in the left.  

Observing the second row of Figure 5.8a and its corresponding omnidirectional 

image in Figure 5.8b, there is a notable change in the appearance of the LTM map 

due to the pedestrian crossing by. However at the end the LTM map model shows 
the more stable LRF readings 

5.5. MAP UPDATE 

Other important result is the capability to update the map learned [Konolige & 

Bowman, 2009]. In typical indoor office environments, the state of the doors 
change, the furniture is moved or structural changes in the environment are made. 

In these situations, it is desirable to update the map accordingly. The FSH model 

proposed in this work embeds the map update capability into the LTM map version. 
As a result, the configuration of the environment is learnt over time.  

 

Figure 5.9 Update of the FSH model. LTM map version of node 5 at level P0 over 4 map updates. From top to 
bottom and left to right: update 1, 3, 5 and 7. 

Figure 5.9 shows the LTM map of node 5 at level P0 over 4 map updates (top to 

bottom and left to right). Here, it can be observed how the LTM map is continuously 
modified in order to take into account the state of the door. At the beginning this 

door is closed, however further map updates show that the new state of the door is 
properly updated. In [Biber & Duckett, 2009] various time constants are considered 

to hold different environment configurations, then the current observations are 

matched with these different versions of the environment, and the map version 
selected is that  better explains the current measurements. In this work, the FSH 

model holds one model of the environment namely the LTM map, which embeds the 

more stable appearance of the environment. This can be observed in Figure 5.9, 
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where the top-right LTM map shows the state of the door open and closed, however 

this happens temporarily while the LTM map is updated properly. 

In dynamic environments, where occlusions, pedestrians, changes in the furniture 
position and illumination changes are present, the common SLAM solutions have 

erroneous robot position estimation due to spurious features caused by dynamic 
objects, or laser scan misalignments [Bailey & Durrant-Whyte, 2006] [Kretzschmar 

et al., 2010]. In these cases, the map needs to be changed in order to represent 

not only a suitable representation of the environment, but to reflect a change of the 
environment structure [Konolige & Bowman, 2009]. 

Figure 5.10 and 5.11 show the LTM map of nodes 27 and 37 at levels P0 and P2 

respectively over 4 map updates. In these figures two cases of map repair are 
presented. Firstly, the node 27 at level P0 is a populated entry of the building PIV, 

in addition the big windows provide big illumination changes; as a result, the 
probability of making error in the robot pose estimation increases. This can be 

observed in the second map update (top-right LTM map of Figure 5.10a), where the 

wall appears in a different position with respect to the first map update (top-left 
LTM map). Further map updates rehearse the last hypothesis on the LTM map, for 

this reason the last map update shows the wall in the new position and removes 

the previous hypothesis. 

Figure 5.10b shows four omnidirectional images at node 27 of level P0, each one 

corresponding to each map updated of Figure 5.10a. As can be observed, the big 
window at the right and the pedestrians crossing by cause the appearance of the 

environment changes a lot. This change has a negative effect in the P0 level map; 

however using the FSH model throughout the map updates the most stable 
hypothesis remains. 

a)  
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b)   

Figure 5.10 Map repair using the FSH model at node 27 of level P0 over 4 map updates. From top to bottom and 

left to right: update 1, 3, 5 and 7. 

In the same way as Figure 5.10, Figure 5.11 shows another map repair situation 

occurred in node 37 at level P2. Along all the runs performed with the mobile robot, 

this node in particular showed many students crossing by. As a result, it can be 
observed that in the map updates 3 and 5 there are notable laser scan alignment 

errors. At the end, in the map update 7 many of these laser scan alignment errors 
are filtered out. In addition, in Figure 5.11 all the local map was moved to the left, 

which can be visually observed in the right wall in this local map. At the beginning, 

there was one hypothesis about the right wall position, however over the map 
updates this hypothesis was not rehearsed; on the contrary, moving the local map 

position to the left was rehearsed over the other map updates. 

Map repair and update was explicitly considered in [Burgard et al., 2007], [Biber & 
Duckett, 2009], [Konolige & Bowman, 2009] and [Dayoub et al., 2011]. In 

[Burgard et al., 2007] and [Konolige & Bowman, 2009] the authors implement 
clustering techniques in order to represent similar and persistent the environment 

appearance. On the other hand, [Dayoub et al., 2011] proposes a view update 

using the original human memory model [Atkinson & Shiffrin, 1968]. Comparing 
the work presented here with respect to those approaches in [Burgard et al., 2007] 

and [Konolige & Bowman, 2009], this work follows and alternative solution which 
estimates the LTM map of the environment. The LTM map was computed applying 

the FSH model and it holds an integrated representation of the environment 

appearance. The FSH model can be used with different type of sensors, which is not 
clear enough in [Burgard et al., 2007] and it does not needs to maintain different 

configurations of the environment at different time scales as proposed by [Biber & 

Duckett, 2009]. Finally, the LTM map representation shows the more stable 
features (vertical edges in this case), and the more persistent environment 

configuration using a modified human memory model, improving the rehearsal 
method with respect to [Dayoub et al., 2011] which implements the classical 

human memory model has drawn criticism from psychologists and neuroscientists 
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due to its extremely linear representation of the memory process [Baddeley, 2003], 

[Llinas, 2002]. 

 

Figure 5.11 Map repair using the FSH model at node 37 of level P2 over 4 map updates. From top to bottom and 

left to right: update 1, 3, 5 and 7. 

5.6. QUANTITATIVE RESULTS 

In this section quantitative results are presented. Measuring the real performance 

of SLAM solutions requires ground-truth data, which in most cases is hard to 
obtain. Therefore, in the absence of ground-truth data, the following performance 

measures were selected: 

1. The mean laser scan likelihood over the map updates given the robot 
position estimations and the current LTM map. This likelihood is computed 

using the Hausdorff fraction [Rucklidge, 1996], which is a metric used to 

measure the distance between two sets of points. Given the LTM map, the 
current laser scan is registered at the estimated robot position, and then 

using the Hausdorff fraction a measure of the scan relevance can be 
computed. 

2. The mean number of the LTM, STM and deleted features over the map 

updates can provide evidence for the scalability of this work.  
3. The mean matching effort over the map updates when the FSH model is used 

(LTM and STM features), and without using the FSH model. 

5.6.1. Scan Likelihood over Map Updates 

Figure 5.12 shows the mean laser scan likelihood for the map of level P0 (5.12a), 

P1 (5.12b) and P2 (5.12c) over the map updates. In both cases, it can be observed 
that the more map updates are performed, the highest is the scan likelihood when 

the FSH model is used. The scan likelihood depicted in Figure 5.12 is a measure of 
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the localization accuracy given the computed LTM features, because over the map 

updates only the LTM features were used to estimate the robot position. The initial 

scan likelihood in both cases is not bad: 71.31% and 69.73% for the map of level 
P0 and P2 respectively, which is an indirect measurement of the performance of the 

sensor model proposed in this work (Chapter 3). However, the scan likelihood 
increases as more map updates are performed, meaning that the localization 

accuracy also increases when the FSH model is used. 

a)  

b)  

c)  

Figure 5.12 Mean scan likelihood over the map updates. a) Level P0. b) Level P1. c) Level P2. 
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The highest variation in the scan likelihood uncertainty is present in Figure 5.12b, 

which corresponds to the map at level P1. The SLAM algorithm in conjunction with 

the FSH model faces a big challenge here. Observing Figure 5.1f, the node 6 in the 
map at level P1 has not enough features, and it covers a space of about 5 meters, 

which is greater than the LRF maximum range. In addition, the level P1 is traversed 
by many pedestrians. Despite the fact that over the map update the SLAM 

algorithm presented slight divergences, they were not catastrophic enough to get 

the robot lost. 

It is important noting that the increasing behavior of the scan likelihood over map 

updates means that the localization algorithm prefers the persistent configuration 

of the environment. In addition, the LTM map of the environment (including the 
vertical edge features and the laser scans) is changed properly as the configuration 

of the environment is modified over time. 

5.6.2. Scalability 

a)  

b)  



 

118 

c)  

Figure 5.13 Mean LTM, STM and deleted number of features over map updates. a) Map at level P0. b) Map at level 

P1. c) Map at level P2. 

An important motivation behind this work is being able to deal with large 

environments and long-term navigation. Then, the mean number of the LTM, STM 
and deleted features by node provide evidence for the scalability of this work. 

Figure 5.13 shows the evolution of the number of LTM, STM and deleted features by 

node as the map updates increase. The diamond points corresponds to the 
evolution of the number of LTM features, the circle points are the evolution of the 

number of STM features and the square points are the evolution of the number of 
STM deleted features. The dashed curves show their corresponding uncertainty.  

Observing the evolution of the LTM and STM features in both figures, it is a clear 

tendency of the LTM features to remain almost constant. At the beginning, the 
number of LTM features is greater than the number of LTM features in the other 

map updates. An explanation of this behavior is that at the very beginning most of 

the features are considered as LTM, however as the map update increases the 
number of LTM features tends to decrease because the more stable vertical edges 

remains. On the other hand, the number of STM features is greater than the LTM 
features as expected, but thanks to the pruning method discussed in Section 4.4.2 

the number of STM features does not increases boundless. 

Therefore, this means that the FSH model deals well with large environments, 
because LTM features are only used for robot mapping and localization, and useless 

or old STM features are deleted properly. 

5.6.3. Matching Effort 

Classifying the environmental features as STM or LTM has another interesting 

result; it reduces the mean matching effort comparing it with respect to the full 
matching effort. Figure 5.15 shows the mean matching effort for the map at level 

P0, P1 and P2 over updates when the FSH model was used, and without using it. In 

this figure, diamond points correspond to the LTM matching effort over updates, 
square points are the STM matching effort and circle points are the full matching 

effort (without using the FSH model). 
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Observing Figure 5.15, the LTM matching effort is greater than the STM matching 

effort because the more stable the features (LTM features) are the more likely are 

found compared with the STM features. This result in conjunction with the scan 
likelihood depicted in Figure 5.12 shows evidence that the FSH model proposed in 

this work responds to the changes in the environment, and also the FSH model 
includes these changes to increase the localization accuracy. 

The full matching effort was measure without using the FSH model, it means using 

all the features available, without classifying them as STM or LTM, and without 
pruning the useless or old STM features. Figure 5.15a and 5.15b show the full 

matching effort is greater than the LTM and STM matching effort. As a result, 

reducing the number of matching candidates also reduces the data association 
effort for long-term runs, and increases the robustness in dynamic environments 

reducing the effect of outliers increasing the robot position estimation error. 

a)  

b)  
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b)  

Figure 5.14 Matching effort over map updates with the FSH model (LTM and STM features, diamond and square 

points respectively) and without the FSH model (full effort, circle points). a) Map of level P0. b) Map of level P1. c) 
Map of level P2. 

5.7. DISCUSSION 

In this chapter a set of three real world and long run experiments were performed. 
The experiments were conducted in the levels P0, P1 and P2 of building PIV at the 

University of Girona. The SLAM solution used was the FastSLAM algorithm, which 
was modified to include the sensor model and the FSH model proposed in this work. 

Unlike of the experiments conducted in Chapter 4, where a visual topological map 

was used, in this Chapter a metric map and a stochastic topological map were 
implemented.  

The first part of this Chapter was devoted to the qualitative results obtained from 

performing seven updates to the three maps of levels P0, P1 and P2. Firstly, using 
the FSH model the dynamic objects as pedestrians crossing by were filtered out 

avoiding robot position errors estimation, and then reducing the alignment errors, 
which tends to generate thick and blurred walls. Dynamic objects also cause 

spurious features, however they are filtered out and they do not appear in the LTM 

map which is used for robot localization. Secondly, the map quality increases over 
time, because the more stable features are continuously rehearsed and the 

configuration of the environment is updated in the LTM map. As a result, the more 
updates are performed, the more consistent are the vertical edges with the 

appearance of the environment when the FSH model is used. Last, updating the 

map accordingly to the changes observed in the environment was also 
demonstrated. The LTM map of the environment embeds the changes of the 

environment, which means that not only the configuration of the environment is 

learned, but also correct a local map representation after robot position error 
estimation has took place. 

The second part of this Chapter was devoted to describe the quantitative results, 
which in absence of a ground-truth three performance measures were carried out: 

the mean laser scan likelihood over the map updates given the robot position 

estimations and the current LTM map; the mean number of LTM, STM and deleted 
features over map updates; and the mean matching effort over map updates with 

and without the FSH model. Firstly, the laser scan likelihood over updates has 
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shown an increasing behavior, meaning that the localization accuracy also increases 

when the FSH model was used. In addition, as the environment changes, the LTM 

map of the environment change accordingly. Secondly, the mean number of the 
LTM, STM and deleted features provide evidence for the scalability of this work; in 

this way, the results reported in this Chapter demonstrates that the FSH model 
integrated in a SLAM solution deals well with large environments because LTM 

features are only used for robot mapping and localization, and useless or old STM 

features are deleted properly. Last, the LTM, STM and full matching efforts provide 
evidence of reducing the effect of outliers increasing the robot position estimation 

error, and also taking into account the scan likelihood results the localization 

accuracy is increased when the FSH model is used, because it incorporates the 
changes of the environment into the LTM map. 

The FSH model has the main advantage of incorporating the changes of the 
environment in terms of its configuration and the features extracted from it, and 

incrementally increasing the map quality. This result arises from the fact that rating 

the map landmark allows classifying them as STM or LTM in the context of the 
modified human memory model [Bacca et al., 2011] [Atkinson & Shiffrin, 1968]. As 

a result, the localization accuracy is increased in further runs, and the data 

association effort is reduced thanks to the map landmark classification approach 
into STM and LTM, as well as the pruning method applied to the useless and old 

STM features. Therefore, integrating the FSH model into a SLAM solution improves 
their behavior in long-term navigation. 
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CHAPTER 7 

6. CONCLUSIONS 
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In this Chapter the conclusions and future perspectives of this work are presented. 
To start with, Section 7.1 summarizes the content presented in each chapter. 

Afterwards, in Section 7.2 the scientific contributions extracted from the proposals 
and experiments carried out are discussed. Furthermore, in Section 7.3 the short-

term and long-term future perspectives are discussed as well as some interesting 

future research issues. Finally, in Section 7.4 the list of publications related with 
this work is presented and the scientific collaborations performed. 

6.1. CONCLUSIONS 

This thesis addresses the problem of updating the robot internal representation of 

the environment when its appearance changes over time. The real-world 
environments are complex and dynamic, and the robot must adapt to the new 

working conditions and fulfill its task. To do so, on-board sensors and their 
associated model are the information used to estimate the robot state and the map 

of the environment. The SLAM algorithms consider all the map features equally 

important, but in long-term operation there is the opportunity to classify the map 
features according to the number of times a feature is re-observed. However, many 

solutions of the SLAM problem assume a static environment representation, such 

that moving objects or in general the change of the environment is considered as 
noise or outliers that should be rejected by the SLAM algorithm [Durrant-Whyte & 

Bailey, 2006] [Bailey & Durrant-Whyte, 2006]. A brief revision of these techniques 
was performed in Chapter 2. Taking into account long-term mapping and 

localization, dealing with dynamic environments and the current SLAM solutions, 

the second part of Chapter presents a survey of long-term SLAM methods. This 
survey classifies the long-term SLAM approaches into six classes describing the 

different methods to deal with dynamic environments namely: Memory 

management models, Landmark visibility and rating, Detecting/using dynamic 
objects, Dynamic changes integrated in SLAM, Pruning methods, and Multiple map 
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representations. Based on this survey, the main goal for this section was that it is 

worth designing and implementing long-term SLAM methods in a way that it can be 

applied to the current SLAM solutions. Afterwards, a brief review of different 
environment modeling techniques in the field of mobile robotics was presented. It 

included: range data features, image features extracted from standard and 
omnidirectional cameras. The main outcome of this Chapter was the finding to 

focus effort on combining the 2D LRF and the omnidirectional vision sensors in 

order to extract salient features from the environment. 

One of the contributions presented in this work was presented in Chapter 3. In this 

Chapter the sensor model based on a range-augmented omnidirectional sensor was 

presented to extract vertical edge features from indoors scenes. Firstly, in order to 
reduce the range measurements of the 2D LRF, the LRF calibration procedure was 

described and the LRF linear model was obtained. Secondly, different LRF features 
are introduced namely: LRF breakpoints and LRF line segments. Thirdly, a brief 

review of the omnidirectional vision features was presented. Since, intuitively the 

appearance-based model of the environment describes the environment as it is, 
and taking advantage of its natural structure, the omnidirectional camera was used 

to extract vertical edges, which afterwards was combined with the LRF data 

projected onto the omnidirectional image to estimate the edge position. Fourthly, a 
detailed description of how embedding range information in omnidirectional images 

using the extrinsic calibration between the LRF and omnidirectional camera was 
presented. Here, two methods were experimentally evaluated: simultaneously and 

non-simultaneously parameter estimation; however, the simultaneous parameter 

estimation is more likely to get a successful calibration result, because it does not 
assume any alignment constraint between the LRF and the omnidirectional camera, 

and it considers the intrinsic coupling between rotation and translation. Fifthly, 
merging the previous work related with the extrinsic calibration of the LRF and the 

omnidirectional camera, and the vertical edges detection, the sensor model to 

extract the 3D position of vertical edges in indoor environments was presented. 
Considering the data set includes real-world conditions, the dynamic objects of the 

environment and the robot motion robust vertical edge position estimation with 

respect to the mobile robot was described. This included the projection of the 
breakpoint uncertainties using the catadioptric projection model onto the 

omnidirectional image, the projection of the laser segments as conics onto the 
omnidirectional image using the model proposed by [Barreto & Araujo, 2005], 

computing the intersects between the vertical edges and the conic representation of 

the LRF segments, and the data association between the LRF breakpoints and the 
set of intersects using the JCBB test [Neira & Tardos, 2001]. Sixth, the map 

landmark data association was based on the JCBB test, however depending on the 

uncertainty this method could fails. In Chapter 3 was also described a 
complementary method for data association, which depends on geometric 

constraints based on the unified projection model for catadioptric cameras [Geyer & 
Daniilidis, 2000]. The main outcome of this Chapter is the validation of the sensor 

model proposed in a set of real-world experiments, which in absence of a ground-

truth they were compared with respect to the G2O framework, obtaining promising 
results in a very challenging environment, where illumination changes and 

occlusions by pedestrians were part of the data set used. 

The main contribution of this work was presented in Chapter 4. The Feature 
Stability Histogram (FSH) is a solution proposed in this work to deal with changing 

environments and long-term mapping and localization. The main idea behind this is 
classify the features of the environment in stable and non-stable ones. To do so, 
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the FSH is inspired on the human memory model proposed by [Atkinson & Shiffrin, 

1968], in order to sequentially build a histogram of the feature strengths which is 

updated once the feature is re-observed. Stable features, belonging to the Long-
Term Memory (LTM), are used for localization and mapping. On the other hand, 

non-stable features, belonging to the Short-Term memory (STM), can be part of 
the LTM depending of their strength. This Chapter first presents a description of the 

original human memory model, and then the modified human memory model used 

in this work. The main modifications include: the feature classification (STM or LTM) 
is not linear since the rehearsal process takes into account the feature strength, 

and the reference view is composed of both memories the STM and LTM. 

Afterwards, a description of how the FSH model can be integrated into typical SLAM 
solutions was presented as well as the probabilistic foundations of this integration 

process. Furthermore, the LTM/STM feature classification was discussed, which was 
done using a dynamic threshold that acts on the feature strengths. Taking 

advantage of the feature rating and how it was used to build the FSH, the LTM/STM 

feature classification problem was solved using k-means [Lloyd, 1982]. STM feature 
removal was also described considering the STM feature strengths likelihood and 

how old a STM feature is. Experimental results using static LRF-based and vision-

based experiments were performed. Results also included topological map building 
and localization, where global and local localization with and without noise and 

artificial occlusion were conducted. The main outcome of this Chapter was that the 
FSH model map representation is able to maintain the representativeness of the 

environmental appearance despite the environmental changes. 

Chapter 5 presented long-term SLAM results using the FSH model integrated into 
the FastSLAM algorithm, which is a different sort SLAM solution compared with the 

visual-based topological map building and localization implemented in Chapter 4. 
Firstly, the motion model of the Pioneer 3DX mobile robot was described as well as 

the probabilistic foundations of the FastSLAM algorithm. The results were divided in 

qualitative and quantitative. The former includes the capability of filtering dynamic 
objects, visually observe map quality over updates and map update. The 

quantitative results included: the scan likelihood given the estimated robot position 

over the map updates; evidence of the system scalability observing the evolution of 
the LTM, STM and deleted features over updates; and a comparison of the 

matching effort with and without the FSH model. The main outcomes of this 
Chapter are: the FSH model was able to filter out spurious laser scans and features 

present in the environment due dynamic objects; the accuracy of the local maps 

(LTM scans and vertical edges) increased over the map updates when the FSH 
model was used; the FSH model holds one model of the environment namely the 

LTM map and it embeds the more stable appearance of the environment, unlike the 

approaches of [Biber & Duckett, 2009], [Burgard et al., 2007] and [Konolige & 
Bowman, 2009] who follow a different way maintaining multiple map 

representations; the scan likelihood increases as more map updates are performed, 
meaning that the localization accuracy also increases when the FSH model is used; 

the FSH model deals well with large environments, because LTM features are only 

used for robot mapping and localization, and useless or old STM features are 
deleted properly; and reducing the number of matching candidates also reduces the 

data association effort in long-term runs, and increases the robustness in dynamic 

environments reducing the effect of outliers in increasing the robot position 
estimation error. 
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6.2. CONTRIBUTIONS 

Considering the results condensed in this thesis, the goal of using the FSH model 

for appearance-based simultaneous mapping and localization in long-term 

navigation has been accomplished. In the development of this goal, the following 
research contributions are listed below: 

 A detailed extrinsic calibration between a 2D LRF with invisible trace and an 

omnidirectional camera. When this research work was started, there were 
few works on this topic with the sufficient detail to be replicated. In [Bacca et 

al., 2010] two approaches were studied simultaneous and non-simultaneous 
parameter estimation, as well as a method to obtain a ground truth using the 

calibration information of the omnidirectional camera to validate the results 

obtained. 
 The FSH model, an innovative feature management strategy based on the 

human memory model [Atkinson & Shiffrin, 1968], and modified in order to 

avoid the extremely linear representation of the original memory process. In 
[Bacca et al., 2010] and [Bacca et al., 2011] the FSH model proposed takes 

into account levels of memory (STM and LTM) represented in the features 
strength. 

 A sensor model based on a range-augmented omnidirectional vision sensor 

and used to solve the SLAM problem. The sensor model presented is based 
on the extrinsic calibration of a LRF and an omnidirectional camera. Using 

this calibration, 3D position of vertical edges were extracted and considered 

as observations into the FastSLAM algorithm [Bacca Cortes et al., 2011]. 
 An indoor dataset collected at different time of the day and between seasons 

including LRF readings, the corresponding omnidirectional images and the 
robot odometry. The datasets available online contains one run of different 

places which is not useful for long-term mapping and localization. Since, it 

requires data recorded under various illumination conditions, over several 
days and presence of dynamic obstacles. Recently, the COLD database 

[Pronobis & Caputo, 2009] includes data recorded in the conditions described 
above. 

 The approach presented in this document was validated using real-world 

experiments over a long period of time, and within different environmental 
conditions. The FSH model was also tested using different kind of mapping 

and localization algorithms namely topological visual-based and the particle 

filter based FastSLAM algorithm. In this way, it showed that the FSH model 
can be adapted to different types of SLAM solutions. 

6.3. FUTURE WORK 

During the research work conducted over these years, new interesting problems 

and research topics have been found. The following list consolidates some of them: 

 Sensor Model 

o The vertical edge features suffer the same disadvantages of the edge 
detection methods; they highly depend on the illumination conditions 

and the performance of the edge detector. The author believes that 

combining the conic projection of the LRF segments and the vertical 
edges that intersect it, plane detection on the omnidirectional image 

can be implemented simplifying the plan detection proposed in [Mei, 

2007]. 
o The sensor model proposed in this work requires a second step to 

detect the vertical edges discarding the scene non-vertical edges. It 
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would very interesting find a way to avoid complete line detection of 

the scene in order to reduce the computation time. 

o The current configuration of the environment is based on the LTM laser 
scans. It would be interesting to implement a LTM laser segment 

model as the configuration of the environment. Since, in this way a 
better metric than the nearest-neighbor could be implemented to rate 

the laser features. 

o It would very useful to perform the extrinsic calibration between a 3D 
LRF and an omnidirectional camera, and then applying the FSH model 

on the textured planes extracted. This enables the robot position 

estimation in 6-DOF instead of the 3-DOF which actually is 
implemented. 

 The FSH model 
o The approach presented in this work based the landmark rating either 

in the feature uncertainty or the matching distance. However, the 

feature uncertainty suffers from the well known disadvantage of 
obtaining an overconfident uncertainty as the map is continuously 

updated; and the matching distance is a very local measure. 

Therefore, other landmark rating techniques are required. For 
instance, it would be interesting to fuse the feature visual appearance 

and its metric information. 
o Another interesting point arises from the LTM/STM classification 

method and the STM feature removal. Here, artificial intelligence 

techniques as Support Vector Machines (SVM), fuzzy logic or neural 
networks are interesting options to explore. 

 SLAM solutions 

o It would be interesting to integrate graph simplification techniques as 

that proposed in [Kretzschmar et al., 2010] with the FSH model as a 

measure of what observations to discard. 
o It would be a good idea to integrate the FSH model into more SLAM 

solutions such as: Divide and Conquer [Paz et al., 2008], Conditionally 

independent maps [Pinies & Tardos, 2008], Hierarchical SLAM [Estrada 
et al., 2005], Selective map joining [Aulinas et al., 2010], GraphSLAM 

[Thrun & Montemerlo, 2005], ESEIF [Walter et al., 2007] and 
Occupancy Grid Mapping [Thrun et al., 2005]. 

o It would very useful to conduct a real-time experiment on a vehicle 

with an on-board computer and using an optimized code in C++. 
 New scenarios 

o Conducting experiments in outdoors scenarios and without the 3-DOF 

constraint would be an interesting option to explore. However, the 
sensing devices have to be improved: a camera with faster white-

balance and gain adjust, and a LRF with better performance in terms 
of range and sensitivity. 
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APPENDIX 

7. APPENDIX A – JACOBIANS TO ESTIMATE THE CORNER 
UNCERTAINTY ON THE IMAGE PLANE 

 

 

𝑱𝒑 =  
cos⁡(𝜃𝑐𝑖) −sin⁡(𝜃𝑐𝑖) 0
sin⁡(𝜃𝑐𝑖) cos⁡(𝜃𝑐𝑖) 0

0 0 0

   A.1 

𝑱𝑹 =  

(𝑟7 + 𝑟9)𝑦 +  𝑟8 − 𝑟3𝑠𝜃 𝑧 −𝑠𝜃𝑐𝜓𝑥 + 𝑐𝜃𝑟4𝑦 + 𝑠𝜙𝑟6𝑧 −𝑟1𝑥 −  𝑟2 + 𝑟3 𝑦 +  𝑟4 − 𝑟5 𝑧
 −𝑟4 + 𝑟5 𝑦 −  𝑟2 + 𝑟3 𝑧 −𝑠𝜃𝑠𝜓𝑥 + 𝑟1𝑠𝜙𝑦 + 𝑟1𝑐𝜙𝑧 𝑟6𝑥 +  −𝑟8 + 𝑟4𝑠𝜃 𝑦 +  𝑟7 + 𝑟9 𝑧

𝑐𝜙𝑐𝜃𝑦 − 𝑠𝜙𝑐𝜃𝑧 −𝑐𝜃𝑥 − 𝑠𝜃𝑠𝜙𝑦 − 𝑐𝜙𝑠𝜃𝑧 0
  

 A.2 

r1 = cs 

r2 = cc 

r3 = sss 

r4 = sc 

r5 = css 

r6 = cc 

r7 = ss 

r8 = cs 

r9 = csc  A.3 

𝑱𝑺 =
1

𝑟𝑝 (𝑧𝑠+𝜉𝑟𝑝 )2  
𝑟𝑝𝑧𝑠 + 𝜉(𝑦𝑠

2 + 𝑧𝑠
2) −𝜉𝑥𝑠𝑦𝑠 −𝑥𝑠(𝑟𝑝 + 𝜉𝑧𝑠)

−𝜉𝑥𝑠𝑦𝑠 𝑟𝑝𝑧𝑠 + 𝜉(𝑥𝑠
2 + 𝑧𝑠

2) −𝑦𝑠(𝑟𝑝 + 𝜉𝑧𝑠)
   A.4 

𝑱𝑫 =  
𝐽𝐷1 𝐿
𝐿 𝐽𝐷2

   A.5 

𝐽𝐷1 = 1 + 𝑘1 𝑟𝑢 + 2𝑥𝑢
2 + 𝑘2𝑟𝑢 𝑟𝑢 + 4𝑥𝑢

2 + 2𝑦𝑘3 + 6𝑘4𝑥 + 𝑘5𝑟𝑢
2 𝑟𝑢 + 6𝑥𝑢

2   A.6 

𝐽𝐷2 = 1 + 𝑘1 𝑟𝑢 + 2𝑦𝑢
2 + 𝑘2𝑟𝑢 𝑟𝑢 + 4𝑦𝑢

2 + 6𝑦𝑘3 + 2𝑘4𝑥 + 𝑘5𝑟𝑢
2 𝑟𝑢 + 6𝑦𝑢

2   A.7 

𝐿 = 2𝑥𝑢𝑦𝑢𝑘1 + 4𝑥𝑢𝑦𝑢𝑘2𝑟𝑢 + 2𝑥𝑢𝑘3 + 2𝑦𝑢𝑘4 + 6𝑥𝑢𝑦𝑢𝑘5𝑟𝑢
2  A.8 

𝑱𝑲 =  
𝛾1 𝑠𝛾1

0 𝛾2
   A.9 

Where, in Equation A.1, JP is the Jacobian of the polar to Cartesian coordinate 
transformation, and the corner point orientation is defined by Ci. In Equation A.2, 

JR is the Jacobian of the transformation to the camera frame and the roll, pitch and 

yaw angles are defined by ,  and ; c and s refer to cos(.) and sin(.) functions. In 

Equation A.4, JS is the Jacobian of the projection function to the image plane at 

infinity,  is the mirror parameter, [xS yS zS]
T is the point on the sphere, and rP its 

norm. In Equation A.5, JD is the Jacobian of the distortion function which was taken 

from the calibration toolbox presented in [Mei, 2006], and [xu yu]
T is the point in 

the image plane at infinity. In Equation A.9, JK is the Jacobian of the camera 

projection function. Using Equation 3.20 and Equations A.1 to A.9, the corners 

uncertainties on the image plane can be defined as depicted in Equation 3.26. 
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