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Abstract

It is well known that regression analyses involving compositional data need special
attention because the data are not of full rank. For a regression analysis where both
the dependent and independent variable are components we propose a transformation
of the components emphasizing their role as dependent and independent variables.
A simple linear regression can be performed on the transformed components. The
regression line can be depicted in a ternary diagram facilitating the interpretation of
the analysis in terms of components. An example with time-budgets illustrates the
method and the graphical features.
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1 Introduction

Compositional data are collected in an N x D two-way table X, such that its elements, x,;(r =
1,...,N;i=1,...,D) are nonnegative and the rows add up to 1 (see, e.g., Aitchison, 1986/2003,
p. 1). The latter constrained is often referred to as the sum constrained. The rows of X, x1,...,xn
are called compositions. In the social sciences the rows of X are often called budgets (see, e.g.,
De Leeuw and others, 1990; Van der Heijden and others 1992; Van der Ark and others, 1999).
Sometimes, compositional data are formed by the closure of an N x D two-way table W with
nonnegative elements. Closure means that all elements are divided by the row sum; that is,

Tp; = wri/ Zj Wyj.

Table 1 shows an (fictitious) example of so-called time-budgets. Students were asked to indicate
how they would divide a weeks time in in six mutually exclusive and exhaustive components:
studying (S), paid work (PW), domestic work (DW), personal needs (PN), social past time (SP)
other activities (AO). The question of interest in this paper is how the time spent on paid work
is related to the time spent on studying. It is assumed that if students students spend a large
part of their available time on paid work, they will spend relatively more time on studying in the
remaining period than students that spend little time on paid work.

2 A regression model

A regression analysis is the most natural way to investigate the relation between paid work and
studying. However, an ordinary regression analysis,

S = Bo+ 1 x PW,

is problematic. First, it yields estimates for S that are not range preserving and may violate the
nonnegativity constraints. Second, coefficient (3; is related to the correlation coefficient, r,

SD(S)

B1 = rs,rw X W



Table 1: Example of time-budgets.

Respondent Activities Total
S PW DW PN SP AO
Respondent 1 0.12 0.18 0.01 0.33 0.12 0.24 1.00
Respondent 2 0.14 0.06 0.02 0.36 0.09 0.33 1.00
Respondent 3  0.20 0.00 0.02 0.30 0.08 040 1.00
Respondent 4 0.14 0.10 0.05 0.30 0.12 0.30 1.00
Respondent 5 0.31 0.12 0.01 0.36 0.06 0.15 1.00

Note: S = studying; PW = paid work;
DW = domestic work; PN = personal needs;
SP = social past time; O = other activities

It is well known that the correlational structure of compositional data is problematic (see Aitchison,
1985/2003, pp. 52-58). For example, $; = 0, which implies that rg pyw = 0, does not imply linear
independence.

Transforming the compositional data to unconstrained data before the regression analysis may solve
the problem. Well-known transformations are the logratio transformation (Aitchison, 1985/2003,
p. 77) where

yrizlog@, forr=1,...,N;i=1,...,D—1
rD

and the centered logratio transformation. Let g(x;) denote the geometric mean of budget x;, then
the centered logratio transformation is

Ly
g(xi)’

We argue that all transformations are arbitrary in the sense that no transformation can give back
the information that was lost in closure of the data. Hence, the underlying data matrix W can
not be recovered. Therefore, the mathematical and substantive properties of the transformed data
should be decisive in choosing a transformation.

zri = log forr=1,...,N;i=1,...,D.

For a suitable transformation for the situation that both the dependent and independent variable
are components, the research question needs to be investigated. We are interested in how students
spend the remainder of their time when the paid work is done. Our special interest is which part
of the remaining time, consisting of S, DW, PN, SP, and AQO, is spent on studying. If the
components DW, PN, SP, and AO are added into one large component other O, the dependent
variable of this research would be (the logarithm of) the ratio of S and O; hence S* = log (%)
We call S the primary dependent component, O the reference dependent component, and the ratio

of S and O the dependent ratio. The independent component is the time spent on paid work. A

so-called logit transformation (see, e.g., Agresti, 2002), PW* = log (%), makes sure that the

domain of the independent variable is the real line. Then, the proposed regression equation is
S* = fo + 1 x PW™ + error. (1)
The expected value of the dependent variable, denoted S* equals
S* = By + B x PW*. (2)

After 5y and (1 have been estimated, the primary dependent component and the reference depen-
dent component can be computed from Equation 2. First take the inverse natural logarithm of



Equation 2 which yields the estimated dependent ratio

(g) = exp {ﬂo + By x log <1fgw>} . (3)

Hence, the part of the time budget without PW (i.e., 1 — PW), is spent on S and O according to
the dependent ratio in Equation 3. The part of 1 — PW that is spent on studying is

- (3)

and the part that is spent on the remaining activities is

x (1 — PW)

1
— = X
1+(%)

It may be noted that this procedure is range preserving and that for each respondent S+0+PW =
1.

0= (1—PW).

3 Graphic features on the simplex

The proposed regression can be depicted in ternary diagrams. A ternary diagram (see, e.g., Aitchi-
son, 1985/2003, pp. 5-6; Van der Ark and Van der Heijden, 1998; Magidson and Vermunt, 2001)
is a triangle used to depict budgets with three components. This visualization of of the regression
facilitates the interpretation. Each vertex of the triangle represents one component. Figure 1 is a
ternary diagram where the upper vertex represent the independent component (PW), the right-
hand vertex represents the primary dependent component (S), and the left-hand vertex represents
the reference dependent component (O). In a time budget depicted in the upper vertex all time is
spent on paid work; in a time budget depicted in the right-hand vertex all time is spent on study-
ing. Budgets depicted in the triangle are mixtures of the three components. The time budgets of
Table 1 are displayed in Figure 1. Note that the black square which is most to the right represents
the budget of respondent 5 who spends more time on studying than the other respondents, the
black square on the edge of the ternary diagram represents the budget of respondent 3, who spends
no time at all on paid work.

The estimated regression curves in Equation 2 can also be depicted in a ternary diagram. Figure 2
shows the regression curves of for several values of 3y and f.

It may be noted that all regression curves start at the lower edge of the ternary diagram and
end in the upper vertex. The lowest edge represents the dependent ratio, when the value of the
independent component equals zero; that is, the ratio of time spent on studying and time spent on
the other components when no time is spent on paid work. The shape of the curves depends on the
values of By and (1, but the interpretation of the parameters is not as straightforward as in linear
regression. Therefore, visualizing the regression curves may help understand the results. Figure 2
shows the following. If 8; = 0 (Fig. 2D, Fig. 2E, Fig. 2F) the dependent ratio does not change as
the independent component increases. If 81 < 0 (Fig. 2A, Fig. 2B, Fig. 2C) the dependent ratio
decreases as the independent component increases and if 51 > 0 (Fig. 2G, Fig. 2H, Fig. 2I) the
dependent ratio increases as the independent component increases. As ; becomes closer to 0 (not
shown in Fig. 2), the change in the dependent ratio as a function of the independent component
becomes more gradual.

Coeflicient 3y determines at what value of the independent component the changes in the dependent
ratio occur. If By < 0 (Fig. 2A, Fig. 2C, Fig. 2G) the change in the dependent ratio, expressed
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Figure 1: Graphic display of the time-budgets of the respondents in Table 1.
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Figure 2: Examples of regression curves with the following values of the intercept: So = —2, Bo = 0, and Bo = 2;
and the following values of the slope: 51 = -2, 1 =0, and 81 = 2.



by (1, is most prominent for budgets with a large independent component. If 35 = 0 (Fig. 2B,
Fig. 2D, Fig. 2F) the change in the dependent ratio, expressed by 1, is most prominent for budgets
with a medium sized independent component. If 8y > 0 (Fig. 2C, Fig. 2F, Fig. 2I) the change
in the dependent ratio, expressed by (1, is most prominent for budgets with a small independent
component.

4 An Example

To illustrate the procedure, a sample of 500 observations were drawn from a multivariate normal
distribution with mean vector y and covariance matrix o, where

—1.00 2.00 1.08 258 0.66 1.49
—0.87 1.08 1.59 —-0.81 0.74 1.94
p=| —4.27 and Y= 258 —-0.81 4211 1.41 0.61
-0.95 0.66 0.74 141 0.44 0.96
—0.95 1.49 194  0.61 0.96 2.76

A inverse logratio transformation yielded compositional data. It is assumed that these data are
realistic time-budgets for the components in Table 1. Figure 3 shows a ternary diagram depicting
the primary dependent component (S), the reference dependent component (O = DW + PN +
SP + AO), and the independent component (PW) of the 500 observations.
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Figure 3: Graphic display of 500 time budgets.

The parameter estimates with standard errors of the linear regression are Bo = —.8911(.1052)
and f; = 0.5338(.0359). Both statistics are statistically significant (p < .00005). The multiple
R-squared statistic, indicating the proportion of the total variance explained by the model, equals
.3051. The regression curve is depicted in Figure 4, showing that if the component paid work
increases, then the dependent ratio also increases. The expected amount of time spent on studying
never exceeds 0.16.
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Figure 4: Estimated regression curve.

5 Discussion

The proposed method for performing a regression when both the dependent and the independent
variable are components need not be restricted to a univariate regression. Other variables (not
components) can be incorporated in Equation 1. This procedure is not meant as a solution for
all research questions. Some research question may require another transformation of the com-
positional data to conduct a meaningful regression analysis. Computer code in Splus for plotting
compositional data and regression curves in ternary diagrams is available free of charge from
http://spitswww.uvt.nl/~avdrark/research.html

A topic that needs to be investigated is the effect of budgets with some very small components.
These budgets have a large influence on the outcome of the regression analysis. Possible solutions
are adding a small amount to these components or deleting them as unwanted outliers. Components
which are exactly zero cause problems when taking the logarithm.
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