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Abstract

This paper presents a procedure that allows us to determine the preference structures
(PS) associated to each of the different groups of actors that can be identified in a group
decision making problem with a large number of individuals. To that end, it makes
use of the Analytic Hierarchy Process (AHP) (Saaty, 1980) as the technique to solve
discrete multicriteria decision making problems. This technique permits the resolution
of multicriteria, multienvironment and multiactor problems in which subjective aspects
and uncertainty have been incorporated into the model, constructing ratio scales cor-
responding to the priorities relative to the elements being compared, normalised in a
distributive manner (wi = 1). On the basis of the individuals’ priorities we identify
different clusters for the decision makers and, for each of these, the associated prefer-
ence structure using, to that end, tools analogous to those of Multidimensional Scaling.
The resulting PS will be employed to extract knowledge for the subsequent negotia-
tion processes and, should it be necessary, to determine the relative importance of the
alternatives being compared using anyone of the existing procedures.

Key words: Group Decision Making, AHP, Preference Structures, Cluster, Negotia-
tion, Compositional Data.

1 Introduction

One of the most outstanding applications of group decision making in the social–economic envi-
ronment is its use in public decision making, particularly into the field of electronic democracy
(e–democracy). It is in this context, and more specifically in the ambit of e–cognocracy, the
new democratic system recently proposed by José Maŕıa Moreno to extract and share knowl-
edge relative to the scientific resolution of high complexity problems raised in the Social Sciences
(Moreno–Jiménez, 2003; Moreno–Jiménez and Polasek, 2003), where the decisional tools devel-
oped by the consolidated research group of the Government of Aragón (Spain) known as “Grupo
Decisión Multicriterio Zaragoza” (http://gdmz.unizar.es) acquire their real meaning.

Along these lines, we now present a new procedure to detect and identify patterns of behaviour in
group decision making when the analytic hierarchy process (AHP) is used to prioritise and select
between a discrete number of alternatives in a multiactor and multicriteria environment. This
new methodological procedure based on a Bayesian analysis of the problem, will be carried out
by developing new graphical visualization tools that favour: (i) the perception of consensus paths
between the actors involved in the resolution of the problem; (ii) the interpretation of results and,
finally, (iii) the extraction of the subjacent knowledge associated with the decisional process.

The paper has been structured as follows. Section 2 briefly presents the multicriteria decision
making technique employed to solve the problem and introduces the importance of graphical visu-
alization tools. Section 3 describes the algorithm proposed to identify the opinion groups and their
characteristics (associated rankings). Section 4 illustrates the methodology by analysing a simple
case study extracted from a real experiment on e–democracy developed for the city of Zaragoza
(Spain). Section 5 closes the paper with a review of the main conclusions.



2 Background

2.1 The Analytic Hierarchy Process (AHP)

The Analytic Hierarchy Process is one of the most extended multicriteria decision making tech-
niques. It was proposed by Thomas L. Saaty in the mid 1970s (Saaty, 1972, 1974, 1976, 1977, 1980),
and combines tangible and intangible aspects to obtain, in a ratio scale, the priorities associated
with the alternatives of the problem. Its methodology consists of four steps (Saaty, 1980): (1)
Modelization, i.e. establishing a hierarchical representation of the problem, which should include
all the relevant aspects of the decision problem; (2) Valuation, in which the decision maker incorpo-
rates his judgements through pairwise comparisons between the elements in the problem taken into
consideration; (3) Priorization where the local priorities are obtained by using any of the existing
priorization procedures (the eigenvector method –EGVM– and the row geometric mean method
–RGMM– are the most widely used) and (4) Synthesis, in which the total priorities are derived.
One of the main characteristics of AHP is the existence of a measure to evaluate the inconsistency
of the decision maker when eliciting his judgements (Saaty, 1980; Aguarón and Moreno–Jiménez,
2003).

The complexity of the decisional problems that arise in the Social Sciences, together with the
greater specialisation required of individuals in this new context, calls for the use of approaches
more open and flexible than the traditional ones, and which have an appropriate behaviour in
multiactor decision making (Saaty, 1996; Moreno–Jiménez et al., 1999, 2002).

The consideration of multiple actors in high complexity social decision problems means that one
of the desirable characteristics that we seek from the new decisional paradigms, along with pub-
licity, rigour, simplicity and accessibility (Roy, 1993; Moreno–Jiménez et al., 2001), is appropriate
behaviour in group decision making (Saaty, 1994). Moreno–Jiménez et al. (2002) distinguish three
different situations: (i) Group Decision; (ii) Negotiated Decision and (iii) Systemic Decision. In
the first of these, all the individuals search for a common aim. In the second, each individual solves
the problem independently, and agreement and disagreement zones among the different positions
are sought for. Finally, in the third case, each individual acts independently, but all the positions
are arrived at according to the tolerance principle.

In the following sections we focus on the identification of opinion groups through a Bayesian analysis
of the problem and the development of new graphical visualization tools to favour the negotiation
process in multiactor decision making.

2.2 Graphical Visualization Techniques

Over the last years a number of graphical representation techniques for multidimensional sets of
data have been developed. These techniques try to help human minds to understand the world
around us, that is to say, to explore this world, to interact with the environment and to extract
knowledge that can be processed by our brain. Graphical visualization of information improves
our response time and enables us to extract knowledge from this information more quickly. This
result is especially true when the size or complexity of the data base complicates its analytical
study. Furthermore, graphical visualization tools increase the degree of reliability in conclusions
(Klein, 2002).

During the nineties and since the beginning of the 21st century, the Grupo Decisión Multicriterio
Zaragoza (GDMZ) has been developing different graphical visualization tools for the AHP. In
this context, Turón et al. (2003) and Moreno–Jiménez et al. (2005) introduce graphics for the
evolution of preference structures, the value paths for PS and alternatives. Turón and Moreno–
Jiménez (2004) present the density of judgment inconsistency diagram and the localization of PS
diagram. Finally, Turón et al. (2005) define the consensus density diagram. A more detailed study
of general graphical visualization tools can be found in Asahi et al. (1994).



3 An algorithm for group identification

This section describes the algorithm used for finding the consensus groups from the set of decisors.
The algorithm is a variation of the k–media algorithm, in which the role of the centroids is played
by the consensus distribution of the group priorities vector, as defined in Gargallo et al. (2005).

3.1 Foundations

Assuming a local context (a single criterion), let D = {D1, . . . , Dr}, r ≥ 2 be a group of r decision
makers, emitting r reciprocal pairwise comparison matrices {R(k)

n×n; k = 1, . . . , r} corresponding
to the comparison, with respect to the considered criterion, of a set of n decision alternatives
{A1, . . . , An}, where R
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The algorithm follows a Bayesian approach to the problem of group identification, and assumes
that the judgement emitting process for each decision maker Dk is given by a multiplicative model
with log–normal errors, widely used in AHP literature:
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Taking logarithms the following regression model with normal errors is obtained:
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Moreover, with the aim of avoiding identificability problems, we take µn = 0, that is, alternative
An is selected as reference alternative. As the prior distribution over µ(k) = (µ(k)

1 , . . . , µ
(k)
n−1)

′ we
take the uniform distribution on R

n−1, which is the non–informative distribution usually taken in
Bayesian literature.

Let y(k) = (y(k)
12 , y

(k)
13 , . . . , y

(k)
n−1 n)′ be the judgement vector for the decision maker Dk, k = 1, . . . , r

and let J = n(n−1)
2 be the number of judgements emitted by that decisor. Let X = (xij) be a

matrix J × (n − 1) so that if the i − th component of vector {y(k), k = 1, . . . , r} corresponds to
the comparison between alternatives Aj and A� with 1 ≤ j < � < m then xij = 1, xi� = −1 and
xis = 0 for s �= j, �, and if it corresponds to a comparison between alternatives Aj and An with
1 ≤ j < n then xij = 1 and xis = 0 for s �= j.

Eqs. (2) can be written, in matricial notation, as

y(k) = Xµ(k) + ε(k); k = 1, . . . , r (3)

with ε(k) = (ε(k)
12 , ε

(k)
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n−1 n)′ ∼ NJ(0J , σ(k)2IJ ).

The posterior distributions for {µ(k); k = 1, . . . , r} will be given by



µ(k)|y(k) ∼ Nn−1(µ̂(k), σ(k)2(X′X)−1) (4)

where µ̂(k) = (X′X−1)(X′y(k)) is the MLE for µ(k).

3.2 Group consensus distribution

Let v = (v1, . . . , vn)′ and w = (w1, . . . , wn)′ be, respectively, the non–normalised and normalised
priorities vectors for the group alternatives. Let µ = log(v) be the log–priorities vector for the
group.

Let {βk; k = 1, . . . , r} (β1 > 0, . . . , βr > 0;
∑r

k=1 βk = 1) be the importance weights for each
decision maker D1, . . . , Dr in the group decision making process.

As shown in Gargallo et al. (2005), the consensus distribution for the group of decision makers is
given by
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This distribution (Gargallo et al., 2005) minimizes a weighted mean of the Kullback–Leibler dis-
tances from the group distribution to the posterior probability distributions.

By using this distribution, the consistency level of the group is estimated by the unbiased estimator
traditionally used in AHP literature, given by

σ̂2
D =

1
J r − n + 1

r∑
k=1

(y(k) − Xµ̂consensus)
′(y(k) − Xµ̂consensus) (6)

This estimator is used for evaluating the level of consensus existing inside the group. To that
purpose the upper consistency limit of the group, lim, is set in such a way that if the consistency
level estimated for a group is greater than lim, there is not enough consensus in the group due to
the great heterogeneity between the preferences of its members.

3.3 The general algorithm

Having established the statistical foundations of the algorithm, we now proceed to describe it in
detail.

Step 0 (Setting the upper level as a criterion for dividing or joining groups)

The limit lim is set in order to determine which groups may be divided or joined.

Step 1 (Initialization)

1a (Group construction)

An initial partition of the set of decision makers D, {G(0)
1 , . . . , G

(0)

k(0)}, is created. Set k(0) = n and
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1b (Consensus distribution for every group)

The consensus distribution of each group is calculated by using expression (5), so that µ|G(0)
i ∼

Nn−1(µ̂(i)
consensus, σ

(i)2

consensus(X′X)−1), i = i, . . . , k(0). Set it = 1 (number of iterations).

Step 2 (Group assignment)

For each decision maker Dk, the distance from its posterior distribution [Eq. (4)] to each consensus
distribution of every one of the groups obtained in Step 1 is calculated. Each decisor is assigned
to the nearest group. Once the process finishes empty groups are removed and a new partition
{G(it)

1 , . . . , G
(it)

k(it)} of the set of decision makers D is obtained.

Step 3 (Consensus distribution for every group)

The consensus distribution for every group is calculated by using Eq. (5), so that µ|G(it)
i ∼

Nn−1(µ̂(i)
consensus, σ

(i)2

consensus(X′X)−1), i = i, . . . , k(it).

Step 4 (Group division)

In order to analyze if any group has to be divided, the distance from the posterior distribution
[Eq. (4)] of every decision maker to its group consensus distribution is obtained, after which the
decision maker Dk with the maximum distance is determined. If this distance is greater than lim

then the group G
(it)
imax

to which the decision maker belongs is divided into two subgroups {Dk} and

G
(it)
imax

− {Dk}, and the consensus distribution of each group is calculated by using Eq. (5). Set
k(it+1) = k(it) + 1, it = it + 1 and go to Step 3. Otherwise go to Step 6.

Step 5 (Group joining)

The pair (imin, jmin) ∈ C, whose consensus distribution distance [Eq. (5)] is minimum, is obtained.
If this distance is lower than lim, then G

(it)
imin

and G
(it)
jmin

are replaced by G
(it)
imin

∪ G
(it)
jmin

and the
consensus distribution for this new group is calculated. Set k(it+1) = k(it) − 1, it = it + 1 and go
to Step 3. Otherwise go to Step 7.

Step 6 (Ending condition)

The algorithm finishes when two consecutive partitions of D are identical.

If the individual consistency levels {σ(k)2; k = 1, . . . , r} are unknown they can be estimated by
means of the individual judgements emitted by each decision maker, using the unbiased estimator
σ̂(k)2 = 1

J−n+1 (y(k) − Xµ̂(k))′(y(k) − Xµ̂(k)).

3.3.1 Classification algorithm for P.α problems

A P.α problem (Roy, 1993) aims to obtain the best alternative. This algorithm creates the groups
depending on the similarities between the posterior distributions for the most preferred alternative
in each group. It follows the outline of the general algorithm, using



Dα(G, G′) =
√

wα(G)′wα(G) + wα(G′)′wα(G′) − 2wα(G)′wα(G′) (7)

G, G′ being two subsets of the set of decision makers and wα(G) = (w1(G), . . . , wn(G))′, with
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where Nn−1(µconsensus(G), σ2
consensus(G)(X′X)−1) is the consensus distribution [Eq. (5)] for group

G.

3.3.2 Classification algorithm for P.γ problems

A decisional problem is termed type γ (Roy, 1993) if it aims to rank the alternatives. This
algorithm constructs the groups depending on the similarities between the posterior distributions
of the preference structures of each group. It follows the outline of the general algorithm, using
the following distance between distributions:

Dγ(G, G′) = 1 −
√

wγ(G)′Twγ(G) + wγ(G′)′Twγ(G′) − 2wγ(G)′Twγ(G′) (9)

where wγ(G) = (ws(G); s ∈ S) for S = {i1 > i2 > · · · > in; ii ∈ {1, . . . , n}; j = 1, . . . , n} set of
preference structures,
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Nn−1(µconsensus(G), σ2
consensus(G)(X′X)−1) being the consensus distribution [Eq. (5)] for group

G and T(n!×n!) = (τss′ ), s, s′ ∈ S, with τss′ the tau of Kendall between the preference structures
s and s′.

3.3.3 Classification algorithm based on consistency

This algorithm aims to create groups depending on the consistency level of the consensus priorities
of each group with the judgements emitted by each one of its members. It uses, as the classifica-
tion distance, the Kullback–Leibler distance from the posterior distributions [Eq. (1)] from each
individual to each consensus distribution in the groups.

In order to determine the groups that will be joined or divided, an upper consistency limit lim is
set. To that end, the one proposed by Altuzarra et al. (2005) is used:
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where emax > 0 is the maximum error affordable in model (3) with a confidence level 100(1 −
α)% (0 < α < 1).
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is determined, the uper consistency thresholds being determined by means of the distribution χ2 as
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If C = ∅ go to Step 7. Otherwise replace G
(it)
imin

and G
(it)
jmin

by G
(it)
imin

∪ G
(it)
jmin

and calculate the
consensus distribution of this group. Set k(it+1) = k(it) − 1, it = it + 1 and go to Step 3.

4 Example

In order to illustrate the proposed methodology, we have applied it to a simple case study extracted
from a real experience of “e–participatory budget allocation” carried out by our research group
(GDMZ) for the City Council of Zaragoza, Spain (see information in http://www.zaragoza.es/
presupuestosparticipativos/ElRabal/).

Using AHP as the multicriteria methodological support and the Internet as the communication
tool to obtain the preferences of each individual, the amount of the budget that the district of
El Rabal (Zaragoza) assigns to each one of four alternatives proposed by the Neighbourhood
Associations and the Members of the District Council has been obtained. The four alternatives
have been prioritised taking into account three criteria and six subcriteria. In what follows, we
consider exclusively the priorization problem presented at the first level of the hierarchy, where
three criteria (Economic, Social and Environmental) hang from the goal of the problem.

From the individual priorities (see Appendix A) we obtain the opinion groups into which the
decision makers are grouped and from these groups we obtain the PS associated with them. It is
to these PS that we apply the graphical visualization tools (see figures on Appendix B).

4.1 Ternary diagrams

Ternary diagrams represent the individual priorities estimated by {ŵ(k) = (ŵ(k)
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The assigned groups are drawn in different colours and their consensus priorities are represented by
circles. Each picture represents the results of applying the algorithm in Section 3.3 with different
values for lim (or emax, in the case of the consistency levels, for which α = 0.05 in the example).
Notice that when the value of lim increases (and therefore that of emax, for the consistency levels),



the number of groups is smaller. Moreover, the groups tend to be located in the areas of the
diagram in which one of the alternatives is preferred to the other two, and inside the triangular
zones corresponding to subzones in which the most preferred structures are located. This can be
seen in Figs. 1 to 5. For example, in the case emax = 200 (Fig. 5A) there are nine groups, the
individuals being represented by asterisks and the group centroids by circles. This fact allows us
to characterise the global behaviour of the group. In the case emax = 700 (Fig. 5D) the number
of groups has been reduced to two, so some individuals have been relocated in the nearest groups.

When observing the behaviour of some individuals we can conclude that the ternary diagram does
not intuitively represent this “nearness”, since when moving from emax = 200 to emax = 700 some
of them are not reallocated in the nearest groups, if we consider the euclidean distance in the plane
of the simplex. The three–dimensional graphics shown in Fig. 9 allow us to get a clearer vision of
the nearness between individuals and groups.

In type α problems, the diagrams are constructed from the posterior probabilities wα(G) =
(w1(G), . . . , wn(G))′. In type γ problems, they are constructed from the probabilities wγ(G) =
{ws(G); s ∈ S}. In this case we have also shown (Fig. 4) the priorities distribution with respect
to the most preferred pair of structures versus the rest (Others).

4.2 Multidimensional scaling (MDS) diagrams

The MDS pictures corresponding to the most preferred alternatives (Fig. 6) have been obtained
from the results of applying Multidimensional Scaling to the matrix of distances

Dα = (dα
k�) (Matrix(r + ngroups + n) × (Matrix(r + ngroups + n)) (14)

where dα
k� = Dα(Gk, G�), {Gk; k = 1, . . . , ngroups} being either one of the groups found or one of

the single element groups {Dk; k = 1, . . . , r}, or one of the n distributions degenerated in each of
the problem alternatives.

The MDS pictures corresponding to the preference structures (Fig. 7) have been obtained by a
similar procedure, applying Multidimensional Scaling to the matrix of distances

Dγ = (dγ
k�) (Matrix(r + ngroups + n!) × (Matrix(r + ngroups + n!)) (15)

where dγ
k� = Dγ(Gk, G�), {Gk; k = 1, . . . , ngroups} being either one of the groups that have

been found or one of the single element groups {Dk; k = 1, . . . , r}, or one of the n! distributions
degenerated in the preference structures.

The MDS pictures corresponding to the consistency levels (Fig. 8) have been obtained by applying
Multidimensional Scaling to the matrix of distances

D = (dk�) (Matrix(r + ngroups + n!) × (Matriz(r + ngroups + n!)) (16)

where

dk� =
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i=1

n!∑
j=1
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p
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Dist(Rankingi, Rankingj)

with p
(k)
Ranking = P �Ranking|µ(k) ∼ Nn−1(m(k), σ(k)(X′X)−1)� being the probability of the pref-

erence structure over the alternatives {A1, . . . , An} obtained from the posterior distribution of the
log–priorities vector µ(k)



Dist(Rankingi, Rankingj) = 1 − ρRankingi,Rankingj (17)

ρRankingi,Rankingj being the Spearman rank correlation coefficient.

The points represented here correspond to the decision makers (represented by ∗) that use the pos-
terior distributions [Eq. (4)], to the groups (represented by ◦) that use their consensus distributions
[Eq. (5)], and the rankings (represented by traingles) that use their degenerated distributions. The
label of each ranking represents the preference of the alternatives (e.g. 312 is preference structure
{A3, A1, A2}).

4.3 Consensus density diagrams

The consensus density diagrams represent the density of the spatial distribution of the different
preference structures. For this purpose they use the consensus distribution expressed by Eq. (5)
generating, by computer simulation, a set of distribution values and then obtaining the individual
priorities, estimated as in 4.1. There has to be a sufficient number of values to allow the calculation
of the density of priorities in every point of the simplex, so that the density distribution over it
can be obtained. Such a distribution can be represented either by means of a three–dimensional
picture or by means of a diagram in which every point is represented by a different colour intensity
depending on its density.

In Fig. 9 pictures of both kinds are shown. As can be seen, the three–dimensional view gives wider
information on the position of every decision maker with respect to his consensus group, whilst
ternary diagrams do not show this information.

The three–dimensional graphics of Fig. 9 have been obtained from a geometric model of the simu-
lated data; this fact allows us to modify the viewpoint interactively by means of a 3D visualization
tool, which represents a notable aid in the phase of data interpretation and knowledge extraction,
since this kind of tools make it easy to identify patterns associated with the different attitudes,
either individual or collective, in the set of decision makers.

5 Conclusions

This paper presents a new classification algorithm that allows us to detect opinion groups in AHP
group decision making, as well as to construct graphical visualization tools that capture the be-
haviour of preference structures and help human minds to understand problems and their possible
consensus solutions. These tools include ternary diagrams, multidimensional scaling (MDS) dia-
grams and consensus density diagrams. From these tools different consensus paths between the
actors involved in the resolution of the problem can be proposed.

Finally, it must be pointed out that a new three–dimensional graphic that incorporates the distri-
butions of clusters represented by those of their centroids has been presented. This graph shows
the density of the PS spatial distributions derived from the resolution of the problem, and allows us
to detect the behaviour patterns that exist in the problem and to know the relative importance of
the actors in the final consensus solution. The new graphics can be examined from different points
of view in an interactive way by using appropriate visualization tools. Moreover, these graphics
provide the relative position of the actors’ priorities in a three–dimensional space.
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Appendix A

Table 1: Judgements and priorities for the criteria

DM βk a12 a13 a23 w1 w2 w3

1 8.0 −3 −5 −5 0.3914 0.2784 0.3301
2 8.0 5 −5 7 0.6724 0.2573 0.0703
3 8.0 7 −7 7 0.7419 0.2027 0.0554
4 8.0 5 5 5 0.3333 0.3333 0.3333
5 8.0 1 −3 5 0.4054 0.4806 0.1140
6 0.6 −9 5 1 0.0691 0.5109 0.4200
7 0.6 −9 5 1 0.0691 0.5109 0.4200
8 0.6 −9 5 1 0.0691 0.5109 0.4200
9 0.6 −9 7 1 0.0592 0.4901 0.4507
10 0.6 −9 7 1 0.0592 0.4901 0.4507
11 0.6 −9 5 1 0.0691 0.5109 0.4200
12 0.6 −9 5 1 0.0691 0.5109 0.4200
13 0.6 −9 9 9 0.0416 0.7785 0.1799
14 0.6 −9 9 9 0.0416 0.7785 0.1799
15 0.6 −9 5 1 0.0691 0.5109 0.4200
16 0.6 −9 5 1 0.0691 0.5109 0.4200
17 0.6 −9 5 1 0.0691 0.5109 0.4200
18 0.6 −9 5 1 0.0691 0.5109 0.4200
19 0.6 −9 5 1 0.0691 0.5109 0.4200
20 0.6 −9 5 1 0.0691 0.5109 0.4200
21 0.6 −9 5 1 0.0691 0.5109 0.4200
22 0.6 −9 5 1 0.0691 0.5109 0.4200
23 0.6 −9 5 1 0.0691 0.5109 0.4200
24 0.6 −9 5 1 0.0691 0.5109 0.4200
25 0.6 −9 5 1 0.0691 0.5109 0.4200
26 2.4 −5 9 −7 0.0545 0.1734 0.7720
27 2.4 −7 7 −5 0.0586 0.2399 0.7015
28 2.4 −7 5 −5 0.0703 0.2573 0.6724
29 2.4 −5 −5 1 0.3035 0.5190 0.1775
30 2.4 −5 5 1 0.0909 0.4545 0.4545
31 6.0 −9 7 5 0.0510 0.7219 0.2271
32 6.0 −7 5 9 0.0599 0.7792 0.1610
33 6.0 −3 −3 1 0.3189 0.4600 0.2211
34 2.0 −9 9 1 0.0526 0.4737 0.4737
35 3.0 −5 7 5 0.0703 0.6724 0.2573
36 3.0 5 5 −5 0.2344 0.0802 0.6854



Appendix B

(A) (B)

(C) (D)

Figure 1: Ternary diagrams with the priorities for the most preferred alternatives (α): (A) lim =
0.00; (B) lim = 0.25 (C) lim = 0.50; (D) lim = 0.75.
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Figure 2: Ternary diagrams for the most preferred alternatives (α): (A) lim = 0.00; (B) lim =
0.25 (C) lim = 0.50; (D) lim = 0.75.
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Figure 3: Ternary diagrams with the priorities for the most preference structures (γ): (A) lim =
0.00; (B) lim = 0.25 (C) lim = 1.00; (D) lim = 2.00.
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Figure 4: Ternary diagrams for the preference structures (γ): (A) lim = 0.00; (B) lim = 0.25 (C)
lim = 1.00; (D) lim = 2.00.
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Figure 5: Ternary diagrams with the priorities for the consistency levels: (A) emax = 200; (B)
emax = 600 (C) emax = 650; (D) emax = 700.
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Figure 6: MDS diagrams for the most preferred alternatives (α): (A) lim = 0.00; (B) lim = 0.25
(C) lim = 0.50; (D) lim = 0.75.
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Figure 7: MDS diagrams for the preference structures (γ): (A) lim = 0.00; (B) lim = 0.25 (C)
lim = 1.00; (D) lim = 2.00.
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Figure 8: MDS diagrams for the consistency levels: (A) emax = 200; (B) emax = 500 (C)
emax = 650; (D) emax = 700.
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Figure 9: Consensus density diagrams: (A) three–dimensional view for emax = 200; (B) three–
dimensional view for emax = 500; (C) density diagram for emax = 200; (D) density diagram for
emax = 500.


