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Abstract

Precision of released figures is not only an important quality feature of official statistics,
it is also essential for a good understanding of the data. In this paper we show a case
study of how precision could be conveyed if the multivariate nature of data has to be
taken into account. In the official release of the Swiss earnings structure survey, the total
salary is broken down into several wage components. We follow Aitchison’s approach
for the analysis of compositional data, which is based on logratios of components. We
first present different multivariate analyses of the compositional data whereby the wage
components are broken down by economic activity classes. Then we propose a number
of ways to assess precision.

Key words: Compositional data; complex survey; linearization; confidence domain;
precision; coefficient of variation.

1 Introduction

There are several aspects of quality of surveys in public statistics (see e.g. [Eurostat, 2003] for
the definition advocated by Eurostat). One aspect of quality is accuracy, the first feature of
accuracy being precision in relation with sampling variability. Among the many ways used to assess
precision, the most recommended indicator is the coefficient of variation (CV) [Eurostat, 2003].
Being dimensionless, it permits easy comparisons of precision among variables with different orders
of magnitude. However in the case of multivariate data that are correlated by nature, like parts
of a total, CV’s are not enough to assess precision. We seek a generalization of the CV along
the lines of multivariate statistics. This global CV will thus be related to the matrix norm of
the covariance matrix of estimates. In the present case study, one aspect of the Swiss earnings
structure survey is studied, namely the estimation of population wage components. We use the
framework of compositional data analysis as developed by J. Aitchison [Aitchison, 1986]. The
principle is to compute the logarithm of ratios of the components. The total variance is the sum
of the variances of all possible logratios of components. If we divide the total variance by the
number of ratios, we obtain an average variance. It will be shown that the linearized form of this
average variance can be interpreted as an average squared CV. Other applications of compositional
analysis to public statistics can be found in [Brundson and Smith, 1998], [Silva and Smith, 2001],
[Anyadike-Danes, 2003], [Larrosa, 2003].

1.1 Basic notions on compositional vectors

Basic notions and notations on compositional data are recalled here. Compositional data are
observations expressed as parts, thus having a unit sum constraint. A good mathematical sum-
mary of the principal notions can be found in [Aitchison, 2001], a less formal introduction in
[Aitchison, 1997] and a thorough presentation of the theory in [Aitchison, 1986]. A compositional
vector of length D, (p1, p2, ...pD) has strictly positive components with sum equal to 1:

p1 + p2 + ... + pD = 1 (1)



The set of these vectors is the simplex SD. Equation (1) implies that

V (p1 + p2 + ... + pD) = 0 ⇒
∑

i6=j

Cov (pi, pj) = −V (pj) ∀j

so there is necessarily a negative correlation between the components. This shows that the correla-
tions are not directly interpretable. To release this constraint, Aitchison proposes that we consider
the vector of ratios of the d = D − 1 first components to the last, that is

x = (x1, ..., xd) = (p1, ..., pd) /pD = p−D/pD (2)

and then to take the logarithm y = ln x. Applying this transformation , the resulting vector is no
longer constrained and correlations between yi and yj can be interpreted.

1.1.1 Center

The center of the distribution for x is given by the geometric - and not the arithmetic - mean of
the compositions. Its theoretical counterpart is:

ξ = exp (E (ln x)) (3)

It can be transformed back to give the center for p:

cen(pi) =
ξi

1 +
d∑

j=1

ξj

i = 1, ..., d

cen(pD) =
1

1 +
d∑

j=1

ξj

1.1.2 Dispersion

There are different equivalent and linearly related dispersion matrices [Aitchison, 1986, § 4.8].

1. The d× d - covariance matrix of the logratios:

Σ = [σij ] = Cov (ln xi, ln xj) = Cov
(

ln
pi

pD
, ln

pj

pD

)
(4)

The only drawback in this setting is that the last component pD is treated differently.

2. All components of p are handled symmetrically, if they are divided by the geometric average

g(p) =
(

D∏
1

pi

)1/D

. The D ×D - centered covariance matrix is given by:

Γ = [γij ] = Cov
(

ln
pi

g(p)
, ln

pj

g(p)

)
(5)

which is singular, because
∑

ln pi

g(p) = 0.

3. The last possibility is to use the D×D -variation matrix, with all elements being variances:

T = [τij ] = V
(

ln
pi

pj

)
(6)

This matrix has a zero principal diagonal and only one positive eigenvalue, corresponding to
eigenvector 1D.



1.1.3 Asymptotic distribution

Under regularity conditions, y = (ln x1, ln x2, ..., ln xd)
′ is asymptotically normally distributed

Nd (µ,Σ) (with µ = ln ξ and Σ , given by Equation (4). The derived distribution for p =
(p1, p2, ...pD) on the simplex SD is called the additive logistic normal distribution and denoted
by Ld (µ,Σ).

1.1.4 Confidence domains

Under the asymptotic distribution hypothesis,

1. for y the confidence domain D1−α (y) is limited by a d dimensional ellipsoid. Let χ2
d;1−α be

the (1− α) quantile of the chi-square distribution with d degrees of freedom. Then

D1−α (y) =
{
y ∈ Rd | (y − µ)′Σ−1 (y − µ) ≤ χ2

d;1−α

}

2. for x in Equation (2) , the equivalent domain is

D1−α (x) =
{
x ∈ Rd

+ | (lnx− µ)′Σ−1 (lnx− µ) ≤ χ2
d;1−α

}
(7)

3. for p = (p1, ..., pD), the domain is a subset of the simplex SD:

D1−α (p) =

{
p ∈ SD |

(
ln

p−D

pD
− µ

)′
Σ−1

(
ln

p−D

pD
− µ

)
≤ χ2

d;1−α

}
(8)

1.1.5 Total variance

Whereas a thorough study of the precision of a composition implies computing a d-dimensional
confidence domain, but we also need a simple global characterization of precision. This is generally
given by a matrix norm of the covariance matrix. Aitchison defines (among other measures) the
total variance for which different equivalent formulations exist [Aitchison, 1986, Chapter 4]:

totvar(p) = tr (Γ) =
D∑

i=1

V
(

ln
pi

g(p)

)
(9)

=
1
D

∑

i<j

V
(

ln
pi

pj

)
=

1
2D

D∑

i,j=1

τij (10)

or

totvar(p) =
1

2D

D∑

i,j=1

τij =
1

2D
2 (Dtr (Σ)− 1′dΣ1d)

= tr (Σ)− 1
D

1′dΣ1d (11)

2 The Swiss earnings structure survey

The Swiss earnings structure survey (SESS) is a biennial written survey sent out to businesses.
The survey is constructed on a stratified double stage cluster sampling scheme [Graf, 2004]. The
2002 sample is rather large: 1/3 of all businesses in Switzerland are involved. This means that
finite population corrections (fpc) are indispensable for realistic estimates of the precision of the
population values. The extrapolation weights and the finite population correction take non response
into account (which we suppose is ignorable within the stratum). The variance estimation method
applied here is the classical linearization of the estimators, see e.g. [Särndal and others, 1992].
Other aspects of precision computed for the 2000 survey were studied in (Graf 2002a, 2002b), see
also [Eurostat, 2002]. A general report on the 2002 survey can be found in (SESS 2003, 2004).



2.1 Design

The sampling frame is the business register (BR) in its latest state at the time of sampling. The
stratification was originally designed as a combination of 41 activity classes, 3 business size classes
and 13 regional subdivisions. In the SESS, the activity classes are the NOGA at 2 digits level
with some grouping in order to avoid the appearance of very small strata (see Table A1)1. Class
0 represents the total of all activities considered.

The survey design is a stratified two stages cluster sampling, with a simple random (SI) sample of
businesses in each stratum and a SI sample of salaries within each sampled business. The sampling
fraction at both stages depends on the size class. The largest businesses form exhaustive strata. For
medium and small businesses, a Neyman allocation based on the variance of the mean standardized
gross earnings of the preceding survey is computed. The strata sizes are then modified so that
a minimum of 10 units are sampled (if stratum size permits). Large businesses have to furnish
33% of the earnings paid out in October. Medium size businesses furnish 50% while the smallest
businesses give them all. The desired sampling fraction and the expected non-response rate are
used to determine the number of businesses to contact.

2.2 Calibration - robustification of weights

The non response is assumed to be ignorable at the stratum level and the Horvitz-Thompson
weights at both stages are in principle used (the actual number of salaries paid by the business
in October is asked in the questionnaire). Few expansion weights are large due to non-response.
To robustify the procedure, these weights were trimmed, first at the cluster level, and then at the
stratum level. The resulting weights are recalibrated using the CALMAR raking procedure2, in
such a way that the marginal total weights on the 3 stratum classifications remain constant. Thus
the ”unreliable” estimates are weighted down without changing the total. If the whole population
is considered, this procedure changes the results very little. The sampling plan was designed for the
main variable, namely the monthly standardized gross earnings. In this study, we are interested
in the compositional analysis of the weighted total of monthly non standardized total salary.

3 Compositional analysis of wage components

In the SESS, 5 wage components are published (social security contributions, overtime earnings,
hardship allowances, 13th or n-th salary, bonuses), see [SESS, 2004], [SESS, 2003]. They are re-
produced here (Table A1, Appendix). In Table A1, wage mass is defined for an economic branch
as the extrapolated sum of all sampled salaries, using the above calibrated weight. The ”non stan-
dardized total monthly salary”, mbliu, is the sum of the 5 components and the rest (the ”naked”
salary), which forms a 6th component and is never published as such. The non-standardized gross
monthly salary blimok, includes the ”naked” salary and social security contributions, but excludes
components 2 to 5. The defined components are summarized in Table 1. The wage percentage
attributed to each component in Table A1 are computed relative to blimok, and not to mbliu.
Thus the published proportions are:

(s1, s2, s3, s4, s5) /(s1 + s6) (12)

We see that Table 12 contains two different subcompositions, the first is a 2-dimensional com-
position expressed as a part s1/ (s1 + s6), and the second is 5-dimensional, expressed as ratios of
components (s2, s3, s4, s5) /(s1 + s6).

These two subcompositions will be analyzed separately. We stress that in this framework, the
interest is not in the wage composition at the individual level, but in the global composition for

1The NOGA is the Swiss version of the Statistical Classification of Economic Activities in the European Com-
munity, Revision 1 (NACE Rev. 1). Both classifications are till the 4th level identical.

2SAS macro written at the French national statistical office INSEE.



Table 1: Wage mass attributed to the different components

Definition Code Total amount
social security contributions sozabg s1

overtime earnings verduz s2

hardship allowances zulagen s3

13th or n-th month
salary (/12)

xiii12e =
round(xiiilohn/12)

s4

Special payements/12
bonuses

sond12e =
round(sonderza/12)

s5

”naked” salary - s6

non-standardized gross earnings
with social contributions blimok s1 + s6

monthly non standardized
total salary mbliu

6∑
i=1

si

segments of the population. The advantage from a mathematical point of view is that no zero
components are observed, while they exist at the individual level.

3.1 Variance estimation

The variance-covariance matrix of the estimates is based on the sampling distribution of the wage
components. Computing the variance of these global compositions in a stratified double stage
cluster sample is a complex task, because no closed formula for the variance is available. The large
sample size implies that finite population corrections (fpc) are indispensable for realistic estimates
of the precision of the population values. The extrapolation weights and the finite population
correction take the non response into account (which we suppose ignorable within the stratum).
The variance estimation method applied here relies on the linearization of the estimators and is
equivalent to the recovery of the compositional variation array from the crude mean vector and
covariance matrix, see [Aitchison, 1986, §4.4]. (An alternative would be to use resampling methods,
but it would be extremely cumbersome in this large survey). In fact we simply use the first order
approximation, which is a slight overestimation:

V
(
ln X̂

) ∼= E
(
ln X̂ − ln X

)2 ∼= E

(
X̂ −X

X

)2

= CV2
(
X̂

)
(13)

where CV is the coefficient of variation.

For a ratio:

V

(
ln

X̂

Ŷ

)
∼= E

(
X̂ −X

X
− Ŷ − Y

Y

)2

(14)

=
(

X2

Y 2

)−1
{

1
Y 2

E
(

X̂ − X

Y
Ŷ

)2
}
∼= CV2

(
X̂

Ŷ

)
(15)

We recognize in the left expression in brackets in Equation (15) the formula for the linearization
of the variance of a ratio. Practically a program for computing the linearized variance of a ratio
will do the job.

In matrix form:

V

(
ln

X̂

Ŷ

)
∼=

(
1
X − 1

Y

)
Σ bX,bY

(
1
X
− 1

Y

)
(16)



where Σ bX,bY is the covariance matrix of X̂ et Ŷ . The covariance is found by a variance computation
using

Cov
(
X̂, Ŷ

)
=

1
2

[
V

(
X̂ + Ŷ

)
−V

(
X̂

)
−V

(
Ŷ

)]
(17)

Once the covariance matrices of the logratio of the wage components to the gross salary are ob-
tained, we are in position to 1. assess the accuracy of the population composition estimates, and 2.
test hypotheses on differences in composition between subpopulations. Graphical representations
and interpretations of the results will be presented.

3.2 Proportion of the social contributions within the gross salary

With s1 and s6 as defined in Table 1, let

q = s1/(s1 + s6) (18)

Our variable of interest is q, which represents the proportion of the social security contributions
within the non-standardized gross monthly earnings blimok. 1− q is the ”naked salary” part.

In this case the compositional vector is of length D = 2 and is denoted by q̃ = (q, 1− q). q̃ can
be replaced by the equivalent form of length d = 1

x′ = q/(1− q)

Having computed CV(q),the following 95% confidence intervals for q are obtained:

1. Normal approximation CI for q:

[bnl95, bnu95] = q (1± 1.96CV(q)) (19)

2. Log-normal approximation CI for ln
(

q
1−q

)
, using Equation (16):

[bll95, blu95] = ln
(

q

1− q

)
± 1.96

CV(q)
(1− q)

3. CI for q deduced from 2. (logistic normal approximation)

[bl95, bu95] =
[

exp (bll95)
exp (bll95) + 1

,
exp (blu95)

exp (blu95) + 1

]
(20)

Results The intervals given by Equations (19) and (20) are very similar: the maximum difference
is 0.01% (noga2=61, water transport, which is marginal in Switzerland). We prefer Equation (20)
which has the advantage to guarantee that the bounds are in [0, 1].

The social security contributions by economic activity classes are presented in Figure 1. Because
observations in different activity classes are independent, we can easily test 2 by 2 differences. If
q1 and q2 are the proportions of the social security contributions in classes 1 and 2, then equality
of proportions is rejected with risk α, if

∣∣∣ln
(

q1
1−q1

)
− ln

(
q2

1−q2

)∣∣∣
√(

CV(q1)
(1−q1)

)2

+
(

CV(q2)
(1−q2)

)2
> z1−α/2

where is the (1− α/2)-quantile of the standard normal distribution.
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Significance test of the 2 by 2 differences in social security contributions

Figure 1: Non significant differences in proportions at the 5 % risk are represented by a connecting segment.

Results are given in Figure 1, separately for production and services. Non significant differences
in proportions (with α = 5%) are connected by a segment. The horizontal axis has no meaning:
a small random quantity is generated for the abscissa so that the connecting segments become
distinguishable. It can be seen that in the secondary sector, a larger proportion of the non-
standardized gross monthly salary blimok is generally devoted to social security contributions
than in the third. Activities 45 (construction), 10-14 (Mining and quarrying of stone) and 60
(land transport/pipelines) have the highest contributions. At the other extreme, 40 (electricity,
gas and water supply) devotes the smallest part of the overall wage bill to social security. 61 (water
transport) is the least precise, being connected to remote classes on the vertical scale. Table A2
(Appendix) shows the corresponding p-values.

3.3 Other components of the gross salary

From the six-parts compositional vector (p1, p2, p3, p4, p5, p6), let us form a new composition by
amalgamation of components 1 and 6:

p = (p2, p3, p4, p5, p1 + p6) =
(s2, s3, s4, s5, s1 + s6)∑6

i=1 si

(21)



This vector can be written in the equivalent form

x = (x1, x2, x3, x4) =
(

s2

s1 + s6
,

s3

s1 + s6
,

s4

s1 + s6
,

s5

s1 + s6

)

Interpreting si, i = 1, ..., 6 as in Table 1, we see that p represents a decomposition of the non
standardized total monthly salary mbliu into 5 components, and that x equals the ratios of the
4 first components verduz ... sond12e to the fifth (the non-standardized gross monthly salary
blimok). For each economic activity grouping, the last 4 columns of Table A1 are the components
xi, expressed in %.

3.3.1 Multivariate analyzes of the estimated components

Before we proceed to the computation of the precision, it is interesting to get a rough idea of the
data. A multidimensional scaling on logratio estimates was performed, using as distance between 2
economic activities the Euclidian distance between the corresponding logratio vectors. (The same
result would be obtained by principal component analysis). The 2 panes in Figure 2 represent the
same projection onto the first two principal axes 3. This plane explains 90% of the total variability.
Thus the distance between 2 points in the plane can be interpreted as a measure of discrepancy
between the corresponding compositional vectors. In the left pane activity classes are coded by
their NOGA2 code, whereas in the right pane, they are represented by a star plot (the half diagonals
of the quadrilateral are proportional to the xi, i = 1...4). A partition was also performed (using
the 4 new coordinates) by the PAM method (partition around medoids) and an optimal number of
3 groups was obtained. The groups are visible on the left pane (circles, triangles and diamonds).
It is typical for the first group (diamonds) to report a large share of ”special payments/bonuses”
and a relatively small portion of ”13th month salary”. It is also typical for the share of ”overtime
pay” and ”hardship allowances” to be practically nonexistent. All eight branches in this group fall
in the tertiary sector.

The second group (triangles) counterbalances the first group to a certain extent. Apart from ”13th
month salary”, the branches in this group report practically no wage components. This indicates
that in these branches pay is limited to base monthly salary. The nine branches in this group are
arranged according to economic sector and number of employees. That said, the vast majority of
the branches in this group fall in the tertiary sector.

It is typical for the third group (circles) to report relatively small shares of wage components, with
the exception of ”13th month salary”, especially when it comes to ”overtime pay”. In addition,
there are three times more branches of trade in this group than in the first two groups. Most (i.e.
sixteen of the twenty-four branches) fall in the secondary sector.

All things considered, it can be said that the shares of the four wage components vary considerably.
The share of ”13th month salary” is about the same in all branches; the share of ”hardship
allowances” and ”overtime pay” are small to very small, which makes it difficult to assess them in
the chart; in contrast, the share of ”special payments/bonuses” varies considerably from branch to
branch.

3The usual terminology is ”principal components”; the expression ”principal axes” is being used instead, in order
to avoid confusion with the salary components.
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Figure 2: Multidimensional scaling on estimated logratios corresponding to the 5-dimensional composition for all
activity classes. Circles, triangles and diamonds on the left pane give the group membership computed by PAM;
numbers are the NOGA classes. The right pane shows star plots.

3.3.2 Univariate statistics

Let ξi = E (xi) and µi = E (lnxi). Denote the coefficient of variation by CV. By linearization
and by Equation (13)

µi
∼= ln ξi (22)

ln xi − µi
∼= xi − ξi

ξi
(23)

V (lnxi) = E (lnxi − µi)
2 ∼= V (xi)

ξ2
i

= CV2 (xi) (24)

We get the following 95% CI:

1. Normal approximation for xi:
[
bn

(i)
l95, bn

(i)
u95

]
= xi (1± 1.96CV(xi))

2. Normal approximation for ln (xi):
[
bl

(i)
l95, bl

(i)
u95

]
= ln (xi)± 1.96CV(xi)



3. Deduced CI for xi (lognormal approximation):
[
b
(i)
l95, b

(i)
u95

]
=

[
exp

(
bl

(i)
l95

)
, exp

(
bl

(i)
u95

)]
= xi exp (±1.96CV(xi)) (25)

The CV’s can be found in Table A1. If we postulate a lognormal distribution for x, the CV(xi)
is given by exp (σii)− 1 which slightly overestimates σii = V (lnxi).

3.3.3 Covariances and correlations

The univariate confidence intervals are misleading because they ignore the dependencies between
components. By the linear approximation in Equation 23, matrix Σ = [σij ] is given by

σij = Cov(ln xi, ln xj) ∼= Cov(xi, xj)
ξiξj

(26)

The approximation of Σ given by Equation 26 can be seen as a multivariate form of the coefficient
of variation. Moreover the correlations are given by correlations of x:

ρij = Cor(ln xi, ln xj) ∼= Cov(xi, xj)
ξiξjCV(xi)CV(xj)

=
Cov(xi, xj)√
V(xi)V(xj)

= Cor(xi, xj) (27)

which is not surprising, because the approximation of ln xi is linear in xi.

These correlations (see Table A3, Appendix) should not be used for sociological interpretations,
because the finite population correction implies that exhaustive strata (with full response) are
excluded from the calculations and that other strata have different weights. Thus the correlations
are only useful for evaluating the precision of the global ratios, and have no other interpretation.

3.3.4 Confidence domains

Let R = [ρij ] be the 4×4 correlation matrix with elements given by Equation 27, and let us ap-
proximate µ by ln ξ [Eq. 22].

The approximate confidence domain [Eq.7] at level 1− α is given by:

D1−α (x) =
{
x ∈ R4

+ | Q (x) ≤ χ2
4;1−α

}
(28)

where

Q (x) =
(

ln x1−ln ξ1
CV(x1)

ln x2−ln ξ2
CV(x2)

ln x3−ln ξ3
CV(x3)

ln x4−ln ξ4
CV(x4)

)
R−1




ln x1−ln ξ1
CV(x1)

ln x2−ln ξ2
CV(x2)

ln x3−ln ξ3
CV(x3)

ln x4−ln ξ4
CV(x4)


 (29)

In the coordinates (ln x1, ln x2, ln x3, ln x4), this domain is a 4-dimensional ellipsoid. In the coordi-
nates (x1, x2, x3, x4), the shape of the domain is similar to a drop. There is no direct relationship
between the length of the one-dimensional confidence intervals and the limits of the corresponding
4-dimensional confidence domain.

3.3.5 Barycentric coordinates

3-part compositions can be seen as points within an equilateral triangle with height 1, in which
each vertex represents 100% in the corresponding part. To visualize the 95% confidence do-
mains above, let us split the 5-part composition into two 3-part compositions: an amalgamation



(verduz+zulagen+sond12e, xiii13e, blimok), and a sub-composition (zulagen, sond12e,
verduz) (see [Aitchison, 1986] for a thorough description of amalgamation and subcomposition).
Both are unit-sum compositional vectors. Because our approximation is linear, it is easy to deduce
the corresponding covariance matrices from Σ.
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Amalgamation for Eurostat groupings

Figure 3: 95% confidence domains per activity classes for the amalgamation (zulagen+sond12e+verduz, xiii13e,
blimok) and image of a robust regression line in the logratio 2-dimensional space. Dotted lines are spaced by 10%.

Figures 3 and 4 show the results for the economic activity groupings requested by Eurostat. We
see that the amalgamations (Figure 3) are very precisely estimated, the worst is for banking,
insurance 65-67 for which the uncertainty is essentially in the demarcation between the gross
earnings (blimok) and others. Apart for this group, others is never larger than 5%. The image
of a robust regression line4 of ln (x3) onto ln (x1 + x2 + x4) shows that groupings from Production
are always below, indicating a larger share of 13th salary (xiii12e) in Production than in Services.
Figure 4 shows how the small amount of others is distributed among the remaining components.
In general, the subcompositions have a minimum of 50% share in bonuses (sond12e) and very
little parts of overtime earnings (verduz) and hardship allowances (zulagen), except grouping 85
”health and social work” which shows narrowly 20% of sond12e but more than 80% of verduz.
The subcompositions are fairly precisely estimated. One exception is the grouping 55 ”Hotels

4An ordinary least squares line would have been attracted by 65-67.
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Figure 4: 95% confidence domains for a subcomposition.

and restaurants” which indicates a rather large uncertainty in the separation between sond12e
and zulagen. Considered in perspective of Figure 3, where it is seen that the part others of
the grouping 55 represents only 1%, the rather large uncertainty visible in Figure 4 looses its
importance.

3.4 Global CV

The total variance per activity class is computed by [Eq. (11)]. Taking the first formulation in
[Eq. (10)], we define an average standard deviation for logratios by

stot(p) =

√
vartot(p)
(D − 1)/2

=

√√√√√
∑
i<j

V
(
ln pi

pj

)

D (D − 1) /2
(30)

In its linearized form, V
(
ln pi

pj

)
≈ CV2

(
pi

pj

)
. We can interpret [Eq. (30)] as a L2-average of

the CV’s of all possible ratios of components (i.e. the square root of the mean square CV’s).
Practically, it is computed using the linearized form of [Eq.(4)] and the second interpretation of
the total variance [Eq.(10)]. It is given in the last column of Table A1 under the heading ”global
CV”. The global CV is a good candidate for an overall assessment of precision and has a theoretical
counterpart in the theory of compositions. In this application, the global CV is always between
the extremes of the 4 corresponding CV’s. The barycentric representation of the 10 economic
activity classes with the largest average standard deviation (Fig. 5 and 6) show a differing pattern



of variability between classes. For class 67 the observed uncertainty is essentially in the sharing
out between gross salary blimok and ”others”, but category ”others” in this case is practically
only Special payments sond12e. For class 18, which has the second largest average standard
deviation for logratios, the amalgamation is very precisely estimated. The largest variability is
in the subcomposition where we see that the variability lies in the relative parts of sond12e
and zulagen. It is interesting to note that the breaking down of the 5-dimensional composition
[Eq.(21)] into the above amalgamation and subcomposition is sufficient for the recovery of the
original compositions, but not for the complete original covariance matrix.

Others

XIII12e BLIMOK

20

66

36

551

61

931918

67

Amalgamation for activity classes with the largest total variation

Figure 5: Representation of the amalgamation (zulagen+sond12e+verduz, xiii13e, blimok) of the activity
classes with the 10 largest total variation. (Dotted lines: 10% apart).

3.5 Discussion

The lack of precision in Table A1 is linked with very small proportions, i.e. with a large discrepancy
between components. If the discrepancy in components is large, the geometric mean g (p) will be
small. For a given dimension D, max (g(p)) = 1/D is attained for the uniform composition. A
plot of g (p) in function of stot(p) (Fig. 7) shows a clear relationship between discrepancy and
variability. Points are coded by the PAM groupings (Fig. 2). This gives a further interpretation of
the groups: dots group has the least discrepant and least variable compositions; diamonds group
has more discrepancy but is still precisely estimated; while for the triangles group, the compositions
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Figure 6: 95% confidence domains for the subcomposition of activity classes with the largest total variation.

generally have at least one very small component and also the largest average standard deviation.
We see that the top half of the dots group is exclusively formed by activities from the production
sector.

Using the independence between the estimates of compositions for two different activity classes, we
can compute the covariance matrix of the difference of compositional logratios. Under the asymp-
totic distribution, 2 by 2 tests of differences between the 5-dimensional compositions [Eq. (21)] of
economic activity classes within sectors have been processed at the 5% risk, and show that the null
hypothesis of no difference is generally rejected. A small group from 60-64 (transport, storage and
communication) are mutually not different in wage compositions, namely 61 (water transport), 63
(supporting and auxiliary transport activities) and 64 (post and telecommunications). Only one
other non-significant difference is found between 61 (water transport) and 90 (water processing
and other disposal). We conclude that the SESS has a good discriminating power for the wage
compositional data.

The whole paper is based on the interplay between Aitchison’s theory of compositional data and the
first order approximation of the logratio covariance matrix, interpreted as a multivariate coefficient
of variation. If the (univariate) CV is less than 10%, the approximation is good; otherwise, the
computed CV overestimates the logratio variance: for a CV=50%, the actual variance would be
around 40%. The global CV can be viewed as the square root of the average squared CV for
all possible ratios of components. It is also the linearized form of [Eq. (30)], the square root of
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Figure 7: Geometric mean and square root of mean total variation. Clustering is based on a partition computed
from the multidimensional scaling components (see Fig. 2).

Aitchison’s total variance divided by the degrees of freedom. If the variability of the global estimates
of the components is small enough for the linear approximation to be valid, the proposed approach
shows a way for generalizing to multivariate compositional data Eurostat’s recommendations for
communicating precision by CV’s. Should the variability be too large, we would suggest that CV’s
be replaced by the variance of logratios, along the lines given for the analysis of compositional
data.
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Appendix
                                                               Table A1 :  Wage components in overall wage bill, in %
                                                                    Private and public sector (Confederation) combined

Switzerland 2002
TA14 Economic activities Global
  CV
  in % CV (%) in % CV (%) in % CV (%) in % CV (%) in % CV (%) in %  
0 TOTAL 12.9 0.1 0.3 2.2 0.7 1.6 6.3 0.9 3.4 4.4 3.4           
01 Horticulture 12.1 0.6 0.3 17.9 0.2 27.8 6.4 1.6 0.6 10.6 21.8           
10-45 SECTOR 2 PRODUCTION 13.5 0.2 0.5 2.9 1.1 2.2 7.5 0.4 2.1 2.8 2.9
10-14 Mining and quarrying of stone 14.2 0.5 0.4 8.9 0.3 12.3 8.0 0.9 1.4 13.5 12.8
15-37 Manufacturing 13.3 0.2 0.6 2.6 1.3 2.2 7.5 0.5 2.5 2.9 2.9
15 Manufacture of food products and beverages 13.0 0.3 0.8 10.3 1.7 6.0 7.1 0.9 1.1 7.3 8.7
16 Manufacture of tobacco products 11.7 0.1 0.2 11.0 2.4 1.7 7.3 0.2 5.3 2.9 7.3
17 Manufacture of textiles 13.1 0.5 0.4 9.5 1.9 5.1 6.2 3.1 2.4 8.5 9.0
18 Manufact. of wearing apparel; dressing and dyeing of fur 12.6 0.8 0.1 50.4 0.1 17.3 5.9 2.0 1.1 11.6 34.3
19 Manufacture of leather and leather products 12.1 1.0 0.1 29.3 0.0 26.9 5.6 8.6 1.0 10.7 26.1
20 Manufacture of wood and wood products 13.7 0.5 0.4 9.9 0.7 18.7 7.4 1.3 0.7 10.1 14.9
21 Manufacture of pulp, paper and paper products 13.3 0.8 0.9 10.5 4.4 6.0 7.7 1.0 1.8 5.2 8.4
22 Publishing, printing, reproduction 13.5 0.5 0.5 8.8 1.4 10.4 7.5 1.3 1.3 5.7 9.2
23,24 Manufacture of coke, chemicals 12.1 1.1 0.2 8.8 2.4 5.6 8.9 2.2 4.6 7.1 8.5
25 Manufacture of rubber and plastic products 13.4 0.6 0.7 8.2 2.5 5.3 7.3 1.2 1.9 9.2 8.6
26 Manufacture of other non-metallic mineral products 13.6 0.6 0.8 7.7 1.0 6.7 7.8 0.9 1.5 10.9 8.8
27,28 Manufacture of basic metals 13.7 0.3 0.8 5.8 1.0 5.4 7.1 0.9 1.6 7.8 7.3
29,34,35 Manufact. of machinery & eq. N.E.C., -of motor vehicles 13.5 0.3 0.7 4.2 0.8 5.8 7.3 1.5 2.5 4.1 5.3
30-32 Manufact. of electrical equipment, precision machinery 13.8 0.7 0.6 12.1 1.0 7.2 7.6 0.7 3.6 7.5 10.7
33 Manufacture of medical and precision instruments 13.0 0.6 0.6 5.2 0.6 7.8 7.6 0.9 3.5 7.6 7.6
36,37 Manufacturing N.E.C. 13.5 0.7 0.4 23.4 0.4 7.4 7.1 1.1 1.6 10.7 15.9
40,41 Electricity, gas and water supply 11.1 0.8 0.3 14.4 1.3 4.0 7.9 0.7 4.0 10.0 10.8
45 Construction 14.1 0.4 0.4 12.8 0.4 7.6 7.3 0.8 0.9 8.9 10.7           
50-93 SECTOR 3 SERVICES 12.6 0.2 0.2 3.2 0.5 2.2 5.6 1.4 4.0 5.4 4.4
50-52 Sale, repair 12.2 0.4 0.2 5.3 0.2 7.2 6.0 1.7 3.1 4.8 6.7
50 Sale, repair of motor vehicles 12.6 0.5 0.3 13.7 0.1 17.1 6.7 1.2 1.6 6.2 14.2
51 Brokerage, wholesale trade 12.5 0.3 0.2 5.4 0.2 8.1 6.4 1.0 4.5 5.8 7.2
52 Retail trade, repair of pers. & household goods 11.9 0.7 0.1 10.5 0.3 11.9 5.5 4.2 2.2 11.5 13.5
55 Hotels and restaurants 11.5 0.7 0.2 28.9 0.2 15.5 4.4 2.2 0.6 10.0 21.6
60-64 Transport, storage and communication 13.4 0.3 0.3 3.5 1.0 4.7 6.8 1.5 1.2 6.4 5.6
60 Land transport/pipelines 14.2 0.2 0.3 6.3 0.9 7.7 7.3 0.6 0.6 9.2 8.7
61 Water transport 12.7 1.9 0.2 16.1 1.3 5.5 6.5 9.7 1.1 32.8 22.5
62 Air transport 12.3 0.7 0.2 16.7 1.3 8.6 5.3 1.8 2.5 8.5 12.9
63 Supporting and auxiliary transport activities 12.6 0.5 0.3 9.4 1.1 9.2 6.1 5.8 1.6 8.2 9.0
64 Post and telecommunications 13.2 0.4 0.3 3.2 1.0 8.4 6.9 1.8 1.6 11.7 10.1
65-67 Banking; insurance 12.5 0.7 0.2 10.8 0.2 9.0 3.6 7.7 11.7 7.5 11.1
65 Banking 13.0 0.5 0.2 9.1 0.3 8.9 3.0 11.5 14.2 8.1 12.5
66 Insurance 11.8 1.5 0.1 15.8 0.1 16.0 4.8 7.3 5.6 8.8 15.5
67 Activities relating to banking/insurance 11.9 0.9 0.5 49.9 0.2 24.6 4.3 6.9 16.6 9.8 36.0
70-74 Real estate, computer, research & development 12.3 0.3 0.3 8.0 0.3 8.2 5.8 1.1 5.2 3.7 7.5
70,71 Real estate activities/renting of machinery & equipment 12.2 0.7 0.1 11.7 0.2 18.6 6.5 3.1 2.6 6.4 14.8
72,74 Computer and related activities; other business activities 12.3 0.3 0.3 8.4 0.3 8.8 5.7 1.2 5.4 3.9 7.9
73 Research and development 12.5 0.5 0.1 12.3 0.2 8.3 6.6 3.3 4.7 9.8 11.5
75 Public administration, national defence; social security 14.9 1) 0.2 1) 0.5 1) 7.8 1) 0.5 1)
80 Education 13.2 0.4 0.2 12.1 0.1 10.4 5.2 1.7 0.7 9.0 11.7
85 Health and social work 13.4 0.3 0.3 6.5 2.0 1.9 6.8 1.1 0.5 5.4 5.7
90-93 Other community, social and personal service activities 12.4 0.3 0.2 9.0 0.4 9.5 5.1 1.7 1.1 5.7 9.3
90 Waste processing and other disposal 13.5 0.9 0.3 7.5 1.2 10.9 6.6 2.3 1.1 13.1 11.7
91 Activities of membership organizations n.e.c. 12.8 0.3 0.1 11.3 0.4 11.3 6.1 1.4 0.9 7.5 11.1
92 Recreational, cultural and sporting activities 12.1 0.5 0.3 16.2 0.5 11.0 5.3 2.4 1.3 8.5 14.1
93 Other service activities 11.9 0.8 0.3 15.1 0.1 35.0 2.6 9.9 1.0 17.5 25.9

Wage bill : Total of non-standardised gross monthly salary

CV: coefficient of variation;     1): not computed, because the results are not based on a random sample.
Global CV: Linearized form of the average standard deviation, that is square root of average total linearized variance of logratios of components (see text).

Source: Swiss Federal Statistical Office, Swiss Earnings Structure Survey (SESS) 2002
Original table: wage components only.

Social security Overtime Hardship

Non-standardised gross salary : Gross salary in the month of October (incl. employee social insurance contributions, benefits in kind, regularly paid shares in bonuses, 
turnover or commission), but without any overtime pay, hardship allowances (for shift, night and Sunday work), 13th month salary and annual special payments.

13th or nth monthSpecial payments
contributions earnings allowances wage/salary bonuses



Table A2: p-values for the 2 by 2 equality tests for social security contributions 
1) Sector 2 + horticulture 
Noga2 40 16 23 19 1 18 33 15 17 21 25 36 29 26 22 20 27 30 45 1014 
40 0 . . . . . . . . . . . . . . . . . . . 
16 . 0 . . . . . . . . . . . . . . . . . . 
23 . . 0 57 62 . . . . . . . . . . . . . . . 
19 . . 57 0 54 . . . . . . . . . . . . . . . 
1 . . 62 54 0 . . . . . . . . . . . . . . . 
18 . . . . . 0 . . . . . . . . . . . . . . 
33 . . . . . . 0 50 90 . . . . . . . . . . . 
15 . . . . . . 50 0 94 . . . . . . . . . . . 
17 . . . . . . 90 94 0 95 . . . . . . . . . . 
21 . . . . . . . . 95 0 84 90 96 96 99 . . . . . 
25 . . . . . . . . . 84 0 67 78 83 94 99 . . . . 
36 . . . . . . . . . 90 67 0 57 67 83 96 99 99 . . 
29 . . . . . . . . . 96 78 57 0 65 88 99 . . . . 
26 . . . . . . . . . 96 83 67 65 0 72 92 98 97 . . 
22 . . . . . . . . . 99 94 83 88 72 0 81 92 93 . . 
20 . . . . . . . . . . 99 96 99 92 81 0 63 75 . . 
27 . . . . . . . . . . . 99 . 98 92 63 0 71 . . 
30 . . . . . . . . . . . 99 . 97 93 75 71 0 . . 
45 . . . . . . . . . . . . . . . . . . 0 87 
1014 . . . . . . . . . . . . . . . . . . 87 0 
 
 
       
2) Sector 3 
Noga2 55 66 67 93 52 92 70 62 72 51 63 73 50 61 91 65 64 80 85 90 60 
55 0 85 98 99 . . . . . . . . . . . . . . . . . 
66 85 0 63 71 75 95 98 99 99 . . . . . . . . . . . . 
67 98 63 0 61 69 98 . . . . . . . . . . . . . . . 
93 99 71 61 0 58 97 99 . . . . . . . . . . . . . . 
52 . 75 69 58 0 96 99 . . . . . . . . . . . . . . 
92 . 95 98 97 96 0 85 91 99 . . . . 99 . . . . . . . 
70 . 98 . 99 99 85 0 63 71 99 . . . 96 . . . . . . . 
62 . 99 . . . 91 63 0 55 97 99 . . 95 . . . . . . . 
72 . 99 . . . 99 71 55 0 . . . . 95 . . . . . . . 
51 . . . . . . 99 97 . 0 89 95 97 83 . . . . . . . 
63 . . . . . . . 99 . 89 0 59 66 70 . . . . . . . 
73 . . . . . . . . . 95 59 0 57 67 . . . . . . . 
50 . . . . . . . . . 97 66 57 0 65 . . . . . . . 
61 . . . . . 99 96 95 95 83 70 67 65 0 72 88 96 99 . . . 
91 . . . . . . . . . . . . . 72 0 99 . . . . . 
65 . . . . . . . . . . . . . 88 99 0 96 . . . . 
64 . . . . . . . . . . . . . 96 . 96 0 94 . . . 
80 . . . . . . . . . . . . . 99 . . 94 0 . 98 . 
85 . . . . . . . . . . . . . . . . . . 0 71 . 
90 . . . . . . . . . . . . . . . . . 98 71 0 . 
60 . . . . . . . . . . . . . . . . . . . . 0 
 
__________________________________________ 
Less than 97.5% p-values  show non-significant differences. 
Larger than  99.5% % p-values  are replaced by dots 
Noga2 are ordered by increasing  social security contributions. 



Table A3: Correlation matrices for composants 2 to 5 (total, horticulture and secondary sector) 
1 
 0 
   1.00  0.14  0.00  0.02 
   0.14  1.00  0.18 -0.21 
   0.00  0.18  1.00 -0.74 
   0.02 -0.21 -0.74  1.00 
 2  
 1 
   1.00  0.16  0.01  0.01 
   0.16  1.00  0.28 -0.14 
   0.01  0.28  1.00 -0.18 
   0.01 -0.14 -0.18  1.00 
    3  
 1045 
    1.00  0.05 -0.04 -0.07 
    0.05  1.00  0.09 -0.05 
   -0.04  0.09  1.00  0.09 
   -0.07 -0.05  0.09  1.00 
    4  
 1014 
    1.00  0.08 -0.04 -0.08 
    0.08  1.00 -0.03  0.07 
   -0.04 -0.03  1.00  0.08 
   -0.08  0.07  0.08  1.00 
    5  
 1537 
    1.00  0.00 -0.10 -0.16 
    0.00  1.00  0.09 -0.16 
   -0.10  0.09  1.00  0.08 
   -0.16 -0.16  0.08  1.00 
  6  
 15 
    1.00 0.21 -0.06 -0.04 
    0.21 1.00  0.35  0.01 
   -0.06 0.35  1.00 -0.30 
   -0.04 0.01 -0.30  1.00 
  7  
 16 
    1.00  0.47 -0.04 -0.11 
    0.47  1.00 -0.36 -0.37 
   -0.04 -0.36  1.00  0.34 
   -0.11 -0.37  0.34  1.00 
  8  
 17 
    1.00  0.12 -0.04 -0.02 
    0.12  1.00 -0.09  0.11 
   -0.04 -0.09  1.00 -0.70 
   -0.02  0.11 -0.70  1.00 
  9  
 18 
    1.00 0.00 -0.11 0.00 
    0.00 1.00  0.35 0.35 
   -0.11 0.35  1.00 0.08 
    0.00 0.35  0.08 1.00 

 10  
 19 
   1.00  0.09  0.16  0.01 
   0.09  1.00  0.20 -0.04 
   0.16  0.20  1.00 -0.23 
   0.01 -0.04 -0.23  1.00 
 11  
 20 
    1.00  0.11  0.09 -0.08 
    0.11  1.00  0.15 -0.11 
    0.09  0.15  1.00 -0.36 
   -0.08 -0.11 -0.36  1.00 
 12  
 21 
    1.00 -0.05  0.11  0.10 
   -0.05  1.00  0.31 -0.20 
    0.11  0.31  1.00 -0.12 
    0.10 -0.20 -0.12  1.00 
 13  
 22 
    1.00  0.40 -0.04 -0.19 
    0.40  1.00 -0.09 -0.10 
   -0.04 -0.09  1.00  0.23 
   -0.19 -0.10  0.23  1.00 
 14  
 23 
    1.00  0.18 -0.17 -0.22 
    0.18  1.00 -0.09 -0.47 
   -0.17 -0.09  1.00 -0.37 
   -0.22 -0.47 -0.37  1.00 
 15  
 25 
    1.00 -0.17 -0.03  0.02 
   -0.17  1.00  0.03  0.00 
   -0.03  0.03  1.00 -0.03 
    0.02  0.00 -0.03  1.00 
 16  
 26 
    1.00  0.25 -0.08  0.24 
    0.25  1.00 -0.14  0.46 
   -0.08 -0.14  1.00 -0.15 
    0.24  0.46 -0.15  1.00 
 17  
 27 
    1.00  0.04 0.02 -0.19 
    0.04  1.00 0.05 -0.16 
    0.02  0.05 1.00  0.14 
   -0.19 -0.16 0.14  1.00 
 18  
 29 
    1.00 -0.09 -0.07 -0.05 
   -0.09  1.00  0.13  0.01 
   -0.07  0.13  1.00  0.11 
   -0.05  0.01  0.11  1.00 

 19  
 30 
    1.00 -0.10  0.30 -0.33 
   -0.10  1.00 -0.22 -0.40 
    0.30 -0.22  1.00  0.26 
   -0.33 -0.40  0.26  1.00 
 20  
 33 
    1.00 -0.07 0.09 -0.09 
   -0.07  1.00 0.37  0.07 
    0.09  0.37 1.00  0.36 
   -0.09  0.07 0.36  1.00 
 21  
 36 
    1.00  0.07 -0.35  0.71 
    0.07  1.00  0.19 -0.03 
   -0.35  0.19  1.00 -0.48 
    0.71 -0.03 -0.48  1.00 
 22  
 40 
   1.00  0.39  0.10 0.26 
   0.39  1.00 -0.05 0.07 
   0.10 -0.05  1.00 0.44 
   0.26  0.07  0.44 1.00 
 23  
 45 
   1.00  0.15  0.06  0.07 
   0.15  1.00 -0.08  0.11 
   0.06 -0.08  1.00 -0.02 
   0.07  0.11 -0.02  1.00 
 
 
 
 
 
 
 
 
 
Explanations : 
Matrices are represented  
on 3 columns.  
 
By column : 
1st line :  sequential number 
 
2nd line :  NOGA2 class number 
 
3rd à 6th lines : correlation 
matrices of (x1, x2, x3, x4). 
 



Table A3 (continued): Correlation matrices for composants 2 to 5 (third sector) 
24  
 5093 
    1.00  0.12 -0.16  0.20 
    0.12  1.00  0.06 -0.15 
   -0.16  0.06  1.00 -0.74 
    0.20 -0.15 -0.74  1.00 
  25  
 5052 
    1.00  0.08 -0.18 -0.21 
    0.08  1.00 -0.42 -0.16 
   -0.18 -0.42  1.00  0.02 
   -0.21 -0.16  0.02  1.00 
 26  
 50 
    1.00  0.10 -0.03  0.03 
    0.10  1.00 -0.20  0.12 
   -0.03 -0.20  1.00 -0.03 
    0.03  0.12 -0.03  1.00 
 27  
 51 
    1.00  0.11 -0.02 -0.09 
    0.11  1.00  0.13 -0.06 
   -0.02  0.13  1.00  0.12 
   -0.09 -0.06  0.12  1.00 
 28  
 52 
    1.00  0.09 -0.22 -0.45 
    0.09  1.00 -0.53 -0.32 
   -0.22 -0.53  1.00  0.24 
   -0.45 -0.32  0.24  1.00 
 29  
 55 
    1.00 0.04 -0.01 0.00 
    0.04 1.00  0.12 0.00 
   -0.01 0.12  1.00 0.04 
    0.00 0.00  0.04 1.00 
   30  
 6064 
    1.00  0.01  0.27 -0.06 
    0.01  1.00  0.20 -0.14 
    0.27  0.20  1.00 -0.03 
   -0.06 -0.14 -0.03  1.00 
 31  
 60 
    1.00 -0.09 -0.20 -0.02 
   -0.09  1.00  0.20 -0.08 
   -0.20  0.20  1.00 -0.02 
   -0.02 -0.08 -0.02  1.00 
 32  
 61 
    1.00 -0.27 -0.23  0.93 
   -0.27  1.00  0.48 -0.23 
   -0.23  0.48  1.00 -0.10 
    0.93 -0.23 -0.10  1.00 

 33  
 62 
    1.00  0.23  0.02 -0.10 
    0.23  1.00 -0.06  0.17 
    0.02 -0.06  1.00 -0.26 
   -0.10  0.17 -0.26  1.00 
 34  
 63 
   1.00 0.35 0.35 0.24 
   0.35 1.00 0.67 0.15 
   0.35 0.67 1.00 0.66 
   0.24 0.15 0.66 1.00 
 35  
 64 
    1.00 -0.26  0.52 -0.33 
   -0.26  1.00 -0.30 -0.33 
    0.52 -0.30  1.00 -0.46 
   -0.33 -0.33 -0.46  1.00 
   36  
 6567 
    1.00  0.53 -0.43  0.55 
    0.53  1.00 -0.77  0.70 
   -0.43 -0.77  1.00 -0.67 
    0.55  0.70 -0.67  1.00 
 37  
 65 
    1.00  0.65 -0.62  0.69 
    0.65  1.00 -0.86  0.64 
   -0.62 -0.86  1.00 -0.58 
    0.69  0.64 -0.58  1.00 
 38  
 66 
    1.00  0.31  0.47 -0.20 
    0.31  1.00  0.24 -0.19 
    0.47  0.24  1.00 -0.54 
   -0.20 -0.19 -0.54  1.00 
 39  
 67 
    1.00 -0.15  0.49 -0.19 
   -0.15  1.00 -0.18  0.61 
    0.49 -0.18  1.00 -0.31 
   -0.19  0.61 -0.31  1.00 
   40  
 7074 
   1.00  0.17 0.05  0.03 
   0.17  1.00 0.11 -0.08 
   0.05  0.11 1.00  0.08 
   0.03 -0.08 0.08  1.00 
 41  
 70 
    1.00 -0.13 -0.07 -0.09 
   -0.13  1.00  0.20 -0.10 
   -0.07  0.20  1.00  0.26 
   -0.09 -0.10  0.26  1.00 

 42  
 72 
   1.00  0.17 0.05  0.03 
   0.17  1.00 0.11 -0.08 
   0.05  0.11 1.00  0.07 
   0.03 -0.08 0.07  1.00 
 43  
 73 
    1.00  0.41  0.43 -0.22 
    0.41  1.00 -0.01 -0.59 
    0.43 -0.01  1.00  0.30 
   -0.22 -0.59  0.30  1.00 
 44  
 80 
    1.00 -0.05  0.11  0.04 
   -0.05  1.00 -0.11 -0.06 
    0.11 -0.11  1.00  0.19 
    0.04 -0.06  0.19  1.00 
 45  
 85 
    1.00 -0.01  0.12 -0.16 
   -0.01  1.00  0.37 -0.17 
    0.12  0.37  1.00 -0.54 
   -0.16 -0.17 -0.54  1.00 
   46  
 9093 
    1.00 -0.28 -0.19  0.15 
   -0.28  1.00  0.63 -0.11 
   -0.19  0.63  1.00 -0.12 
    0.15 -0.11 -0.12  1.00 
 47  
 90 
    1.00 -0.05 -0.26  0.02 
   -0.05  1.00 -0.18  0.30 
   -0.26 -0.18  1.00 -0.53 
    0.02  0.30 -0.53  1.00 
 48  
 91 
    1.00  0.24 -0.05 -0.04 
    0.24  1.00  0.25 -0.14 
   -0.05  0.25  1.00  0.06 
   -0.04 -0.14  0.06  1.00 
 49  
 92 
    1.00 -0.39 -0.26  0.2 
   -0.39  1.00  0.67 -0.3 
   -0.26  0.67  1.00 -0.2 
    0.20 -0.30 -0.20  1.0 
 50  
 93 
    1.00  0.26 -0.11  0.23 
    0.26  1.00 -0.07  0.37 
   -0.11 -0.07  1.00 -0.20 
    0.23  0.37 -0.20  1.00 
 


