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Abstract

In several computer graphics areas, a refinement criterion is often needed to decide whether to go
on or to stop sampling a signal. When the sampled values are homogeneous enough, we assume that
they represent the signal fairly well and we do not need further refinement, otherwise more samples are
required, possibly with adaptive subdivision of the domain. For this purpose, a criterion which is very
sensitive to variability is necessary. In this paper, we present a family of discrimination measures, the
f-divergences, meeting this requirement. These convex functions have been well studied and successfully
applied to image processing and several areas of engineering. Two applications to global illumination
are shown: oracles for hierarchical radiosity and criteria for adaptive refinement in ray-tracing. We
obtain significantly better results than with classic criteria, showing thatf-divergences are worth further
investigation in computer graphics. Also a discrimination measure based on entropy of the samples for
refinement in ray-tracing is introduced. The recursive decomposition of entropy provides us with a natural
method to deal with the adaptive subdivision of the sampling region.

1 Introduction

When sampling a signal we need a criterion to decide whether to take additional samples, albeit within
the original domain or within a hierarchical subdivision. The refinement criteria are mainly based on the
encountered homogeneity of the samples. Inhomogeneity should lead to further sampling, possibly with
an adaptive subdivision of the domain. Oracles are then built based on these criteria. Examples in com-
puter graphics of this refinement process are hierarchical radiosity[3, 20] and adaptive supersampling in
ray-tracing[33, 38]. In this paper, our approach to deal with refinement criteria in global illumination is
presented. Two different kinds of functions,f-divergences and entropy, have been used from the samples
obtained between two patches of a scene in the radiosity setting[42] or through a pixel in ray-tracing[43].
In the context of the compositional data analysis[1, 32], questions arise about the possibility of introducing
the compositional data methodology to solve this kind of refinement problems in computer graphics in the
future.

First, we present refinement criteria based onf-divergences. These are a family of convex functions that
fulfill very remarkable properties. They were introduced by Csiszár[12] and Ali and Silvey[2] as measures
of discrimination or distance between probability distributions. As such, they are perfectly fitted as ho-
mogeneity measures, when we consider how distant the distribution of the samples is with respect to its
average. They have been successfully used in image processing and several engineering areas [23, 34, 37].
From different experiments, we demonstrate the usefulness off-divergences in computer graphics by apply-
ing them in defining new refinement criteria for hierarchical radiosity and adaptive supersampling of a pixel
in ray-tracing. We will see how, compared with classic refinement criteria, thef-divergences-based ones
give significant better results. Second, a contrast measure based on entropy of the samples for refinement
in ray-tracing is also introduced.

This paper is organised as follows. In Section 2, criteria for refinement in hierarchical radiosity and adaptive
ray-tracing, and the concepts off-divergence and entropy are presented. Section 3 describes the application
of the refinement criteria based onf-divergences to hierarchical radiosity and, in Section 4, to adaptive ray-
tracing. In Section 5, a discrimination measure based on entropy of the samples is presented. Finally, in
Section 6, we present our conclusions and future work.



2 Previous Work

In this section, refinement criteria used in hierarchical radiosity and adaptive ray-tracing are reviewed. Also,
Jensen’s inequality,f-divergences, and Shannon entropy are shortly introduced.

2.1 Refinement Criteria for Hierarchical Radiosity

The radiosity method uses a finite element approach, discretising the diffuse environment intoNp patches
and taking into account that the radiosities, emissivities and reflectances are constant over the patches.
Under these assumptions, the discrete radiosity equation[18] is given by

Bi = Ei + ρi

Np∑
j=1

FijBj , (1)

whereBi,Ei, andρi, are respectively the radiosity, emissivity, and reflectance of patchi,Bj is the radiosity
of patchj, andFij is thepatch-to-patch form factor, only dependent on the geometry of the scene. Form
factorFij is defined by

Fij =
1
Ai

∫
Si

∫
Sj

F (x, y)dAxdAy , (2)

whereAi is the area of patchi, Si andSj are, respectively, the surfaces of patchesi andj, F (x, y) is the
point-to-point form factor[45] between pointsx ∈ Si andy ∈ Sj , anddAx anddAy are, respectively, the
differential areas at pointsx andy.

A hierarchical refinement algorithm[20] is used to solve the equation system (1). Since the application of a
good refinement criterion is fundamental for its efficiency, many oracles have been proposed in the literature
(consult[3, 9, 17]). For the purposes of this paper, two of them, based respectively on kernel smoothness
and mutual information, are reviewed.

In Gortler et al.[19], thevariability of the radiosity kernel, i.e., the point-to-point form factorF (x, y),
is taken into account. The refinement criterion based onkernel smoothness, when applied to constant
approximations, is given by

ρi max(F avg
ij − F

min
ij , Fmax

ij − F avg
ij )AjBj < ε , (3)

whereAj andBj are respectively the source element area and the source element radiosity,F avg
ij = Fij/Aj

is the average radiosity kernel value,Fmin
ij = minx∈Si,y∈Sj F (x, y) andFmax

ij = maxx∈Si,y∈Sj F (x, y)
are the minimum and maximum point-to-point form factors computed with pairs of random points on both
elementsi andj, andε is a given threshold.

In Feixas et al.[15, 16], an oracle based on the visibilitydiscretisation errorbetween two elements was in-
troduced. This discretisation error is obtained from the difference between continuous and discretemutual
informationand it can be interpreted as thelossof information transfer due to discretisation or as themaxi-
mum potential gainof information transfer between two elements. Hence, this difference can be considered
as thebenefitto be gained by refining, and consequently is used as a decision criterion. It also represents
thevariability of the radiosity kernel. The oracle based onmutual informationis given by

ρiδijBj < ε , (4)

where

δij ≈
AiAj
AT

(
avg1≤k≤Ns(F (xk, yk) logF (xk, yk))

− avg1≤k≤Ns(F (xk, yk)) log(avg1≤k≤Ns(F (xk, yk)))
) (5)

is the discretisation error between elementsi and j, AT is the total area of the scene,ε is a predefined
threshold, andavg1≤i≤n(xi) = 1

n

∑n
i=1 xi. The computation of the point-to-point form factorsF (xk, yk)

is done withNs random lines(xk, yk) joining both elementsi andj[15].



2.2 Refinement Criteria for Adaptive Ray-Tracing

Ray-tracing[50] is a point-sampling-based technique for image synthesis. Rays are traced from the eye
through a pixel to sample the radiance at the hitpoint in the scene, where radiance is usually computed by a
random walk method[47]. Since a finite set of samples is used, some of the information in the scene is lost.
Thus, aliasing errors are unavoidable[13].

These errors can be reduced using extra sampling in regions where the sample values vary most. In order
to obtain reliable data, the edge of an object, the contour of a shadow, or a high illumination gradient area,
need a more intensive treatment than a region with almost uniform illumination. This method of sampling
is calledadaptive sampling[13, 35]: a pixel is first sampled at a relatively low density and, from the initial
sample values, a refinement criterion is used to decide whether more sampling is required or not. Finally,
all the samples are used to obtain the final pixel colour values[33].

Diverse refinement criteria for adaptive sampling, based on colour intensities and/or scene geometry, can
be found to control the sampling rate: Dippé and Wold[13] present an error estimator based on the RMS
signal to noise ratio and also consider its variance as a function of the number of samples; Mitchell[33] pro-
poses a contrast measure[8] based on the characteristics of the human eye; Lee et al.[28], Purgathofer[38],
and Tamstorf and Jensen[48] develop different methods based on the variance of the samples with their
respective confidence intervals. Bolin and Meyer[6] have developed a perceptually-based approach using
statistical and vision models.

For the purposes of this paper, we review two commonly used refinement criteria based on the contrast and
the variance of the samples. Mitchell[33] uses a contrast measure[8] for each RGB channel defined by

C =
Imax − Imin

Imax + Imin
, (6)

whereImin andImax are, respectively, the minimum and maximum light intensities of the channel. Super-
sampling is done if any contrast is higher than a given threshold. Mitchell proposes RGB threshold values
(0.4, 0.3 and 0.6, respectively) based on the relative sensitivity of the visual system. In Glassner[17], pp. 476,
this criterion appears weighted by the average colour of the pixel.

The basic idea of variance-based methods[28, 38, 48] is to continue sampling until the confidence level or
probability that the true value of luminanceL is within a given toleranced of the estimated valuêL is 1−α:

Pr[L ∈ (L̂− d, L̂+ d)] = 1− α , (7)

and this will happen[38] when

t1−α,n−1
s√
n
≤ d , (8)

wheret is the Student distribution ands is the standard deviation of then samples.

2.3 Jensen’s Inequality

A functionf(x) is convexover an interval[a, b] (the graph of the function lies below any chord) if for every
x1, x2 ∈ [a, b] and0 ≤ λ ≤ 1,

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) . (9)

A function is strictly convex if equality holds only ifλ = 0 or λ = 1. A function f(x) is concave(the
graph of the function lies above any chord) if−f(x) is convex. For instance,x2 andx log x (for x ≥ 0) are
strictly convex functions, andlog x (for x ≥ 0) is a strictly concave function[11].

A generalization of the above convexity property, called Jensen’s inequality, is widely used in mathematics,
information theory, and different engineering areas as adivergence measure. For example, it has been
successfully applied to image registration[21] and DNA segmentation[5].



Jensen’s inequality[24]: If f is a convex function on the interval[a, b], then

n∑
i=1

λif(xi)− f

(
n∑
i=1

λixi

)
≥ 0 , (10)

where0 ≤ λ ≤ 1,
∑n
i=1 λi = 1, andxi ∈ [a, b]. If f is a concave function, the inequality is reversed.

A very special case of this inequality is whenλi = 1
n because then

1
n

n∑
i=1

f(xi)− f

(
1
n

n∑
i=1

xi

)
≥ 0 , (11)

i.e., the value of the function at the mean of thexi is less or equal than the mean of the values of the function
at eachxi.

In the Rao’s axiomatization ofdiversitymeasures[39], the concavity condition (the reverse of expression
(10)) meets the intuitive requirement that diversity is possibly increased by mixing, i.e., the average diversity
between anyp, q probability distributions is not greater than that between their average.

2.4 f-divergences

Many different measures quantifying the degree of discrimination between two probability distributions
have been studied in the past. They are frequently calleddistancemeasures, although some of them are not
strictly metrics. Let us remember that a metric on a setX is an assignment of a distanced : X ×X → R

satisfying the following properties[26]:

• Positivity: ∀x, y ∈ X, d(x, y) ≥ 0 andd(x, y) = 0 if and only if x = y.

• Symmetry: ∀x, y ∈ X, d(x, y) = d(y, x).

• Triangle inequality: ∀x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

Next, we review a measure of discrimination between two probability distributions calledf-divergence.
This measure was independently introduced by Csiszár[12] and Ali and Silvey[2]. It has been applied to
different areas, such as medical image registration[37] and classification and retrieval[23], among others.

Let Ω = {x1, x2, . . . , xn} be a set with at least two elements andP the set of all probability distributions
p = {pi|pi = Pr(xi), xi ∈ Ω}. Given a convex functionf : [0,∞) → R continuous at 0 (i.e.f(0) =
limx→0 f(x)) and a pair(p, q) ∈ P2, then

If (p, q) =
n∑
i=1

qif

(
pi
qi

)
(12)

is called thef-divergenceof the probability distributionsp andq.

The following are important properties of thef-divergences:

• If (p, q) is convex on(p, q), i.e., if (p1, q1) and(p2, q2) are two pairs of probability density functions,
then

If (λp1 + (1− λ)p2, λq1 + (1− λ)q2) ≤ λIf (p1, q1) + (1− λ)If (p2, q2) . (13)

• If (p, q) ≥ f(1), where the equality holds ifp = q. If f is strictly convex, the equality holds if and
only if p = q.



• If f(1) = 0 thenIf (p, q) ≥ 0. In this case,If (p, q) fulfills the positivity property of a metric.

Next, we present some of the most importantf-divergences[14], calleddistancesin the literature. These can
be obtained from different convex functionsf . Observe that, for all of them,f(1) = 0, and thus they fulfill
the positivity property. In the following, we takex > 0.

• Kullback-Leibler distance[27]
If f(x) = x log x, the Kullback-Leibler distance is given by

D(p, q) =
n∑
i=1

pi log
pi
qi

. (14)

• Chi-square distance[36]
If f(x) = (x− 1)2, the Chi-square distance is given by

χ2(p, q) =
n∑
i=1

(pi − qi)2

qi
. (15)

• Hellinger distance[22]
If f(x) = 1

2 (1−
√
x)2, the Hellinger distance is given by

h2(p, q) =
1
2

n∑
i=1

(
√
pi −

√
qi)2 . (16)

Note that none of the above distance fulfills all the properties of a metric. However,h(p, q), the square root
of the Hellinger distance, is a true metric.

2.5 Shannon Entropy

Shannon entropyH(X) of a discrete random variableX with values in the setΩ = {x1, x2, . . . , xn} is
defined as

H(X) = −
n∑
i=1

pi log pi (17)

wheren = |Ω|, pi = Pr[X = xi] for i ∈ {1, . . . , n}, the logarithms are taken in base 2 (entropy is
expressed in bits), and we use the convention that0 log 0 = 0, which is justified by continuity. We can
use interchangeably the notationH(X) orH(p) for the entropy, wherep is the probability distribution. As
− log pi represents theinformationassociated with the resultxi, the entropy gives us theaverage informa-
tion or uncertaintyof a random variable.

Some relevant properties [44, 11] of the entropy are:

• 0 ≤ H(X) ≤ log n.

• If we equalize the probabilities, entropy increases.

• Grouping:

H(p1, . . . , pn) =H(p1 + p2, p3, . . . , pn) + (p1 + p2)H(
p1

p1 + p2
,

p2

p1 + p2
). (18)

• −H(X) is a convex function.



3 Application of f-divergences to Radiosity

In this section some oracles based onf-divergences for hierarchical radiosity refinement are presented.

3.1 f-divergences for Hierarchical Radiosity

The discretisation error (5), seen in Section 2.1, can be written in the following way:

δij ≈
AiAj
AT

F̂
[
avg1≤k≤Ns(pk log pk)− avg1≤k≤Ns(pk) log(avg1≤k≤Ns(pk)

]
=
AiAj
AT

F̂
[
avg1≤k≤Ns(pk log pk)− 1

Ns
log

1
Ns

]
,

(19)

whereF̂ =
∑Ns
k=1 F (xk, yk), pk = F (xk,yk)

F̂
for all 1 ≤ k ≤ Ns, andavg1≤k≤Ns(pk) = 1

Ns
.

It is easy to see that the expression between brackets in (19), except for a constant factor1
Ns

, is the Kullback-

Leibler distance between the distributionspk = F (xk,yk)

F̂
andqk = 1

Ns
. Thus,

δij ≈
AiAj
AT

1
Ns

F̂ D(p, q) . (20)

This fact suggests that we try otherf-divergences in the kernel of the refinement oracle (4). These mea-
sures will give us the variability of the distribution{F (x1,y1)

F̂
, . . . ,

F (xNs ,yNs )

F̂
} with respect to the uniform

distribution{ 1
Ns
, . . . , 1

Ns
}.

Thus, the Kullback-Leibler (14), Chi-square (15), and Hellinger (16) distances have been tested. The
Kullback-Leibler-based oracle was already studied in[15, 16] from an information-theoretic perspective.

The oracles used in the test are the following:

• Kullback-Leibler (KL)
ρiAiAjF̂ D(p, q)Bj < ε (21)

• Chi-square (CS)
ρiAiAjF̂ χ

2(p, q)Bj < ε (22)

• Hellinger (HE)
ρiAiAjF̂ h

2(p, q)Bj < ε , (23)

based all on their respective distances. Observe that the constants1
AT

and 1
Ns

have been removed.

It is important to note that the expression between brackets in (19) is equal to the first term of Jensen’s
inequality (11) withf(x) = x log x andx = F (x,y)

F̂
.

3.2 Empirical Results

The kernel-smoothness-based (KS) andf-divergence-based oracles have been implemented on top of the
hierarchical Monte Carlo radiosity[4] method of RenderPark[10] software (www.renderpark.be ). It
should be noted that our oracles can be used with any hierarchical radiosity method.

In Fig. 1 we show a general view of the test scene obtained with the KL oracle (21). The left column (i)
shows the subdivision obtained, while the right one (ii ) corresponds to the Gouraud shaded solution. Each
oracle has been evaluated with 10 random lines between the corresponding pair of elements and a total of

www.renderpark.be


(i) (ii )

Figure 1: General view of the test scene obtained with the KL-based oracle (21). (i) shows the grid obtained in the refinement process
and (ii) shows the Gouraud shaded solution. The oracle has been evaluated with 10 random lines between two elements. A total of
2685000 rays are cast for the radiosity computation, obtaining approximately 19000 patches.

2685000 rays have been cast for the radiosity computation. Theε parameter has been tuned so that the grids
obtained have approximately 19000 patches in all the methods.

In Fig. 2 we present the results of comparing the KS oracle (3) of Section 2.1 (Fig. 2.(a)) with thef-
divergence-based ones (21,22, 23) defined in Section 3.1 (Fig. 2.(b,c,d)) for a closer view of the test scene.

In Fig. 2.(b,c,d) we can see how thef-divergence-based oracles outperform the KS one (Fig. 2.(a)), espe-
cially in the much more-defined shadow of the chair and the cubes on the right wall. Observe also the
superior quality of the grid created on top of the table, and in the corner between the walls.

On the other hand, comparing our threef-divergence oracles we conclude that, although they exhibit a
similar quality, the KL one is slightly better. For instance, observe that the shadows on the table are more
defined. A possible explanation for this better behaviour could be that the KL oracle, unlike the other ones,
meets Jensen’s inequality (11). This confers a distinctive theoretical advantage on the Kullback-Leibler
oracle.

4 Application of f-divergences to Ray-Tracing

In this section some refinement criteria based onf-divergences for adaptive supersampling in ray-tracing
are obtained.

4.1 f-divergences for Adaptive Ray-Tracing

Thef-divergences defined in Section 2.4 will be used to evaluate the inhomogeneity of a set of samples in a
region.

The scheme used is the following:

1. A first batch ofNs rays is cast through a pixel and the corresponding luminancesLi∈{1,...,Ns} are
obtained.

2. Thef-divergencesIf (p, q) are taken between the normalised distribution of the obtained luminances,

pi =
Li∑Ns
i=1 Li

, (24)

and the uniform distributionqi = 1
Ns

.



(a.i) KS grid (a.ii ) KS

(b.i) KL grid (b.ii ) KL

(c.i) CS grid (c.ii ) CS

(d.i) HE grid (d.ii ) HE

Figure 2: A closer view from another camera of test scene for comparison of (a) kernel-smoothness-based (KS) vs.f-divergence-based
oracles: (b) Kullback-Leibler (KL), (c) Chi-square (CS), and (d) Hellinger (HE). Column (i) shows the grid obtained in the refinement
process and column (ii) shows the Gouraud shaded solution. In all the methods, the oracles have been evaluated with 10 random lines
between two elements. In each case, a total of 2685000 rays are cast for the radiosity computation, obtaining approximately 19000
patches.



3. The refinement criterion, given by
1
Ns

LIf (p, q) < ε , (25)

is evaluated, whereIf represents the Kullback-Leibler (KL), Chi-square (CS), or Hellinger (HE)
distances,L is the average luminance

L =
1
Ns

Ns∑
i=1

Li , (26)

andε is a predefined threshold for the refinement test.

4. Successive batches ofNs rays are cast until the result of the test is positive.

Note that to assign an importance to the distance valueIf (p, q) in (25) we weight it by the average lumi-
nance (26), as in Glassner’s version of classic contrast[17]. Division by the number of samplesNs in (25)
ensures that the refinement process stops.

The new criteria give good visual results, but the error obtained in our tests (see Table 1), although better
than in the classic contrast, is higher than with the variance criterion (8). Our next logical step was to try the
square root of Hellinger divergence[49], as it is a true metric. The results obtained were very encouraging.
By analogy, we then extended the experimentation to the square root of the other divergences. This is not
new. For instance, the square root of Kullback-Leibler distance has been used by Yang and Barron[51]. The
results also improved the previous ones and were also better than in the variance case.

Thus, the criteria finally used were:

• Square root of Kullback-Leibler distance (SRKL)

1
Ns

L
√
D(p, q) < ε (27)

• Square root of Chi-square distance (SRCS)

1
Ns

L
√
χ2(p, q) < ε (28)

• Square root of Hellinger distance (SRHE)

1
Ns

L
√
h2(p, q) < ε . (29)

4.2 Empirical Results

In Figures 4 and 5 we present comparative results with different techniques for the test scene of Fig. 3. The
following methods are compared:

• CC: Classic contrast (6) of the luminance weighted with the respective importanceL.

• VAR: Variance (8).

• SRKL: Square root of Kullback-Leibler distance (27).

• SRCS: Square root of Chi-square distance (28).

• SRHE: Square root of Hellinger distance (29).



Figure 3: Reference image for the ray-tracing comparison in Fig. 4
and Fig. 5, obtained with 1000 rays per pixel.

In all the methods, 8 initial rays are cast in a strat-
ified way (2 × 4 strata) at each pixel to compute
the contrast measures for the refinement decision,
and 8 additional rays are successively added until
the condition of the criterion is met. In the vari-
ance method, we have usedα = 0.1 and d =
0.025. All the images have been obtained with
the RenderPark[10]. An implementation of clas-
sic path-tracing with next event estimator was used
to compute all images. The parameters were tuned
so that all four test images were obtained with a
similar average number of rays per pixel (60) and
a similar computational cost. A constant box fil-
ter was used in the reconstruction phase for all the
methods.

(a.i) CC (a.ii ) CC sampling map

(b.i) VAR (b.ii ) VAR sampling map

Figure 4: Images obtained with an adaptive sampling scheme based on (a) classic contrast (CC) and (b) variance-based (VAR)
methods. Column (i) shows the resulting images and (ii) the sampling density map. The average number of rays per pixel is 60 in all
the methods, with a similar computation cost. Compare with the images in Fig. 5.

The resulting images are shown in column (i) of Fig. 4 and Fig. 5, with the sampling density maps in column
(ii ) (warm colours correspond to higher sampling rates and cold colours to lower ones). The overall aspect
of the images shows that our supersampling scheme performs the best. Observe, for instance, the reduced
noise in the shadows cast by the objects. Observe also the detail of the shadow of the sphere reflected on
the pyramid.

Comparison of the sampling density maps in Fig. 4.(ii ) and Fig. 5.(ii ) shows a better discrimination of
complex regions of the scene in the three divergence cases against the classic contrast and variance cases.
This explains the better results obtained by our approach. On the other hand, the variance-based approach
(Fig. 4.(b)) also performs better than the classic contrast-based method (Fig. 4.(a)). Its sampling map also



(a.i) SRKL (a.ii ) SRKL sampling map

(b.i) SRCS (b.ii ) SRCS sampling map

(c.i) SRHE (c.ii ) SRHE sampling map

Figure 5: Images obtained with an adaptive sampling scheme based on (a) Kullback-Leibler-based approach (SRKL), (b)χ2-based
approach (SRCS), and (c) Hellinger-based approach (SRHE). Column (i) shows the resulting images and (ii) the sampling density
map. The average number of rays per pixel is 60 in all the methods, with a similar computation cost. Compare with the images in
Fig. 4.



method RMS

Classic
Contrast (CC) 6.157
Variance (VAR) 5.194

f-divergences
Kullback-Leibler (KL) 5.508
χ2 (CS) 5.414
Hellinger (HE) 5.807

Square root of
f-divergences

Kullback-Leibler (SRKL) 4.824
χ2 (SRCS) 4.772
Hellinger (SRHE) 4.595

Table 1: Root Mean Square Error (RMSE) for the different images in Fig. 4 and Fig. 5, with respect to the reference image in Fig. 3.

explains why it performs better. However, it is unable to render the reflected shadows under the mirrored
pyramid and sphere with precision.

In Table 1, we show the root mean square error (RMSE) of the images obtained with classic (Fig. 4.(i)),
f-divergence, and square root off-divergence (Fig. 5.(i)) methods respective to the reference image in Fig. 3.
Visual comparison is in concordance with numerical error. The divergence-based criteria used in our exper-
iments (SRKL, SRCS, and SRHE) outperform both classic contrast and variance ones. Finally, the better
behaviour of the SRHE criterion could be explained by the fact that it is a true distance.

5 Application of Entropy to Ray-tracing

In this section we summarize the previous work on entropy-based contrast measures done by Rigau et al.
[41, 42].

5.1 Entropy-based Contrast Measures

Thepixel channel entropyis defined by

Hc = −
Ns∑
i=1

pi log pi, (30)

wherepi = ci∑Ns
i=1 ci

represents the channel colour fraction of rayi with respect to the sum of the colours

of the same channel of all the rays passing through the pixel, andNs is the number of rays traversing the
pixel. Pixel channel entropy is interpreted as the channel colour homogeneity of the rays passing through
the pixel. It can also be considered as a measure of the pixel colour quality.

In order to give a pixel contrast measure between 0 and 1, the pixel channel entropy is normalized with
logNs. Thus, thepixel channel contrastis defined by

Cc = 1− Hc

logNs
(31)

and represents the channel colourinhomogeneityof a pixel. When considering all the colour channels (Nc),
the globalpixel colour contrast[41] is given by

Cc =
∑Nc
i=1 ωiciC

c
i∑Nc

i=1 ωici
, (32)

where the channel contrasts are weighted by perceptual coefficientsωi andci = 1
Ns

∑Ns
i=1 ci, the colour

average of channeli of all the pixel rays (channelimportance).



Similar to (30), thepixel geometric entropyHg is defined by

Hg = −
Ns∑
i=1

pi log pi, (33)

where nowpi = cos θi/d
2
i∑Ns

i=1 cos θi/d2
i

represents the geometric fraction of rayi with respect to the sum of the

geometric factors of all the rays traversing a pixel. The geometric information of each ray is given by the
angleθi which the normal forms at the hitpoint with the ray, and also by the distancedi between this point
and the eye. Similar to the case of colour, the geometric entropy represents the pixel geometric homogeneity.
Analogous to (31), thepixel geometric contrastCg is defined by

Cg = 1− Hg

logNs
, (34)

which represents the geometric inhomogeneity of a pixel.

A combination of colour and geometric contrasts can be considered. This combination enables the influence
of both measures to be graduated with a coefficientδ between 0 and 1:

C = δCc + (1− δ)Cg. (35)

5.2 Empirical Results

In Fig. 6 we show two colour contrast temperature maps. These maps compare the priority schema used
in[46] (Fig. 6.(b)) with measureCc (Fig. 6.(c)). We can observe that the entropy-based contrast presents
very good behaviour in critical areas (represented by warm colours) like object edges and shadow contours.
With respect to Fig. 6.(b), our measure is more discriminating.

(a) Reference image (b) Priority schema (c) Pixel colour contrastCc

Figure 6: The reference image (a) has been obtained with 8 rays per pixel. Temperature maps correspond to priority schema (b) and
Cc (c).

We can now apply the new defined contrast measures to supersampling in stochastic ray tracing. A very sim-
ple supersampling technique, proportional to the respective temperature map, is used to show the behaviour
of these measures (for more details, see [41]).

In Fig. 7.(a) we show a supersampling image obtained with an average of 32 rays per pixel in the following
way. First, a uniform sampling with 8 rays per pixel has been made in order to obtain the temperature
map of Fig. 7.(b). And second, this map has been used in the supersampling process with an average
of 24 rays per pixel. The contrast measure used is a colour and geometry combination. This means that
the more critical the area, the more supersampled it is (warm colours), and the less critical, the more
undersampled (cool colours, with a minimum of 8 rays per pixel). Two detail regions are compared from
the supersampling image in Fig. 7.(a) and a similar image obtained by uniform sampling with 32 rays per
pixel: supersampling (Fig. 7.(c,e)) and uniform sampling (Fig. 7.(d,f)) images. We can observe a noise
diminution in the supersampled regions, and a better representation of shadow contour and edges.



5.3 Adaptive Subdivision

Adaptive sampling can be implemented by adaptive subdivision of the sampling region. This subdivision
generally corresponds to a binary tree or a quadtree [50, 25, 35]. Subdivision is triggered by the result
of a refinement test based on a given error measure. New samples are then added to the newly created
subregions.

Rigau et al.[42] introduce a new refinement scheme for adaptive sampling, complementary to the one de-
fined above, with the important feature that it is based on the recursive expression of the Shannon entropy,
i.e. its grouping property [11]. The idea behind the new scheme is to obtain sufficientinformation(homo-
geneity) in the refinement tree which results from the recursive decomposition of a pixel into subpixels.

The approach to be used in refinement is to evaluate the similarity or homogeneity of theinformationpro-
vided by the set of samples in a given region. If the information obtained from this region is heterogeneous
we will refine it until each subregion is uniform. This process is a naturally recursive process, giving rise to
a refinement tree (for more details, see [42]).

6 Conclusions and Future Work

In this paper we have presented a family of refinement criteria based onf-divergences. These functions have
been successfully used as discrimination measures in image processing and several engineering areas. We
have applied these criteria to hierarchical radiosity and to adaptive supersampling in ray-tracing. In both
areas, our results show the better behaviour of thef-divergence-based criteria compared with classic ones.
In the hierarchical radiosity algorithm, the Kullback-Leibler criterion gives the best results, while in the
ray-tracing algorithm the Hellinger-based refinement criterion is the most effective. We have also presented
a contrast measure based on the entropy of the samples through a pixel in ray-tracing.

Our future work will be addressed towards investigating the adequacy of the compositional data analysis to
deal with the refinement criteria in ray-tracing. Similar to Martı́n-Ferńandez et al.[29, 30, 31] we will try to
combine both areas: information theory and compositional data analysis.

We will also study other divergence families based on the Rényi and Havrda-Charvát entropies[40, 39]. For
instance, an heterogeneity measure based on the Jensen difference[7] will be analyzed from the histogram
of the samples. Finally, we will also focus the problem of finding automatic criteria for the threshold used
in the refinement test.
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[47] Lászĺo Szirmay-Kalos.Monte Carlo Methods in Global Illumination. Institute of Computer Graphics,
Vienna University of Technology, Vienna, Austria, 1999.

[48] Rasmus Tamstorf and Henrik W. Jensen. Adaptive sampling and bias estimation in path tracing. In
Julie Dorsey and Philipp Slusallek, editors,Rendering Techniques’97 (Proceedings of the 8th Euro-
graphics Workshop on Rendering), pages 285–295, New York (NY), USA, June 1997. Springer-Verlag
Vienna-New York. Held in St. Etienne, France.

[49] Flemming Topsoe. Some inequalities for information divergence and related measures of discrimina-
tion. Research Report Collection, 2(1):Article 9, 1999.

[50] Turner Whitted. An improved illumination model for shaded display.Communications of the ACM,
23(6):343–349, June 1980.

[51] Yuhong Yang and Andrew Barron. Information theoretic determination of minimax rates of conver-
gence.Annals of Statistics, 27:1546–1599, 1999.



(a) Supersampling image (b) Supersampling map used in (a)

(c) Region from (a) (d) Uniform sampling image region

(e) Region from (a) (f) Uniform sampling image region

Figure 7: Supersampling image (a) with an average of 32 rays per pixel, obtained using the temperature map in (b), calculated with
the first 8 rays. Detail regions from (a) are shown in (c) and (e). They are compared with the same regions, (d) and (f) respectively,
taken from an uniform sampling image with 32 rays per pixel.
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