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1. Introduction

Compositional random vectors are fundamental tools in the Bayesian analysis of categorical data.
Many of the issues that are discussed with reference to the statistical analysis of compositional
data have a natural counterpart in the construction of a Bayesian statistical model for categorical
data.

This note builds on the idea of cross-fertilization of the two areas recommended by Aitchison (1986)
in his seminal book on compositional data. Particular emphasis is put on the problem of what
parameterization to use.

2. Bayesian analysis of categorical data

Categorical data record the allocation of n statistical units u1, . . . , un into several mutually exclu-
sive categories C1, . . . CD. If D = 2 the data are called binary, or dichotomous, and they often code
the presence or absence of a phenomenon or an attribute. The counts

(1) ni = #{j : uj ∈ Ci}

can be collected in a vector of statistics (n1, . . . nD) such that
∑

ni = n.

Categorical data in this form reflect a very basic stage of data collection. If it can be assumed that
u1, . . . , un is a random sample from a population of interest, then the counts (1) are a sufficient
statistic and the parameter of interest becomes the vector of probabilities

(2) (p1, . . . pD),

such that
∑

pi = 1, where

pi = P(u ∈ Ci).

Categorical data and their inference are covered by many books and textbooks. A standard
reference is for example Agresti (1990), where due importance is given to the fundamental problem
of studying the behavior of (p1, . . . pD) in the presence of explanatory covariates.

If it is the case that categories C1, . . . CD are ordered, then we speak of ordinal categorical data.
It is then meaningful to consider the (cumulative) probability of all categories less than or equal
to the i-th category:

(3) Pi =

i
∑

k=1

pk = P(u ∈ Ci or smaller), i = 1, . . . , D − 1, PD = 1.

Cumulative probabilities are a parameterization equivalent to parameterization (2) but they may be
preferred when they make it easier for the researcher to express certain assumptions and hypotheses.
For example, as illustrated in Agresti (1990), chapter 9, cumulative logit models and continuation-
ratio logits are naturally introduced within the framework of cumulative probabilities.

Notice that probabilities (p1, . . . pd), where d = D − 1, live in the simplex Sd, whereas cumulative
probabilities (P1, . . . Pd) belong to the following set

OSd = {(P1, . . . Pd) : 0 ≤ P1 ≤ P2 ≤ . . . ≤ Pd ≤ 1}

which can be called the d−dimensional ordered simplex.
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From a Bayesian point of view, the vector of probabilities given by formula (2), the parameter
of interest, can be treated as a random variable having a distribution, prior to sampling, which
reflects the opinions and the information available to the researcher. That is precisely where the
connection with compositional data comes from, since (p1, . . . pD) is a composition, although not
one arising from the physical description of several parts of a whole.

Depending on the situation, it may be preferable, especially with ordinal data, to build a Bayesian
model on parameterization (3), in which case the problem becomes the construction a prior distri-
bution on the ordered simplex.

3. Different parameterizations and Bayesian priors

When it comes to assigning distributions to vectors of probabilities (2) or (3), the same issues arise
as in the choice of a likelihood for compositional data.

To start with the Dirichlet distribution on the probabilities (p1, . . . pd), it is a Bayesian textbook
example which illustrates a property called conjugacy: it is reproducible under random sampling,
that is, the posterior distribution on (p1, . . . pd) given a Dirichlet prior is again a Dirichlet distri-
bution. Although that is a computationally convenient feature, the shortcomings of the Dirichlet
distribution are well known to Bayesian researchers, who realize that the Dirichlet distribution
can seldom represent prior information about the interdependencies between the different levels of
categorical variables.

When the probabilities (p1, . . . pd) have a Dirichlet distribution, their partial sums (P1, . . . Pd) have
an ordered Dirichlet distribution which has been the basis for the construction, since a seminal
paper by Ferguson (1973), of the Dirichlet stochastic process, to be used in a nonparametric setting.

As it is the case for compositional data, alternatives to the Dirichlet distribution have been looked
for in the direction of transferring the parameter space to the whole of Rd by making use, for
example, of the additive logistic transformation in the case of unordered categorical data. This
line of reasoning has a large Bayesian literature dating back at least to Leonard (1972).

As for the Dirichlet distribution, the distribution induced on the partial sums
(P1, . . . Pd) by the additive logistic distribution on (p1, . . . pd) also has a stochastic process gener-
alization useful in a nonparametric setting and studied by Lenk (1988) among others.

The multiplicative logistic trasformation is more useful for ordered categorical data. Since such
transformation is less popular than the additive logistic, its definition is recalled here.

Definition 1. Let (y1, . . . , yd)
′ be a vector in Rd. Following Aitchison (1986), the multiplicative

logistic transformation is defined as

pi =
eyi

∏i

j=1
(1 + eyj)

, i = 1, . . . , d(4)

pD =
1

∏d

l=1
(1 + eyl)

.

For the reasons explained in the previous section, in the ordered categorical case it is often more
convenient to work with the partial sums, hence the following definition.

Definition 2. Under the same assumptions as Definition 1, define the cumulative multiplicative
logistic transformation as

Pi =

i
∑

j=1

pj , i = 1, . . . , d.

Lemma 1. The following identities hold:

(5) Pi = 1 −
1

∏i

j=1
(1 + eyj)

, i = 1, . . . , d



Proof. By definition,

Pi =
i

∑

j=1

pj = (1 −
1

(1 + ey1)
) +

i
∑

j=2

(
1

∏j−1

k=1
(1 + eyk)

−
1

∏j

l=1
(1 + eyl)

)

from which (5) follows by a series of telescopic cancellations.

Unlike the Dirichlet and the additive logistic distributions, the multiplicative logistic distribution
does not have a continuous-time generalization as a stochastic process to be used in nonparametric
statistics.

The inverse transformation of (5) is

yi = log(
Pi − Pi−1

1 − Pi

), i = 2, . . . , d,

where P0 = 0. The inverse transformation can be rewritten in the following way:

(6) yi = log(
Pi − Pi−1

1 − Pi

) = logit

(

Pi − Pi−1

1 − Pi−1

)

= logit
(

P(u ∈ Ci

∣

∣u ∈ Ci or greater)
)

,

for i = 1, . . . , d, as it can be easily verified. Now, the right hand side of equation (6) is precisely
a quantity called Continuation-Ratio Logit and indicated by Agresti (1990) as one of the useful
parameterizations in an ordered categorical data response model.

The point is that, by two different lines of reasoning, the literature on compositional data and the
literature on categorical data have come to propose the same transformation in two separate but
related fields, as it is the purpose of this brief note to show.

A cross fertilization of the two areas suggests for example the use of parameterization (6) together
with the assumption of a multivariate normal distribution on the y vector to obtain a suitable
Bayesian prior for ordinal categorical data. The Bayesian analysis of categorical data has taken a
different direction in the past few years due to the recent developemnts of computational methods
like MCMC, which, to a certain degree, allow the researcher to be less interested in exact dis-
tributions and to divert attention to piecemeal model building instead. An example is the book
by Johnson and Albert (1999). But rather than embarking in the impossible task of reviewing
the whole of Bayesian literature on categorical data, in the next section a categorical data prob-
lem arising in phase I clinical trials and its connection to compositional ideas is illustrated. In
such problem, covariates appear as different doses in a toxicity model under the control of the
experimenter, rather than random quantities.

4. Bayesian dose finding

Dose finding trials are designed to estimate, out of a set of prespecified doses, the highest dose
with a probability of toxicity closest to a preassigned target and called for convenience maximum
tolerated dose.

Bayesian methods for modelling the dose escalation scheme have been proposed in the last dozen
years, notably the continual reassessment method, or CRM (O’Quigley and others 1990).

The CRM is made up of two distinct components:

(1) an allocation rule to assign sequentially the incoming patients to one of d possible doses,
with the intent of assigning doses ever closer to, and eventually recommending, the MTD;

(2) a statistical procedure based on Bayes theorem which updates the information on the
probabilities of toxicity in light of the results obtained for the patients already observed.



The CRM has been criticised for being too aggressive in recommending escalation, and for treating
therefore too many patients above target. The problem is that the CRM is based on a rigid low-
dimensional parametric model and a few observations are enough to create a tight posterior that
leads the researcher to trust a highly informative inference on the unknown model.

To countermeasure this tendency of the CRM, alternatives like the modified CRM (Goodman
and others 1995) and a curve-free method (Gasparini and Eisele 2000) have been proposed. In
particular, the curve-free method is based on a parameterization formally similar to the partial
sum parameterization (3) for ordinal categorical data. Here the parameter is vector

(7) (π1, . . . πd), 0 ≤ π1 ≤ π2 ≤ . . . ≤ πd ≤ 1

where

(8) πi = P(toxicity if i−th dose is applied)

and assigning a prior to it is an equivalent problem to assigning a prior to (P1, . . . Pd) in the ordered
categorical Bayesian analysis.

In Gasparini and Eisele (2000) the following reparameterization is proposed:

(9) θi =
1 − πi

1 − πi−1

, i = 1, . . . , d

where π0 = 0. Now notice that

(10) logit (θi) = logit

(

1 − πi

1 − πi−1

)

= log
( 1 − πi

πi − πi−1

)

= − log
(πi − πi−1

1 − πi

)

which is formally the opposite of the continuation-ratio logit from formula (6) applied to the π’s.

In Gasparini and Eisele (2000), θ1, . . . , θd are taken to be independent and beta distributed, but
that has created several problems for simulation and, more fundamentally, for lack of flexibility
in the prior. Some of the problems have been identified in Cheung (2002). It would have proba-
bly been better to follow the compositional recommendation of transforming the ordered simplex
parameterization in (7) not to an alternative reparameterization on the simplex such as (9) but,
rather, to a full space reparameterization such as (10) and possibly assign a d-dimensional normal
distribution to the vector of logit (θi).

The recommendation will be taken into consideration in future work extending the toxicity data
from simple binary data (presence/absence of toxicity) to more complex ordinal data
(no/mild/serious toxicity).
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