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Abstract 
 
In standard multivariate statistical analysis common hypotheses of interest concern 
changes in mean vectors and subvectors. In compositional data analysis it is now well 
established that compositional change is most readily described in terms of the 
simplicial operation of perturbation and that subcompositions replace the marginal 
concept of subvectors. To motivate the statistical developments of this paper we 
present two challenging compositional problems from food production processes. 
Against this background the relevance of perturbations and subcompositions can be 
clearly seen. Moreover we can identify a number of hypotheses of interest involving 
the specification of particular perturbations or differences between perturbations and 
also hypotheses of subcompositional stability. We identify the two problems as being 
the counterpart of the analysis of paired comparison or split plot experiments and of  
separate sample comparative experiments in the jargon of standard multivariate 
analysis. We then develop appropriate estimation and testing procedures for a 
complete lattice of relevant compositional hypotheses. 
 
 
1.  The problems 
 
A common challenge in compositional data analysis is to attempt to characterise 
change in compositions and to be able to test hypotheses concerning the nature of the 
change. We use two easily described practical problems in food production to 
illustrate this special form of compositional problem, describe a simple but effective 
characterisation of change, and illustrate how we may test a variety of compositional 
hypotheses within the structure of a perturbation hypothesis lattice. 
 
Problem 1.  Cow milk production  
In an attempt to improve the quality of cow’s milk, milk from each of thirty cows was 
assessed by dietary composition before and after a strictly controlled dietary and 
hormonal regime over a period of eight weeks. Although seasonal variations in milk 
quality could probably be regarded as negligible over this period a control group of 
thirty cows was kept under the same conditions but on the standard regime. The sixty 
cows were of course allocated to control and treatment groups at random. Table 1 
provides a set of typical before and after results for ten cows, five in the control group 
and five in the treatment group, showing the protein, milk fat, carbohydrate, calcium, 
sodium and potassium proportions by weight of total dietary content. The full data set 
is obtainable in Appendix Table 1. The purpose of the experiment is to determine 
whether the new regime has produced any significant change in the milk composition 
so it is essential to have a clear idea of how change in compositional data is 
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characterised by a group operation termed perturbation. We shall see later how a 
whole series of perturbation hypotheses emerge and how we may investigate the full 
lattice of such hypotheses. Meanwhile we note that because of the before and after 
nature of the data within each experimental unit we have for compositional data the 
analogue of a paired comparison situation for real measurements, where traditionally 
the differences in pairs of measurements are considered. We have thus to find the 
counterpart of difference for such paired compositions.  
 
 
TABLE 1 
Typical before and after dietary compositions of the milk of ten cows, C1-C5 in the 
control group, T1-T5 in the treatment group 
 

 
                                            Before                                                                  After 
 Cow     
   no          pr         mf        ch         Ca        Na        K          pr         mf        ch         Ca        Na         K 
                                                     10-2 x   10-2 x   10-2 x                                         10-2 x    10-2 x   10-2 x 
C1 0.310 0.224 0.441 1.03 0.25 1.27 0.258 0.306 0.411  1.05  0.21 1.28 
C2 0.268 0.369 0.338 0.84 0.30 1.44 0.238 0.395 0.336 1.12 0.30 1.68 
C3 0.258 0.339 0.375 1.74  0.47 1.57 0.241 0.329 0.398 0.93 0.47 1.79 
C4 0.245 0.261 0.462 0.90 0.90  1.40 0.288 0.246 0.434  1.08 0.63 1.49 
C5 0.371 0.148 0.451 0.98 0.32 1.63 0.440 0.125 0.405 1.09 0.28  1.69 
             
T1 0.327 0.196 0.450 0.68  0.83  1.23 0.357 0.178 0.436 1.07 0.85 1.13 
T2 0.326 0.172 0.427 0.71 0.57 1.25 0.506 0.104 0.361 1.07 0.63 1.29 
T3 0.247 0.330 0.392 0.86  0.59 1.56 0.363 0.245 0.362 0.97 0.60 1.37 
T4 0.262 0.272 0..434 0.90 0.54 1.69 0.351 0.204 0.418 1.16 0.27 1.25 
T5 0.281 0.270 0.423 0.42 1.08 1.12 0.225 0.303 0.442 0.71 1.16  1.21 
             

 
Notation:  pr = protein, mf = milk fat, ch =carbohydrate, Ca = calcium,  a = sodium, K = potassium   

 
 
 
Problem 2. Chicken carcass compositions 
A study of chicken carcasses has been conducted to investigate the nature of the 
changes which might be encountered when chickens are subjected to a new diet 
regime. By the nature of the experiment it is not possible to determine the carcass 
composition of a chicken both before and after the treatment. In the study 60 chickens 
were randomly divided into three groups of 20 each. Group 1 was sacrificed at the 
beginning of the study and the twenty carcass compositions determined. Group 2 
continued on the existing diet while group 3 was placed on the special diet, otherwise 
being kept under identical conditions. Both groups 2 and 3 were then sacrificed at the 
end of the study and their carcass compositions determined. Table 2 shows three 
typical proportions- by- weight compositions (breast muscle, other muscle, fat, skin, 
bone) for each group and the complete data set is given in Appendix Table 2.  In 
contrast to Problem 1 we have here a situation which corresponds to separate sample 
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comparisons. 
 
Before we proceed to the modelling and analysis of these problems and data sets it is 
essential to understand the nature of the relevant simplex sample space and the 
characterisation of change within the space.   
 
TABLE 2 
Typical chicken carcass compositions of the three groups of chickens 
 
 
                                              Composition (proportions by weight) 
   Chicken             breast             other                      
        no                 muscle           muscle           fat                  skin                bone  
    
     A1 0.281 0.212 0.041 0.106 0.360 
     A2 0.375 0.159 0.036 0.102 0.328 
     A3 0.447 0.134 0.024 0.086 0.309 
      
     B1 0.396 0.163 0.024 0.085 0.332 
     B2 0.405 0.155 0.026 0.089 0.325 
     B3 0.408 0.143 0.024 0.116 0.309 
      
     C1 0.517 0.123 0.020 0.102 0.238 
     C2 0.365 0.197 0.020 0.127 0.291 
     C3 0.527 0.118 0.017 0.106 0.232  

 
 
 

2.   The role of perturbation in compositional data analysis 
 
Statisticians are so familiar with the operation of displacement or translation, 
essentially vector addition, in D-dimensional real sample space R D that they hardly 
require to think about its properties or indeed be aware that it is the basic internal 
group operation on which most of multivariate statistical analysis is based. A second 
operation, namely scalar multiplication also plays an important role. For example for 
a translation t and for a scalar multiple a on a random vector x, the mean and 
covariance properties,  
 
     E x t E x t E ax aE x V x t V x V ax a V x( ) ( ) , ( ) ( ), ( ) ( ), ( ) | | ( )+ = + = + = = 2 , 
 
are fundamental to unconstrained multivariate analysis. A similar situation exists in 
directional data analysis with the unit sphere as sample space, where the fundamental 
group operation of rotation plays a central role. For example, in the study of the 
movement of tectonic plates, it was recognition that the group of rotations on the 
sphere plays a central role and the use of a satisfactory representation of that group 
that led Chang (1988) to the production of the essential statistical tool for spherical 
regression.  
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Since the sample space associated with D-part compositions is the unit simplex: 
 

S x x x i D x xD
D i D= > = + + ={[ , . . . , ]: ( , . . . , ), . . . }1 10 1 1 , 

 
we have to ask what is the basic group operation in this space which plays the 
counterpart of translation in real space and rotation on the sphere, and so can be used 
to characterise compositional change. The answer is in the group operation of 
perturbation (Aitchison, 1982, Section 3; 1986, Section 2.8) defined as follows. Given 
two D-part compositions x y S D, ∈  the perturbation x y⊕  is defined by 
 
         x y x y x y x y x y C x y x yD D D D D D⊕ = + + =[ , . . . , ] / ( . . . ) [ , . . . , ]1 1 1 1 1 1 , 
 
where the ‘closure operator’ C standardises the contained vector by dividing by the 
sum of its components so that the components sum to unity. It is trivial to show that 
the operation ⊕  defines an abelian group on the simplex with identity 
e D= ( / )[ , . . . , ]1 1 1  and inverse x C x x D

− =1
11 1[ / , . . . , / ] . These properties are 

important because for the solution of our practical problems we clearly have to be 
able to characterise the operation which changes a D-part composition x into a D-part 
composition X, in other words what is the perturbation p such that X p x= ⊕ ? The 
answer is clearly in the inverse operation 
 

p X x C X x X xD D= =Θ [ / , . . . , / ]1 1 . 
 

Note that in our choice of notation here we have used the symbol ⊕  to emphasise the 
analogue with vector addition in real space. 
 
It is worth noting here, although we shall not make any substantial use of these 
concepts, that a further operation ⊗  of powering, analogous to scalar multiplication 
in real space and a simplicial metric can be introduced providing the statistician with 
an algebraic-structure on the simplex sample space – a metric vector space – 
analogous to that available for standard multivariate analysis. The formal definitions 
are as follows.  Given a D-part composition DSx ∈  and a real number a R∈ 1  the 
power transformed composition is 
 

a x C x xa
D
a⊗ = [ , . . . , ]1 .   

 
 

The simplicial metric 0: ≥→×∆ RSS DD
S  defined by Aitchison (1983; 1986, p.193) 

is given by  
 

∆S
i i

i

D
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x
g x
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( )
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where g(. )  denotes the geometric mean of the components of the enclosed vector.  
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We need a further compositional concept for investigation of our food compositional 
problems, that of subcomposition . As in standard multivariate analysis marginal 
concepts are important. For compositions and the simplex the marginal concept is a 
subcomposition, such as the chemical (Ca, Na, K)-subcomposition of a full milk 
composition in Problem 1. For example the (1, . . . C)-subcomposition of a D-part 
composition [ , . . . , ]x xD1 is defined as 
 

[ , . . . , ] , . . . , ] [ , . . . , ] / ( . . ).s s x x x x xC C C C1 1 1= = + +C[x1  
 
For statistical modelling of compositional variation we have to consider distributions 
on the simplex and their characteristics. The well-established ‘measure of central 
tendency’ ξ ∈S D  is the distributional  ‘centre’ 

 
ξ = =cen x C E x( ) (exp( (log ))). 
 

Conforming with this mean value there is a variety of equivalent forms of dispersion 
and covariance characteristics; see Aitchison (1986, Chapters 4 and 5). Which of 
these equivalent forms is used will depend on the particular nature of the application. 
In our perturbation analysis here it will be convenient to use the variation matrix 
Τ( )x whose ( , )i j th component is var[log( / )}x xi j . We note here that these 
characteristics have properties analogous to the mean and variance matrix properties 
cited for real space above:  
cen x p cen x p cen a x a cen x x p x a x a x( ) ( ) , ( ) ( ), ( ) ( ), ( ) | | ( )⊕ = ⊕ ⊗ = ⊗ ⊕ = ⊗ =Τ Τ Τ Τ2  
 
We shall require to use parametric classes of distributions on the simplex such as the 
logistic-normal class  in Aitchison and Shen (1980) and Aitchison (1986, Chapter 6) 
in our testing processes. These can be parameterised in terms of the centre ξ  and 
variation matrix Τ  as defined above. We shall use the notation LD ( , )ξ Τ  to identify a 
logistic normal distribution with centre ξ  and variation matrix Τ . 
 
These results have consequences for estimation problems for compositional data, 
summarised as follows.  In what follows we shall be concerned with compositional 
data sets, typically an DN ×  matrix X with nth row composition xn . First we note that 

the estimate $ξ  of ξ  is given by  
 

$ [ , . . . , ],ξ = C g g D1  
 

where the g’s are the geometric means of the individual components. Moreover the 
variance elements of Τ = [ ]τ ij  are simply estimated in a standard way by 
 

     $ ( ) {log( / )} log( / )τ ij ni
n

N

nj i
n

N

jN x x N x x= − −
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See Aitchison and others (2003) for further details of the structure of the simplex.  
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3.   The paired comparison lattice 
 
3.1  Testing perturbation hypotheses. The data of Appendix Table 1 are of a before-
and after-nature. Each cow has had milk composition determined at the beginning and 
at the end of the trial and so we have essentially, in standard statistical analysis terms, 
paired comparisons. The major difference is that we require to use a measure of 
difference appropriate to compositional change and we have seen this to be 
perturbation. Thus for cow C1 of Table 1 we have the before and after milk 
compositions  
 

x
x

B

A

=
=

[ . . . . . . ],
[ . . . . . . ],
0310 0224 0 441 0 0103 0 0025 00127
0258 0306 0411 00105 0 0021 0 0128

 

 
so that the required perturbation is 
 

p x xB A= =Θ [ . . . . . . ]0139 0 228 0155 0170 0140 0168 . 
 

We can similarly calculate the perturbations associated with each of the sixty cows in 
the trial.  
 
As a first approach to analysis we can address the problems that we now face in three 
stages by posing three questions. 
 
Question 1   Is there any evidence of seasonal change in milk composition, in other 
words is there any evidence of differences in the milk compositions of the control 
group between the beginning and end of the trial? Phrased as a compositional 
hypothesis this is simply a question of whether the centre of the control group 
perturbations is the identity perturbation. A standard way of testing such a hypothesis 
is through the logratio analysis of Aitchison (1986). Transformed into logratio terms 
this is simply asking whether the mean of the additive logratio vectors   
 

)]/log(,...),/[log()(],...,[ 656151 pppppalrqqq ===  
 

is a zero vector, a hypothesis easily tested under standard multivariate analysis. A 
standard exact test statistic is available for this purpose, namely Hotelling’s T-
squared: see for example, Anderson (1958, Section 5.3.1). The computed value of this 
is 56.6 to be compared against percentage points of the ( ( ) / ( )) ( , )5 1 5 5 25N N F− −   
distribution. This comparison shows that the alr mean is significantly different from 
zero at the 0.1 percent significance level and therefore that the centre of the 
perturbations is significantly different from the identity perturbation. We thus 
conclude that there is substantial evidence of a seasonal change which justifies the 
insistence on having a control group. The centre of the control group perturbations is 
 

[0.1595    0.1835    0.1599    0.1818    0.1458    0.1695]. 
 
 
Question 2   Is there similar evidence of a change in the treatment group?. Here the 
Hotelling T-squared statistic value is even larger, 331.1, again to be compared against 
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the same percentile value, and so we have real evidence of change, with the centre of 
the treatment group perturbations being   
 

[0.1928    0.1416    0.1589    0.2309    0.1338    0.1420]. 
 
 
Question 3   The remaining question is to ask whether there are differences between 
the control and treatment group perturbations and this question can be answered by 
using for the two samples of perturbations a separate sample lattice identical to that 
for the hongite-kongite comparison in Aitchison (1986, Section 7.5).  
 
The three Q-statistics in the same order as for the previous example are 153.7, 45.6, 
212.0 to be compared against 95 percentiles of the chi-squared distribution at 20, 15, 
5 degrees of freedom, all giving significant differences. Thus there is strong evidence 
of differences between control and treatment changes.  
 
A good indication of what the nature of this change is can be obtained by computing 
the perturbation difference between the control and treatment perturbation centres, 
namely 
 

[0.2015    0.1286    0.1656    0.2117    0.1529    0.1397]. 

Thus we can see that relatively there is enhancement of protein, carbohydrate and 
calcium, presumably a successful nutritional result. 
 
Though the above analysis is probably adequate for answering the immediate 
questions posed it is worth pointing out that there is a complete lattice of possible 
hypotheses concerning the maximum model here which is that the control and 
treatment perturbations follow L C C

6 ( , )ξ Τ  and L T T
6 ( , )ξ Τ  distributions. We set out in 

Figure 1 a fairly complete lattice of hypotheses together with the associated parameter 
sizes and the corresponding maximised loglikelihoods. Note that there are essentially 
two routes from the simplest hypothesis of no effects and no differences, namely 
ξ ξC T C Te= = =, Τ Τ , to the maximum model, by an equal and by an unequal 
covariance route. Working on the principle that we prefer a simple explanation to a 
complicated one we can proceed by lattice testing along the lines of Aitchison (1986, 
Section 7.4). With the maximised loglikelihoods determined we can use generalised 
likelihood ratio tests, and we would find that we would have to reject all the 
hypotheses of the lattice in favour of accepting as a working model the maximum 
model. This is in accordance with our previous finding that there is a seasonal effect 
but that there are differences between the control and treatment perturbations. 
 
3.2 Testing hypotheses of subcompositional stability. While the above analysis was 
sufficient for the aim of the experiment we can use this example to illustrate another 
important form of compositional hypothesis, namely subcompositional stability. For 
example in geology in the study of the major-oxide chemistry of a series of rocks the 
question may arise as to whether certain oxides stay roughly constant relative to each 
other, in other words whether the subcomposition of these major oxides is stable. Let 
us place such a hypothesis within the framework of our milk composition problem. 
Suppose that it had been suggested that  seasonal change would not affect the relative 
proportions of the minor elements (Ca, K, Na). This suggestion is clearly expressible 
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as a perturbation hypothesis, namely that the perturbation is of the form 
ξ ξ ξ ξ ξ ξ ξC = [ ]1 2 3 4 4 4  with the last three components corresponding to the minor 
elements equal. Since alr C( )ξ  takes the form [ ]η η η1 2 3 0 0  the hypothesis of 
subcompositional stability is simply a linear hypothesis within standard multivariate 
analysis and an exact test exists. We can, however apply an easier test. Since the 
hypothesis refers to the (Ca, K, Na) subcomposition we can confine consideration to 
the before-after perturbations associated with these subcompositions and ask whether 
these have an alr mean of [0 0]. For the control group this gives a T 2  value of 3.52 to 
be compared against a 5 per cent critical value of 6.99; for the treatment group the T 2  
value is 10.45. Thus a reasonable conclusion is that the (Ca, K, Na) subcomposition is 
stable against seasonal change but that there is significant instability in the presence 
of treatment.  
 
 
4.   The separate sample lattice 
 
In the experiment of Problem 2 we cannot ascertain directly the perturbations 
involved in change of chicken carcass composition. We can, however, simply 
incorporate the change mechanism of perturbation into our statistical modelling of the 
experiment. Denote by x  a generic composition describing chicken composition at 
the start of the study, and suppose that this is distributed as LD ( , )ξ Τ . Here, of course, 
D = 5. If we then suppose that the composition of a chicken on normal diet will be 
perturbed by a random perturbation pC  distributed as LD

C C( , )α Ω  then, by simple 
compositional distributional results, the final composition X p xC C= ⊕  will be 
distributed as LD

C C( , )α ξ⊕ +Ω Τ . Similarly we can imagine a random perturbation 
pT  with distribution LD

T T( , )α Ω  acting on the generic composition to produce final 
compositions X p xT T= ⊕  distributed as LD

T T( , )α ξ⊕ +Ω Τ . We note here that 
constant perturbation effects correspond to hypotheses such as Ω ΩC T= =0 0, . 
 
We set out in Figure 2 a complete lattice of hypotheses together with the associated 
parameter sizes and the corresponding maximised loglikelihoods. Note that for this 
lattice there are three routes from the simplest hypothesis of no effects and no 
differences, namely α αC T C Te= = = =, Ω Ω 0 , to the maximum model, by an 
unequal.an equal and a zero perturbation covariance route. Again with the maximised 
loglikelihoods determined we can use generalised likelihood ratio tests, and in this 
case we find that we cannot proceed any higher in the lattice than the hypothesis 
αC C Te= = =, Ω Ω 0 . so we may conclude that a reasonable working model is that 
there is no seasonal effect, that the treatment appears effective and that change in 
treatment is associated with a constant perturbation. Corroboration of this is given by 
the fact that we have to reject the two hypotheses αT C Te= = =, Ω Ω 0  and 
α αC T C T= = =, Ω Ω 0 . Note that with the ‘acceptance’ of a low level hypothesis 
there is no need to perform all the computations of the lattice. 
 
We can obtain an idea of the nature of the treatment effect here by comparing the 
centres of the before group and the treated group, which are 
 

     0.382    0.159    0.027    0.107    0.325 
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       0.458    0.149    0.022    0.111    0.260 
 
with the mean change being represented by the perturbation 
 

0.251    0.196    0.169    0.216    0.168. 
 
Note that we see in this perturbation a tendency for relative increase in breast muscle,  
skin and, less so, non-breast muscle at the expense of fat and bone. 
 
 
5.  Discussion 
 
The main thrust of this paper has been to demonstrate the importance of the 
perturbation operator as a main and appropriate tool for measuring change in 
compositions and to illustrate how hypotheses about the nature of perturbations may 
be simply tested within existing statistical methodology. As part of such 
investigations we recommend that some forethought be given, with the cooperation of 
the investigator,  to the construction of sensible lattices before any analysis is 
undertaken. Even better consideration of possible lattices prior to experimentation  
may prevent the conduct of an inadequate experiment which fails to answer the 
experimenter’s questions. In the construction of the lattice attention can also be given 
to any subcompositional hypotheses such as stability so that we can ensure that the 
experiment provides sufficient information to investigate such hypotheses. Finally the 
construction of a lattice of perturbation and subcompositional hypotheses allows a 
clear view of the interrelations between these hypotheses and in dealing with what are 
multiple-hypotheses situations encourages a preference for a simple rather than a 
complex explanation of the compositional variability. 
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Appendix Table 1 
 

Milk compositions 
 
Notation:  

Pr=protein 
 Mf=milk fat 
 Ch=carbohydrate 
 Ca=calcium 
 Na=sodium 
 K  =potassium 
 
 
Control group before 
 
         Pr           Mf          Ch         Ca            Na          K 
    0.3098    0.2237    0.4410    0.0103    0.0025    0.0127 
    0.2679    0.3687    0.3377    0.0084    0.0030    0.0144 
    0.2583    0.3392    0.3747    0.0074    0.0047    0.0157 
    0.2450    0.2614    0.4617    0.0090    0.0090    0.0140 
    0.3715    0.1477    0.4514    0.0098    0.0032    0.0163 
    0.2451    0.2987    0.4263    0.0104    0.0032    0.0163 
    0.3797    0.2268    0.3660    0.0064    0.0080    0.0131 
    0.2286    0.2723    0.4709    0.0097    0.0026    0.0159 
    0.2381    0.2182    0.5199    0.0100    0.0016    0.0122 
    0.3731    0.1937    0.4051    0.0109    0.0020    0.0153 
    0.1988    0.4113    0.3632    0.0056    0.0080    0.0131 
    0.3178    0.1908    0.4678    0.0058    0.0067    0.0111 
    0.2446    0.2976    0.4272    0.0114    0.0018    0.0175 
    0.2680    0.2357    0.4731    0.0041    0.0085    0.0106 
    0.3448    0.2428    0.3840    0.0098    0.0040    0.0148 
    0.2107    0.4630    0.2955    0.0154    0.0016    0.0138 
    0.2767    0.1796    0.5177    0.0040    0.0089    0.0130 
    0.3286    0.2883    0.3584    0.0065    0.0038    0.0143 
    0.2168    0.3149    0.4421    0.0083    0.0043    0.0136 
    0.2325    0.2858    0.4544    0.0049    0.0066    0.0157 
    0.3140    0.1600    0.4967    0.0092    0.0053    0.0149 
    0.3007    0.2313    0.4451    0.0084    0.0016    0.0131 
    0.1966    0.3840    0.3933    0.0101    0.0031    0.0128 
    0.1207    0.5170    0.3328    0.0075    0.0042    0.0179 
    0.1728    0.4103    0.3892    0.0112    0.0015    0.0150 
    0.1655    0.5171    0.2841    0.0094    0.0066    0.0173 
    0.3257    0.1735    0.4761    0.0059    0.0044    0.0142 
    0.2177    0.3711    0.3788    0.0147    0.0021    0.0155 
    0.2628    0.3019    0.4022    0.0131    0.0035    0.0164 
    0.3754    0.1718    0.4256    0.0112    0.0009    0.0150 
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Control group after 
 
         Pr           Mf          Ch          Ca           Na           K 
    0.2582    0.3057    0.4107    0.0105    0.0021    0.0128 
    0.2381    0.3954    0.3356    0.0112    0.0030    0.0168 
    0.2405    0.3291    0.3985    0.0093    0.0047    0.0179 
    0.2877    0.2461    0.4342    0.0108    0.0063    0.0149 
    0.4395    0.1251    0.4049    0.0109    0.0028    0.0169 
    0.2040    0.3285    0.4400    0.0103    0.0022    0.0149 
    0.3427    0.2165    0.4115    0.0070    0.0077    0.0146 
    0.1469    0.4245    0.4000    0.0115    0.0015    0.0156 
    0.1941    0.2976    0.4779    0.0135    0.0018    0.0150 
    0.4360    0.1699    0.3690    0.0107    0.0012    0.0132 
    0.2302    0.4212    0.3186    0.0069    0.0085    0.0145 
    0.3338    0.2230    0.4174    0.0070    0.0063    0.0123 
    0.2351    0.3279    0.4102    0.0101    0.0013    0.0154 
    0.2475    0.2789    0.4435    0.0059    0.0102    0.0140 
    0.2942    0.3392    0.3415    0.0086    0.0034    0.0132 
    0.2112    0.4724    0.2886    0.0152    0.0009    0.0117 
    0.2809    0.1890    0.4981    0.0055    0.0098    0.0166 
    0.3244    0.3192    0.3291    0.0070    0.0051    0.0153 
    0.2164    0.2855    0.4692    0.0097    0.0047    0.0147 
    0.2310    0.3091    0.4341    0.0048    0.0064    0.0145 
    0.2411    0.1875    0.5468    0.0082    0.0039    0.0125 
    0.3304    0.2364    0.4056    0.0103    0.0017    0.0156 
    0.2461    0.3472    0.3786    0.0115    0.0030    0.0137 
    0.1321    0.5356    0.3041    0.0077    0.0035    0.0170 
    0.1276    0.4896    0.3516    0.0136    0.0012    0.0164 
    0.1447    0.6130    0.2158    0.0080    0.0047    0.0139 
    0.3044    0.1814    0.4878    0.0068    0.0041    0.0155 
    0.2352    0.4027    0.3373    0.0114    0.0015    0.0119 
    0.2248    0.3225    0.4217    0.0117    0.0037    0.0157 
    0.3039    0.2252    0.4477    0.0106    0.0006    0.0119 
 
 
 
Treatment group before 
 
         Pr           Mf           Ch         Ca          Na           K 
    0.3270    0.1956    0.4500    0.0068    0.0083    0.0123 
    0.3758    0.1720    0.4267    0.0071    0.0057    0.0125 
    0.2473    0.3304    0.3924    0.0086    0.0059    0.0156 
    0.2624    0.2719    0.4344    0.0090    0.0054    0.0169 
    0.2811    0.2700    0.4226    0.0042    0.0108    0.0112 
    0.3456    0.2318    0.4003    0.0039    0.0069    0.0115 
    0.4216    0.1417    0.4138    0.0080    0.0024    0.0125 
    0.2465    0.3286    0.3980    0.0087    0.0046    0.0135 
    0.2468    0.3266    0.3945    0.0092    0.0052    0.0178 
    0.3486    0.1670    0.4575    0.0118    0.0015    0.0135 
    0.3217    0.2407    0.4055    0.0069    0.0126    0.0128 
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    0.2165    0.3268    0.4260    0.0111    0.0035    0.0161 
    0.3296    0.2173    0.4197    0.0092    0.0110    0.0133 
    0.2324    0.3370    0.4026    0.0086    0.0022    0.0172 
    0.2252    0.3160    0.4245    0.0099    0.0072    0.0171 
    0.1756    0.4177    0.3797    0.0091    0.0037    0.0143 
    0.3169    0.2167    0.4373    0.0051    0.0116    0.0125 
    0.2226    0.3809    0.3668    0.0064    0.0088    0.0145 
    0.2820    0.2373    0.4514    0.0085    0.0040    0.0168 
    0.2180    0.3414    0.4138    0.0066    0.0042    0.0161 
    0.3460    0.2307    0.3926    0.0106    0.0046    0.0155 
    0.3065    0.2337    0.4336    0.0125    0.0014    0.0122 
    0.2522    0.2965    0.4227    0.0141    0.0016    0.0130 
    0.3312    0.1541    0.4896    0.0073    0.0048    0.0130 
    0.2800    0.2365    0.4562    0.0115    0.0015    0.0144 
    0.2704    0.2809    0.4256    0.0119    0.0009    0.0104 
    0.5041    0.0875    0.3808    0.0104    0.0027    0.0146 
    0.3187    0.2490    0.4041    0.0111    0.0037    0.0134 
    0.2396    0.3502    0.3793    0.0106    0.0033    0.0170 
    0.2424    0.2725    0.4592    0.0117    0.0015    0.0127 
 
 
 
Treatment group after 
 
         Pr           Mf          Ch          Ca           Na          K 
    0.3575    0.1780    0.4357    0.0090    0.0085    0.0113 
    0.5056    0.1038    0.3607    0.0107    0.0063    0.0129 
    0.3635    0.2455    0.3616    0.0097    0.0060    0.0137 
    0.3510    0.2040    0.4182    0.0116    0.0027    0.0125 
    0.2246    0.3028    0.4419    0.0071    0.0116    0.0121 
    0.3966    0.1662    0.4115    0.0066    0.0085    0.0107 
    0.5544    0.1024    0.3145    0.0146    0.0023    0.0117 
    0.3587    0.2107    0.3980    0.0147    0.0048    0.0130 
    0.2509    0.2850    0.4385    0.0108    0.0027    0.0122 
    0.4076    0.1332    0.4351    0.0137    0.0012    0.0094 
    0.2939    0.2268    0.4510    0.0099    0.0083    0.0101 
    0.1521    0.3636    0.4580    0.0127    0.0025    0.0111 
    0.4641    0.1584    0.3491    0.0085    0.0101    0.0098 
    0.2870    0.2738    0.4091    0.0126    0.0019    0.0157 
    0.2693    0.2995    0.4037    0.0135    0.0035    0.0104 
    0.1894    0.4421    0.3416    0.0110    0.0041    0.0117 
    0.2816    0.2176    0.4722    0.0071    0.0098    0.0117 
    0.2154    0.4184    0.3414    0.0092    0.0050    0.0105 
    0.2896    0.2187    0.4638    0.0097    0.0028    0.0154 
    0.3070    0.2707    0.3921    0.0112    0.0030    0.0160 
    0.3749    0.2146    0.3794    0.0145    0.0039    0.0128 
    0.3195    0.2214    0.4297    0.0186    0.0011    0.0097 
    0.2654    0.2255    0.4766    0.0206    0.0011    0.0108 
    0.3843    0.1460    0.4478    0.0088    0.0034    0.0096 
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Appendix Table 2 
 
 
 

Chicken compositions 
 
Notation 
 Bm=breast muscle 
 Om=other (non-breast) muscle 
 Fa=fat 
 Sk=skin 

Bo=bone 
 
 
Group sacrificed at beginning of study 
 
 
        Bm         Om         Fa            Sk           Bo 
    0.2815    0.2119    0.0410    0.1058    0.3598 
    0.3745    0.1587    0.0360    0.1024    0.3284 
    0.4464    0.1336    0.0244    0.0863    0.3092 
    0.3694    0.1606    0.0282    0.1191    0.3227 
    0.4870    0.1101    0.0252    0.1033    0.2743 
    0.4319    0.1358    0.0259    0.1036    0.3028 
    0.3518    0.1733    0.0330    0.1064    0.3355 
    0.4167    0.1546    0.0225    0.0798    0.3264 
    0.4117    0.1442    0.0179    0.1162    0.3100 
    0.3391    0.1895    0.0266    0.0927    0.3520 
    0.2562    0.2161    0.0373    0.1398    0.3506 
    0.4155    0.1362    0.0228    0.1294    0.2960 
    0.5204    0.1035    0.0203    0.0865    0.2693 
    0.3146    0.2024    0.0269    0.0946    0.3617 
    0.3247    0.1753    0.0326    0.1389    0.3284 
    0.3108    0.1957    0.0295    0.1129    0.3511 
    0.3900    0.1642    0.0256    0.0791    0.3411 
    0.4014    0.1313    0.0291    0.1458    0.2923 
    0.4322    0.1284    0.0203    0.1291    0.2900 
    0.3885    0.1673    0.0210    0.0859    0.3372 
 
 
Group on standard diet sacrificed at end of study 
 
         Bm         Om         Fa           Sk          Bo 
    0.3965    0.1632    0.0237    0.0846    0.3321 
    0.4055    0.1545    0.0256    0.0893    0.3251 
    0.4077    0.1430    0.0245    0.1156    0.3091 
    0.4712    0.1224    0.0223    0.0915    0.2925 
    0.3845    0.1584    0.0185    0.1197    0.3188 
    0.4217    0.1447    0.0224    0.0951    0.3161 
    0.3346    0.1865    0.0268    0.1054    0.3467 
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    0.3412    0.1833    0.0259    0.1054    0.3442 
    0.4132    0.1526    0.0322    0.0696    0.3325 
    0.5136    0.1057    0.0217    0.0869    0.2721 
    0.3680    0.1654    0.0328    0.0991    0.3346 
    0.2726    0.2186    0.0311    0.1157    0.3620 
    0.4612    0.1304    0.0173    0.0896    0.3015 
    0.3455    0.1644    0.0285    0.1469    0.3147 
    0.4686    0.1267    0.0198    0.0875    0.2975 
    0.3800    0.1529    0.0230    0.1298    0.3143 
    0.3409    0.1923    0.0245    0.0877    0.3545 
    0.4086    0.1341    0.0302    0.1313    0.2958 
    0.3676    0.1648    0.0218    0.1206    0.3251 
    0.3665    0.1763    0.0151    0.1027    0.3395 
 
 
Group on new diet sacrificed at end of study 
 
        Bm          Om         Fa          Sk           Bo 
    0.5169    0.1232    0.0203    0.1021    0.2375 
    0.3650    0.1969    0.0201    0.1269    0.2910 
    0.5264    0.1182    0.0173    0.1061    0.2321 
    0.5236    0.1138    0.0122    0.1267    0.2237 
    0.4012    0.1821    0.0273    0.1001    0.2893 
    0.4677    0.1509    0.0267    0.0906    0.2641 
    0.5056    0.1302    0.0180    0.1011    0.2452 
    0.4560    0.1476    0.0216    0.1179    0.2569 
    0.3473    0.1850    0.0210    0.1750    0.2716 
    0.4979    0.1380    0.0213    0.0857    0.2571 
    0.4894    0.1383    0.0227    0.0934    0.2563 
    0.4873    0.1467    0.0229    0.0792    0.2638 
    0.2870    0.2342    0.0257    0.1496    0.3035 
    0.4172    0.1800    0.0298    0.0833    0.2898 
    0.4241    0.1479    0.0221    0.1520    0.2539 
    0.4600    0.1471    0.0262    0.1041    0.2627 
    0.5239    0.1252    0.0174    0.0917    0.2419 
    0.4573    0.1387    0.0216    0.1350    0.2474 
    0.5097    0.1271    0.0189    0.1039    0.2404 
    0.4981    0.1227    0.0253    0.1163    0.2376 
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Figure 1.  The milk composition lattice.  Various hypotheses are expressed in terms of 
the maximum model parameters. The numbers to the left of the model and hypotheses 
are the numbers of parameters involved. The numbers on the right are the values of 
the maximised loglikelihoods  For further details, see text. 
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Figure 2.   The chicken carcass composition lattice.  Various hypotheses are expressed 
in terms of the maximum model parameters. The numbers to the left of the model and 
hypotheses are the numbers of parameters involved. The numbers to the right are the 
maximised loglikelihoods. For further details, see text. 
 
 
 


