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Abstract 
Hydrogeological research usually includes some statistical studies devised to elucidate mean background 
state, characterise relationships among different hydrochemical parameters, and show the influence of 
human activities. These goals are achieved either by means of a statistical approach or by mixing models 
between end-members. Compositional data analysis has proved to be effective with the first approach, but 
there is no commonly accepted solution to the end-member problem in a compositional framework. 

We present here a possible solution based on factor analysis of compositions illustrated with a case study. 
We find two factors on the compositional bi-plot fitting two non-centered orthogonal axes to the most 
representative variables. Each one of these axes defines a subcomposition, grouping those variables that 
lay nearest to it. With each subcomposition a log-contrast is computed and rewritten as an equilibrium 
equation. These two factors can be interpreted as the isometric log-ratio coordinates (ilr) of three hidden 
components, that can be plotted in a ternary diagram. These hidden components might be interpreted as 
end-members. 

We have analysed 14 molarities in 31 sampling stations all along the Llobregat River and its tributaries, 
with a monthly measure during two years. We have obtained a bi-plot with a 57% of explained total 
variance, from which we have extracted two factors: factor G, reflecting geological background enhanced 
by potash mining; and factor A, essentially controlled by urban and/or farming wastewater. Graphical 
representation of these two factors allows us to identify three extreme samples, corresponding to pristine 
waters, potash mining influence and urban sewage influence. To confirm this, we have available analysis 
of diffused and widespread point sources identified in the area: springs, potash mining lixiviates, sewage, 
and fertilisers. Each one of these sources shows a clear link with one of the extreme samples, except 
fertilisers due to the heterogeneity of their composition.  

This approach is a useful tool to distinguish end-members, and characterise them, an issue generally 
difficult to solve. It is worth note that the end-member composition cannot be fully estimated but only 
characterised through log-ratio relationships among components. Moreover, the influence of each end-
member in a given sample must be evaluated in relative terms of the other samples. These limitations are 
intrinsic to the relative nature of compositional data. 

1 Introduction 
The statistical analysis of compositional data (Aitchison, 1986) has offered solutions to many problems, 
specially those related to distances: cluster analysis (Martin-Fernandez, 2001), discriminant analysis 
(Barceló-Vidal, 1996), regression (Buccianti et al, 1999; Daunis-i-Estadella et al., 2002), even principal 
component analysis (Aitchison 1984, 2001, Aitchison and Greenacre, 2002), have been adapted to the 
compositional distance, with different degrees of clarity and success. However, there are important 
problems, especially in geosciences, yet unsatisfactorily solved: two of these are the end-member problem 
and factor analysis.  

The so-called end-member problem attempts to find an unknown, though considered small, number of 
sources and their pure composition, in order to be able to reproduce every sample as a convex linear 
combination of these target sources (Renner, 1995). There are several Euclidean attempts to solve this 



problem: analyzing data sets in an R-mode factor analysis framework (Renner, Glasby and Walter, 1997), 
putting forward some procedures to expand too-small a priori known convex hulls (Renner, 1995, Weltje, 
1997), using simulated annealing to choose end-member composition from an a priori library (Penn, 
2002), among others (details in Renner, Glasby and Walter, 1997; Weltje, 1997; and Penn, 2002). From 
another point of view, once known the number and composition of the present end-members, there are 
several alternative approaches to the linear mixture model, as well as some tests to compare them 
(Aitchison and Bacon-Shone, 1999). 

Factor analysis is a modification of a principal component analysis where once the principal components 
are extracted they are rotated/recombined in order to obtain some “factors” that are easier to interpret than 
principal components themselves. Bi-plots and log-contrasts have been used to reduce the dimensionality 
of a data set (a classical PCA application) by selecting a most-variant subcomposition (Aitchison, 1984). 
However, the recent introduction of isometric log-ratio (ilr) transformations and coordinates (Egozcue et 
al., 2003) offers the definition of basis associated to partitions and, particularly, to subcompositions. 
Thus, factorial subcompositions become ilr axes.  

The aim of this study is to develop a possible alternative solution to the end-member problem based on 
subcompositional factor analysis of compositional data. We illustrate our approach with a data set of the 
Llobregat River Basin (NE Spain) containing 14 molarities measured monthly in 31 sampling stations.  

2 Methodology 
First step: computing the bi-plot 

Compositional bi-plots were initially developed based on a clr transformation (Aitchison, 1986), although 
today they are identified with a Singular Value Decomposition (SVD) of the compositional data matrix 
according to the Euclidean space structure of the Simplex (Aitchison and Greenacre, 2002). Let us review 
this last work to introduce the necessary notation and matrices further used in this communication. 

The data set is expressed as a matrix X with N rows (individuals) and D columns (components), where all 
elements in any row sum up to the unity. This data matrix is clr-transformed, and further centered to 
obtain another matrix Z with the same dimension, but where all elements sum up to zero both by rows 
and columns; this matrix has a rank r ≤ min(N,D). Then, Z can be factorized as the product 
 

Z = U · Γ · V t , (1) 

where U and V are the matrices of left and right singular vectors, and Γ is the diagonal (r×r) matrix of 
singular values. All these matrices have a rank r. U has as many rows as individuals in Z, and V has as 
many rows as variables in Z; both of them have r independent columns, called singular vectors. The 
covariance bi-plot (the kind of bi-plot most used in compositional applications) rewrites U=F as a matrix 
containing the standard coordinates of each individual in the r-dimensional space, and Γ · V t=Gt as a 
matrix with the principal coordinates of the variables in this space. 

The Eckart-Young Theorem (Eckart and Young, 1936) states that, from all matrices of rank r*, the best 
approximation to Z can be computed using (1) with the first r* singular values and their corresponding 
singular vectors. This approximate matrix is expressed as Zr*. As a consequence, the best approximation 
of rank r* to the covariance matrix of the original data (S =1/N·Zt·Z) can be computed as Sr* =1/N·G·Gt. 
In Principal Component Analysis (PCA), there exists a statistic describing the general goodness of this 
approximation, the total explained variance (Γr*), computed as 
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where γi is the i-th singular value of the matrix Γ. Equation (2) gives a global measure of fit of the 
reduced system to the original system. When we need an assessment of the degree of approximation for 
each variable, then PCA offers the communality (ζ) statistic 
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being sii the i-th diagonal element of the covariance matrix (thus, the covariance of the i-th variable), sr*,ii 
the i-th diagonal element of the approximate covariance matrix, gij and zni elements of the matrices G and 
Z respectively. Both the total explained variance and the communality of a variable are positive and their 
maximal value (meaning perfect fitting) is the unity. 

If r*=2 then the SVD can be easily represented in a bi-plot (Gabriel, 1971): individuals are represented as 
dots, using their principal coordinates of the matrix F, while variables are plotted as arrows (rays) with 
the tail in the origin and the head at the coordinate points in matrix G (the principal components). Figure 
1 contains the bi-plot of the Llobregat River data set: there is also the communality of each variable 
(those with ζi<0.5 have been shaded), as well as the total explained variance, a low 57%.  

Interpretation of the bi-plot is based on the links: a link is the segment between two variable ray heads: 

• the length of the ij-link between variables z·i and z·j is proportional to Var[ln(z·i / z·j)], 

• the cosine of the angle formed by the ij-link and kl-link is proportional to Corr[ln(z·i / z·j), ln(z·k / z·l)], 

• if a single link passes through several ray heads, then the angles between their ij-links are close to zero, 
their correlation coefficient is almost 1, and the represented variables are mutually proportional 
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Figure 1 Bi-plot of the Llobregat River data set, according to different sub-basins; communalities (ζi) of 
each variable are included in a table. The codings are: LA-high Llobregat course, C-Cardener, A-Anoia, 
LB-low Llobregat course; a t indicates the tributaries of the corresponding sector. 



Second step: fitting two orthogonal axes 

The goal of this step is the definition of two independent subcompositions that describe most of the 
variability, using the facts that: 

• a single link among several variables defines a subcomposition with a single degree of freedom,  

• the center of the bi-plot is an arbitrary point, and the only interesting feature are the links (of those 
variables with high communality), thus it is not necessary that the links pass through the center, 

• bi-plots are representations of a SVD in the geometry of the simplex (Aitchison, 2001), thus the 
principal axes defining the bi-plot are naturally orthogonal and isometric with respect to the 
Aitchison‘s metric of the simplex, thanks to this fact, “independence of the subcompositions” will be 
translated to “choosing a pair of orthogonal links”. 

This fit can be done visually in the bi-plot. The development of an automatic procedure on the 
coordinates in the G matrix is left for further work. Each one of the variables that lay acceptably near a 
link will be included in the corresponding subcomposition. Figure 1 shows these two axes, labeled as ΦG 
(from geological) and ΦA (from anthropogenic). These labels have been chosen due to a prior knowledge 
on the natural processes and pollution sources in the area. 

Third step: computing the factor log-contrasts 

Once fitted the two axes and grouped the original components in two subcompositions, a known log-
contrast analysis (Aitchison, 1984) should be applied to each one of them. However, if the bi-plot 
explains a low proportion of total variance or one of the subcompositions is mainly formed with low-
communality variables, then this procedure could lead to inconsistent (non-orthogonal) factors. 

As an alternative, since the variables are already expressed in a maximal variant (ilr) plane in the G 
matrix, we suggest to use it, applying a projection and renormalization procedure, as follows: 

1. define the head and the tail of the main link 

2. compute the new rays from the tail of the main link to each one of the involved variable heads 

3. compute the scalar projection of each new ray in the main link; this value is the non-centered weight of 
each variable in the factor 

4. compute the arithmetic mean of the non-centered weights and subtract it from them, to compute the 
centered weights 

5. round reasonably the centered weights to integer values that sum up to zero; the Appendix contains the 
weights of the variables linked to each of the two factors as well as these intermediate steps of 
computation. 

6. compute the norm of the vector of weights, and compute the factor values Φ for each individual n; 
these factors are like 
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where B=(βi) is the vector of integer weights obtained in the last step; in our example, this can be done 
with expressions: 
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7. ensure orthogonality of computed weight vectors; if the two subcompositions do not have any common 
component, then they will be automatically orthogonal; otherwise, it is easy to compute the angle α 
between them: 
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which in our case gives a value of cos α = 0.055 thus α =86.85º. This means that factors ΦA and ΦG are 
not actually coefficients in an ilr basis, since they are not perfectly orthogonal. However, we accept this 
discrepancy in order to obtain a better interpretability of the factors. A future development of this 
technique could be the systematization of the fitting process to directly avoid these deviations from 
orthogonality, for instance, accounting for the uncertainty in the positions of the head of each ray. 
 

K

N

W

-3

-2

-1

0

1

2

3

4

5

6

7

8

9
-7 -6 -5 -4 -3 -2 -1 0 1 2

ΦG

ΦA

LA

LAt

LB

LBt

C

Ct

A

At

Figure 2 Scatterplot of factors ΦG vs ΦA, with indication of principal clr-directions. 

Fourth step: bivariate analysis of the factors 

The computed values of the two factors can be plotted in a scatterplot (Figure 2). This plot is in fact 
(almost) the rotated bi-plot, and it is the representation of the composition expressed in (almost) isometric 
log-ratio coordinates defined by factors ΦG and ΦA. Interesting issues of this plot are explained in section 
3. However, since this representation is a projection in a nearly ilr-plane, we may try to re-express these 
factors as coordinates of a new composition formed with three hidden components. These hidden factorial 
components shall coincide with a set of clr-directions projected onto the same ilr-plane, thus mutually at 
120º: The same scatterplot of  Figure 2 includes them, visually fitted to the data dispersion. 

Fifth step: computation of the factorial components 

Once decided the three directions of the hidden factorial components, we can compute them applying 
usual expressions of calculation of components from ilr coordinates. This gives in our case an expression 
like 
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where C is the closure operation, and (K, N, W) the new hidden composition. Afterwards, they can be 
represented in a ternary diagram, as it is shown in Figure 3 

Finally, if some end-members actually exist in the problem under analysis, they might lay near the clr-
axis defined in the last step: this is a conjecture based on the observation of the presented plots and the 
knowledge of the composition of the known sources of water and pollution in this basin (see the details 
on this topic in section 3). Furthermore, if the procedure here explained does not lead to a clear triad of 
suitable clr-directions, it seems reasonable to statistically test whether the mixture model is acceptable. In 
our opinion, the development of this test should be based on geometry-free procedures, preferably with a 
probabilistic approach, like the general models of upper order statistics or of extreme values (Embrechts, 
Klüppelberg and Mikosch, 1997). 
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Figure 3 Ternary diagram of the computed hidden composition: W (pristine waters) K (potash sources) 
and N (ammonium sources). 

3 Application 
This methodology has been tested with a compositional data set obtained from the Llobregat River Basin. 
Measurements were taken at 31 stations, monthly between June 97 and January 99, plus another in April 
99. Out of the more than 30 suitable variables in the data file (Soler et al., 2002), we studied 14 
molarities: H+, Na+, K+, Ca2+, Mg2+, Sr2+, Ba2+, NH4, Cl-, HCO3-, NO3-, SO42-, PO43- and total 
organic carbon –TOC–.  

The Llobregat River is located in NE Spain. It drains an area of 4948.2 Km2, and is 156.6 Km long, with 
two main tributaries, the Cardener and Anoia Rivers (Figure 4). The headwaters of the Llobregat and 
Cardener Rivers are in a rather unpolluted area of the Eastern Pyrenees. Mid-waters, the rivers flow 



through a densely populated and industrialized area, where potash-mining activity occurs and there are 
large salt mine tailings stored with no water proofing. Moreover, in this area the main land use is 
agriculture and stockbreeding. The lower course flows through one of the most densely populated areas of 
the Mediterranean region and waters receive large inputs from industry and/or urban origin while 
intensive agriculture activity is again present near the mouth, at the Llobregat delta. Anoia River is quite 
different. Its headwaters are in an agricultural area, down-water it flows through an industrialized zone 
(paper mills, tannery and textile industries), and near the confluence with the Llobregat River the main 
land use is agriculture again, mainly vineyards, and there is a decrease in industry and urban contribution 
(Soler et al., 2002).  

Results of previous work on this area show that the chemistry of most stream waters is mainly controlled 
by the weathering of the Tertiary chemical sediments within the drainage basin (Soler et al., 2002). Figure 
5 shows a simplified lithologic map of the Llobregat basin, where the geochemical signature of natural 
bedrock is derived from weathering of a) limestone and marls, with major ions HCO3−, Ca2+, Mg2+ and 
minor ions Sr2+ and Ba2+, b) gypsum, with major ions SO42−, Ca2+ and minor ions Sr2+ and Ba2+, and 
c) halite and silvite, with major ions Na+, Cl−, K+ and minor ions Mg2+, SO4 and Ca2+.  
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Figure 4 (left) Llobregat basin showing sample location. 

Figure 5 (right) Geological map of the Llobregat River Basin 

The major sources of anthropogenic pollution in the basin are mainly identified Soler et al. (2002): a) 
potash mine tailing, with major ions Na+, Cl−, K+ and minor ions Mg2+, SO4 and Ca2+; b) fertilizers 
with NO3−, PO43−, K+ and SO4 as major ions -; c) stockbreeding NH4+, NO3−, and maybe TOC; and 
d) urban and/or industrial sewage, with major ions as NH4+, PO4 and TOC. In addition, coupling 
chemical data with isotopic compositions from strontium (Antich et al., 2000, 2001) and sulfur (Otero and 
Soler, 2002), the contribution of these sources to water pollution has been quantified to some extent. 



Given the rather high variability of this basin, both in the richness of its geological background and the 
human activities developed on it, different groups are displayed in the plots. A first division is made 
between the three major rivers: Anoia, Cardener and Llobregat, the latter further divided into higher and 
lower course. A priori, each group is known to have a distinct geochemical print: Anoia River is richer in 
sulfates, Cardener River has the salt outcrops and major potash mining activities in its basin, and high 
Llobregat River flows across a carbonate and siliciclastic landscape. It goes without saying that the lower 
course of the Llobregat River mixes all of these prints, and is characterized by high values of all the major 
ions.  

Results of a previous study highlighted two factors defined as equilibrium equations between some of the 
available components (Tolosana-Delgado et al., submitted), thus offering a reduction of dimensionality 
following the log-contrast approach (Aitchison, 1984). A detailed analysis of these two factors suggested 
the existence of end-members, supported by the available analysis of known inputs in the area.  

Univariate characterisation of factor logcontrasts (ΦG and ΦA)  
 
Results of Factor ΦG throughout the sampling period are shown in Figure 6 and Figure 7. Factor ΦG is 
surely reflecting the geological background, enhanced by mining. Low values indicate that the sample has 
low anthropogenic influence. High values of that factor are achieved by high concentrations in Na, Cl and 
K, the major ions of halide outcrops and potash mine lixiviates. However, in the areas without halide 
outcrops or mining activity, high values of that factor must have an alternative anthropogenic source, as 
urban and industrial sewage (Na, Cl) or fertilisers (K).  

• Lowest values of ΦG, from -6 to -4, correspond to pristine waters, as it can be observed at locations 
117, 25, 45 and location 6, to some extent. 

• Highest values of ΦG, up to +1, correspond either to potash mining influence, which is very clear at 
locations 119 and 2, and down-waters from location 31; or to high urban/industrial input, as in 
locations 3 and 76. Location 119, after the mining area, has the highest value. Location 3 has similar 
values although it is located outside the mining area; this can be explained by the contribution of the 
local industrial activity, specially the tanneries, that use Na-Cl brines from the mining areas. To 
support this, at location 3, the lowest values of this factor are achieved in aug-97 and aug-98; notice 
that August is holiday time and the industrial activity decreases. This fact is reflected down-waters, in 
locations 4 and 74, where the minimum values of ΦG are reached in the same month. 

• There is a sudden increase of ΦG passing through the mining areas at the middle section of the 
Cardener and the Llobregat Rivers. Another slight increase is observed in the Llobregat River after the 
confluence with the Cardener River. 

• At several sampling locations, an overall increase in the ΦG value is observed throughout the 
sampling period, e.g. locations 3, 4, 50, 31, 65, 74, 77, and 93; this is possibly indicating an increasing 
influence of anthropogenic sources. At location 119 there is an overall diminution of ΦG from jun-97 
to aug-99, suggesting an improvement in the control of the potash mining lixiviates. 

Factor ΦA has a clearly anthropogenic influence as NH4
+ or NO3

- only have significant anthropogenic 
sources. However, the interpretation of this factor is more difficult due to its high variability and the 
presence of anthropogenic compounds in both numerator and denominator. Pristine waters have 
intermediate values, low values can be interpreted as a high urban contribution, influenced by the NH4

+ 
contents, and high values are not clearly associated to a pollution source, although fertilizers are good 
candidates due to their high NO3

- and SO4
2- concentration. 

• Pristine streams have intermediate values, from +2 to +4, as it can be observed at locations 117 and 
25, in the headwaters. 

• Negative values, from 0 to –2, correspond to high urban influence, as it can be observed at location 
76, and at several samples of locations 147, 94 and 3. 

• Highest values, from +5 to +7, are in locations 95, 51, 45 and 126, placed in agricultural areas. One 
possible origin of these values is a fertilizer influence.  



• There is a sudden decrease of ΦA from location 119 to location 2 at the Cardener River, after the city 
of Manresa, which can be explained by a high urban contribution. Another sudden decrease is 
observed between locations 95 and 3 in the Anoia River, when passing the city of Igualada.  

• The tendencies throughout the sampling period are not so clear as those involving factor ΦG, but some 
trends are observed: at location 2, in the Cardener Basin a diminution of ΦA is observed throughout 
the sampling period, suggesting an increasing contribution of the urban input. Location 95 in the 
Anoia Basin shows the same trend, suggesting an increase in the urban influence or/and a diminution 
in the rural (fertilizer) influence.  A similar tendency is observed at locations 74 and 65. At locations 
80 and 31 an increase throughout the sampling period is observed. 
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Figure 6 Down-waters evolution of factors ΦG and ΦA in the Llobregat River main stream, and some 
tributaries. At each location samples are represented throughout the sampling period (jun-97-aug-99). 
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Figure 7 Down-waters evolution of factors ΦG and ΦA in the Cardener and Anoia Rivers and their 
tributaries. At each location samples are represented throughout the sampling period (jun-97-aug-99). 



Bivariate analysis of factor logcontrast (ΦG vs ΦA)  

Figure 8 shows a plot of ΦG vs ΦA. Considering only the main course of each River, Llobregat River 
High waters (117, 78, 118 and 80), together with location 25 from the headwaters of the Cardener River, 
are plotted in an area clearly distinct from the other samples, characterized by negative values of ΦG 
(lower than –3) and intermediate values of ΦA (from +2 to +4). Anoia River samples, except location 3, 
fall in an area with ΦG between -2 and -1 and ΦA-values from 0 to +6, Cardener River locations 119 and 
2, and location 3, cluster together in an area with the highest values of ΦG, up to +1, and ΦA ranges from 
0 to +5. Llobregat River Low waters are all clustered in an area between Cardener and Anoia Rivers with 
ΦG from -1 to 0 and ΦA from +1 to +4. Detailed down-water evolution shows the following issues: 

• Llobregat headwaters are characterized by negative values of ΦG, down to -6, and intermediate values 
of ΦA, from +2 to +4, these values indicate a possible end-member: pristine waters. Downwaters, at 
location 78 there is an increase in ΦG while ΦA remains fairly constant. Location 118 shows a slight 
diminution of ΦG; one possible explanation is the presence of the main sweet water reservoir in the 
basin, located between locations 78 and 118, which can induce an homogenizing effect. Location 80 
plots in the same area indicating that there is no significant influence of the tributaries 6 and 147, 
probably due to their small flow. From location 80 to location 31 there is a drastic increase of ΦG as 
the River crosses the potash mining area, although the influence of the tributaries discharging between 
these two locations can not be discarded, especially locations 77 and 94. Downstream, at location 23 
the samples show an increase in ΦG coupled with a decrease in ΦA showing the influence of the input 
of the Cardener River, controlled by urban wastewater (see location 2). Down-waters of location 23 
all samples have similar values of ΦG, and the distinctive change is an increase in the variability of 
ΦA at location 5, after the confluence with the Anoia River, influenced by the variability of that factor 
at location 74. 
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Figure 8 Factor ΦG vs factor ΦA showing mean values of each sampling station and the standard 
deviation. The main inputs in the area are also represented in the small figure (FN and FK are respectively 
Nitrogen- and Potassium-rich fertilizers). 



• Regarding the tributaries of the Llobregat River, they usually show higher variability than the main 
stream. Location 6 has values similar to those from pristine waters; location 147 has values of ΦG 
slightly higher than location 6 and ΦA shows lower values and large variability, besides as ΦG 
increases, ΦA decreases (see Figure 6), indicating an influence of urban wastewater. Location 77 
shows the highest ΦG values of all the sub-basin; moreover ΦA has values up to +6, suggesting 
fertilizers as the probable source of pollution. Location 76 presents high ΦG-values, up to +0.5, 
coupled with the lowest values of ΦA for the entire basin, down to –2.5, marking a second possible 
end-member: the urban/industrial influence. Locations 92 and 93 have values of ΦG and ΦA similar to 
relatively pristine waters in the main course, indicating low anthropogenic influence. Location 94 is 
characterized by high ΦG-values and intermediate ΦA-values, with a large variability in both factors, 
some samples are similar to location 76, indicating an urban influence; and other samples are close to 
location 119, suggesting a contribution of the potash mining activity. 

• Cardener River headwaters have similar values to those of Llobregat headwaters, with negative values 
of ΦG, down to -4, and intermediate values of ΦA, from +3 to +5. Downwaters, at location 1, there is 
an overall increase in ΦG and samples show the highest variability of that factor for the entire basin, 
(due to a bad sampling location, or an influence by location 126). After the mining areas and the 
evaporitic outcrops, at location 119, there are no changes in ΦA and there is a drastic increase in ΦG 
up to +1, the highest values of the entire basin, indicating a third possible end-member: the potash 
mining lixiviates. Down-waters of location 119, at location 2, there is a slight diminution in ΦG and a 
clear decrease in ΦA indicating a reduction in the mining influence and an increasing contribution of 
urban wastewater. This evolution has been already observed by Tolosana-Delgado et al. (submitted). 

• The two tributaries collected at the Cardener Basin plot in two clusters well differentiated. Location 
45 has values similar to pristine waters but with ΦA-values slightly higher, possibly influenced by 
fertilizers, since mean values of NO3 in location 45 are tenfold those from location 25 and it has lower 
NH4 contents. Samples of location 126 show intermediate values of ΦG  (around -1) and a high 
variability of ΦA (from +0.5 to +8), reaching the highest values of that factor for the entire basin. This 
high variability could be explained by a mixture of two populations, one with a urban contribution 
(low ΦA-values) and the other with a “rural” influence (high ΦA-values).  
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Figure 9 Ternary diagrams (K, N, W) of each sub-basin. 



• Anoia River headwaters at location 95, fall far from pristine waters of the Llobregat and the Cardener 
Rivers, with ΦG ranging from –1.5 to 0 and ΦA from +2.5 to +6.5. This values can not be explained 
by the different geological background of the sub-basin, as, if there are no halide outcrops, an 
anthropogenic influence must be invoked to achieve the ΦG-values reported; fertilizers are the most 
suitable input to explain this values. Downwaters, at location 3, samples are characterized by higher 
values of ΦG, from 0 to +1.5, and a large variability of ΦA, from –2 to +5, this sample has a clear 
urban contribution and, as explained in section 3.1, the high values of ΦG can be achieved with the 
contribution of the local industrial activity. Downstream of location 3, the locations 4 and 74 plot both 
within the same area, with lower values of ΦG and minor variability of ΦA, indicating a dilution with 
less polluted waters. 

• Regarding the Anoia Tributaries, location 65 plot in the same area as the lowly polluted locations of 
the Llobregat high waters. Location 51 is characterized by ΦG values close to -2 and it has the highest 
mean value of ΦA (+5) in the entire basin, possibly influenced by fertilizers. Location 50 has similar 
values of ΦG and lower values of ΦA (+2.5) indicating a possible urban contribution. Location 120 
has a high values of ΦG, from -1 to +1, and maintains intermediate values of ΦA; as for location 77, 
this behavior can not be explained by an urban contribution and another anthropogenic source must be 
invoked. This stream drains an agricultural area of vineyard, where K fertilizers are commonly used; 
this could explain the high values of ΦG. 

We have available analysis of the main inputs in the Llobregat River: springs (pristine waters), sewage 
(urban with variable industrial contribution), mine tailings, fertilizers and pig manure. We have calculated 
ΦG and ΦA of these inputs and plotted their values at Figure 8 together with the Llobregat River samples. 
Springs, mine effluents and sewage (and/or pig manure) seem to confirm the three end-members 
previously indicated by locations 117, 119 and 76 respectively. Fertilizers are not so clearly associated to 
an end-member due to the heterogeneity of their chemical composition. Besides, fertilizer factors are 
calculated with data from the bulk sample, and their values may not coincide with water polluted by 
fertilizers, e.g. NH4 values are not representative, as volatilization and nitrification processes in the soil 
will affect the NO3/NH4 ratio. A similar problem would arise with the pig manure end member regarding 
NH4, except if there is a direct spillage of pig manure on the stream.  

Joint analysis of factorial components (K, N and W)  

A ternary diagram of the factorial components, calculated as explained in section 2, fifth step, is shown at 
Figure 3. Due to the high variability of the different sub-basins, which can difficult their interpretation, 
detailed ternary diagrams of each sub-basin are shown in Figure 9, moreover the main inputs in the area 
are plotted in the same diagram.   

Llobregat River high waters fall in an area close to the W end-member, indicating a major influence of 
pristine waters, except samples of location 77, that tend to the K end-member, and some samples of 
location 147 that tend to the N end-member. Cardener River high waters, together with location 45 lie 
close to the pristine springs, and the down-waters evolution towards K end-member at locations 1 and 
119; and towards N end-member at location 2, are again observed. Samples of location 126 show a clear 
mixing trend between N and K end-members. Notice that the observed trend is a compositional line 
(Aitchison et al., 2002). Anoia River main stream lies away from pristine springs, location 95 tends to the 
K end-member, while downwaters there is a clear mixing trend between N and K, being location 3 the 
most influenced by anthropogenic inputs. Anoia tributaries plot closer to the W end-member than the 
main stream, except location 120. Regarding the Llobregat River low waters samples fall in a mixing 
trend between N and K end-members, excepting locations 92 and 93, closer to the W end-member.  

With the ternary diagram, although absolute “mixing calculations” can not be made, we can calculate how 
far from pristine samples are those affected by anthropogenic inputs, computed as (non-closed) 
perturbations leading from that pristine sample to the sample at hand. We take as pristine waters locations 
117 for the Cardener and Llobregat River, and for the Anoia River, due to the different geological 
background and the fact that its headwaters are indeed affected by anthropogenic inputs we choose as 
reference waters those from location 65. Results of this calculation are shown in Table 1. Although we 
cannot determine the absolute contribution of the different anthropogenic sources, in our case, as we have 
available analyses of the main pollutants, we can compare the results obtained for the samples with the 
results obtained with the inputs, giving a better approximation of the degree of “affection”, e.g. location 
76 and sewage have similar values, and values from location 119 are close to those from mine tailings.  



 
Llobregat ∆K ∆N ∆W  Cardener ∆K ∆N ∆W 
main: 117* 1.000 1.000 1.000  main: 25 1.857 1.055 0.867

78 2.469 1.663 0.677  1 3.898 1.914 0.429
118 2.301 1.386 0.748  119 4.981 2.580 0.162
80 2.139 1.518 0.749  2 2.152 4.972 0.176
31 3.693 2.853 0.303  trib: 45 2.402 0.726 0.842
23 2.646 4.140 0.242  126 4.352 1.618 0.412
84 2.778 3.984 0.248  Anoia     

5 3.323 3.554 0.241  main: 95 2.264 0.853 0.548
49 3.162 3.633 0.251  3 0.960 2.994 0.252

trib: 147 1.501 2.865 0.619  4 1.163 2.225 0.465
6 2.154 0.981 0.836  74 1.294 2.079 0.468

77 4.524 1.933 0.335  trib: 51 1.967 0.632 0.752
93 2.584 1.616 0.668  65* 1.000 1.000 1.000
94 3.149 3.580 0.262  (65) 2.035 1.700 0.734
76 0.424 7.002 0.090  50 0.927 1.514 0.832

    120 1.695 1.892 0.379
K sources     N sources    

M 5.767 2.831 0.006  P 0.040 7.866 0.003
Mt 5.791 2.803 0.007  SW 0.203 7.209 0.088

Table 1 Relative influence of K-Cl-Na pollution (K) and NH4
+ pollution (N) in each location, compared 

with some known pollution sources: M=potash mining leaching, Mt=spring near potash mine, P= pig 
manure, SW=sewage. All location and source influences are expressed as non-closed perturbations from 
initial rather unpolluted states, marked by an asterisk (*): location 65 for Anoia waters, and location 117 
for the other (including sources and location 65 itself enclosed in parentheses).  

4 Discussion 
The Llobregat River Basin, though relatively small, presents a high variability in its geological 
characteristics and human influence. However, we have been able to describe approximately half (57%) 
of this variability using only two factors: ΦG explains the geological background of the inflowing waters, 
and ΦA the dominant anthropogenic influence. As general features, it is interesting to notice: a) all river 
sources have low values of ΦG, increasing down-waters; b) low values of ΦA clearly indicate sewage 
influence, while the presence of N-rich fertilizers should be noticed by an increment of this factor; c) a 
high influence of potash mining activities should increase specially ΦG and, in a minor degree, ΦA; d) 
industrial sewage might be associated to increasing ΦG and decreasing  ΦA values simultaneously.  

Moreover, these factors can be converted to a hidden composition of the stated influences: W, K and N 
components represent the relative “influence” of pristine waters, potash pollution sources and ammonium 
pollution sources, respectively. To analyze this hidden composition, it is useful to compute the 
perturbation (Table 1) that leads from a supposedly pristine initial state to the actual state. Then, it 
becomes clear that in a general sense, the influence of both pollution sources increase down-waters, with 
special increments when passing the salt mines (locations 31 and 119, respectively mines in Sallent and  
Cardona-Súria), the cities (locations 126, 2+23 and 3, Solsona, Manresa and Igualada respectively) and 
some industrial areas (locations 3, specially tanneries, and 76, a complex mixing of industrial and urban 
wastewater, almost indistinguishable of a sewage water).  

Finally, these factors are also useful to detect some time trends in these samples. Some locations in Anoia 
River show a minimum in ΦG at August, which shows again the human enhancement in a supposedly 
geological factor. Looking at time evolution, some locations show a better control of pollution sources 
(specially in the mining areas), although more of them show an inverse tendency: a clear increment of 
human influence, specially the inflow of urban sewage waters.  
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Figure 10 Summary ternary diagram, with influences and confidence regions of the geometric centers. 

5 Conclusions 
Using a methodology based on bi-plots and log-contrasts, we have been able to extract two factors from a 
data set of hydrogeochemical measurements in the Llobregat River watershed (NE Spain). The main 
interest of using this procedure to extract factors, is the ability to integrate many components in a single 
expression, mixing major and trace components. Since these factors are orthogonal, it seems reasonable to 
suppose them to be the ilr basis of a hidden composition, where each component represents an influence 
or source: W-pristine waters, K-potash sources and N-ammonium sources. Finally, the comparison of this 
hidden composition with a set of known pollution sources suggests the hidden components to be possible 
end-members. However, the actual composition in the original simplex of each end-member cannot be 
assessed. Thus we cannot obtain the contribution of each end-member to a given sample, only relative 
influences with respect to a chosen initial state are available from a compositional point of view. 
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APPENDIX: Computation of factor log-contrasts 
 

components G matrix coordinates       
... in factor ΦG horizontal vertical  projection centered integers ilr other ilr 

Na -10.646 -9.880  -23.329 -13.948 -14 -0.412 6 0.466
K -13.288 -9.827  -25.539 -16.158 -16 -0.471 6 0.466
Cl -12.259 -11.453  -25.532 -16.151 -16 -0.471 6 0.466

Mg 3.912 -3.207  -7.452 1.929 2 0.059 -2 -0.155
SO4 3.761 -1.308  -6.570 2.811 3 0.088 -2 -0.155

HCO3 8.648 3.150  -0.061 9.320 9 0.265 -3 -0.233
H2O 11.968 3.876  3.137 12.518 12 0.353 -4 -0.310

Ca 8.316 1.261  -1.346 8.035 8 0.235 -3 -0.233
Ba 11.775 2.540  2.263 11.644 12 0.353 -4 -0.310

factor ΦG   Σx -84.431 0.000 0 0.000 0 0.000
tail 8.500 3.500 Σx2   1154 1.000 166 1.000

head -13.000 -10.000        
... in factor ΦA          

SO4 3.761 -1.308  34.629 5.195 5 0.154 1 0.177
Sr 6.066 -3.698  37.940 8.506 8 0.246 1 0.177

NH4 -22.963 20.753  0.000 -29.434 -29 -0.891 -5 -0.884
NO3 5.847 -4.929  38.596 9.162 9 0.276 2 0.354
Mg 3.912 -3.207  36.005 6.571 7 0.215 1 0.177

factor ΦA   Σx 147.170 0.000 0 0.000 0 0.000
tail -23.000 20.700 Σx2 1060 1 32 1

head 5.800 -5.000        

Coordinates of involved variables in the bi-plot (elements of the matrix G) and computation steps of log-
contrasts generating ΦA and ΦG factors. Two different solutions are proposed, labeled “integers” and 
“other”; the corresponding “ilr” column standardizes them to unit norm to allow us to compare them. 
These ilr columns are also the coefficients of computation of the ilr basis (Egozcue et al, 2003) linked to 
factors ΦG and ΦA. 


