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First discussion on compositional data analysis is attributable to Karl Pearson, in 1897. However, 
notwithstanding the recent developments on algebraic structure of the simplex, more than twenty years 
after Aitchison’s idea of log-transformations of closed data, scientific literature is again full of statistical 
treatments of this type of data by using traditional methodologies. This is particularly true in 
environmental geochemistry where besides the problem of the closure, the spatial structure (dependence) 
of the data have to be considered. In this work we propose the use of log-contrast values, obtained by a 
simplicial principal component analysis, as LQGLFDWRUV of given environmental conditions. The 
investigation of the log-constrast frequency distributions allows pointing out the statistical laws able to 
generate the values and to govern their variability. The changes, if compared, for example, with the mean 
values of the random variables assumed as models, or other reference parameters, allow defining 
PRQLWRUV�to be used to assess the extent of possible environmental contamination. Case study on running 
and ground waters from Chiavenna Valley (Northern Italy) by using Na+, K+, Ca2+, Mg2+, HCO3

-, SO4
2- 

and Cl- concentrations will be illustrated. 
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Environmental Geochemistry is a discipline deeply involved in the investigation of the quality of the 
environment and in this context (geo)chemical monitoring is used to determine the amount of pollution in 
relation to natural background levels. The meaning of monitoring, according to the Oxford Dictionary, is 
related to the maintenance of a regular surveillance in a given area. Generally, when the object of a 
monitoring program is the determination of water quality as collected from springs, groundwater wells or 
running waters, data will show a spatial pattern of distribution and geochemical maps represent the tool to 
visualise and interpret chemical-physical phenomena. However, geochemical mapping can be considered 
as a tool of monitoring only if spatial analysis of data is repeated at fairly regular time intervals, so that 
the dynamics of the processes can be evaluated. In this context, the identification of parameters to be 
considered as LQGLFDWRUV, whose characteristics are used to point out the presence or absence of given 
environmental conditions, or as PRQLWRUV, whose changes can be measured to asses the extent of 
environmental contamination, may be highly useful. Water chemistry studies, under compositional data 
analysis theory, may allow us to define these types of parameters, particularly when the results of log-
contrast analysis may be interpreted as related to specific chemical-physical phenomena and their spatial 
distribution is valuable. Application examples by considering water chemistry data collected from 
Chiavenna Valley (Central-Western Alps, Italy) will be shown. The aim is to define and develop the use 
of tools able to simulate the geochemical behaviour of water components in natural systems in order to:  
i) monitor the current state of the investigated natural system on a scientific base, under a correct 
statistical theoretical framework and ii) to estimate and predict direction of changes, particularly when the 
behaviour of pollutant, e.g. heavy metals, is considered. 
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Different methods of representation of hydrochemical data are used to understanding chemical 
distribution of species and for assessing the relationships among different water types. All of them are 
generally used to identify processes involved in the geochemical evolution of running and ground waters. 
However, graphical representations pose considerable problems, since dimension limitations severely 
restrict possible illustration of complex phenomena, offering in several cases only partial visions. Several 
problems affecting also diagrams used for classification purposes, as the square diagram of Langelier-



Ludwig or the Piper ternary diagram. In these cases, the sample space in which data are represented is 
indeed given by the simplex and we know (see i.e. Aitchison, 1986) that its geometry is not the same of 
the real space. In other words, discrimination of groups and definition of trends in these types of 
representations is not possible with standard statistical methodologies.  
Distribution maps represent a tool used to analyse the spatial structure of water chemistry data. The most 
frequently used maps generally depict total dissolved solids or electrical conductivity and give 
preliminary information on a given water system and on its quality. These maps can be obtained by 
considering also the concentrations of anions, cations and trace elements (i.e. heavy metals), so that 
localisation of anomalous values, identification of trends and so on, may have important relapses on the 
interpretation of the effect of natural and antrophic phenomena and finally on the management of natural 
resources. 
 
Regionalised compositions, similar to all compositions, present the problem of spurious spatial 
correlation so that a regionalised composition is a co-regionalisation characterised by the fact that the 
random variables describing it have a constant sum at each point of the sampled region. When this type of 
observations is used, auto- and cross-covariance functions are subjected to non-stochastical controls and 
may present distortions thus leading to a misinterpretation of the phenomenon under study (Pawlowsky-
Glahn and Burger, 1992). In this work, an insight on this item is presented with the aim to focus the 
attention on the possible use of log-contrast values to map natural phenomena thus giving parameters 
useful in environmental monitoring programs that are not influenced by closure. 
 
Our observations are given by running and ground waters from Chiavenna Valley, a NNW-SSE elongated 
basin with a surface of about 700 km2, located in the central-western sector of the Alpine chain. From a 
geological point of view the area consists of schistose to crystalline rocks, sedimentary formations and a 
relatively well-developed Quaternary cover (Fig. 1). Starting from 1998, in the framework of the 
Chiavenna Project, financed by CNR and CARIPLO, more than 230 running and ground water samples 
have been collected and analysed for major, minor and trace components (Vaselli et al., 1999).  
 

 
 

Considering a region 
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ℜ⊂Ω  and an ' -dimensional random vector function or co-regionalisation 
(Matheron, 1971) 
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Figure 1. Schematic geological map of 
Chiavenna Valley and sampling 
location sites. 
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(the prime standing for transpose), defined at each point Ω∈[ ; ( )[]  can be considered a ' -part 

regionalised composition if: (1) all its components are strictly positive: ( ) �'��L��[] � �21,0 => , and 

(2) for  each point Ω∈[  the sum of all its components is a constant F . The natural sample space for 
( )[]  is the G -dimensional simplex 

 

( ) ( ) ( ){ } ( )��'G���������F[��'L��[]��[���6  
!

==′=>= ,;,,2,1,0: ]M] �  

where ( )′= 1,,1,1 �M   and F  is a constant. 
 
When compositional data are analysed  
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where γ  indicates the auto and cross-semivariograms and &  the auto or cross-covariances (Pawlowsky-

Glahn, 1984; Pawlowsky-Glahn, and Burger, 1992). Thus, if in regionalised compositions ( )K&γ  (for 

0≠K ) and ( )K& '  are strictly positive, cross-covariances and cross-semivariograms show the same 

problems that compositional data show for covariances: (1) necessarily non-zero values, (2) bias toward 
negative values, (3) singularity of associated matrices. 
 
Over the last few years, a new approach to statistical analysis of compositional data has been proposed by 
Aitchison (1986) based on transformations to leave the simplex as sample space in order to avoid 
problems induced by the constant-sum constraint. The transformations lead to the definition of an 
appropriate spatial covariance structure that can be used to analyse, describe and interpret spatial 
relationships of regionalised compositions. 
 
In this work a new procedure is adopted in order to avoid the closure constraint and to develop a way to 
consider the dynamical nature of geochemical processes as described by changes in water composition. 
Our proposal is based on the following steps: (1) choice of the anions and cations normally used to plot 
data in the Langelier-Ludwig (1942) square diagram and classical interpretation of the points pattern; (2) 
application of log-contrast analysis for compositional data on the same variables and interpretation of the 
log-contrasts (Aitchison, 1997); (3) analysis of the frequency distribution of the log-contrast values, 
considered as random variables; (4) variograms of the log-contrast values and identification of 
anisotropies and trends in data variability for further mapping.  Details on log-contrast analysis may be 
found in Aitchison, 1986.  
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In Figure 2 the Langelier-Ludwig square diagram is reported; as we can see, samples can chemically be 
classified as Ca(Mg)-HCO3 waters, even if few observations have a Ca(Mg)-SO4 composition; however, 
as known to put points in this diagram groups of variables reported on the two axes have to be closed to 
50 and the interpretation of patterns/trends, as well as of the distance among observations, is not usable 
from an inferential statistical point of view. 
 
Results of the log-contrast analysis applied on the cations and anions of the square diagram indicate that if 
we consider four log-contrasts, more than the 90% of the data variability is explained, about 55% 
attributable to the first one, 13% to the second one and about 12% to the other two ones. 
 



 
 
 
Each log-contrast can be written as: 
 
 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] 143 log32.0log32.0log61.0log21.0log29.0log29.0log46.0 N62&D+&20J.1D&O =++−+++
 

 
 

( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] 243 log07.0log07.0log48.0log53.0log30.0log41.0log46.0 N&D&O620J.+&21D =+++−++
 
 
 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] 334 log08.0log34.0log59.0log002.0log04.0log30.0log66.0 N&D+&20J.&O1D62 =++−+++
 
 

( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] 443 log11.0log22.0log30.0log43.0log08.0log19.0log79.0 N621D0J.&D+&2&O =+++−++
 

 
or, if the exponential form is considered: 
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and represent, from a general point of view, the relationships among the involved variables in four 
different directions of the multidimensional space. The coefficients of the log-contrasts, their signs and 
sizes, indicate how the variables are added to, or subtracted from, the water, and their correlations, 
helping us to understand the action of possible geochemical processes. For example, in the first log-
contrast a possible balance between Cl, Na, K and Mg versus HCO3, Ca and SO4 may be evidenced, so 
that the contribution of the weathering of silicate rocks is balanced by those attributable to carbonate 
rocks and gypsum; to be noticed in this case is the same size of the coefficients of Ca and SO4, thus 
representing their relationship in gypsum. This component explains the highest variability and 
consequently represents a very general phenomenon, as possibly those described.  
 

Figure 2. Langelier-Ludwig diagrams for 
running and groundwaters samples of 
Chiavenna Valley 



The other components apparently describe local phenomena primarily depending from lithology. For 
example the second component is characterised by the absence of a role played by Ca and Cl while Na, 
HCO3 and K are balanced by Mg and SO4, thus representing weathering of silicate and carbonate 
minerals, against local phenomena involving Mg and SO4. The third component is characterised by a 
clear association between SO4 and Na compared with Mg and HCO3 (K, Ca and Cl are not here 
important). Finally, the fourth component is particularly related to Cl, compared with Na, K and Mg 
representing, in this case too, probable local phenomena. 
 
The N  parameter of the log-contrasts changes by considering the values of the variables for each 
observation and represents the effects of geochemical processes that link the variables; the investigation 
of the frequency distribution of N  values, considered as extracted from random variables, allows to verify 
how these data have statistically been generated, a tool useful to interpret in a subsequent phase, their 
meaning from a natural point of view (Fig. 3).   
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Figure 3. Frequency distributions of the N  log-contrast values. 
 
 
As verified by using the Kolmogorv-Smirnov test ( 05.0=α ), the frequency distribution of the N values 
for the four log-contrasts can be considered as normal. This implies that the mean of log-contrast values is 
significant and that the probability to find higher or lower values of this barycentre is the same and also 
that about 68% of the data lies within one standard deviation from it. In other words, the phenomena 
affecting the chemistry of the investigated waters and that act with positive and negative contributions 
respect to the mean values, follow the Gauss Law and, consequently, appear to be in a general 
equilibrium state (Aitchison, 1999). This situation tends to arise naturally when many continuous 
independent variables are added together and indicates us that the life of chemical species is mainly 
influenced by solution/precipitation events and by diffusion/dispersion phenomena and that the net result 
is a balance. This result may confirm that the investigated area is not affected by antrophic effects able to 



disturb in a specific way this type of situation. However, some anomalous samples in the tails of the 
distributions can be recognised and are responsible, for example in the case of the first log-contrast, for 
generating the most negative values, to which a particular contribution of HCO3, SO4 and Ca has to be 
considered. Thus, following our procedure, at this point N values can be investigated from a spatial point 
of view and the variographic analysis is a fundamental step of further developments. 
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The variographical analysis of N  parameters as LQGLFDWRUV of given environmental conditions, allows to 
evidence anisotropies in the geochemical processes. As an example of explorative investigation, in Figure 
4 the variograms in three main directions, N-S, E-W and 45° have been reported for all the four log-
contrasts. On the [ and \-axes the lag distance and ( )Kγ , the values of the semivariograms, are reported, 
respectively.  
 
From a general point of view, we can see that the squared differences in the values of couples of samples 
up to a lag distance of about 5000 m are higher for the first log-contrast if compared with the others. 
Moreover, in the case of the first and second log-contrast values, a clear difference between the E-W and 
N-S directions is evidenced, with the higher values attributable to the E-W direction. Differences 
registered at 45° appear to follow in each case the behaviour of those related to the E-W direction. In all 
the variograms the QXJJHW� HIIHFW indicates the presence of a short-range variability due to geological 
features with correlations ranges shorter than the sampling resolution. Furthermore, the presence of 
fluctuations (possible KROH� HIIHFW, L�H� N4 values) is representative of periodic phenomena at the 
investigated scale (same water/rocks interaction processes?).  
 
 

 
Figure 4. Variograms of the Ni log-contrast values by considering three main directions. 
 
 
On the whole, the results indicate that variograms in the E-W and 45° directions for N1 and N2 values show 
a more or less classical form indicating that these paths are characterised by higher continuity if compared 
with the behaviour in the N-S direction. From a geochemical point of view this indicates that data appear 
to be more continuous transversally with respect to the N-S main drainage system. Continuity at the scale 
here considered (up to 5000 m) could be dominated both by lithology and secondary drainage systems.   



In the case of the N3 log-contrast values, no big differences characterise the behaviour in the three 
considered directions while N4 behaviour shows differences between E-W and 45° directions, compared 
with the N-S one. In this case remarkable fluctuations (KROH�HIIHFW"��are also recognised.  
 
A display that is able to reveal and summarise directional anisotropies is a contour map of the sample 
variogram surface. In calculating the variogram value for pairs of points separated by the vector 

( )() KK ,=K , all pairs whose separation in the [ direction is [K * ∆± and whose separation in the \ 
direction is \K + ∆± are grouped together. As an example, Figure 5 shows the variogram surface 

calculations of N1 values for pairs whose separation distance in the east-west direction, ,K , is less than 10 

km and whose separation distance in the north-south direction, +K , is less than 30 km.  Data pairs have 
been grouped into 64 lags, with a lag increment of 12.8 km in E-W direction (lag tolerance ±  6.4) and of 
37.6 km in N-S direction (lag tolerance ±  18.8).   
 
 

 
 
 
 
The center of the map corresponds to the origin of the semivariogram and any cross section appears as a 
traditional one-dimensional variogram. Semivariogram values are small near the origin and increase with 
distance from this point. When the variation is isotropic the increase is fairly similar in every direction 

Figure 5. Variogram surface of the N1 
log-contrast values 



and the map shows concentric contour lines. On the contrary, geometric anisotropy appears as elliptical 
contour lines whose major axis indicates the direction of maximum continuity.  In the case of N1 log-
contrast values a better long-range spatial continuity (smaller semivariogram values) is related more or 
less with the N120°E direction. Consequently if the first log-contrast is associated to the contribution of 
rocks weathering, both carbonate and silicate ones, this direction is related to minor changes, compared 
with the perpendicular one. 
Similar results can be obtained for the mapping of the variogram surface of the other log-contrast values 
and may be used to understand the spatial behaviour of the relationships among the investigated variables, 
thus representing a useful tool to monitor complex phenomena that cannot be described by using a 
variable at a time. Furthermore, Ni values are random variables whose values are not constrained and 
standard geostatistical methodologies can be properly used. 
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In this work a new procedure to investigate from a spatial point of view geochemical processes has been 
proposed with the aim to capture the dynamics of natural environmental changes affecting the chemical 
abundance of elements. The approach is based on the theory developed in recent years for compositional 
data to take into account the nature of their sample space so that descriptive and inferential statistical 
methodologies can be applied without errors and, consequently, misinterpretations. In our case, the 
modelling of the log-contrast frequency distributions obtained by a simplicial principal component 
analysis offer tools to be used as indicators of given environmental conditions. When log-contrast values, 
treated as random variables, follow a normal (gaussian) distribution, a general equilibrium state can be 
deduced so that geochemical processes able to add or subtract elements to water tend to balance each 
other. 
The spatial behaviour of log-contrast values can be investigated by variographical analysis based on 
variograms and on the map of the variogram surface so that anisotropies in the geochemical processes can 
be revealed. Further studies in this direction are in progress, since the proposed methodology can be 
implemented by means of the mapping of N  in order to have a tool to be related to the features of the 
investigated area. Knowledge about the spatial scale of geochemical processes characterising a certain 
environmental domain is fundamental when pollution problems and remedial programs have to be 
respectively investigated and planned. In the case study of Chiavenna Valley, a relatively pollution-free 
area, the results can be considered as a starting point to follow the evolution of natural geochemical 
precipitation/solution and diffusion/dispersion processes in time and to evaluate the impact of possible 
human effects in the future. 
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