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Abstract

”compositions” is a new R-package for the analysis of compositional and positive data.
It contains four classes corresponding to the four different types of compositional and
positive geometry (including the Aitchison geometry). It provides means for compu-
tation, plotting and high-level multivariate statistical analysis in all four geometries.
These geometries are treated in an fully analogous way, based on the principle of work-
ing in coordinates, and the object-oriented programming paradigm of R. In this way,
called functions automatically select the most appropriate type of analysis as a function
of the geometry. The graphical capabilities include ternary diagrams and tetrahedrons,
various compositional plots (boxplots, barplots, piecharts) and extensive graphical tools
for principal components. Afterwards, ortion and proportion lines, straight lines and
ellipses in all geometries can be added to plots. The package is accompanied by a
hands-on-introduction, documentation for every function, demos of the graphical ca-
pabilities and plenty of usage examples. It allows direct and parallel computation in
all four vector spaces and provides the beginner with a copy-and-paste style of data
analysis, while letting advanced users keep the functionality and customizability they
demand of R, as well as all necessary tools to add own analysis routines. A complete
example is included in the appendix.
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1 Introduction

Compositions is a new R-package freely available from http://www.cran.r-project.org or from
http://www.stat.boogaart.de/compositions. To run it you need a current version of the statis-
tics program R (R Development Core Team 2004), which is available for free under the GNU-public
License and for all platforms and can be downloaded from http://www.cran.r-project.org. In-
stallation procedures are described on the web-pages. A hands-on-getting-started-introduction is
provided with the package in the . . . /inst/doc subfolder and also available from its own web-site
http://www.stat.boogaart.de/compositions. The aim of this paper is to give an overview of
the functionality of the package and to discuss its basic working principles. With the package we
tried to follow the principles in R as close as possible, even taking them sometimes a step further.
Thus, some of the principles discussed here will sound familiar to those knowing R or S in depth.
This paper is not a step-by-step introduction. Such an introduction is delivered with the package.
A complete example is included in the appendix, to offer an illustration of the concepts treated in
this contribution.
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2 The mathematical and user side concepts of “composi-
tions”

2.1 Documentation for every step on a smooth learning curve

Command-line-based software such as R is felt as a big obstacle to the “see-and-click” user. How-
ever a command based interface can handle much more complex communication with the computer.
However it is necessary to train that language from the simple first steps on.

The first paradigm of compositions is the paradigm of the learning user. We do expect that the
user is willing to read, to explore and to learn. There is a considerable amount of learning needed
before one can perform his first own useful analysis. However we provide a shallow learning curve
for this steps and on that learned basics one is able to accommodate every growing demand.
After downloading and installing R, and downloading the package and UsingCompositions.pdf
from the web, one can follow the step-by-step introduction given therein. It guides through the
installation process and gives a first tour through the most important features and cases of the
package. Afterwards the user will be able to apply what was learned to his own data sets and
find possibilities to customize the plots to his own needs, by consulting the help. A detailed help
is given for each function including directly working examples and descriptions for every possible
parameter. In many cases details, references and hyperlinks to related functions are provided.
This concept is illustrated in Figure 1. Clearly this approach is more demanding than a simple
menu-and-dialog-based interface. The practical difference between them is best explained with
toys: a transformer can do many things and is most desired by children; however, lego building
blocks educate, allow the phantasy to dwell, and are good for castles and spaceships, for bridges
and horses, for figures and houses, and fascinate children and parents.

2.2 The multiple geometry approach

How statistics should be applied to amounts of parts in a whole(positive and compositional data)
has been a strongly discussed issue in the last 20 years, since Aitchison(1982)) put forward his
log-ratio transformation strategy. This transformation strategy has evolved during the last years
into the idea that a geometry underlies any statistical analysis. Various geometries have been used



to analyze positive or compositional data, and there has been argues on which is the right one. The
most recent arguments can be found in Rehder&Zier 2002), Shurtz 2003), and Otero et al.2005).
In our opinion, choosing the underlying geometry is a step so important, that it shouldn’t be left
to the software default.

Thus the “compositions” package provides four different geometries (or scales) for such data,
which are represented by four different classes called ”rplus”, ”aplus”, ”rcomp”, and ”acomp”. A
fifth class ”rmult” representing general multivariate data sets is added for convenience. All four
geometries are treated in their own right and without any preference.

rplus The simplest approach is to analyze a multivariate vector of amounts just as a multivariate
data set in real geometry. The sample space (R+

0 )D is in this cases seen as a convex cone
in the (Euclidean) vector space (RD,+,−). However the only operation defined within this
set is the sum. This space is closed under addition, convex combinations (e.g. mean) and
multiplication with a positive constant. All other induced operations map amounts into the
full RD and thus result in an ”rmult”-object.

aplus Often amounts (positive data) are skewed and better analyzed by log-normal models, or on a
log scale. A (Euclidean) vector space structure ((R+),⊕,�, (·, ·)) is induced on the positive
space (R+

0 )D by the log transform as a bijective mapping to RD:

(x⊕ y)i = xiyi, x, y ∈ RD

(α� x)i = xα
i , α ∈ R, x ∈ RD

rcomp If the total sum is constant or irrelevant, a set of amounts can be seen as an element of the
real simplex SD = {x ∈ RD : xi ≥ 0,

∑D
i=1 xi = κ} ⊂ RD, with all its known problems such

as spurious correlation (Chayes 1960). However this approach is still the most used one and
still has its justification in some cases, e.g. when mass conservation is ensured or additivity
of mass is the most important property. The sample space is here a convex subset of RD

with relative dimension D− 1. Only taking convex combinations (such as a mean) map into
the simplex again. All other induced operations potentially leave the sampling space and
map into the general RD.

acomp However, when the total sum is constant or irrelevant, and not the additivity of mass, but e.g.
laws of action of masses (chemical equilibrium) are the important feature, or conservation of
mass cannot be ensured, the data should be seen as relative compositions, and can be modeled
as elements in the Aitchison simplex geometry AD = (SD,⊕,�) ∼ (RD−1,+, ·) induced by
the ilr-Transformation (Egozcue et al. 2003), where ⊕ is the perturbation (Aitchison(1986))

(x⊕ y)i =
xiyi∑
j xjyj

and � the power transform

(α� x)i =
xα

i∑
j yα

j

, α ∈ R, x ∈ SD

Summarizing, the user should first decide whether the data should be analyzed consistently with
additivity of mass or consistently with action of masses, and on whether or not the total sum is
informative. Then, these answers point to which one of the four geometries should be used, thus
setting the class of the data:

> mydataset = read.table("MyData.txt",header=TRUE) # Read data from file
> X = acomp(mydataset) # Select class

Afterwards every step of the analysis is performed in the geometry linked to the selected class.



2.3 The principle of analogous analysis

It is a policy of the package to treat all four geometries as similar as possible, to allow a direct
comparison of results. The same commands can be used for every geometry. The user selects,
what he wants to do by choosing a generic command from those existing in R (e.g. princomp for
principal component analysis or plot for plotting), and applies it to the data:

> plot(X) # Plots e.g. Ternary diagrams
> princomp(X) # Computes principal component analysis
...

The computations and plots are then done in the most appropriate way for the selected geometry.
This can result in very small differences (e.g. ternary diagrams for ”rcomp” and ”acomp” are almost
equal), or in very dramatic ones (e.g. when plotting confidence ellipses). However some operations
are not meaningful in one or the other geometry: for instance, centered plotting in ternary diagrams
is well-defined (von Eynatten et al. 2002, e.g. ) for ”acomp”, while it is meaningless for ”rcomp”.
In such cases a warning or an explicit error is given. The degree of analogy are limited by the
different level of structure in the sample spaces: a convex set (for rcomp), a convex cone (for rplus),
a vector space with a simple mapping (for aplus), and a vector space with a complex mapping (for
acomp).

Technically, the principle of analogous analysis is implemented based on the virtual function mech-
anism in R. For each of the four classes and each of the basic analysis functions such as var, cov,
variation, summary, plot, boxplot, barplot, princomp, biplot, dist, cdt, idt, ellipses,
lines, . . . , there exist an overloaded routine named functionname.classname (e.g. var.acomp)
which is called, when the user gives a command of the form functionname(AnObjectOfClass) (e.g.
var(X)). Correspondingly the help on this functions can be found by a command like ? var.acomp
rather than ?var which gives the help of the standard routine, i.e. for real data.

2.4 Default transforms and the principle of working in coordinates

To achieve maximum analogy between the different approaches we use the principle of working in
coordinates (Pawlowsky-Glahn 2003) for all four classes. Before the analysis, the data is mapped by
an isometric transformation, like ilr into RD or a subset of RD. These transforms are in general
defined as mappings from one of the spaces to the real space represented by the ”rmult” class.
Depending on the purpose, we can choose between different mappings. For ”acomp” the transforms
are the well known additive logratio- alr(x) = (lnxi− lnxD)i=1,...,D−1, centered logratio- clr(x) =(
lnxi − 1

D

∑D
i=1 lnxi

)
and the isometric logratio- transform ilr(x) = BDclr(x), for some special

BD ∈ RD−1×D. clr is used whenever the relation to the original parts must be preserved and
ilr, when it is important to have a surjective mapping giving a non-singular variance matrix. The
alr-transform is never used automatically, since it is not isometric.

For the ”rcomp” simplex we defined analogous linear transformations:

additive planar transform: apt(x) := (xi)i=1,...,D−1, which just deletes the last part,

centered planar transform: cpt(x) := (xi − 1
D ), mapping a composition into a vector of com-

ponents summing up to zero,

isometric planar transform: ipt(x) := BDcpt(x), .

The computations are performed on the image space and then either back-transformed or somehow
represented in a way meaningful in the original scale. To achieve that we have defined a centered
default transform cdt and an isometric default transform idt. The centered default transform is an
isometric injective mapping into RD preserving the meaning of the parts, however not necessarily



surjective. The isometric default transform is a isometric mapping to RK , with some K ≤ D and
thus not preserving dimension. However, its image has full relative dimension in RK .

Since both properties can be met in one single mapping for ”rplus” and ”aplus” it is only necessary
to define a single mapping for them. This is the isometric identity transform for ”rplus” (iit, simple
inclusion mapping to RD ) and the isometric log transform (ilt, the componentwise log). The cdt
and the idt are then defined as given in Table 1.

Table 1: Definition of the default transforms for the different classes.
cdt idt

acomp clr ilr
rcomp cpt ipt
aplus ilt
rplus iit

2.5 The principle of computation in the vector space

All four geometries form vector spaces or subsets of vector spaces. The package philosophy is to
allow computation in these vector spaces by the standard operators +, -, *, /, %*%.

2.5.1 Sum and difference

+ and - are addition and substraction of two vectors. When the result is meaningful in the original
scale it is reported in that scale. When it is not meaningful in the scale but as a vector it is
reported as a “rmult” object. When the result is not meaningful at all, an error is given. That
means that + applied to two “acomp” compositions results in the perturbation, and that + applied
to two “rcomp” compositions is meaningless and will result in an error. In contrast, the difference
of two “rcomp” compositions is an increment vector of class “rmult”, which can be added to an
“rcomp” vector to result in an “rcomp” vector.

2.5.2 Scalar multiplication

* and / are multiplication with a scalar or its inverse, thus one of the arguments must be a scalar,
while the other might be a vector. Again, when the result is meaningful in the original scale it is
reported in that scale, when it is not meaningful in the scale but as a vector it is reported as a
“rmult” object, and an error is given when the result is not meaningful at all. That means that
* applied to an “acomp” composition results in the power transform, and that * applied to two
“rcomp” compositions is meaningless and will issue an error.

2.5.3 Moments

With commands like mean(X) or var(X), cov(X,Y), variation(X), mvar(X), msd(X) it is possible
to compute moments of the data sets. This is meaningful for all scales, since all scales are at least
convex subsets of vector spaces. The results are computed in the coordinates. If the result can be
interpreted as a vector of the original set, it is reported as such. If the result is a tensor in the space
(e.g. for var) it is reported as a matrix in the coordinates implied by the cdt-transform. These
matrices can be converted to the matrices in idt basis, with clrvar2ilr, when both differ. If the
result is a scalar (e.g. for metric variance mvar) it is reported as a single number. The variation
matrix is reported as it is, as a matrix.



2.5.4 Scalar product and matrix multiplication

The operator for scalar product and matrix multiplication is %*%. If you multiply two amount
objects with that operator it gives the scalar product in the specified geometry. For instance, the
following two commands give the same result: norm(X)^2 and X %*% X.

If you multiply one of the amount objects with a matrix like in powerofpsdmatrix(var(X),-1/2)
%*% (X-mean(X)) the linear mapping encoded in the matrix is applied to the vectors. The matrix
can either be given in cdt or idt coordinates at your option. In this case we would get a fully
normalized data set with variance 1 in all directions. As we can check with:

> var(powerofpsdmatrix(var(X),-0.5) %*% (X-mean(X)))
var(powerofpsdmatrix(var(X),-0.5) %*% (X-mean(X)))

[,1] [,2] [,3] [,4] [,5]
[1,] 0.8 -0.2 -0.2 -0.2 -0.2
[2,] -0.2 0.8 -0.2 -0.2 -0.2
[3,] -0.2 -0.2 0.8 -0.2 -0.2
[4,] -0.2 -0.2 -0.2 0.8 -0.2
[5,] -0.2 -0.2 -0.2 -0.2 0.8

3 R principles applied to compositions

”compositions” tries to follow the paradigms of R as close as possible for the following reasons:

• those who know R can learn it very fast

• those who do not know R, can learn at the same time R and “compositions”

• R provides a large portion of flexibility for free (e.g. graphical parameters)

• the R principles are already proven to be useful and likely to prevail

The most important paradigms are discussed here.

3.1 Data is stored in objects

The compositional data is stored in a classed object, which is derived from a standard R matrix
with rows and columns. It is marked with a class attribute, which tells you the type of data each
time the data is printed.

> X
Cu Zn Pb Cd Co

[1,] 0.424629320 0.419450330 0.15016391 3.024494e-03 2.731947e-03
[2,] 0.106808985 0.121425471 0.77174518 1.015393e-05 1.020898e-05
[3,] 0.014877911 0.028036695 0.95693185 7.140262e-05 8.213902e-05
[4,] 0.036551756 0.058622001 0.89799359 2.079226e-03 4.753427e-03

...
[59,] 0.332754787 0.377426426 0.28233184 4.174645e-03 3.312304e-03
[60,] 0.091526365 0.606590444 0.28135556 1.335939e-02 7.168243e-03
attr(,"class")
[1] "acomp"



3.2 Data-driven analysis and generic functions

Based on the class of the data a different routine is called that performs the analysis within the
framework of the selected scale. This is sometimes done by generic functions and sometimes auto-
matically by calling further functions, which behave generically. A generic function is a wrapper
which recognizes the class of its arguments and calls a specific function adapted to that class. An
example of a generic function is for instance the following set of functions

cdt <- function(x) UseMethod("cdt",x)
cdt.default <- function(x) x
cdt.acomp <- clr
cdt.rcomp <- cpt
cdt.aplus <- ilt
cdt.rplus <- iit

Note the conciseness of these definitions. A simpler example might be the cov routine:

function (x, y = NULL, ...) {
cov(cdt(x), cdt(y), ...)

}

The covariance is just defined as the covariance of the centered default transforms. Note that these
two data sets do not need to be of the same type. This is a clear example, that the principle of
working in coordinates is not only a principle of thinking, but also a principle of programming.

Since compositional data analysis is multivariate by nature, the routines need to be adapted to the
dimension of the data set. It is e.g. not sufficient to draw a single ternary diagram, when plotting
five-part data:

> plot(X) # plots a newly defined ternary diagram matrix, Fig. 2
> boxplot(X) # plots boxplots of all pairwise ratios in log-scale, Fig. 3

Both these plots are newly defined in the package and consistent with the assumed geometry (see
Figures 2 and 3 for results).

3.3 Results are stored in objects

The last principle goes even futher. When we perform statistical computations in R the result is
typically an object. This means, that we can apply further functions to the result to plot it in a
specific way or to extract further information. For instance,

> pr = princomp(X) # computes PCA in acomp geometry
> plot(pr) # plots the screeplot of the PCA
> plot(pr,type="biplot") # plots the biplot of the PCA

Furthermore the results still carry the information on which type of analysis they are based on and
can thus be treated differently by subsequent analysis.

> class(pr) # class of the result
[1] "princomp.acomp" "princomp"
> plot(pr,type="relative") # plots compositional loadings
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Figure 2: Result of plot(X), with X an acomp or rcomp object (no difference in this case).
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Figure 3: Result of boxplot(X), with X an acomp object. Note that each cell contains the box-plot of the log-ratio
of the parts of the corresponding row and column, thus the matrix of box-plots is ”antisymmetric”.



As one can see the result has two classes. One is the standard class princomp and allows to treat
the object with all R-routines that are available for postprocessing principal componente analysis.
The other is a special class for PCA-results in acomp geometry and provides us with additional
functionality specially designed for this situation, e.g. the relative plot of loadings.

3.4 Optional Parameters extend functionality

Like this type="relative" parameter, which can be present or not, there are many optional
parameters to the commands, which modify or extend their functionality. In the first steps, it
is not necessary to know about these parameters to use the commands. However, when a more
complex analysis is needed one can find the possible optional parameters in the help and gain more
flexibility by using them.

3.5 Standard plot parameters are used

A special case of those optional parameters are the standard plotting parameters such as color
(col=), line width (lwd=), margins (mar=), x and y-axis limits (xlim=, ylim=), and the main title
(main=)of the plot. These parameters are available on most functions, were they make any sense
and are not documented with the function, but in the help to the standard R-routine par, which
stands for plotting-parameters.

This principle holds not only for plots, but also for other standard analysis parameters, like not
available remove (na.rm), in generic analysis routines such as variance or mean. This parameter
controls the way missing values are treated.

3.6 Adding to existing plots

The usage of this standard parameters develop their full flexibility together with another central
feature of R: adding more data, descriptions and additional features to existing plots. We extended
this functionality of R also to multi-panel plots, for which we are particularly fond of. For instance,
this can be used to add a confidence region to a ternary diagram matrix.

> plot(X) # plot ternary diagram
> ellipses(mean(X),var(X)/nrow(X)*qf(0.975,ncol(X)-1,nrow(X)),col="red")
> # and add the confidence ellipses of the mean in red.

The key here is to decide that qf(0.975,ncol(X)-1,nrow(X)) is the correct quantile, and not the
technical problem of drawing the ellipse. A routine doing this automatically should be added soon.

3.7 Parallel computation on data sets

The classical advantage of worksheet programs is that they allow the user to handle much data in
at a time. However, R is simpler in this aspect than most worksheets. The whole compositional
data set can be handled in simple formulae at once. For instance, a command like

> Y = (X-mean(X))/msd(X)

results in a centered and standardized version of X. Beware of the fact, that the meaning of the
− here is inverse perturbation since X is an acomp object. Similarly, / denotes the inverse power
transform. However the major R advantage is the list-wise computation: a data set of compositions
is treated as a list of vectors. When we operate a list of vectors with a single vector or a single
scalar by a operation like +, -, *, /, %*% (the inner product), the same operation is applied to



every entry of the list and a list is returned. When we operate a list with a list, then the first entry
of the first list is operated with the first entry on the second list, the second with the second and
so on. The same happens with functions. A function applied to a list of vectors results in a list of
results. For instance,

> norm( X - X )
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[39] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
>

gives a list of zeros, which is the evident result of subtracting 	 from row of X itself, resulting in
(1/5, 1/5, 1/5, 1/5, 1/5), and then taking the Aitchison norm of this composition. Other functions
like mean, standarddeviation and variance, take a list and result in a single composition or matrix.
These concepts makes the computation on lists very easy and results in very simple formulae for
complex computations.

4 Features of the package

The features of the package are best enumerated in catchwords

4.1 Computation

• Transforms: alr, clr, ilr, apt, cpt, ipt, ilt, iit, cdt, idt, ult

• Inverse Transforms: alr.inv, clr.inv, il.inv, apt.inv, cpt.inv, ipt.inv, ilt.inv,
iit.inv

• Vectorized computation: +, -, *, /, scalar product and linear mapping %*%

• Moments: mean, var, variation, mvar(metric variance), mstd(metric standardeviation),
mcor (metric correlation)

• Simulation:

– Simplex Uniform runif.acomp

– Dirichlet: rDirichlet

– Normal distribution in each scale rnorm

– Multivariate Lognormal rlnorm

We still look for a contributor for the Aitchison distribution.

• Other:

– Additive and multiplicative marginal compositions acompmargin, rcompmargin

– Subcompositions (acomp(X,parts=...),...)

– endpointCoordinates

– totals of rows

– summary of data sets



4.2 Analysis

Regarding complex statistical analysis, a principle of the package is to rely on existing routines in
R, when they can be easily combined with basic functions of the “compositions”-package. A few
routines specific to compositions have nevertheless been added. In our opinion, too many specific
interface reduces the flexibility of R.

• Principal Component Analysis
There is a big extension interface for PCA including

– compositional (clr-trasformed) biplots, screeplots, compositional loading plots
– expression of loadings as compositions
– correction of the rank of the matrix

• Cluster Analysis
Cluster Analysis can be done with the standard R-routine for Cluster Analysis (hclust).
It has to be nevertheless based on differences valid for the simplex, computed with the dist
routines available in the package. This follows the simple paradigm of generic functions. The
commands to be given are identical to those for a standard cluster analysis in R including all
possible options. The adaption to a compositional geometry is handled automatically once
the data set is given a compositional class.

> cl = hclust(dist(X,method="manhattan"),method="complete")
> plot(cl) # plot the Dendrogram

It is worth commenting that it is perfectly valid to use a city block (Manhattan) metric here,
which is computed in the cdt transform and is fully valid in the geometry of the simplex.
Cluster analysis are not always based on Euclidean distances, thus Aitchison distance is not
a must in compositional cluster analysis. The results of the hclust are not different from
the non-compositional case and can be treated similar. For instance, by using the standard
routine cutree(cl,k) we would get a factor variable with the groups obtained cutting the
dendrogram of cl at k groups.

• Discrimination Analysis
Similarly, there is no need of specific compositional routines for discrimination analysis. If
the discrimination information is provided by compositions, it is enough to wrap the data
set by the idt-Transform and to use a list specifying both the discrimination dataset and
the grouping factor. For instance, by using any of the functions lda, qda, fda, ..., and
predict from the MASS package, we could write

> lda(groups~Y,data=list(groups=groups,Y=idt(X)))
...

No futher provisions are necessary and not giving a new interface keeps all the flexibility
present in a growing system like R. Note: to load the MASS package, we must type once the
command library("MASS").

• Linear Models
The same paradigm is valid for linear models such as regression or analysis of variance,
which in this way can use compositional data-types as dependent or independent variables.
If the response is compositional, the residuals and variances are given in idt-coordinates and
can be back-transformed with the appropriate back-transform (iit.inv,ilt.inv,ipt.inv or
ilr.inv).

• Normal confidence regions
Confidence regions can be plotted based on the ellipses command. There is still a discus-
sion in the team on how should be the user interface for confidence region routines (which
parameters, default values, etc.), so they are likely to be added in near future.



4.3 Plotting

• Ternary diagram, scatter plot and log-log-plot and matrices of these plots

– Euclidean and Aitchison straight lines

– Euclidean and Aitchison segments

– Euclidean and Aitchison ellipses

– isoproportion lines

– isoportion lines

– centering and scaling in aplus and acomp geometries

– grouped plotting, colors, symbols, adding to plots, labels, formulae,...

• compositional and relational boxplots specific to compositions

• several types of barplots specific to compositions

• pie-charts were already present in R

• compositional Normal Quantile-Quantile plots.

• diagnostic plots for principal component analysis

5 Conclusions

The package is fit for a broad range of users from the beginner, over the expert to the developer. It
requires nevertheless the will to learn. The flexibility in the package is wide enough to potentially
incorporate any multivariate analysis methodology already implemented in R into a compositional
context. This is not done by adding ad-hoc interfaces, but by adding simple routines, which fit
well into the R context and bridge R-packages to its use with compositions and amounts. Thus, in
our opinion, the effort of learning R and ”compositions” is by far compensated by the unlimited
availability of routines in R specific for any analysis.
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Appendix: a practical example

Basic descriptive statistics and plots

To show the practical usefulness of these concepts, we have treated a set of four cations (Na, Mg,
Ca and NH4) monthly measured in two rivers during three years, in the Llobregat River Basin
(NE, Spain). A full account of the characteristics of the basin and the data set can be found in
Otero et al.2005). We will only mention here that both rivers flow from unpolluted areas of the
lower Pyrenees through agricultural areas to Manresa, a medium-sized city placed in the middle
of the basin, where they join. The landscape is dominated by limestones in the upper part, which
progressively pass to tertiary clastic sediment infills of the basin, with an important diapyric halide
outcrop. This data set is included in the package, and can be loaded by typing the instruction
> data(Hydrochem). The character > is the command line prompt of R, and tells us that the
program is waiting our instructions. It must not be typed when copying the instructions.

Once loaded the data set, we may select the compositional variables (stored in Z) and the river
variable (stored in riv), by the set of instructions

> river = factor(Hydrochem[,"River"])
#preliminarly takes the river variable
> take = as.logical((river=="Cardener")+(river=="UpperLLobregat"))
# select those cases measured in the two interesting rivers
> Z = Hydrochem[take,c("Na", "Mg", "Ca", "NH4")]
# select the interesting subcomposition
> riv = factor(Hydrochem[take,"River"])
# select the interesting rivers

Note that lines after the symbol # should not be typed, since they are comments ignored by R.

A summary of the main descriptive statistics of this data set, in any of the four geometries can
be obtained by simply declaring the data set as an object of the corresponding class, and calling
the function summary on it. Equivalently, scatter plots and box plots may be obtained in the same
way. The next sections show the results of these computations.



rplus geometry

> Z=rplus(X)
> summary(Z)

Na Mg Ca NH4
Min. 2.233 4.545 49.13 0.003075
1st Qu. 16.760 10.050 80.32 0.055090
Median 33.860 19.080 88.50 0.105900
Mean 108.400 26.020 95.76 0.732400
3rd Qu. 187.100 37.670 104.00 0.231900
Max. 958.100 104.500 216.80 11.000000
attr(,"class") [1]
"summary.rplus" "matrix"

> boxplot(X, fak=riv)
# generates figure 4, but not yet implemented in this direct form

> plot(X, pch=18+as.integer(riv), col=c("red","blue")[as.integer(riv)])
# generates figure 5, with symbols and colors
# controlled by "pch" and "col" optional parameters
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Figure 4: Matrix of box-plots plots in rplus geometry.

Results of the function summary are given in the same units than the data set, in this case mg/l.
Boxplots (Figure 4) suggest a possible difference between the two rivers, the Cardener and the
Upper Llobregat: the first is richer in all four cations but specially in Na and Mg. This is a
well-known characteristic, linked to bigger salt tailings (as well as the only natural outcrop in the
region) in the basin of the Cardener. All four, but specially NH4, show a long upper tail (many
samples considered as atypical), which is a classical reason to take a log geometry. Scatter plots
(Figure 5) show this long tail too (clearly for NH4, subtler in Mg), but also a striking proportional
relationship between Na, Mg and Ca, where each river has a different slope. This is a suggestion
that the difference between the two rivers will be found as a ratio or a difference.
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Figure 5: Matrix of scatter plots in rplus geometry.



aplus geometry

> Z=aplus(X)
> summary(Z)

Na Mg Ca NH4
Min. 2.233 4.545 49.13 0.003075
1st Qu. 16.760 10.040 80.32 0.055080
Median 33.860 19.080 88.50 0.105900
Mean 46.590 19.880 92.40 0.144100
3rd Qu. 187.000 37.670 103.90 0.231900
Max. 958.100 104.500 216.80 11.000000
attr(,"class")
[1] "summary.aplus" "matrix"

> boxplot(X, fak=riv)
# generates figure 6, but not yet implemented in this direct form

> plot(X, pch=18+as.integer(riv), col=c("red","blue")[as.integer(riv)])
# generates figure 7, with symbols and colors
# controlled by "pch" and "col" optional parameters
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Figure 6: Matrix of box-plots plots in aplus geometry. Note the vertical logarithmic scale.

A log geometry could be suggested either by the long upper tails observed in the last analysis, or
by theoretical arguments (well-known to the compositional data analysis community). The main
differences between the results obtained with aplus and rplus geometries lay in the means and in
the scatter plots. Comparing both summaries, the aplus mean (geometric mean) is clearly nearer
to the median that the rplus mean (arithmetic mean), which is a well-known result. The scatter
plots (Figure 7)suggest that, fixed a value of Mg or Ca, Cardener samples have higher Na values
than Llobregat ones. Again, a suggestion to take log-ratios is implicit here.
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Figure 7: Matrix of scatter plots in aplus geometry. Note the log-log scale.



rcomp geometry

> Z=rcomp(X)
> summary(Z)

Na Mg Ca NH4
Min. 0.03369 0.04485 0.1216 1.469e-05
1st Qu. 0.14260 0.08716 0.3504 3.029e-04
Median 0.25950 0.10620 0.6042 6.443e-04
Mean 0.32900 0.11390 0.5541 2.953e-03
3rd Qu. 0.51280 0.12970 0.7388 1.780e-03
Max. 0.83110 0.46400 0.8829 5.089e-02
attr(,"class")
[1] "summary.rcomp" "matrix"
> boxplot(X, fak=riv)
# generates figure 8

> plot(X, pch=18+as.integer(riv), col=c("red","blue")[as.integer(riv)])
# generates figure 9, with symbols and colors
# controlled by "pch" and "col" optional parameters
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Figure 8: Matrix of box-plots plots in rcomp geometry: Na, Mg, Ca and NH4 from left to right. This matrix is
the array of boxplots of subcompositions formed by row and column parts, and afterwards closed.

When X is declared an rcomp object, it is automatically closed (in this case, to sum up to one, but
this can be changed by changing the value of the optional parameter total). From the summary,
we highlight that only the mean is a composition, and the rest of the statistics are obtained without



attending to the multivariate nature of the set. Regarding Figures 8 and 9, we will only comment
cell (1,3). The box-plot shows again that Cardener river will have higher Na values than Llobregat
river, fixed a Ca amount. The scatter plot is almost the classic Piper plot (Otero et al.2005), and
shows a one-dimensional trend from Na (Cardener samples) to Ca (Llobregat samples).
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Figure 9: Matrix of scatter plots in rcomp geometry: ternary diagrams defined by row and column parts. Compare
with Figure 11. Note that in this case, the third component (marked with the symbol +), is obtained as the
amalgamation of the rest of the parts.



acomp geometry

> Z=acomp(X)
> summary(Z)
$mean

Na Mg Ca NH4
0.2929949217 0.1250002452 0.5810983757 0.0009064575
attr(,"class")
[1] "acomp"

$mean.ratio
Na Mg Ca NH4

Na 1.000000000 2.343954776 0.504208812 323.2307
Mg 0.426629392 1.000000000 0.215110299 137.8997
Ca 1.983305282 4.648777887 1.000000000 641.0652
NH4 0.003093765 0.007251645 0.001559904 1.0000

$variation
Na Mg Ca NH4

Na 0.0000000 0.7525099 1.4774244 2.876780
Mg 0.7525099 0.0000000 0.3135008 2.523983
Ca 1.4774244 0.3135008 0.0000000 2.581879
NH4 2.8767795 2.5239831 2.5818793 0.000000

$expsd
Na Mg Ca NH4

Na 1.000000 2.380887 3.371958 5.452680
Mg 2.380887 1.000000 1.750517 4.897402
Ca 3.371958 1.750517 1.000000 4.986941
NH4 5.452680 4.897402 4.986941 1.000000

$min
Na Mg Ca NH4

Na 1.000000e+00 2.591311e-01 3.815789e-02 5.978507
Mg 5.397140e-02 1.000000e+00 8.061272e-02 2.344400
Ca 1.463313e-01 8.957044e-01 1.000000e+00 9.552852
NH4 3.942729e-05 9.148764e-05 2.717681e-05 1.000000

$q1
Na Mg Ca NH4

Na 1.0000000000 1.293275622 0.192620404 104.2756
Mg 0.2027718675 1.000000000 0.121260922 50.8014
Ca 0.6823203423 2.748430594 1.000000000 363.4892
NH4 0.0009135257 0.002675928 0.000627129 1.0000

$med
Na Mg Ca NH4

Na 1.000000000 2.608089261 0.400899834 290.1061
Mg 0.383422460 1.000000000 0.227815385 161.3304
Ca 2.494388659 4.389519179 1.000000000 899.9390
NH4 0.003447015 0.006198459 0.001111186 1.0000

$q3
Na Mg Ca NH4



Na 1.000000000 4.93165171 1.465592213 1094.6599
Mg 0.774761622 1.00000000 0.363844094 373.7026
Ca 5.191561714 8.24668930 1.000000000 1594.5840
NH4 0.009591537 0.01968535 0.002751139 1.0000

$max
Na Mg Ca NH4

Na 1.0000000 18.5283311 6.8338088 25363.14
Mg 3.8590501 1.0000000 1.1164397 10930.44
Ca 26.2068966 12.4049904 1.0000000 36796.08
NH4 0.1672658 0.4265485 0.1046808 1.00

attr(,"class")
[1] "summary.acomp"
> boxplot(X, fak=riv)
# generates figure 10

> plot(X, pch=18+as.integer(riv), col=c("red","blue")[as.integer(riv)], center=TRUE)
# generates figure 11, with symbols and colors
# controlled by "pch" and "col" optional parameters
# moreover, the optional parameter "center" is
# set to true: compare results with figure 9
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Figure 10: Matrix of box-plots plots in acomp geometry. This matrix is the array of boxplots of log-ratios of row
and column parts.



Declaring X an acomp object also automatically closes it. From the summary, we highlight that
everything is computed on ratios, on all the possible log-ratios among the four parts, Each statistic
is then arranged in a matrix of 4×4 elements, and some of them (those defining a composition) are
afterwards exponentiated. Figure 9, cell (1,3), deserved a comment: no trend is now visible, due
to the centering operation, but it is much clearer that Na-richer samples come from the Cardener
river, whereas Ca is higher in Llobregat samples.
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Figure 11: Matrix of scatter plots in acomp geometry: centered ternary diagrams defined by row and column parts.
Compare with Figure 9. Note that in this case, the third component (marked with the symbol *), is obtained as
the geometric mean of the rest of the parts.



Discrimination analysis

This section presents how do the results of a discrimination analysis change when the class of the
data set is changed. This is not a complete discrimination analysis, but only an example of how
”compositions” work.

rplus geometry

> X=rplus(X)
> disc=lda(formula=riv~Y,data=list(Y=idt(X),riv=riv))
> disc
Call:
lda(riv ~ Y, data = list(Y = idt(X), riv = riv))

Prior probabilities of groups:
Cardener UpperLLobregat

0.4589372 0.5410628

Group means:
YNa YMg YCa YNH4

Cardener 166.48540 31.4264 96.49874 1.0462506
UpperLLobregat 59.05736 21.4314 95.14179 0.4661137

Coefficients of linear discriminants:
LD1

YNa -0.007142635
YMg -0.028861797
YCa 0.034567086
YNH4 -0.099519853

Note that with this geometry, the group means and the coefficients of the discriminant function
can be interpreted directly. In particular, the function is

drplus = (−7.1 ·Na− 28.8 ·Mg + 34.6 · Ca− 99.5 ·NH4) · 10−3.

aplus geometry

> X=aplus(X)
> disc=lda(formula=riv~Y,data=list(Y=idt(X),riv=riv))
> disc
Call: lda(riv ~ Y, data = list(Y = idt(X), riv = riv))

Prior probabilities of groups:
Cardener UpperLLobregat

0.4589372 0.5410628

Group means:
YNa YMg YCa YNH4

Cardener 4.487714 3.318761 4.555098 -1.677987
UpperLLobregat 3.293184 2.710325 4.501621 -2.156640

Coefficients of linear discriminants:
LD1



YNa -0.64924278
YMg -1.52246623
YCa 4.84464820
YNH4 0.06084054
> discmean=ilt.inv(disc$means)
> colnames(discmean)=colnames(X)
> discmean

Na Mg Ca NH4
Cardener 88.91797 27.62611 95.11605 0.1867496
UpperLLobregat 26.92847 15.03416 90.16313 0.1157133
attr(,"class")
[1] "aplus"

With an aplus geometry, the group means are returned in a log scale, and they had to be back-
transformed with the function ilt.inv (inverse of the isometric logarithmic transform, i.e. the
exponential of each component). This discmean should be compared with the Group means of the
last subsection. The coefficients of the discriminant function must be taken as the coefficients of a
log-linear function

daplus = −0.65 · lnNa− 1.5 · lnMg + 4.8 · lnCa− 0.06 · lnNH4 = 0.06 · ln Ca80

Na11 ·Mg25 ·NH4
.

rcomp geometry

> X=rcomp(X)
> disc=lda(formula=riv~Y,data=list(Y=idt(X),riv=riv))
> disc
Call: lda(riv ~ Y, data = list(Y = idt(X), riv = riv))

Prior probabilities of groups:
Cardener UpperLLobregat

0.4589372 0.5410628

Group means:
Y1 Y2 Y3

Cardener 0.22443407 -0.08503305 0.3062623
upperLLobregat -0.02185504 -0.17628175 0.4605713

Coefficients of linear discriminants:
LD1

Y1 -3.388166
Y2 -6.450755
Y3 -1.597351
> discmean=ipt.inv(disc$means)
> colnames(discmean)=colnames(X)
> discmean

Na Mg Ca NH4
Cardener 0.4443656 0.1157823 0.4364862 0.003365934
UpperLLobregat 0.2310730 0.1123756 0.6539488 0.002602623
attr(,"class")
[1] "rcomp"
> discload= ilrBase(D=4) %*% disc$scaling
> rownames(discload)=colnames(X)



> discload
LD1

Na -2.934238
Mg -4.288940
Ca 2.482092
NH4 4.741087

With an rcomp geometry, the group means are returned in the rotated coordinate system of the ipt
(isometric planar transform). Thus they have to be back-transformed with the function ilt.inv.
This discmean cannot be directly compared with the preceding means, because this is closed. The
same happens with the coefficients of the discriminant function: they are given in ipt coordinates.
This coordinate system has as advantage that the covariance matrix (an information used by the
discrimination analysis) is not singular, but as hindrance that it has no one-to-one relation with the
original parts. In contrast, cpt values keep this one-to-one relation. The transformation between
the two systems is obtained with the line ilrBase(D=4) %*% disc$scaling. Once transformed
the ipt discriminant vector to cpt, we can build the discrimination function as

drcomp = −2.9 ·Na− 4.3 ·Mg + 2.5 · Ca + 4.7 ·NH4.

acomp geometry

> X=acomp(X)
> disc=lda(formula=riv~Y,data=list(Y=idt(X),riv=riv))
> disc
Call: lda(riv ~ Y, data = list(Y = idt(X), riv = riv))

Prior probabilities of groups:
Cardener UpperLLobregat

0.4589372 0.5410628

Group means:
Y1 Y2 Y3

Cardener 2.097880 1.535182 4.407456
UpperLLobregat 1.392640 1.255636 4.708101

Coefficients of linear discriminants:
LD1

Y1 -0.4699841
Y2 -1.7903313
Y3 1.2217548
> discmean=ilr.inv(disc$means)
> colnames(discmean)=colnames(X)
> discmean

Na Mg Ca NH4
Cardener 0.4197275 0.1304060 0.4489849 0.0008815311
UpperLLobregat 0.2036311 0.1136871 0.6818068 0.0008750152
attr(,"class")
[1] "acomp"
> discload= ilrBase(D=4) %*% disc$scaling
> rownames(discload)=colnames(X)
> discload

LD1
Na -0.407018148
Mg -1.326126632



Ca 1.730483475
NH4 0.002661305

With an acomp geometry, the group means are returned as isometric log-ratio coordinates, and
the mean compositions can be recovered by the back-transformation (ilr.inv). Compare the
discmean obtained with both geometries acomp and rcomp. Regarding the discriminant function,
the same transformation from ilr to clr coordinate system should be done, so that we obtain a
coefficient linked with each part. These coefficients are again involved in a log-linear discriminant
function

dacomp = −0.4 · lnNa− 1.3 · lnMg + 1.7 · lnCa + 2.6 · 10−3 · lnNH4 ' 0.4 · ln Ca4

Na ·Mg3
.

In the clr coefficients, the NH4 part was seen to be irrelevant, which allowed to get a simplified
log-ratio expression. Note that these clr coefficients can be back-transformed to a composition,
representing a perturbation between the two groups.


