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Abstrac t 
 

Compositional data naturally arises from the scientific analysis of the chemical 
composition of archaeological material such as ceramic and glass artefacts. Data of this 
type can be explored using a variety of techniques, from standard multivariate methods 
such as principal components analysis and cluster analysis, to methods based upon the 
use of log-ratios. The general aim is to identify groups of chemically similar artefacts 
that could potentially be used to answer questions of provenance.  
 
This paper will demonstrate work in progress on the development of a documented 
library of methods, implemented using the statistical package R, for the analysis of 
compositional data. R is an open source package that makes available very powerful 
statistical facilities at no cost. We aim to show how, with the aid of statistical software 
such as R, traditional exploratory multivariate analysis can easily be used alongside, or 
in combination with, specialist techniques of compositional data analysis. 
 
The library has been developed from a core of basic R functionality, together with 
purpose-written routines arising from our own research (for example that reported at 
CoDaWork'03). In addition, we have included other appropriate publicly available 
techniques and libraries that have been implemented in R by other authors. Available 
functions range from standard multivariate techniques through to various approaches to 
log-ratio analysis  and zero replacement. We also discuss and demonstrate a small 
selection of relatively new techniques that have hitherto been little-used in 
archaeometric applications involving compositional data. The application of the library 
to the analysis of data arising in archaeometry will be demonstrated; results from 
different analyses  will be compared; and the utility of the various methods discussed. 
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1   Introduction 
 
The development of a library of computational tools for compositional data analysis (CDA) has arisen 
naturally as a consequence of work reported at current and previous CoDaWork meetings and elsewhere. 
Recent examples can be found in Baxter and others  (2005a, b) and Beardah and others  (2003). Our earlier 
work in this field, for example that reported in Beardah and Baxter (2001), made use of the S-Plus 
package as the basis for software development. S-Plus features many powerful statistical tools of a kind 
commonly used in archaeometric study. Its most attractive feature, however, is that it is associated with a 
high-level programming language, called S (Venables and Ripley, 2000) which allows many non-
standard methods to be programmed with relative ease. The major drawback of using S-Plus as a software 
development platform is its relatively high cost and associated issues of availability. 
 
R (http://www.r-project.org/) is an open source package that makes available a powerful array of 
statistical and graphical facilities at no cost. It is a programming language and environment similar to the 
S language and environment commercially available as S-Plus. Much code written for S runs under R and 
the package is available for a wide variety of platforms . Included in an integrated suite of software for 
data manipulation and graphical display are an effective data handling and storage facility; operators for 
calculations on matrices and a large collection of tools for data analysis. Since R, like S, is designed 
around a true computer language, its core functionality can be easily extended via so-called libraries. 
Several are supplied with the R distribution and many more are available through the Internet. For the 
reasons outlined above, we now favour the use of R as our software development package of choice. 
 
In this paper we aim to show how, with the aid of statistical software such as R, traditional exploratory 
multivariate analysis can easily be used alongside, or in combination with, specialist techniques of 



compositional data analysis. Our library has been developed from a core of basic R functionality, together 
with purpose-written routines arising from our own research (for example that reported at CoDaWork 
'03). In addition, we have included other appropriate publicly available techniques and libraries that have 
been implemented in R by other authors. In particular, the examples in this paper and in Baxter 
(submitted) make use of functions made available in the following libraries: class; cluster; e1071; 
fastICA; MASS; mda; nnet; rpart. (Several of these are associated with Venables and Ripley, 
2002.) Available functions range from standard multivariate techniques through to various approaches to 
log-ratio analysis and zero replacement. In addition, we introduce and illustrate some newer methods that 
might be applied to compositional data. Finally, this paper represents some early work on an assessment 
of the usefulness of some of these methods for archaeometric applications involving compositional data. 
 
In the next section we give some background detail on the data employed in the first two of our 
illustrative examples. These and other examples, discussed and illustrated in section 3, are chosen to 
demonstrate the application of selected components  of our CDA library. This is followed in section 4 by a 
brief discussion of our results. 
 
2   Data 
 
Compositional data naturally arises from the scientific analysis of the chemical composition of 
archaeological material such as ceramic and glass artefacts. Data of this type can be expressed as an n by 
p matrix representing n cases and p variables and can be explored using a variety of techniques, from 
standard multivariate methods such as principal components analysis (PCA) and cluster analysis  (Baxter, 
1994), to methods based upon the use of log-ratios (Aitchison, 1986). The general aim is to identify 
groups of chemically similar artefacts that could potentially be used to answer questions of provenance. 
 
Most of our illustrative examples make use of a data set consisting of n = 241 specimens of glass, found 
at sites in Israel and collated by Professor Ian Freestone of Cardiff University. This data set, and sub-sets 
of it, is the focus of more detailed analysis in Baxter (submitted) and in the CoDaWork’05 companion 
paper, Baxter and others  (2005b). The latter paper illustrates some familiar methodology, partially 
revisited in section 3.1 below, applied to both standardised and log-ratio transformed data, while the 
former paper showcases newer methods. Some of these are discussed in section 3.2 below and will be 
subject to further investigation prior to full implementation in our CDA library. 
 
The n = 241 specimens of glass were measured with respect to the chemical composition of SiO2, CaO, 
Al2O3, FeO, MgO, Na2O and K2O. The first five of these p = 7 variables are assumed to enter with the 
sand used in glass-making. The specimens have been classified into five groups, assumed to be of 
different provenance and compositionally distinct, although we note the possibility that some cases may 
have been misclassified. As reported in the CoDaWork’05 companion paper, Baxter and others  (2005b), 
two of these five compositional sub-groups, termed Levantine I and Levantine II, (consisting of n = 155 
specimens in total) are, with some possible exceptions, known to be separated by geography and 
chronology. 
 
3   Methodology supported by the CDA library 
 
3.1   Traditional exploratory techniques 
 
Methods such as PCA and cluster analysis (CA) are easy to carry out using standard, built-in R functions 
called from the command line. However, in an attempt to provide a unified “umbrella” function as the 
core of our CDA library, we have taken the approach of subsuming as many “standard” methods as 
possible within a single command.  
 
3.1.1   Example 1 
 
Figure 2 (essentially the same as Figure 2 of the CoDaWork’05 companion paper, Baxter and others, 
2005b), can be generated using the R commands shown in Figure 1. This example makes use of the 
Levantine sand data (n = 155, p = 5). In Figure 1, line 1 identifies the row numbers of seven specimens 
considered to be outliers as a result of prior analysis. Line 2 creates the data matrix formed by omitting 
the outlying rows and considering only columns 1 to 5 (the chemical composition of SiO2, CaO, Al2O3, 
FeO and MgO; the variables assumed to enter with the sand used in glass-making). Column 9 of the 
original data matrix, here stored as groups in line 3, contains the group classification (1-5) of each case; 



Levantine I is labelled “4” and Levantine II “5”.  These values are used to label the biplot. (Note that 
Figure 2 of the CoDaWork’05 companion paper, Baxter and others, 2005b, is labelled by the groups 
suggested in Figure 1 of that paper and not, as here, by the given classification.) 
 
1. outliers <- c(27, 37, 44, 70, 78, 87, 150) 
2. data <- Levantine[-outliers, 1:5] 
3. groups <- Levantine[-outliers, 9] 
4. comp.check(data) 
5. data <- sub2fully(data) 
6. cda(data, analysis="Biplot", labels=as.character(groups)) 
 
 

Figure 1: R commands used to generate Figure 2. Subject to a reflection in the horizontal axis and some differences in labelling 
(explained in the text), this is the same as Figure 2 of the CoDaWork’05 companion paper, Baxter and others (2005b).  

Notes: highlighted lines feature CDA library commands; line numbers are given for reference only. 
 

 
 
 
Figure 2: A biplot of the Levantine sand compositional data, using log-ratio analysis after converting to fully compositional data by 

defining a residual (“Res” in the plot). Levantine I is labelled “4” and Levantine II  “5”.  
Seven compositional outliers have been omitted. 

 
Line 4 of Figure 1 is a CDA library command used to check whether or not the data matrix is 
compositional in nature. Here the default row sum of 100 is assumed, but this value can be specified as an 
additional input argument if desired. In this case the output (not shown) reveals that the data matrix does 
not contain compositional data, since we have only used the sub-composition consisting of the first five 
variables; hence rows sum to less than 100 in each case.  
 
In line 5 we process the data matrix to ensure that it is  fully compositional; specifying a residual variable 
by differencing from 100 (Baxter and others, 2005b; Barceló-Vidal, 2003). Finally, line 6 performs the 
analysis. The simple form of the command in line 6 obscures  the fact that extensive options are available. 
Many other methods are supported, as are various data transformations and zero replacement strategies 
(section 3.1.3). In this case zero replacement is not necessary and Figure 2 shows the resulting biplot 
based upon the default centred log-ratio data transformation (Aitchison, 1986). 
 



Supported data transformations include “none”, “scale” (to standardise), “clr” (centred log-ratios; 
the default) and “div”. The latter option implements the approach advocated by Buxeda i Garrigós 
(1999) whereby the log-ratio transformation is performed with respect to a selected variable used as the 
divisor. Statistics based on the variation matrix described in Buxeda i Garrigós (1999) are used to return a 
set of values, one per variable. The maximum of these values  determines the variable to use as divisor in 
the subsequent log-ratio transformation. 
 
3.1.2   Example 2 
 
Our second example makes use of the full data set of n = 241 cases. Figure 1 of Baxter (submitted) is 
reproduced here as Figure 4 and can be generated using the R commands shown in Figure 3 below. Here 
we have applied a linear discriminant analysis (LDA) to the raw data. This data is approximately 
compositional in nature, by which we mean that rows sum to values less than, but generally within 1 or 2 
of 100. The trans argument to the cda function has been used to indicate that no data transformation is 
to be applied and that the data is not compositional. Alternatively, very similar results can be obtained 
after first making the data fully compositional by defining a residual variable (Figure 1: line 5) or by 
making the data completely compositional by normalising using the CDA library command data <- 
sub2comp(data). 
 
1. data <- IFmaster[, 1:7] 
2. groups <- IFmaster[, 9] 
3. cda(data,  grouping=groups, analysis=”LDA”,  

  trans=list(method=”none”, comp=FALSE), 
  labels=as.character(groups)) 

 
 

Figure 3: R commands used to generate Figure 4. This is the same as Figure 1 of Baxter (submitted).  
Notes: highlighted lines feature CDA library commands; line numbers are given for reference only. 
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Figure 4: A linear discriminant analysis of the full data set of n =  241 cases labelled by assumed type.  
Levantine I  is labelled “4” and Levantine II  “5”. 

 



Since the focus of this paper is on methodology and implementation rather than on substantive 
archaeological interpretation, we note in passing that Figure 4 shows reasonably good separation of the 
five types; a few fairly clear outliers and some potential misclassifications. 
 
3.1.3 Example 3 
 
At CoDaWork’03, Beardah and others (2003) presented analyses  based upon the chemical composition of 
n = 63 colourless Romano-British glass facet-cut beakers, determined by inductively coupled plasma 
spectroscopy and expressed as percentages. Analyses based upon two other glass vessel types, cast bowls 
and cylindrical cups were also given. Since the final column of these data (termed the “residual”) was 
obtained by differencing the sum of the other variables from 100%, these data are fully compositional. 
However, we note that in order to apply methods based upon logarithms, zero values (which occur for 
PbO) need to be dealt with in some way. 
 
Various methods of “zero avoidance” or zero replacement are discussed and illustrated in Beardah and 
others (2003). Two of these are illustrated here. Firstly, zero values can be avoided altogether by merging 
PbO with the “residual”. In Figure 5, line 1 defines the data matrix under consideration and line 2 is used 
to check that these data are compositional. This being the case, we then use the residual.add 
function to merge PbO (colu mn 11) with the residual (assumed to be the final column ). Line 4 then 
carries out the ratio-map methodology of Greenacre (2002). 
 
1. data <- bacallsi.Type2[,-1] 
2. comp.check(data) 
3. data <- residual.add(data, 11) 
4. cda(data, analysis="RatioMap") 
 
 

Figure 5: R commands used to generate Figure 6, a ratio-map using the zero avoidance strategy described in the text.  
Notes: highlighted lines feature CDA library commands; line numbers are given for reference only. 

 

 
 
 

Figure 6: A ratio-map for data representing the chemical composition of n = 63 colourless Romano-British glass facet -cut beakers.  
Zero values are avoided by merging PbO with the “residual” variable. 



Several zero replacement strategies (Aitchison, 1986; Martín-Fernández and others, 2003) are supported 
directly via an optional argument of the cda command. For example, specifying  
 

zero=list(method=”aitch”, delta=0.0055, tol=1e-8) 
 
enables us to carry out the additive replacement strategy proposed by Aitchison (1986). Here zeroes are 
replaced by some small value d, here taken to be 0.0055, and we subtract d/(p-1) from all other elements 
of the composition, where p is the number of columns in the data matrix. Values less than tol are 
considered to be zero. 
 
In addition to those illustrated earlier, methods supported by our CDA library also include the “weighted 
correspondence analysis” (WCA) technique of Baxter, Cool and Heyworth (1990). This method is also 
illustrated in Beardah and others (2003) where it is applied to the data under discussion here. This method 
provides an approximate log-ratio analysis which is unaffected by the presence of zeroes. Figure 7 shows 
WCA output that, subject to a reflection in the horizontal axis, is the same as that shown in Figure 2B of 
Beardah and others (2003). This output can be generated by defining a suitable data matrix (Figure 5: 
line 1) and applying the command  cda(data, analysis="WCA") .  
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Figure 7: A weighted correspondence analysis for data representing the chemical composition of n = 63 colourless Romano-British 

glass facet-cut beakers. Labels correspond to case numbers. 
 
3.1.4 Example 4 
 
Our final example in this section illustrates the relative variation biplot of Aitchison and Greenacre 
(2002). Figure 9, subject to a reflection in the vertical axis, reproduces Figure 2 of that paper and can be 
obtained using the commands shown in Figure 8 below. The data represents the p = 6-part colour 
compositions of n = 22 paintings created for teaching purposes. Here a so-called form biplot (the default) 
has been produced. This preserves distances between rows (Aitchison and Greenacre, 2002). By 
specifying additional input options we can just as easily produce a covariance biplot that preserves the 
covariance structure between log-ratios (as in Figure 3 of Aitchison and Greenacre, 2002). 
 
 



1. data <- colours 
2. comp.check(data) 
3. data <- sub2fully(data) 
4. cda(data, analysis="CompBiplot") 
 
 

Figure 8: R commands used to generate Figure 9, a relative variation (form) biplot for data representing the six-part colour 
compositions of n = 22 paintings created for teaching purposes.  

Notes: highlighted lines feature CDA library commands; line numbers are given for reference only. 
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Figure 9: A form biplot for data representing the six -part colour compositions of n = 22 paintings created for teaching purposes.  
 

3.2   Self-Organising Maps  
 
The Self-Organising Map (SOM) is an example of the class of so-called unsupervised learning methods. 
Other examples of unsupervised learning methods include independent components analysis and well-
known techniques such as PCA and various forms of cluster analysis . Linear discriminant analysis is an 
example of a supervised learning method, as are quadratic, flexible and mixture discriminant analysis . 
Other examples are techniques such as logistic regression analysis, support vector machines, learning 
vector quantisation, classification trees and feed-forward neural networks. The application of all of these 
methods (and others) in an archaeometric context, not solely restricted to compositional data analysis, is 
discussed in Baxter (submitted). 
 
The utility of the methods discussed above to the kind of compositional data encountered in 
archaeometric applications will the focus of on-going work, as will the incorporation of such methods 
into our CDA library. Here we restrict ourselves to just one example of the use of SOMs. 
 
Figure 10 shows the output obtained when applying the batchSOM function (from the class library in 
R) to the Levantine sand compositional data, omitting outliers. Figure 9 of Baxter (submitted) is similar. 
As Figure 10 shows, the outcome of the SOM technique is a graphical display or “map”; cases that are 
“close” in the p-dimensional space from which they originate hopefully appear close in the map. Here the 
two groups have separated out reasonably well, although we note that (a), this would not be obvious 



without the labelling and (b), as explained in section 2, some cases are potentially misclassified. Since 
adjacent cells on the map may not, in reality, be particularly close to each other, there may be some 
advantage in using additional visualisation methods (to be explored) to help identify separate clusters.  
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Figure 10: A SOM of the Levantine sand compositional data. Levantine I is labelled “4” and Levantine II  “5”.  
Seven compositional outliers have been omitted. 

 
Another possible difficulty with the method is that the final output depends upon the random initialisation 
used and therefore a different map results each time the method is used, even for identical input data and 
parameters. Furthermore, as Figure 9 of Baxter (submitted) shows, members of the same group can 
appear in opposite corners of the map. 
 
4   Discussion 
 
As we have previously stated, in Beardah and Baxter (2001), “when analysing multivariate statistical data 
of the kind that often arises in archaeometry, it is almost always useful to apply a battery of techniques, 
rather than one method in isolation. Indeed the long-term aim of our research is not to recommend a 
particular method of statistical analysis, but to make a variety of methods available in widely accessible 
and user-friendly form. We hope that this will enable informed users to develop their own views about the 
advantages and drawbacks of different approaches.”  
 
Since it is freely-available, easily extensible and well supported, we have chosen to use the R package as 
the platform for our software development. In this paper we have illustrated some of the work in progress 
towards the development of an R library for CDA. However, our consideration of newer techniques such 
as SOMs does not necessarily mean that we believe that such methods will prove to be of much use for 
archaeometric data analysis . Some of the newer methods, including many discussed in more detail in 
Baxter (submitted), were originally motivated by applications very different from those typically 
encountered in archaeometry. It is possible that “typical” archaeometric data is not sufficiently complex 
or large, as measured by the number of cases or variables, to warrant the application of some of these 
methods. Additionally, some techniques require the careful use of various “tuning” parameters. In cases 
where default values are available the methods can be applied in a “black-box” fashion; however this can 
make them less accessible to the non-specialist user. For the reasons outlined above, our on-going aim is 



to provide a selection of methods, from which the suitably informed user can select those that are of 
particular use to them. 
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