
07 September 2005

A tale of two logits, compositional data analysis
and zero observations�

Tim R. L. Fry and Derek Chong

School of Economics, Finance & Marketing
Royal Melbourne Institute of Technology
GPO Box 2476V, Melbourne, Victoria 3001
Australia

Abstract: The application of compositional data analysis through log ratio trans-
formations corresponds to a multinomial logit model for the shares themselves.
This model is characterized by the property of Independence of Irrelevant Alter-
natives (IIA). IIA states that the odds ratio �in this case the ratio of shares �
is invariant to the addition or deletion of outcomes to the problem. It is exactly
this invariance of the ratio that underlies the commonly used zero replacement
procedure in compositional data analysis. In this paper we investigate using the
nested logit model that does not embody IIA and an associated zero replacement
procedure and compare its performance with that of the more usual approach of
using the multinomial logit model. Our comparisons exploit a data set that com-
bines voting data by electoral division with corresponding census data for each
division for the 2001 Federal election in Australia.

J.E.L. Classi�cation: C310, D720, M310
Keywords: compositional data, zero observations, vote shares, brand shares
Corresponding Author: tim.fry@rmit.edu.au

* The research reported in this paper was supported by Australian Research Council
grant DP0449846: �Economic reform and Australian electoral decision making� and
by the research program in �Market mix modeling�funded by Starcom Worldwide Pty
Ltd. The views expressed, however, are those of the authors.



1. Introduction.

The application of compositional data analysis through log ratio transformations

corresponds to a multinomial logit model for the shares themselves. This model

is characterized by the property of Independence of Irrelevant Alternatives (IIA).

IIA states that the odds ratio �in this case the ratio of shares �is invariant to

the addition or deletion of outcomes to the problem. It is exactly this invariance

of the ratio that underlies the commonly used zero replacement procedure in

compositional data analysis. In this paper we investigate using the nested logit

model that does not embody IIA and an associated zero replacement procedure

and compare its performance with that of the more usual approach of using the

multinomial logit model.

The plan of the rest of this paper is as follows. The next section describes the

compositional data approach used by statisticians to model share data. Section

two extends this approach to regression modeling of share data and discusses

two key speci�cations that can used �the multinomial logit (MNL) and nested

logit (NL). The issues that arise in modeling share data with zero observations

are discussed in section three and zero replacement procedures for MNL and NL

speci�cations are presented. Section four applies the MNL and NL speci�cations

along with the associated zero replacement techniques to a data set that combines

voting data by electoral division with corresponding census data for each division

for the 2001 Federal election in Australia. Finally, section �ve contains some

concluding remarks.
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2. Compositional Data Analysis.

The restriction of shares to the unit simplex has been recognized by researchers in

many �elds (see inter alia Aitchison (1986), Barceló et al (1996), Fry et al (1996),

Howel (1994) and McLaren et al (1995)). In particular, this restriction causes

problems for traditional multivariate statistical methods which are based upon

the Normal distribution. It is, however, possible to develop a framework for the

statistical analysis of data on shares. Such techniques are termed compositional

data analysis, hereafter CODA, (Aitchison (1986)). The advantage of CODA

techniques is that they provide a unifying set of distributional assumptions which

allow for the use of traditional multivariate statistical methods.

In the statistical literature a composition consists of M parts. The parts are

labels which identify the components into which a total has been sub-divided (e.g.

the parts are brands and the total is total market volume sales). The components

are the numerical proportions in which the parts appear (i.e. the shares). A com-

position is de�ned by taking the elements of a basis (e.g. individual brand volume

sales) and dividing them by the size of the basis (e.g. total market volume sales).

This operation takes elements de�ned as non-negative and constrains them to lie

between zero and one and to sum to one (i.e. to lie on the unit simplex, SM�1). It

should be noted that this unit sum constraint reduces the dimension of the space

on which the vector of components (shares) is de�ned toM�1. The major obsta-

cle to the statistical analysis of compositional data is that the restriction to the

unit simplex necessarily leads to the lack of an interpretable covariance structure
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and, as a result, the multivariate Normal distribution is inappropriate.

In order to apply statistical analysis techniques based upon the Normal dis-

tribution a one-to-one transformation is required to map the data on shares to

data suitable for analysis using multivariate Normal based techniques. That is we

need to map from the unit simplex, SM�1, to RM�1 and produce an interpretable

covariance structure. One such transformation is the additive log-ratio (ALR)

transform:

yi = ln

�
si
sM

�
; i = 1; : : : ; M � 1

with an associated Jacobian given by jac(y j s) = (s1 : : : sM)�1 :

The inverse transformation, RM�1 to SM�1, is the additive logistic transform

and reconstructs the components as:

si =
exp (yi)

1 + exp (y1) + : : :+ exp (yM�1)
; i = 1; : : : ;M � 1;

sM =
1

1 + exp (y1) + : : :+ exp (yM�1)

= 1� s1 � : : :� sM�1:

These transformations form the heart of CODA techniques. To model compo-

sitional data we apply the ALR transform to produce log-ratio data and then

apply traditional multivariate statistical techniques (e.g. multivariate regression)
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to the transformed data. To return to the composition we simply apply the inverse

transform, the additive logistic.

A major bene�t of this approach is that it is straightforward to derive the

associated distribution theory (Aitchison (1986) pp. 115-119) for the random

variables. In particular, if the log-ratio vector y has an M � 1 dimension Normal

distribution, N(�; �), then the composition, s, (the vector of shares) will follow

an additive logistic normal distribution, L(�; �), de�ned on the unit simplex.

The additive logistic normal distribution is particularly attractive in that, like the

Normal distribution, it is capable of capturing the wide range of covariance struc-

tures encountered in observed data. Additionally within the CODA framework it

can be shown that the basis q (e.g. the vector of brand volume sales) will follow

a multivariate log-Normal distribution.

Before discussing the application of CODA techniques to regression models for

share data some additional points need to be made. Firstly, the use of sM as the

denominator in the ALR transform is, at �rst, unusual in that the parts of the

composition are treated asymmetrically. It is important, however, to note that

reordering the parts and changing the component used as the denominator in the

transform makes no di¤erence to any statistical procedures. Thus all statistical

procedures are invariant to the choice of the component used as the denominator.

Secondly, the ALR is not the only transform that could be used. In particular,

a centered log-ratio transform could be used and this centered version is related

to the approach currently undertaken in the stochastic speci�cation of attraction
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models (see inter alia Cooper (1993), Cooper and Nakanihi (1988) and Ghosh et

al (1984)) and in the estimation of Logit and Addilog models in economics (see

inter alia Bewley (1982a), (1982b), (1986) sand Chavas and Segerson (1986)).

The centered log-ratio transform is s�i = ln (si=~s), where ~s is the geometric mean

of the M shares. Indeed, there is a one-to-one mapping between the centered log-

ratio form and our preferred log-ratio approach (ALR) and so the two approaches

are identical (see Aitchison (1986) and McLaren et al (1995)). The mapping is

s�= Gy = F0(FF0)�1y and y = Fs�, where y is the vector of log-ratios and s� is

the vector of centered log-ratios and F has the general form:

2666666666666664

1 0 0 � � � 0 �1

0 1 0 � � � 0 �1

0 0 1 � � � 0 �1
...
...
...
. . .

...

0 0 0 � � � 1 �1

3777777777777775
:

Since the parameter estimates obtained via maximum likelihood are invariant

to the form of the transformation used the choice of one transformation over

another is purely a matter of convenience. It is our opinion that on grounds

of distributional assumptions and computational simplicity the additive log-ratio

transform is preferable.

Finally, we note that often we are interested in modeling not just the shares

but also the movements in the total. For example, we are interested in both the

vote shares and the total turnout in an election or in both the brand shares and
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the total market sales. In other words, we wish to jointly model the composition

and the size of the basis. A further advantage of CODA techniques is that they

can be used to specify models for the joint modeling of data on shares and the size

of the basis (for full details see Aitchison (1986) Chapter 9.2, 9.4). Essentially,

the share data is transformed using the additive logistic transformation and the

size (e.g. total sales) data is also transformed (to log(total sales)). The resultant

transformed data is then modeled using anM dimensional multivariate regression

model. The �rst M � 1 equations in the model concern the vector of log-ratios,

y, and the last equation concerns log(total sales).

3. Regression modeling in CODA

A direct application of the CODA approach would involve modeling the log-ratio

transformed data, y, in terms of �, and �. In particular, we may parameterize

the mean, �, to depend upon a set of variables, Z and a set of parameters, �;

according to a multivariate regression model:

yi = ln

�
si
sM

�
= �i(Z;�)+ ui;

where u = [ui] is a stochastic term which is distributed as multivariate Normal

(0;�). The advantage of this model is that, within this framework, the shares are

distributed as additive logistic normal and the basis as multivariate log-Normal.

The remaining issue is the speci�cation of the functional form for the �i(Z;�).

By analogy with the arguments in Fry et al (1996), the parameterization chosen
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should retain any parameter interpretations from the underlying theory and, fur-

ther, it should retain the logical consistency argument that shares from the model

are restricted to the unit simplex. Such a parameterization is given by:

yi = ln

�
Si(Z;�)

SM(Z;�)

�
+ ui

where Si(Z;�) is the theoretical speci�cation for the share of i which retains the

logical consistency requirement.

We will consider two particular choices for the theoretical speci�cation Si(Z;�).

The multinomial logit (MNL) and the nested logit (NL). The �rst of these, the

MNL, is very common in applied work. The MNL speci�cation has:

Si(Z;�) =
exp(Z

0
�i)PM

j=1 exp(Z
0�j)

A simple justi�cation often used for this speci�cation is that the share is a function

of the relative �attractiveness�of i :

Si(Z;�) =
AiPM
j=1Aj

=
Ai(Z;�)PM
j=1Aj(Z;�)

;

with Ai(Z;�) = exp(Z
0
�i). The estimating equations from this model speci�ca-

tion are given by:

yi = ln(Ai(Z;�))� ln(AM(Z;�)) + ui = Z
0
(�i� �M) + ui:

7



The fact that there are identi�cation issues involved in the use of share equations

of the form:

Si(Z;�) =
Ai(Z;�)PM
j=1Aj(Z;�)

;

has long been recognized (Theil (1969)). In particular, if we re-scale by multiplying

by an arbitrary, non-zero, constant, say, exp(a), we �nd:

Si(Z;�) =
exp(a)Ai(Z;�)PM
j=1 exp(a)Aj(Z;�)

=
Ai(Z;�)PM
j=1Aj(Z;�)

:

As a result, a normalizing restriction will be required to identify the model. For

the MNL model the normalization used is to set �M = 0. This yields a simple

multivariate linear regression speci�cation for the yi.

The second speci�cation for Si(Z;�) that we consider in this paper is the

nested logit (NL) model. This model was introduced in the context of discrete

choice modeling by McFadden (1978). However, Bechtel (1990) uses the NL model

in the context of market shares and utilizes compositional data analysis techniques

to facilitate estimation of the NL model with share data. The NL model recognizes

the fact that often there is additional structure in a problem that can be exploited

in the speci�cation. For example, brands in fast moving consumer goods markets

may belong to particular segments (e.g. standard, premium and economy) of the

total market. Political parties can be categorized as major or minor parties (or left

and right wing). Such a situation is represented in Figure 3.1 for Federal Elections
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in Australia. There are two major political parties �the Coalition formed by the

Liberal Party and National Party and the Australian Labor Party (ALP). Four

minor parties also contest in the election � Australian Democrats, Australian

Greens, the One Nation Party and "Other Party" comprising of independents

and other small groupings. The contest for a given electorate can be viewed as a

contest between the major parties and the minor parties and within the major or

minor groups between the political parties that comprise the group.

Figure 3.1: Example Nested Logit

Coalition A.L.P.

Major Party

Democrat Green One Nation Other Party

Minor Party

A basic (two-level) NLmodel can be characterized as follows (see Train (2003)).

First, the set of J outcomes is partitioned into K non-overlapping subsets (nests

or branches), Bk; k = 1; : : : ; K. Within each subset there are Jk outcomes withPK
k=1 Jk = M . It is possible to write the theoretical speci�cation for Si(Z;�)

from the NL directly (see p84 of Train (2003)). However, it is more informative

to consider the decomposition Si(Z;�) =SipBkSBk : That is the share of i is given

by the product of the share speci�cation for i within subset Bk and the share

speci�cation for subset Bk:

We partition Z into two components Z1; Z2 where Z1 consists of variables that
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relate solely to the subset k and Z2 that consists of variables that relate solely

to outcomes within the subset1. The NL speci�cation comes from assuming that

both of the probabilities in the decomposition follow a multinomial logit (MNL)

form. That is,

SipBk =
exp(Z

0
1(�1i=�k))P

j2Bk exp(Z
0
1(�1j=�k))

and

SBk =
exp(Z

0
2�2k + �kIk)PK

l=1 exp(Z
0
2�2l + �kIl)

with Ik = ln
�P

j2Bk exp(Z
0
1(�1j=�k)

�
is the �inclusive value� that summarizes

the attractiveness of the particular subset k. Notice that when �k = 1; k =

1; : : : ; K. Thus, �tting the NL model also yields a convenient statistical test of

the multinomial logit (MNL) speci�cation.

Bechtel (1990) shows the the NL model can be estimated in a straightfor-

ward sequential manner using additive log-ratios and multivariate linear regression

modeling. The �rst step is to consider each of the subsets (branches) individually.

Noticing that within the branch the share speci�cation is MNL and, normalizing

on the last outcome in the subset, we can simply form estimate a linear multi-

variate regression for the yi formed by the ALR for shares within the subsystem.

From this estimation we can form an estimate of bIk for the branch. Once we have
a full set of bIk then we can estimate another MNL model for the branch shares

1We also consistently partition �.
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that will depend upon the Îk and any variables that di¤er solely across branches,

Z1. Again this is achieved by use of the ALR transformation and a multivariate

linear regression. As with the discrete choice case this sequential estimation will

yield unbiased and consistent estimators (see Train (2003))2.

4. Zero observations in CODA

The �nal area in which CODA techniques may need to be modi�ed to deal with

a real life problem is the situation in which there are observed shares in our data

set which are zero (see Adolph (2004), Aitchison (1986), Bacon-Shone (1992)

and Fry et al (2000)). The statistical literature identi�es two key explanations

for the occurrence of zeros in compositional data. These are rounding (or trace

elements) and essential (or true) zeros. The �rst of these rationalizes that the

zero observation is an artefact of the measurement process. Thus the observed

zero is a proxy for a very small number. The second explanation argues that the

observation should be zero as the data generating process leads to the occurrence

of zeros. The proposed modi�cations to the CODA methodology to deal with the

problem of zero observations are then derived by considering the cause of the zero

observations (see Aitchison (1986) pp266-274). It is, however, possible to use any

of the modi�cations regardless of how the zero observations arose (see Fry et al

(2000)).

The modi�cations proposed are amalgamation, zero (trace) replacement, mod-

2However, the sequential estimator is not e¢ cient.

11



i�ed Box-Cox, the use of ranks, and conditional modeling. Amalgamation is the

reduction of the number of components in the composition by grouping together

certain components. This may lead to certain �aggregate�brands (e.g. �Private

Label�) which might be fairly heterogenous in character and will complicate the

interpretation of the resultant estimated model. Zero replacement simply replaces

the observed zeros with, appropriately chosen, small values and adjusts the non-

zero components in an analogous manner. Modi�ed Box-Cox uses a Box-Cox

transformation in place of the log-ratio transform. This approach can be used

in situations where one of the brands always has a share which is non-zero. Un-

fortunately, this approach seriously complicates the distribution theory and is,

therefore, not as attractive as it appears.

Bacon-Shone (1992) proposes to replace the share data by ranks. Although this

eliminates the problem of zero observations, it discards a large amount of infor-

mation. The �nal modi�cation to the CODA approach is to separate out the zero

and non-zero components and model them using conditioning arguments. This is

the preferred approach of Aitchison and Kay (2003). Adolph (2004) has imple-

mented such an approach to yield a �zeros�in�ated�compostional data model and

applied it to the selection of central bankers. However, without an assumption of

conditional independence between the data generating process for zero observa-

tions and the compositional data process the resultant modeling quickly becomes

computationally di¢ cult.

The choice of which modi�cation to use is one that has received far less at-
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tention. Fry et al (2000) argue strongly that a zero replacement technique which

is ratio preserving, is simple to implement, easy to work with, has a simple ratio-

nale and gives sensible results should be used. Recently, Aichison (2003a, 2003b)

has suggested that a good starting point for analysis is the ratio preserving zero

replacement procedure �modi�ed Aitchison� suggested independently by Fry et

al (2000) and Martin-Fernández et al (2000). The zero replacement technique

assumes that a composition has M zero and N �M non-zero components. It is

recommended that the zeros be replaced by �small�values. In particular, using

arguments based upon a ternary representation of the data (Aitchison (1986) pp

266-267), it is suggested that we replace the zeros with �A = �(M+1)(N�M)=N2

and then reduce the non-zeros by �S = �M(M +1)=N2, where � is the maximum

rounding error. This does not preserve the share ratios. An alternative procedure

is to replace the zeros by the same number, �A, but to reduce each non-zero by

wi��S. This both retains the share ratios for the non-zero components and makes

an appropriate zero replacement. This is the �modi�ed Aitchison�procedure and

in its application �A is often chosen within the context of the data at hand (e.g

replacing zero budget shares with sensible values consistent with the dataset �see

(Fry et al 2000, 2001).

The requirement that a zero replacement procedure for CODA retains the

share ratios for the non-zero components means that those share ratios are, by

construction invariant to the addition of components to the composition. This

is exactly the property of Independence of Irrelevant Alternatives (IIA) that is
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inherent in the multinomial logit (MNL) model for discrete choice. Namely, that

the odds ratio is invariant to additions or deletions to the choice set. Thus, the

�modi�ed Aitchison� zero replacement procedure that has become the default

procedure is consistent with the MNL theoretical speci�cation for Si(Z;�). IIA

in the discrete choice literature is viewed as an extremely restrictive property

for models to have. It is argued that when outcomes are competing within a

choice set we would expect that as we expand or contract the choice set the odds

ratios might not be invariant. This has led to the development of a range of

alternative model speci�cations that do not embody IIA but which can allow for

tests for IIA. That is, speci�cations that include as a special case the (restricted)

MNL model. Such models would of course yield alternative speci�cations for the

theoretical speci�cation Si(Z;�). Interestingly, one such choice of non-IIA model

is the nested logit (NL) model!

If the �modi�ed Aitchison�zero replacement procedure is consistent with the

MNL theoretical speci�cation for Si(Z;�) then we need to ask what zero replace-

ment procedure would be consistent with a NL speci�cation for Si(Z;�)? Fortu-

nately, the decomposition of Si(Z;�) in the NL speci�cation gives us the answer.

In the NL both the model for branches and the model for outcomes (components)

within branches are of the MNL form. Thus, we can simply apply the �modi�ed

Aitchison�procedure within the branch(s) that the zero observation(s) appear.

That is, the �modi�ed Aitchison�procedure is used within the subset (branch)

composition. If the the conditions (�k = 1; k = 1; : : : ; K) are met for the NL to
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collapse to the MNL then this is the same as the more usual MNL share ratio

preserving �modi�ed Aitchison�procedure. Thus the same statistical test for NL

against MNL can also tell us about zero replacement procedures.

5. Application

The analysis in this paper is based upon data obtained from the 2001 Australian

Federal Election and the 2001 Australian Census. The 2001 Australian Census,

conducted by the Australian Bureau of Statistics, took place on August 7th 2001

and provides a snapshot of the Australian community at that point in time. The

Australian Census occurs once every �ve years and aims to collect accurate infor-

mation on the number and characteristics of people living in Australia on census

night. The census data can be mapped to varying geographical areas such as state

level and postal area. Of particular relevance to us is that we are able to map cen-

sus data to Commonwealth Electoral Division (CED), which allows us to obtain

an accurate pro�le of each electorate. We are then able to combine this data with

the vote count data available by electoral division from The Australian Electoral

Commission. The close proximity of the 2001 Australian Federal Election (10th

November 2001) and the 2001 Australian Census (7th August 2001) provides a

unique opportunity for analysis to be undertaken.

We use the results of the voting in the House of Representatives to calculate

the vote shares of the political parties in each of the 150 CEDs in Australia. The

parties that contest on a national scale are the Australian Labor Party (ALP),

15



the Coalition made up of both the Liberal Party and the National Party, The

Australian Democrats and The Australian Greens. The One Nation Party and

the other minor parties and independents (combined to form the group �Others�)

do not contest all CEDs.

The census data contain information regarding income, age, education, oc-

cupation, and dwelling types. We use variables computed from the census data

to form a pro�le of each electorate. The majority of the census data is in the

form of proportions, with the exception of median age and median weekly income

and the Gini coe¢ cient variables. In addition to the census variables there are

four dummy indicator variables included. Three of the dummy variables indicate

whether or not the candidate contesting the electoral division for the ALP, Coali-

tion, or Other Parties is the current incumbent member of the parliament. The

fourth dummy indicates if both the Liberal and National Parties contest the given

electorate. A full description of all variables is provided in Chong et al (2005).

We use this data to �t a nested logit (NL) model. The structure of the NL

model is that given in Figure 3.1 above. Namely, that there exist two branches �

Major and Minor Parties �the Major Party branch consists of two parties (ALP

and Coalition) and the Minor Party branch consists of four parties (Democrats,

greens, One Nation and Others). We also �t an MNL model to this data that

ignores the additional structure of the NL speci�cation. Four political parties

(ALP, Coalition, Democrats and Greens) contest all 150 electoral divisions. There

are 108 electoral divisions in which all six political parties contest the division. A
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further 42 divisions have either one or two of the One Nation and Other Party

not contesting the division. Thus we have a zero observations problem.

As argued in Chong et al (2005), we could replace the zero vote for the party

not contesting with the value one3. Consistent with the arguments above when

using the MNL speci�cation we make the zero replacement using �modi�ed Aitchi-

son� to ensure that the share ratios in the full choice set remains unchanged.

However, for the NL speci�cation the zero replacement procedure is implemented

as �modi�ed Aitchison�within the branch that the zero observation(s) appear.

In this case the zero observation(s) appear in the Minor Party branch and zero re-

placement is carried out preserving share ratios within that branch but not across

the two branches.

Fitting the NL model also yields a convenient statistical test of the multinomial

logit (MNL) speci�cation and hence of the IIA assumption embodied within the

MNL speci�cation. In our application4 the value of the log�likelihood test for the

NL model against the (restricted) null MNL model is 161.293. This is a strong

rejection of the MNL speci�cation and, it is our opinion, that this strongly suggests

that zero replacement should be carried out consistent with the NL model. That

is, �modi�ed Aitchison�, or ratio preserving, within branches.

3The idea is that had the party contested the division then the candidate would have voted
for themself!

4Full results available upon request from the authors.
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6. Conclusions.

The traditional application of regression models for compositional data analysis

through log ratio transformations corresponds to a multinomial logit model for the

shares themselves. This model is characterized by the property of Independence

of Irrelevant Alternatives. Independence of Irrelevant Alternatives states that

the odds ratio �in this case the ratio of shares �is invariant to the addition or

deletion of outcomes to the problem. It is exactly this invariance of the ratio that

underlies the commonly used zero replacement procedure �modi�ed Aitchison�

in compositional data analysis. We present a model for shares, the nested logit

model, that does not embody this property. We then discuss a zero replacement

procedure that is consistent with this more general model. A simple statistical

test can be used to determine which model is consistent with a data set. We

apply these models and associated zero replacement procedures to a dataset that

combines voting data by electoral division with corresponding census data for

each division for the 2001 Federal election in Australia. We �nd evidence that the

nested logit model and procedures are preferred.
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