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Abstract 
 
This analysis was stimulated by the real data analysis problem of household 
expenditure data.  The full dataset contains expenditure data for a sample of 
1224 households. The expenditure is broken down at 2 hierarchical levels: 9 
major levels (e.g. housing,  food, utilities etc.) and 92 minor levels. There are 
also 5 factors and 5 covariates at the household level. Not surprisingly, there 
are a small number of zeros at the major level, but many zeros at the minor 
level.  The question is how best to model the zeros.  Clearly, models that try 
to add a small amount to the zero terms are not appropriate in general as at 
least some of the zeros are clearly structural, e.g. alcohol/tobacco for 
households that are teetotal.  The key question then is how to build suitable 
conditional models.  For example, is the sub-composition of spending 
excluding alcohol/tobacco similar for teetotal and non-teetotal households? 
In other words, we are looking for sub-compositional independence. Also, 
what determines whether a household is teetotal?  Can we assume that it is 
independent of the composition?  In general, whether teetotal will clearly 
depend on the household level variables, so we need to be able to model this 
dependence.  The other tricky question is that with zeros on more than one 
component, we need to be able to model dependence and independence of 
zeros on the different components.  Lastly, while some zeros are structural, 
others may not be, for example, for expenditure on durables, it may be 
chance as to whether a particular household spends money on durables 
within the sample period.  This would clearly be distinguishable if we had 
longitudinal data, but may still be distinguishable by looking at the 
distribution, on the assumption that random zeros will usually be for 
situations where any non-zero expenditure is not small.  
 
While this analysis is based on around economic data, the ideas carry over to 
many other situations, including geological data, where minerals may be 
missing for structural reasons (similar to alcohol), or missing because they 



occur only in random regions which may be missed in a sample (similar to 
the durables). 
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Background 
 
Early attempts to “solve” the problem of zeros in log-ratio compositional 
data analysis (Aitchison, Bacon-Shone) took the approach of trying to 
modify the log mappings at the extremes by adding small amounts to zeros 
or by using rank transformations.  This can be seen in geological terms as an 
implicit assumption that there are no true zero elements, but just that some 
elements are below the measurable limits of the instrument used.  This 
approach is limiting in that there may be good reasons why a particular 
component is wholly absent.  This paper focuses on household expenditure 
data, but similar arguments apply in the case of geological data, and 
doubtless in many other application areas as well.  In the expenditure case, 
zeros can arise in at least three contexts.  Firstly, the expenditure may be too 
low to be measured, for example, expenditure is measured to the nearest 
dollar, and the expenditure is less than 50 cents. Secondly, expenditure may 
be a rare event, such as the purchase of a cooker or fridge, so that even if the 
expenditure covers a longer period for electrical appliances, it is quite 
feasible that no expenditure takes place for many households.  Thirdly, there 
may be types of expenditure which some households never make, while 
others make them frequently.  An example would be alcohol or tobacco, 
where the entire household may abstain completely.  If we prefer geological 
analogies, the second and third situations could reflect that some minerals 
tend to be very unevenly distributed, while other minerals cannot occur 
together for reasons linked to geochemistry. The second and third situations 
can both be considered to be structural zeros, but the reasons can be linked 
either to the randomness of the sampling process, or to the nature of the 
objects being sampled.  While the distinction may seem arbitrary, I would 
argue that there is an important difference.  If the zeros are linked to the 
sampling process, this would suggest that there may be no clear difference 
between the samples with zeros and those without, either in terms of the 
subcomposition excluding the zeros or in terms of covariates.  On the other 
hand, if there is some real difference between the nature of samples with 



zeros and those without, we should be able to distinguish between them 
either in terms of subcompositional differences or in terms of covariates. In 
the expenditure case, we can express the idea in the following way: we 
might expect teetotal households to be fundamentally different from 
households that drink, but we would not expect to be able to distinguish 
clearly between those who bought a fridge recently and those who did not.  
This paper reflects an early stage of research into trying to tease out these 
distinctions with models that are meaningful both in the statistical sense and 
in the context of the data in economics, geology etc. I apologize for 
concentrating on an economic dataset at a conference attended by geologists, 
but I believe that the core statistical problem is the same. 
 
Conditional modeling 
 
If we initially consider a single level of hierarchy, there are two key 
questions: 
 
Firstly, how do we model the pattern of zeros for multiple components and 
secondly, how do we model the composition, conditional on a particular 
pattern of zeros.   
 
Structural modeling of zeros 
 
Clearly, this can be modeled using multivariate logistic or probit models.  
However, as we have observed with compositional data, logistic models may 
have too strong a pattern of independence to be practical.  On the other hand, 
they are simple to fit and parsimonious, which is valuable when we may 
have relatively few occurrences of zeros for some components. Probit 
models allow many more parameters, but they require much more data to 
provide useful estimates.  We will illustrate these tradeoffs using the 
household expenditure data modeled at the two different levels of hierarchy 
and with differing numbers of explanatory covariates and factors. 
 
Conditional subcompositions 
 
If there is no linkage between the zeros and the remaining subcompositions, 
then the model takes a relatively simple form, at least when there is only a 
single zero so we can use a product of a bivariate composition and the 
remaining composition.  One interesting question is whether the bivariate 
composition, after excluding zeros, shows much chance of small values.  



This may provide a diagnostic check on whether the zeros could indeed be 
reflecting measurement limits rather than structural zeros. It is necessary to 
include the covariates when trying to detect a difference between the 
subcompositions, as any apparent difference may disappear after controlling 
for the covariates.  In the expenditure case, housing type (public vs private) 
and income decile both have large impacts on the compositions in general, 
so it is important to control for their effect.  If there is a linkage between the 
zeros and the subcompositions, then the interesting question is to find a 
model that captures that dependence in a concise way. We will illustrate 
situations that show both independence and dependence. 
 
Conclusions 
 
While there is still much more careful analysis and modeling to be done, it is 
clear that the separation of the modeling into the two parts allows much 
more useful information to be extracted from compositions, in situations 
where the zeros may contain potentially important information.  This seems 
to remove the major remaining barrier to the widespread use of log-ratio 
models for compositional data, particularly in geological and expenditure 
models. 


