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Abstract

We compare correspondence analysis to the logratio approach based
on compositional data. We also compare correspondence analysis and
an alternative approach using Hellinger distance, for representing cat-
egorical data in a contingency table. We propose a coeflicient which
globally measures the similarity between these approaches. This co-
efficient can be decomposed into several components, one component
for each principal dimension, indicating the contribution of the dimen-
sions to the difference between the two representations. These three
methods of representation can produce quite similar results. One il-
lustrative example is given.
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tance; compositional data; multidimensional scaling.

1 Introduction

Correspondence analysis (CA) is a multivariate method to visualize categori-
cal data, typically presented as a two-way contingency table N. The distance
used in the graphical display of the rows (and columns) of N is the so-called
chi-square distance between the profiles of rows (and between the profiles
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of columns). This method is described in Benzécri (1973) and Greenacre
(1984).

In an early paper, Rao (1948) introduced the concept of canonical coordi-
nates, also for graphical representation of multivariate data, especially quan-
titative multivariate data in several populations More recently, Rao (1995)
also used canonical coordinates to represent the rows of a contingency table
N, using the Hellinger distance decomposition (HD) between the profiles of
rows. A third alternative for representing categorical data is based on com-
positional data and a distance between rows or columns, where the data are
transformed to log-ratios (Aitchison, 1986).

The aim of this contributed paper is to compare these three approaches,
supplying in particular a global measure of difference between CA, HD and
LR (log-ratio) and decomposing this measure along the principal dimensions.
One illustrative example is given.

2 Correspondence analysis

Let N = (nj;) be an I x J contingency table and P = n™'N the corre-
spondence matrix, where n = Zij ni;. Let r = P1, D, =diag(r), ¢ = P'l,
D. =diag(c), the vectors and diagonal matrices with the marginal frequencies
of P.

CA uses the SVD

D;Y*(P —rd)D;V? = UDLV, (1)

where D), is the diagonal matrix of singular values in descending order, U is
an orthogonal matrix and the columns of V' are orthonormal. To represent
the I rows of N we may take as principal coordinates the rows of

A = D;'2UD,. (2)
Then the Euclidean distance between rows 4,7 of A equals the chi-square
distance
J
0% = (pij/ri = pui/ri)’ ;. (3)
j=1
Similarly, to represent the J columns of N we may use the principal
coordinates contained in the rows of B or the standard coordinates By, where

B=D'Y?VD,, By=D,"*V. (4)
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An advantage of CA is the possibility of a joint representation of rows
and columns, called the symmetric representation, as a consequence of the
transitive relations

A=D;'PBD;', B=D.'P'AD". (5)
CA can also be approached by using the SVD
DY2(P —rdYD;Y? = UDyV', (6)

and, from (I — 17")D;*PD;Y(I — cl') = D;'PD_;' — 11’, a third approach
uses the equivalent SVD

DY*(I —17)D;*PD;}(I — c1')DY? = UD,V". (7)

3 The Hellinger distance alternative
Following Rao (1995), HD is described as the SVD

DY?(\/D:1P — 1V/¢) = UD,V/, (8)
where if M = (m;) is a matrix then /M = (y/mij). The I rows of N can be

represented by taking as principal coordinates the rows of A=D; 120 lN)A.
The Euclidean distance between rows 4,7 of A equals the Hellinger distance

8 = i(\/pzj/m - \/Pz"j/rz")2- (9)

j=1

Equivalently, HD can be approached by using the SVD
DY?(D;V2/PD;Y? —11')DY? = UD, V', (10)

see (6), but the HD version of (7) does not hold.

Unfortunately there is no similar formula for representing columns, so the
duality row-columns does not apply in HD. To overcome this deficiency, let
us propose a procedure for representing columns in HD, similar to the way
standard coordinates may be defined in CA. Clearly, the Hellinger distance
is the Euclidean distance with coordinates the rows of Q = D, Y2\/P. Let
H,, = I —m™'11' the centring matrix. After centring ) and A, the principal
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coordinates transformation is HfA = H;QT, where T is orthogonal. To
obtain 7', we can use the Procrustean rotation (see Mardia et al., 1979) from
Q to A via the singular value decomposition (H;Q)'(H;A) = RDS', where
D is diagonal. Then T'= RS’.

To represent columns in the row space, we may interpret the j—th col-
umn of the contingency table as a set of J frequencies where only the j—th
category is present. Thus we may identify this j—th column as the dummy
profile (0,...,0,1,0,...,0) with 1 in the j-th entry, which assigns probability
one to this column-variable. See, for example, Gower and Hand (1996).

Accordingly, the profiles for the J columns is the J x J identity matrix.
Also centring this matrix, in order to represent the columns of N in the
centred principal coordinates row space, the coordinates of the columns are
given by B

By = H,T. (11)

4 CA features

CA has the following advantages:

1. The joint representation of rows and columns, called the symmetric
representation.

2. CA satisfies the “principle of distributional equivalence”.

3. The Pearson chi-square statistic for testing independence is ¢* = n(A\}+
o4+ A% _)), where K = min{I,J} and \;,i = 1,...,K — 1, are the

singular values.

4. CA can be related to the log-linear models via the reconstitution for-
mula P = rc + D, AgDyByD., where Ay = D; U, By = D;/*V.

5. CA has equivalent approaches: canonical correlation, dual scaling,
reciprocal averaging. This last approach (Hill, 1973) is useful for large
sparse matrices, as typically occurs when relating and representing
species and sites in ecological communities.

Indeed, some nice properties of CA stem from its probabilistic interpre-
tation (see Cuadras et al., 2000; Cuadras, 2002). However, as stated by Rao
(1995), CA has some drawbacks, the most important being the dependence
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of the chi-square distance between row profiles on the column totals. Thus
the chi-square distance between row profiles is not a function of the rows ¢, '
only. It also depends on the number of observations in the columns. This
means that if we obtain a configuration and we add another set of rows, the
CA on the extended set changes the distance between the original rows.

As an alternative to CA, HD has some advantages:

1. The Hellinger distance depends only on the profiles of the concerned
rows. It is not altered when an extended set is considered.

2. The statistic 4n(\> 4 --- + A\%) is asymptotically distributed as chi-
square, where A1, ..., A\g are the singular values in HD.

3. HD also satisfies the “principle of distributional equivalence”.

But HD has the drawback of needing for the full representation K =
min{/, J} dimensions, whereas CA only needs K — 1. Furthermore, it has no
relation with log-linear models.

5 The log-ratio alternative

A third alternative to represent categorical data is inspired by the analysis
on compositional data (Aitchison, 1986; Aitchison and Greenacre, 2000).
Suppose now that the elements of P are positive values. Let us consider
the weighted double-centering of log(D,'PD_'), that is, the matrix with
elements [log(p;;/ric;)] :

D}*(I —1¢")log(D;'PD;")(I — c1')D}?* = U*D3V™.

We may represent the rows of N using the principal coordinates A* =
DU *Dy. This representation implicitly uses the following squared dis-
tance between rows

6:12’ - Zj:l(log ( Pu - log ( _— )2'

Pil"'Pij)l/J Pi'1"'Pi/j)1/J

We compare below this log-ratio (LR) approach to CA for a general P. Note
that all entries in N must be strictly positive.



6 Comparing CA and HD

Let us compare (1) to (8). As D, and D, are diagonal, we can write

VPD;1=vVPD;'? 1UDY? =+, D'V =/r

Hence (8) is o

D7V2(DY*/PDY? —vd\D;V? = UD,V'. (12)
If we compare (1) and (12), it is clear that CA and HD provide a similar
representation of the rows of N when P ~ DY*/PDY?.

Next, an agreement measure between P and DY 2\/]_DDg/ % is suggested.
We define

I J

1 J
E ng 1,] E E hij7
1 j=1 i=1 j=1

where h;; = /Tip;;¢;. This measure satisfies 0 < 6 < 1 with § =0 if P = rc’.

To see this, note that § = 1 — v, where v = Zle ijl J/TiCi+/Pi; is the
affinity coefficient between p;; and r;c;, which lies between 0 and 1.
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7 Comparison along principal dimensions

The standard coordinates for representing columns in CA are By = D. 12y,
Then from (1) we have P—rc = D, AB{D.. Thus the full representation using
A, By for rows and columns, called the asymmetric representation, represents
graphically the whole frequency matrix N. In HD the joint representation
uses A, By, although this representation does not reconstruct N.

Let us introduce the “standard coordinates” B, = Dy "/*V in HD, which
have a similar interpretation to the standard coordinates in CA. Then

DY*VPDY* —rd = D,AB.D,,
P - DY*VPDY? = D,(AB} — AB.)D,.

Theorem 1 The measure 0 satisfies the inequality 0 < 6 <1—1/ VK, and
can be expressed as

0 = —(puv1 + pove + ... + pgVi), (13)

where p;,v; are the weighted means of the i-th principal and “standard coor-
dinates” in HD, respectively.



Proof. Write 6 = 1'(AB), — AB.)c and use some properties of concave and
convex functions. [J

Thus, a global agreement measure is given by 7 = /(1 — 1/v/K) and
a partial agreement measure for a specific dimension is 7; = |u;v;/7|. Note
that 7; = 0 if the coordinates are identical. Hence CA and HD give the same
two-dimensional representation of the rows of N provided that 71 and 7o are
close to 0.

8 Joint comparison

The three approaches for representing categorical data can be jointly com-
pared. Let us write D, *PD_' —11" as [p;;/ric; — 1] and DA/PDV? 11
as [\/pij/ric; — 1]. Then CA, HD and LR uses the SVD (canonical coordi-
nates or weighted double-centering, see above) of the expressions contained

in Table 1, showing that CA is formally similar to both HD and LR, but HD
is not similar to LR.

Table 1. Matrices which are decomposed in CA, HD and LR.

Canonical coordinates Weighted double-centering
CA | D/?py/ric; =D | DY*(I —10')[pyy/ric)](I — 1) De"*

HD D% 2[sz'j/7“z'0j — 1]Di 2 -

LR - Dy (I — 1¢")[log(py; /ric;)](I — €'Y Do’

Theorem 2 CA can be understood as the first-order approximation to the
alternatives HD and LR.

Proof. Use Taylor expansions on +/p;;/mic; — 1 and log(p;;/ric;), see
Table 1. Then CA is the first term of this expansion.[]
As a consequence, when rows and columns are almost independent, i.e.,

Pij = TiCj, then
Vpis/ric; =1 = 5(pi/ric; — 1),
log(pij/ric;) = (pi/ric; — 1),
and these three methods may provide quite similar graphic displays.

These approximations justify € and suggest a measure ¢ for comparing
CA and LR. The measure 0 can also be expressed as:

0 =1QEP—rd)— (DYV*VPDY? —rd))
= —7“’(D7~_1/2\/EDC_1/2 —11")c.

(14)
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A global measure ¢ for comparing CA and LR can be defined as follows:

o =—1(D,log(D;*PD; "D, — P —rc)1
= —r'log(D,;'PD1)c.

As log(x) is concave, ¢ > 0 being 0 in case of independence. No upper bound
exists for .

9 A classical example

Table 2 reports the hair colour and eye colour of 5,383 individuals.

Table 2. Hair colour combined with eye colour.
Hair colour

Eye colour | Fair Red Medium Dark Black | Total
LIGHT 688 116 584 188 4 1,580
BLUE 326 38 241 110 3 718
MEDIUM || 343 84 909 412 26 | 1,774
DARK 98 48 403 681 81 | 1,311
Total 1,455 286 2,137 1,391 114 | 5,383

There is a significant dependence between eye and hair colour (x? = 1,230
for 12 d.f.). However, the association is moderate, as the Cramér coefficient
is 1/1,230/(5,383 x 3) = 0.276.

For this contingency table (13) gives

¢ = —(0.0001 + 0.0019 — 0.0309 — 0.0003) = 0.0292.

These values indicate a quite small difference between both representations.
Indeed, the rank order for the distances along the first and the second axis
is exactly the same (Figure 1).

We also obtain ¢ = 0.1251 and the LR alternative gives a slightly different
display, as the differences between the quantities in (14) are not negligible
owing to the moderate row-column association.
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Figure 1: Asymmetric correspondence analysis of eye colour and hair colour
(left, crosses, quality 99%), log-ratio representation (left, squares) and rep-
resentation using Hellinger distance (right, quality 97%).

10 Conclusions

Correspondence analysis (CA) and the Hellinger distance approach (HD) for
representing categorical data may provide similar results under some circum-
stances, for example, when rows and columns are almost independent. CA is
the best for several reasons (joint representation, probabilistic interpretation,
relation to log-linear models, reciprocal averaging approach), but may have
some drawbacks when the rows are multinomial populations and the solution
should not depend on the column frequencies, for which the HD approach
may be preferable. Except in the case of almost independence, the log-ratio
approach (LR) may provide quite different results, but cannot be applied
with zero frequencies.
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