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Abstract 
 

The biplot has proved to be a powerful descriptive and analytical tool in many areas 
of applications of statistics. For compositional data the necessary theoretical 
adaptation has been provided, with illustrative applications, by Aitchison (1990) and 
Aitchison and Greenacre (2002). These papers were restricted to the interpretation of 
simple compositional data sets. In many situations the problem has to be described in 
some form of conditional modelling. For example, in a clinical trial where interest is 
in how patients’ steroid metabolite compositions may change as a result of different 
treatment regimes, interest is in relating the compositions after treatment to the 
compositions before treatment and the nature of the treatments applied. To study this 
through a biplot technique requires the development of some form of conditional 
compositional biplot. This is the purpose of this paper. We choose as a motivating 
application an analysis of the 1992 US President ial Election, where interest may be in 
how the three-part composition, the percentage division among the three candidates -  
Bush, Clinton and Perot -  of the presidential vote in each state, depends on the ethnic 
composition and on the urban-rural composition of the state. The methodology of 
conditional compositional biplots is first developed and a detailed interpretation of the 
1992 US Presidential Election provided. We use a second application involving the 
conditional variability of tektite mineral compositions with respect to major oxide 
compositions to demonstrate some hazards of simplistic interpretation of biplots. 
Finally we conjecture on further possible applications of conditional compositional 
biplots. 
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1   Introduction 
 
It is now well established that the analysis and interpretation of compositional data, 
vectors of proportions of parts of some whole, such as the major oxide [SiO 2, Al2O3, . 
. . , MnO] composition of rock specimens or the ethnic [White, Black, Hispanic, 
Native American, Other] composition of a US state, require statistical methods 
appropriate to a simplex sample space. The monograph (Aitchison, 1986) established 
appropriate methodologies for compositional data analysis based on logratio 
transformation techniques. The useful graphical technique, the biplot introduced by 
Gabriel (1971, 1981) for unconstrained multivariate data has already been adapted to 
the constrained nature of compositional data by Aitchison (1990) and Aitchison and 
Greenacre (2002), with illustrative applications to demonstrate the use of such 
compositional biplots as descriptive and analytical tools. The main purpose of this 
paper is to extend the compositional biplot from applications involving simple 
compositional data sets to those requiring conditional modelling. We shall illustrate 
the formation and interpretation of such conditional biplots in Section 5 and 6 to two 
data sets. First, in Section 5, we investigate the 1992 US Presidential election, in 
particular the dependence of the share of the vote in each state by the three candidates 
on the ethnic and urban-rural compositions of the state. Secondly, in Section 6, we 
examine the mineral and major-oxide compositions of tektites and attempt, with no 
geochemical pre-knowledge, to relate the variability of the mineral compositions to 
that of the major oxide compositions. For completeness we first summarise in Section 
2 the essential features of the simplex sample space. We shall also need the basic 
ideas on unconditional biplots and we summarise these in Section 3 together with 
some specific biplots required later in the paper. Section 4 then builds on Sections 2 
and 3 to provide a methodology for conditional compositional biplots and provides 
guidelines for interpretation. In the final Section 7 we discuss some possible 
extensions to a variety of conditional compositional situations, 
 
 
2   The simplex sample space: operations and notation 
 
A D-part composition x is a vector of positive components [ , . .. . , ]x x D1  where 
x i Di ( , . . . , )= 1  are the proportions of the various parts of some whole unit. Such 
compositions thus belong to a unit simplex sample space 
 

S x x x i D x xD
i D i D= > = + + ={[ . . . . , ] : ( , . . . , ), . . . }0 1 11 .        (2.1) 

 
Our development requires a clear understanding of simple algebraic-geometric 
concepts and operations in this space and, for convenience, we provide a summary 
here and, at the same time, establish the notation of the paper. 
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Logratio transformations from SD to real spaces.  The early development of a 
methodology for compositional data analysis (Aitchison, 1982, 1986) relied on 
transformation techniques involving logratios of components of compositions. These 
mapped compositions into vectors in real spaces allowing, with care, the use of 
standard unconstrained multivariate analysis to resolve inference problems about the 
compositions. We shall require the most useful two of these transformations, the so 
called additive logratio transformation alr S RD D: → −1 , defined as follows: 
 
          alr x x x x x y x S y RD D D

D D( ) [log( / ), . . . , log( / )] ( , )= = ∈ ∈−
−

1 1
1 ,        (2.2) 

 
with inverse 
 

   
alr y y y y y

C y y
D D

D

−
− −

−

= + + +
=

1
1 1 1 1

1 1

1 1
1

( ) [exp( ), . . . ,exp( ), ] / {exp( ) . . . exp( ) }
[exp( ), . . . , exp( ), ],

          (2.3) 

 
where the operator C simply divides each component of the contained vector by their 
sum. The centred logratio transformation clr S UD D: → −1 , where U D −1  is the 
hyperplane { : . . . }u R u uD

D∈ + + =1 0  in R D , is defined as follows: 
 
     clr x x g x x g x u x S u UD

D D( ) [log{ / ( )}, . . . ,log{ / ( )}] ( , )= = ∈ ∈ −
1

1 ,       (2,4) 
 
where g x x x x D

D( ) ( . . . ) /= 1 2
1  is the geometric mean of the components of x. The 

corresponding inverse is given by 
 

clr u C u uD
− =1

1( ) [exp( ), . . . ,exp( )] .       (2.5) 
 
It is the 1-1 nature of these transformations which allows a satisfactory approach to 
compositional data analysis through the use of R D -based multivariate statistical 
analysis. 
 
Compositional covariance structures.  These transformations provide appropriate 
covariance or dependence structures to describe the dependence of components within 
a composition x. These are the logratio covariance matrix Σ( ) cov{ ( )}x alr x= , the 
centred logratio covariance matrix Γ( ) cov{ ( )}x clr x=  and the variation matrix  
Τ( ) [var{log( / )}]x x xi j= . These three characteristics are equivalent in the sense that 
given any one, the others are automatically determined. All have a role to play in 
compositional data analysis and the choice is largely determined by the particular 
application. See Aitchison (1986) for fuller details..  
 
Perturbation.  The group operation corresponding to displacement or translation in 
real space R D  is a perturbation defined as follows. Corresponding to any two 
compositions x y S D, ∈  there is a perturbation x y S D⊕ ∈ , defined as follows:  
 

x y x y x y x y x y C x y x yD D D D D D⊕ = + + =[ , . . . , ] / ( . . . ) [ , . . . , ]1 1 1 1 1 1 .    (2.6) 
 
This operation defines an Abelian group with identity e D= { / )[ , . . . , ]1 1 1  and with 
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inverse operation x yΘ  defined by x y C x y x yD DΘ = [ / , . . . , / ]1 1 . 
 
     An important use of the concept of perturbation is in specifying change in 
compositions. If in part of a compositional process a composition x changes to a 
composition X then the change p is simply the perturbation p X x= Θ . For a simple 
application of this concept in compositional data analysis see Aitchison and Ng 
(2005).  
 
Powering.   The second operation we require is that of powering, defined as follows. 
Corresponding to any composition x S D∈  and any real number a R∈ 1  there is a 
powered composition a x S D⊗ ∈ , defined as follows: 
 

a x C x xa
D⊗ = [ , , , , , ]\

1 .                    (2.7). 
 
So far in the development of compositional data analysis this operation has had a very 
limited role. Later in this paper we shall see that in terms of process modelling and 
analysis it plays a central role. In terms of the geometry of the simplex the internal 
perturbation group operation and the external powering operation ensure a linear 
space structure. 
 
Metric  We can extend the structure of S D  to a metric space with the definition of a 
metric ∆:S S RD D× → ≥0

1 defined as follows. Corresponding to every two 
compositions x y S D, ∈ , 

∆( , ) ({ ( ) ( )}{ ( ) ( )} )

({ ( ) ( )} { ( ) ( )} ) ,

/

/

x y clr x clr y clr x clr y

alr x alr y H alr x alr y

T

T

= − −

= − −−

1 2

1 1 2        (2.8) 

 
where H hij= [ ]  is of order ( ) ( )D D− × −1 1  with h i j i jij = ≠ = =1 2( ), ( ) . 
 
     For further details see Aitchison (2001), and Aitchison et al (2002). , who further 
define an associated inner product 
 

〈 〉 =
=

∑x y
x

g x
y

g x
i i

i

D

, log
( )

log
( )1

,         (2.9) 

 
and norm   

              || || log
( )

/

x
x

g x
i

i

D

=


















=

∑
2

1

1 2

,          (2.10) 

 
thus providing a Hilbert space in which to consider statistical modelling. 
 
Distributional concepts in the simplex.  For statistical modelling we have to consider 
distributions on the simplex and their characteristics. The well-established ‘measure 
of central tendency’ ξ ∈S D  which minimizes E(∆(x, ξ)) is  
 

ξ = =cen x C E x( ) (exp( (log ))) ,       (2.11)  
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with simple proerties such as  
 

 cen a x a cen x( ) ( )⊗ = ⊗ and cen x y cen x cen y( ) ( ) ( ).⊕ = ⊕      (2.12) 
 
This definition conforms with the covariance structure or dispersion definitions 
defined above Importantly these dispersion characteristics are consistent with the 
following properties for any of these matrices, say dis x( ) : 

for any real number a dis a x a dis x( ) | | ( )⊗ = 2 ;  
for any  constant perturbation p, dis x p dis x( ) ( )⊕ = ;  
for independent. x y S dis x y dis x dis yD, ( ) ( ) ( ),∈ ⊕ = + . 

 
Relevance to compositional data sets.  There are substantial implications in the above 
development for the analysis of a N D×  compositional data set X x x N= [ ; . . . ; ]1 . A 

main feature is that the estimate of the centre ξ  is given by $ [ , . . . , ]ξ = C g gD1 , where 
gi  is the geometric mean of the ith component of the N compositions. Measures of 
dispersion are simply estimated from the estimated variances of the appropriate 
logratios.  
 
     There is for the simplex a result, analogous to the singular value decomposition for 
data sets associated with the sample space dR . This simplicial singular value 
decomposition plays a central role in the study of compositional variability, in 
particular in obtaing graphical approximations to the data set. Any DN ×  
compositional data matrix X with nth row composition nx can be decomposed in a 
power-perturbation form as follows 
 

x u s u sn n nR R R= ⊕ ⊗ ⊕ ⊕ ⊗ξ β β( ) . . . ( )1 1 1 ,        (2.13) 
 
where ξ is the centre of the data set, the s’s  are positive ‘singular values’ in 
descending order of magnitude, the β’s are compositions, R is a readily defined rank 
of the compositional data set and the u’s are power components specific to each 
composition. In a way similar to that for data sets in dR we may consider an 
approximation of order Rr < to the compositional data set given by  
 

x u s u sn
r

n nr r r
( ) ( ) . . . ( )= ⊕ ⊗ ⊕ ⊕ ⊗ξ β β1 1 1 .       (2.14) 

   
Such an approximation retains a proportion  
 

( . . . ) / ( . . . )s s s sr R1
2 2

1
2 2+ + + +        (2.15) 

 
of the total variability of the DN ×  compositional data matrix as measured by the 
trace of the estimate of the centered logratio covariance matrix Γ( )x  or equivalently 
in terms of total mutual distances as  
 

( ( )) ( , )N N x xS
m n

D

m n− −

<
∑1 1 2∆ .       (2.16) 
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      We shall see in the next section that these measures of variation are related to the 
Frobenius norms of certain matrices which provide measures of the extent of the 
variability captured by biplots.  
 
      We may also note here that the power-perturbation expression of the singular 
value decomposition has exactly the same form as regression of a composition on 
some set of variables. The form is exactly what would be obtained if the logratio form 
of regression analysis in Aitchison (1986, Chapter 7) were transformed back into 
terms of the simplex.  
 
 
3   Unconditional compositional biplots 
 
As a step towards the constuction of conditional compositional biplots we summarise 
here the main aspects of unconditional compositional biplots. For full dtails of these 
and their interpretation see Aitchison (1990) and Aitchison and Greenacre (2002).  
 
Compositional Singular Value Decomposition.  Biplots are constructed on the basis 
of a singular value decompositions of data matrices, first introduced into statistical 
work by (Eckart and Young, 1936), (Whittle, 1952) and Good, 1969), and adapted for 
biplot construction by Gabriel (1971, 1981). The singular value decomposition 
property states that any N × D matrix Z of rank R can be expressed as a product  
 

Z Udiag s s VR
T= ( , . . . , )1 ,          (3.1) 

 
where U and V are of orders N × R and D × R , each with orthonormal columns, and 
the positive numbers s sR1 , . . . ,  assumed here to be arranged in descending order of 
magnitude, are the singular values. For the application of this result to unconstrained 
multivariate data it is standard practice to centre the data at the mean vector by 
subtracting from each element of the data matrix its corresponding column average. 
The adjustment for a N D×  compositional data matrix X xni= [ ]  with rows 
x n Nn ( , . . . , )= 1  the N  D-part compositions.  We first form clr X( )  ensuring that we 
are working symmetrically with logratios,  and then centre the colums as for 
unconstrained data. the effect is to produce a centred logratio data matrix Z zni= [ ]   
with  
 

         z x D x N x ND xnd ni ni ni ni
d

D

n

N

n

N

d

D

= − − +− − −

====
∑∑∑∑log log log ( ) log1 1 1

1111
,      (3.2) 

 
with all row sums and column sums zero. This zero sum property carries over to the 
columns of U and of V in the singular value decomposition Z Udiag s s VR

T= ( , . . . , )1  
of Z. We shall see that what the singular value decomposition is achieving is the 
provision of a series of  approximations to the data matrix Z. 
 
 
  
Approximations to the centred logratio data matrix Z.  The centred logratio data 
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matrix Z will usually be of rank d = D - 1 so that the matrices U and V will be of 
order N × d and D × d. A hope of the decomposition is that the eigenvalues will 
decrease rapidly so that Z will be well approximated by 
Z U diag s s V r Rr

r r r
T( ) ( , . . . , ) ( )= <1 , where Ur and Vr  are the leading N × r and D × r 

submatrices of U and V respectively. The degree of approximation is usually 
measured in terms of the Frobenius norm of the difference between Z and Z(r)

r
 namely 

 

|| || ( ) . . .( )Z Z x z s sr
ni

i

D

n

N

ni
r

r R− = − = + +
==

+∑∑2

11

2
1

2 2 .        (3.3) 

 
The optimizing property is that of all matrices of rank at most r, Z(r) is that which 
minimizes this Frobenius norm. As a measure of the quality of the approximation we 
can thus take the customary measure 
     

1
2

2
1
2 2

1
1 2−

−
=

+ +
+ +

|| ||
|| ||

. . . .
. . .

( )Z Z
Z

s s
s s

r
r

R

,           (3.4) 

 
which is the proportion of the total variability of the compositional data set retained 
by Z(r) or equivalently by the first r principal logcontrast components. In order to 
obtain any useful graphical representation of the compositional data set we shall have 
to take r = 2 and in order to state the properties of the relative variation diagram 
clearly we shall assume for the moment that R = 2 so that the relationship 
Z U diag s s V T= 2 1 2 2( , )

 
is exact. Before we set out these properties we have first to 

describe the construction of this second order graphical approximation..  
 
 
Construction of an unconditional compositional biplot 
 
The relative variation diagram.  Suppose that with origin O in a two-dimensional 
diagram (Fig. 3.1) we plot the D points  
 

     ( , ) / ( ) ( , . . . ., )/s v s v N i Di i1 1 2 2
1 21 1− =                  (3.5) 

 
and regard these as the vertices i i D( , . . . , )= 1  of the relative variation part of the 
biplot for the compositional data matrix X. Each vertex then corresponds to a part of  
|the compositional data matrix X. We then term Oi a ray and the join of two vertices 
such as ij a link of the diagram. It can then be shown that the relative variation 
diagram, consisting of the set of vertices, rays and links, together with the various 
angles defined by rays and links, contains a complete quantitative picture of all the 
various covariance structures associated with the compositional data set .  
 
 
Properties of the relative variation diagram 
 
Property 1.  The origin O is the centroid of the vertices 1, . . . , D. 
 

Property 2.  The squared lengths of the links represent the set of estimated relative 
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variances: 

   | ij |2 = τ
ij

2 = estimate of var{log(x
i 
/x

j
)}.   

 
 
Property 3.  Rays and inter-ray angles represent the centred logratio covariance 
matrix Γ: 
 

| Oi |2 = γ
ii
 = estimate of var[log{x

i 
/g(x)}], 

 
Oi . Oj = γ

ij
 = estimate of cov[log{x

i 
/g(x)}, log{x

j 
/g(x)}], 

 
so that 
 

cos(iOj) = estimate of corr[log{x
i 
/g(x)}, log{x

j 
/g(x)}]. 

 
      A generalization of Property 3 involving four parts i, j, k, l is easily established 
and proves extremely useful in the exploration of independence properties of 
compositional data sets. 
 
Property 4.  If the links ij and kl intersect at M then 
 

cos(iMk) = estimate of corr{log(x
i 
/x

j
),log(x

k 
/x

l
)}. 

 
 
Interpretation of a relative variation diagrams 
 
The following hints may prove useful in interpreting various aspects of compositional 
variability. 
 
(a)   Coincident vertices and proportionality: When two vertices i and j coincide or 
are close together then the length of the link ij and, from Property 2, the estimate τ

ij
 of 

var{log(x
i 
/x

j
)} are zero or small and so components x

i
 and x

j 
are in constant proportion 

or nearly so. While this is obvious it is not unimportant, particularly when we realise 
that the whole covariance structure is most simply defined in terms of relative 
variances; and further that the concept of small relative variance with its associated 
high dependence of one component on another is essentially what is required to 
replace uninterpretable measures of dependence such as crude product-moment 
correlations corr(x

i
, x

j
).  

 
(b)   Subsets of vertices and subcompositional analysis. If we consider a subset, say of 
parts 1, . . . , C of a D-part composition, then the concept of the subcomposition 
formed from these parts and defined by  
 

 (s
1
, . . . , s

C
 ) = (x

1
 , . . . , x

C
 ) / (x

1
 + . . . + x

C
)         (3.6) 

 
plays a central role in compositional data analysis. One of the main reasons for 
claiming that relative variances provide the simplest specification of compositional 
covariance structure is that 
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         var{log(s

i
 /s

j
)} = var{log(x

i
 /x

j
)}  (i = 1, . . . , C - 1;  j = i + 1, . . . , C)        (3.7) 

 
The fact that the relative variance of two parts is the same within a subcomposition 
and within the full composition means that the relative variation diagram for any 
subcomposition is simply the subdiagram formed by the links of parts, or equivalently 
by the selection of vertices, associated with the subcomposition. Moreover the centre 
of the subcompositional diagram is, by Property 1, at the centroid, say O* , of the 
subcompositional vertices. It is thus very simple to inspect visually within the full 
diagram the nature of any subcompositional variability. Indeed we could go further 
and estimate the proportion of the total compositional variability (Aitchison, 1986, 
Section 8.6) retained by the subcomposition. For example for the subcomposition 
formed from parts 1, . . . , C,  this proportion is, by Property 5, 
 

| | / | |*O i Oi
i

C

i

D

= =
∑ ∑

1

2 2

1
.          (3.8) 

 
 (c)   Collinear vertices and constant logcontrasts  If a subset, say 1, . . . C, of vertices 
is approximately collinear then we know that the associated subcomposition has a 
relative variation diagram which is one-dimensional. Remembering the nature of the 
singular value decomposition we see that if we were to perform a principal 
component analysis on the set of such subcompositions we would find that only one 
eigenvalue was appreciably non-zero. An immediate implication therefore is that the 
subcompositional variability is one-dimensional and the nature of the one-
dimensionality can be expressed as the constancy of  logcontrasts, of the form 
 

a
1
 log x

1
 + . . . + a

D
 log x

D
   (a

1
 + . . . a

D
 = 0).         (3.9) 

 
We shall see that this can give substantial insight into the nature of compositional 
variability. 
 
(d)   Orthogonal links and subcompositional independence. If two links ij and kl 
intersect at right angles then we see from Property 4 that  
 

corr{log(x
i 
/x

j
),log(x

k 
/x

l
)}.= 0 

 
and so the ratios x

i 
/x

j
 and x

k 
/x

l
) are uncorrelated and, within the context of additive 

logistic normality (Aitchison, 1986, Chapter 6), independent. Thus in exploratory 
compositional data analysis the search for ratios which vary independently is 
associated with detecting orthogonal links. We may note that in this search for 
independent ratios i, j, k, l need not be different. It is for example meaningful to ask 
whether x

i 
/x

D
  and x

j 
/x

D
 are independent and in the relative variation diagram this 

would be associated with iDj being right-angled. 
  
      There is also no need to confine this search to a pair of ratios. If two subsets of 
vertices lie on two lines at right angles then the associated subcompositions are 
independent (Aitchison, 1986,Section 10.3) while showing a highly dependent 
structure within each subcomposition, because of the collinearity of vertices. 
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Compositional markers 
 
The relative variation diagram may be regarded as part of a compositional biplot. To 
complete the picture we require compositional markers which allow a visual 
inspection of the relationship of each composition to the covariance structure of the 
compositional data set. To do this we use the nth row of U to plot the point 
( ) ( , )/N u un n− 1 1 2

1 2  as the marker representing the nth composition (n = 1, . . . , N) , as 
in Fig.3.2. Such markers have the easily established property that On Oi.  represents 
the departure of log(x

ni 
/x

nj
) from the average of this logratio over all the replicates.  Let 

P and P
n
 denote the projections of the centre O and the compositional marker n on the 

possibly extended link ji . Then On.ji =   ±|PPn  | | ji |, where the positive sign is taken 
if the directions of PPn and ji are the same, otherwise the negative sign is taken. A 
simple interpretation can be obtained as follows. Consider the extended line ji as 
divided into positive and negative parts by the point Pn  the positive part being in the 
direction of ji from . If Pn falls on the positive (negative) side of this line then the 
logratio log(x

ni 
/x

nj
) of the nth composition exceeds (falls short of) the average value of 

this logratio over all replicates and the further Pn is from P the greater is this 
exceedance (shortfall); if Pn coincides with P then the compositional logratio 
coincides with the average. In Fig. 3.2 the nth composition clearly has a logratio 
log(x

ni 
/x

nj
) which falls short of the overall average of this logratio. 

 
      A similar form of interpretation can be obtained from the fact that On.Oi 
represents the departure of the centred logratio log{x

ni
 /g(x

n
)} of the nth composition x

n
 

from the average of this centred logratio over all replicates. In Fig. 3.2 let Qn be the 
projection of the composition marker n on the possibly extended ray Oi. Then On.Oi 
= ±| OQ

n
 | | Oi |, the positive or negative sign depending on whether Qn and the vertex 

i lie on the same side or opposite sides from O. We then have the following simple 
interpretation. If Qn lies on the same (opposite) side of the divided line as the vertex i 
then the centred logratio log{x

ni
 /g(x

n
)}of the nth composition exceeds (falls short of) 

the average of this logratio over all replicates, and so we can infer that the ith 
component of the nth composition is higher (lower) than average relative to the other 
components. Obviously also the further Qn is from O the greater is the divergence 
from the average.  
 
      Although | On |2 = (N - 1)(u

n1

2 + u
n2

2) provides the Mahalanobis distance of the nth 
composition when s s3 4 0= = =. . .  we have found it as simple and more reliable to 
indicate possible outliers on the diagram by using the complete singular value 
decomposition and the exact Mahalanobis distance qn = (N - 1)(u

n1

2 + . . . + u
nd

2) . With 
this distance it is simple to compute the atypicality index of any composition (roughly 
the probability that a future composition will be more typical or have a smaller 
Mahalanobis distance than the considered composition). To avoid resubstitution bias 
the standard missing-one-out technique (Aitchison, 1986, p.175) is recommended and 
the atypicality index of a composition with Mahalanobis distance q computed from 
the singular value decomposition for the full data set can be shown to be 
 

Be qN N D N D( / ( ) , ( ), ( ))− − −1 12 1
2

1
2          (3.10)

      



 11 

 
where Be(t; a, b)  is the distribution function of a beta distribution of the first kind 
with parameters a and .b  
  
 
Differences between unconstrained and compositional biplots 
 
It must be clear from the above aspects of interpretation that the fundamental 
elements of a relative variation diagram are the links, not the rays as in the case of 
variation diagrams for unconstrained multivariate data. The complete set of links, by 
specifying all the relative variances, determines the compositional covariance 
structure and provides direct information about subcompositional variability and 
independence. It is also obvious that interpretation of the relative variation diagram is 
concerned with its internal geometry and would, for example, be unaffected by any 
rotation or indeed mirror-imaging of the diagram. 
 
      Another fundamental difference between the practice of biplots for unconstrained 
and compositional data is in the use of data scaling. For unconstrained data if there are 
substantial differences in the variances of the components, biplot approximation may 
concentrate its effort on capturing the nature of the variability of the most variable 
components and fail to provide any picture of the pattern of variability within the less 
variable components. Since such differences in variances may simply arise because of 
scales of measurement a common technique in such biplot applications is to apply 
some form of individual scaling to the components of the unconstrained vectors prior 
to application of the singular value decomposition. No such individual scaling is 
necessary for compositional data when the analysis involves logratio transformations. 
Indeed, since for any set of constants (c

1
, . . . , c

D
), we have  

 
cov{log(c

i
x

i 
/c

j
x

j
),log(c

k
x

k 
/c

l
x

l
)} = corr{log(x

i 
/x

j
),log(x

k 
/x

l
)}        (3.11) 

 
it is obvious that the covariance structure and therefore the relative variation diagram 
are unchanged by any differential scaling or 'perturbation' (Aitchison, 1986, Section 
2.8) of the parts. Only the centering process is affected by such differential scaling. 
Moreover any attempt at differential scaling of the logratios of the components would 
be equivalent to applying differential power transformations to the components of the 
compositions, a distortion which would prevent any compositional interpretation from 
the resulting diagram. It is perhaps worth pointing out here that, even for 
unconstrained multivariate data consisting of positive vectors, there is an advantage in 
the use of the logarithmic transformation, since biplots are then invariant to changes 
of scale because 
 

cov{log(c
i
x

i 
), log(c

j
x

j
)} = cov{log x

i 
, log x

j
}         (3.12) 

 
for any constants c

i
 , c

j
 . 

 
Biplots for bicompositions  
 
In compositional data analysis a number of problems arise where the vector associated 
with the experimental unit may consist of two compositions. For example, we shall 
require in our study of two conditional compositional biplot applications in Sections 5 
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and 6 to consider two such bicompositions, in Section 5 the ethnic and urban-rural 
compositions of 50 US states, and in Section 6 the mineral and major-oxide 
compositions of 21 tektites. Later in this Section we shall display in Figs. 3.3 and 3.4   
the bicompositional biplots for these two data sets.  
 
      As we have seen in earlier in this Section biplots for compositional variability are 
not beset by the problems of scaling encountered in unconstrained variability. For this 
reason it is worth considering whether it is possible to obtain within one biplot a 
picture of the individual variation of each composition and also their joint variability 
or association. The relative variation diagram may be readily adapted to such a data 
set, simply by the construction of row- and column-centred logratio data matrices Z

1
 

and Z
2
 for each of the two compositional data sets, and then application of the singular 

value decomposition to the partitioned vector 
 

Z = [Z
1
  Z

2
] = US[V

1

T  V
2

T].         (3.13) 
 
The columns of V

1

T and V
2

T then refer to the parts of the first and second  compositions 
and the construction of the relative variation diagram proceeds exactly as described 
earlier  Moreover the fact that the column sums of  V

1
 and V

2
 are both zero ensures 

that the centre O of the diagram is the centroid separately of each of the compositional 
part vectors. Indeed within this one diagram we have approximations to the separate 
relative variation diagrams for each of the two compositional data sets. 
 
 
Ethnic and urban-rural compositions of US states  
 
For each of 50 states of the USA the 5-part ethnic composition [white, black, native 
American, hispanic, others including asian], abbrecviated to [wh, bl, na, hi, ot],nd the 
2-part (urban, rural), abbreviated to [ur, ru], compositions are available. This data set 
excludes Washington D.C. which is completely urban.  Treating these as 5 × 2 
bicompositions we obtain the joint biplot of Fig. 3.3 retaining 85.0 per cent of the 
total variability. The subplots for the ethnic and urban-rural compositions are virtually 
identical to biplots that would arise from separate constuction of biplots for each set 
of compositions.. 
 
      A notable feature of the ethnic plot is the almost coincidence of the hispanic and 
other vertices hi and ot, indicating a low relative variation 0.47 compared with the 
largest relative variation 4.87 between native American and black, associated with the 
longest link na-bl. We may also note some links intersecting at approximately right 
angles, for example hi-wh (or ot-wh) and na-bl indicating almost zero correlation, 
namely 0.041 (or 0.042) between the logratios of hi/wh (or ot/wh) and na/bl. Similarly 
links na-ot and bl-ot intersect at approximately right angles again corresponding to 
near-zero correlation (0.023) between the associated logratios. 
 
      In considering the joint variability of the ethnic and urban-rural compositions we 
note that the hi-wh link makes an acute angle with the ur-ru link corresponding to 
high positive correlation (actually 0.74) between the logratios hi/wh and ur/ru. On the 
other hand the na-wh link is almost perpendicular to the ur-ru link corresponding to 
almost zero correlation (in fact 0.05) between the associated logratios. 
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      The composition markers for the states fall into well-defined clusters according to 
ethnic ratios. For example, California (CA), Hawaii (HA), New Mexico (NM) and 
Texas (TX) with the highest hispanic and/or asian proportions are clearly associated 
with the hi and ot vertices, whereas Alabama (AL), Georgia (GE), Louisiana (LO), 
Mississippi (MI) and South Carolina (SC) with relatively the largest black populations 
are clearly associated with the bl vertex. Also the highly urban California is well out 
on the ru-ur link. The reader will be able to identify other interesting ethnic and 
urban-rural features of the biplot. Of the 50 states four have bicompositional 
atypicality indices greater than 0.95, Nebraska (NE) (0.998), Hawaii (0.996), New 
Mexico (0.97), Massachusetts (MA) (0.958). The reasons for these registering as 
atypical states are readily determined: Nebraska has the relatively lowest hispanic 
proportion despite its high urban-rural ratio, Hawaii has by far the highest other 
(asian) proportion, New Mexico has by far the highest hispanic proportion, and 
Massachusetts has the relatively lowest native American proportion.  
 
 
Mineral and major-oxide compositions fo tektites 
 
For an interesting comparison between bicompositional and conditional biplots we 
provide the bicomposition for mineral and major oxide compositions of 21 tektites in 
Fig. 3.4, See Section 6 for full discussion of this application. 
  
 
4   Conditional biplots for bicompositions  
 
In many studies involving compositions, interest may lie in the nature of the 
dependence of one composition (the response composition) on another (the covariate 
composition). For example, in the study of US Presidential elections interest may be 
in how the three-part composition, the percentage division among the three 
candidates, of the 1992 presidential vote in each state depends on the ethnic 
composition of the state. 
 
      Suppose that interest is in the dependence of a D

2
-part composition on a D

1
-part 

composition and that the corresponding compositional data sets based on N cases are 
the response compositional matrix X

2
 and the covariate compositional matrix X

1
. A 

variety of biplot techniques related to reduced rank regression, canonical correlation 
analysis and redundancy analysis designed to bring out conditional features of 
unconstrained data sets are well established. Of these, we adapt here the version of 
Ter Braak (1990, 1991), which is intermediate between redundancy analysis and 
canonical correlation analysis. We first summarise the necessary adaptation of the 
computations and plotting to compositional data sets. In these computations Moore-
Penrose pseudo- inverses are used. 

Computations 
 
1     Compute the centred logratio data matrices Z Z1 2,  corresponding to X X1 2,  as  
       defined in (3.2). 
 
2     Compute the estimated centred  logratio covariance matrices      
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                             Γtj i

T
jZ Z N i j= − =/ ( ) ( , , )1 1 2 . 

 
3     Obtain the singular value decomposition of Γ Γ Γ11

1 2
12 22

1 2− −/ /  as PSQT . 
 

4     Evaluate U P V Q= =Γ Γ11
1 2

22
1 2/ /. .  

 
5     Evaluate A U= −Γ11

1 . 
 
6     Evaluate M Z A= 1 . 
 
We shall find the following easily proved relationships involving the above constructs 
important in the interpretation of the various biplots we shall construct. 
 
(a) UU T = Γ11  , 

(b) MU ZT = , 
 
(c) USV T = Γ12  , 
 
(d) MSV ZT = ~

1  , the fitted values of the centred logratio responses in a regression     
             on the covariate centred logratios.  
 
(e) ASV T =

~
Θ , the regression coefficients in the regression described in (d). 

 
As a basis for applications we first describe here what may be termed a full 
conditional biplot which uses the order 2 approximations from the above 
computations, in which case relationships (a)-(e) take an approximate form, as in 
unconditional biplots,.  
 
Construction of the standard conditional biplot  
 
Refer to Fig 4.1. 
 

1 Corresponding to each of the parts of the covariate composition, construct a 
vertex i.  (i = 1, . . , D

1
) with coordinates ( , )u ui i1 2 . 

 
2 Corresponding to each of the parts of the response compositions construct a  
      vertex  k  (k = 1, . . . , D

2
) with coordinates ( , )s v s vk k1 1 2 2 . 

 
3 Corresponding to each case or bicomposition construct a case or  
      bicompositional marker n  (n = 1, . . . , N)  with coordinates ( , )m mn n1 2  from  
      the first two columns of M. 

 
4 Corresponding to each of the parts of the covariate composition construct a  
      secondary vertex I (I = 1, . . . , D

1
) with coordinates ( , )a aI I1 2  from the first  

      two columns of A. .  
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     First, the relationships (a) and (b) mean that the vertices associated with the parts 
of the covariate composition and the markers provide a complete biplot for the 
covariate compositions of the kind we have already considered in Section 3. Secondly 
relationship (c) gives the opportunity of investigating the dependence of the response 
composition on the covariate composition within the conditional biplot. For example, 
with indices i, j referring to the covariate and indices k, l referring to the response 
compositions, the scalar product ij kl

r r
.  and cos(iLj) provide estimates of 

cov{log( / ), log( / )}x x x xi j k l1 1 2 2  and corr x x x xi j k l{log( / ),log( / )}1 1 2 2 , respectively, 
where L is the intersection of ij and kl. Thirdly from relationship (d) we have that 

On Ok
→ →

.  provides an estimate of the amount by which the fitted value of the centred 
response logratio log{ / ( )}x g xk2 2  exceeds the average over all the cases of the fitted 
values of that centred logratio. A simpler and more useful form of this is in terms of 

simple logratios with On kl
→ →

.  estimating the amount by which the fitted value of the 
logratio log( / )x xk l2 2  exceeds the average over all the cases of the fitted values of 
that logratio. We emphasize here that this conditional biplot does not allow the 
reconstruction of the response composition but only of the fitted response 

composition. Fourthly from (e) we see that the scalar products LI Ok
→ →

.  provide 
approximations to the  regression coefficients in a regression of the centred logratio 
responses on the covariate centred logratios. Finally we note that since this 
conditional biplot is based on the singular value decomposition of the mixed 
covariance matrix Γ

12
 the proportion of total variation retained by the biplot is related 

to this covariance matrix. 
      
      The application of these results to the following examples will help to illustrate 
their use.  

. 
5   Application to the 1992 US Presidential Election 

 
For each of the 50 states of the US the proportions of votes cast for the three 
Presidential candidates Bush, Clinton and Perot form a three-part composition, 
abbreviated to [bu, cl, pe]. The question we now pose is whether we can obtain 
insights into the possible dependence of this voting pattern on the ethnic and urban-
rural compositions of the states through the construction of the conditional biplot as 
described above. In this construction the covariate is the bicomposition consisting of 
the ethnic and urban-rural compositions and so consists of the two centred logratio 
matrices as described in Section 3.  
 
      There is a danger in conditional biplot use of crowding too many features into a 
single diagram, such as the full conditional biplot. We shall avoid this here by using 
two different graphical representation to bring out features of the dependence of the 
voting composition on the ethnic and urban-rural compositions. In Fig. 4.2 we plot a 
vertex for each of the voting parts as in Step 2 of the construction of the standard 
biplot above. Then for each of the covariate parts we plot a supplementary vertex as 
indicated in Step 4. Then a simplified version of relationship (e) allows us to interpret 
any scalar product of a voting link and an ethnic or urban-rural link as the relevant 
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regression coefficient. As indicated in Section 3 logratio transformations have a 
stabilising effect on variability and in this example the ranges of values of all the 
logratios are fairly similar. This means that the effect of any of the ethnic and urban-
rural logratios depends substantially on the appropriate regression coefficients. For 
example, the scalar product of the Bush-Perot link bu-pe and the white-black link wh-
bl is -|wh-bl| × (projection of bu-pe on wh-bl) since the angle of intersection of bu-pe 
and wh-bl is obtuse and this is obviously large relative to other such scalar products. 
The inference therefore is that the larger the black-white ratio is in a state the greater 
the advantage is likely to be towards Bush away from Perot. Similarly consideration 
of the bu-pe and ur-ru links shows that Perot's better performances relative to Bush 
are in states with higher urban to rural ratios, whereas the almost perpendicular bu-cl 
and ur-ru links show that the relative Clinton-Bush vote is hardly affected by the 
urban-rural composition.  
 
      We can report here that comparison of the signs and magnitudes of all the 33 
possible scalar products with those which can be computed by standard compositional 
regression methods (Aitchison, 1986 Chapter 12) shows agreement in all except one, 
the bu-pe and wh-ot links where the scalar product is negative whereas the true 
regression coefficient is slightly positive. The overall general picture is that Perot 
should do relatively badly compared with Bush and Clinton in states with higher 
black proportions but should fare better in states with a higher urban-rural ratio. 
Moreover Clinton fares better relative to Bush in states with higher proportions in the 
category other. Readers may easily work out other implications for themselves. 
  
     Other forms of the conditional biplot can be used to bring out different aspects of 
the conditional modelling but will not be pursued here. 
 
      The quality of the biplot can be measured in terms of the Frobenius norm variation 
retained by the second order approximation used by the biplot. For the centred 
logratio covariance matrix Γ

12
 on which the singular value decomposition is based and 

which has rank 2 the proportion retained is clearly 1; similarly for the fitted response 
matrix Z

2
 the proportion retained is 1. For the covariate centred data matrix Z

1
 and the 

covariate centred logratio covariance matrix Γ
11
 the proportions are 0.40 and 0.61, 

respectively.     . 
 
      This departure from overall pattern raises the question of how we may handle the 
equivalent of examination of the errors in a standard unconstrained multivariate 
regression analysis. The answer is to be found in terms of the perturbation which 
measures the change between actual composition, say x, and a fitted composition, say 
~x . This can be expressed as the perturbation 
 

p x x C x x x xD D= =~ [~ / ,. . . . , ~ / ]Θ 1 1 .        (4.1) 
 
The set of these perturbations then plays a role similar to the error vectors in 
unconstrained multivariate regression analysis. If we then construct in Fig. 4.3 a 
simple compositional biplot of these perturbations along the lines of Sections 3 we 
can see in comparison with Fig.. 4.2 the direction of the departures from the general 
pattern. For example, Utah is atypical in favouring Bush despite having small 
black/white and large urban-rural ratios, which according to the general pattern as 
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seen in Fig.4.2 would favour Perot. The Hawaii perturbation indicates that the fitted 
pattern [0.33, 0.46, 0.21] is incorrect despite Hawaii’s dominant other proportion and 
high urban/rural ratio and requires adjustment in favour of Bush and Clinton to arrive 
at the actual vote [0.37, 0.49, 0.14]. In a similar way the Tennessee perturbation takes 
a fitted vote [0.41, 0.44, 0.15] to an actual vote [0.43, 0.47, 0.10]. We may note also 
the substantial departure of Clinton's home state Arkansas from patterned support for 
Bush towards the home candidate.        

 
6   Application relating tektite mineral compositions to major oxide compositions  
 
As a second example to illustrate conditional compositional biplot techniques and to 
provide some unusual features which require care in interpretation we consider a data 
set for 21 tektites (Chao, 1963; Miesch et al, 1966), for which the two compositions 
are 8-part major-oxide compositions and 8-part mineral compositions. These are 
subcompositions of the original data set, this reduction being adopted for the sake of 
simpler exposition. While experimentally these two types of compositions are 
determined by completely different processes they are obviously chemically related 
since the minerals are themselves more complicated major oxide compounds. The 
challenge of the conditional biplot of Fig. 4.4 with mineral composition as the 
response and major-oxide composition as the covariate, is whether it can at least 
identify these relationships from the compositional data alone, without any additional 
information about the chemical formulae of the minerals, and hopefully provide other 
meaningful interpretations of the data. 
 
Table 4.1.  Oxides and associated minerals in the tektite study 
 
 
Oxide  Mineral Abbreviation   Formula 
 
SiO2  quartz  qu   SiO2 
K2O  orthoclase or   KAl Si3O8  
Na2O  albite  al   NaAlSi3O8 
CaO  anorthite an   CaAl2Si3O8  
MgO  enstatitie en   MgSiO3 
Fe2O3  magnetite ma   Fe3SiO4 
Ti  ilmenite il   FeTiO3 
P2O5  apatite  ap   Ca3(Fe,Cl)(PO4)3 
 
 
 
     A striking feature of the diagram is that it is indeed successful in identifying which 
oxides are associated with which minerals. From Table 4.1, which provides the 
chemical association between minerals and major oxides, we see that, apart from 
SiO2, each of the other seven major oxides is associated with only one of the minerals, 
for example MgO is contained only in enstatite. In the biplot diagram each of these 
seven major oxide vertices is close to its corresponding mineral vertex. This means 
that the link associated with any two of these major oxides is nearly parallel to the 
link of the corresponding minerals and so the mineral logratios are all highly 
correlated with the corresponding major oxide logratios. It is in this sense that the 
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conditional biplot identifies the chemical relationships. Moreover even SiO 2, which is 
a constituent of all eight minerals is nevertheless primarily identified with quartz 
which is simply its oxide self. 
 
      All of this seems splendid until the quality of the approximation is investigated. 
The proportion of the covariance matrix Σ12  which is retained by the biplot is only 
0.204. The reason for this is to be found in Step 3 of the computations. The singular 
value decomposition has singular values 1.00, 1.00, 1.00. 0.999, 0.994. 0.868, 0,060 
and it would require a fourth order approximation and a four-dimens ional biplot to 
raise the quality to a reasonable 0.911 proportion retained. The reason for this 
disappointing quality is easily determined. It lies in the fact that within the constraints 
of compositional data each mineral is almost independently related to its major oxide, 
in the sense that each mineral logratio is almost perfectly linearly related to the 
corresponding major-oxide ratio. An analogous situation with unconstrained data 
would be the assemblage of independent univariate regressions, each with a different 
response and different covariate, into a multivariate regression. The apparent success 
of the conditional biplot lies more in the strength of the individual logratio regressions 
than in the quality of the biplot. It is important here to distinguish between the quality 
of the biplot and the reliability of the logratio regression of mineral on major oxide 
composition. The proportion of the mineral variability explained by the regression can 
be shown to be 0.983. 
 
      In such circumstances it seems worth considering how the bicompositional biplot 
of Section 3 fares. Fig. 3.4 provides such a biplot, with the centred logratio data 
matrix [Z1 Z2] having 0.861 of its variability retained. The corresponding proportions 
retained by the second order approximation are for Γ11  0.860, for Γ12  0.874, for Γ22   
0.887. It is also clear that Fig. 3.4 picks out the chemical relationships between 
minerals and major oxides as firmly as in Fig. 4.4. It certainly seems in this case that 
rather than place the emphasis of the biplot approximation on the conditional aspects 
it is as effective to consider the joint biplot as the means of investigating dependence 
of response composition on covariate composition.     
 
      Fig.3.4 can be used to investigate a theory put forward by Miesch et al (1966) of 
the formation of tektites which they identify as the independence of the set of three 
ratios (Fe2O3, MgO, P2O5) / SiO2 from the set of three ratios (CaO, Na2O, K2O) / 
SiO2. This in turn implies that the subcompositions 
 
   [Fe2O3, MgO, P2O5],  [CaO, Na2O, K2O]    
 
must be independent and we would then be disappointed in failing to identify the 
necessary approximate right angles within Fig.3.4.. For example, the Fe2O - P2O5 and 
CaO - Na2O links are approximately parallel instead of orthogonal, throwing 
considerable doubt on the theory. Rejection of the theory can, of course, be confirmed 
by a full statistical analysis testing the hypothesis of independence of the above two 
subcompositions by the procedure described in Aitchison (1986, Section 10.3) for 
which the significance probability is 0.04. 
 

7   Discussion 
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We have not treated many of the finer points of biplots which appear in the ever-
growing literature on the subject. We have preferred to keep the diagrams simple in 
the hope that those faced with compositional data analysis may see them as a 
convincing case for the use of the logratio form of analysis. Although we have not 
given any examples it is clear that conditional compositional biplots may be readily 
adapted to situations where either the response or the covariate consists of a 
multivariate vector of unconstrained measurements. All that is required is that such 
vectors be centred as for standard unconstrained biplots. 
 
      The question of what constitutes a satisfactory degree of approximation in 
compositional biplot use is, as with unconstrained biplots, a difficult one to answer 
with any objectivity. Our own view is that biplots are no substitute for relevant 
statistical analysis but often play an important role in allowing a simple visual 
exposition of the findings of the analysis. For this purpose we would be reluctant to 
use a biplot which retained less than a proportion 0.75 of the total variability of the 
data set. A lesser degree of approximation, as in the conditional biplot of Fig. 4.4, is 
an indication that a higher order approximation is required. In such a situation there is 
the option of attempting a three-dimensional representation or the use of the (1, 2) 
order biplot together with the (1, 3) order biplot, as is commonly reported in the use of 
the first three principal components in a principal component analysis. 
 
      Two main distinctions between compositional and unconstrained biplots should be 
reemphasized. First, in order to ensure simple valid ratio comparisons links rather 
than rays are the basic components of biplots. Secondly, scaling transformations have 
no role to play in the construction of biplots after the basic logratio transformation has 
been performed. Indeed the logratio transformation has a stabilising effect on 
component variability which ensures that the singular value decomposition, unlike its 
action in unconstrained variability, does not concentrate on some aspects of the  
variability at the expense of others. 
 
      There are obviously many other situations where conditional biplots may prove 
useful if only for expository purposes. For example it would  be of interest to compare 
analyses of later US Presidential Elections with that of 1992 discussed in Section 5. 
Also in the recent 2005 UK elections there was considerable interest in the nature of 
the ‘swing’ from party to party within constituencies, relative to the 2001 election, 
particularly in the main parties [Conservative, Labour, Liberal].  Such swings are 
essentially perturbations and so interest might be directed towards interpretation of 
how a conditional biplot relates these perturbations to other covariates descriptive of 
the constituencies.  
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Fig 3.1  The basic elements of a compositional biplot
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Fig. 3.2  Interpretation of case markers in a compositional biplot
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Fig 3.3  Bicompositional biplot of ethnic and urban−rural compositions of 50 US states
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Fig. 3.4  .Bicompositional biplot of mineral and major−oxide compositions of 21 tektites
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Fig. 4.1  Basic features of the stndarcd conditional biplot
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Fig. 4.2  Conditional biplot showing dependence of vote on ethnic and urban−rural compositions
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Fig 4.3  Biplot of conditional error perturbations for US 1992 Presidential election
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Fig. 4.4  Conditional biplot of mineral on major oxide compositions for 21 tektites
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