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1 Introduction

Compositional data analysis motivated the introduction of a complete Euclidean structure in the
simplex of D parts. This was based on the early work of J. Aitchison (1986) and completed recently
when Aitchinson distance in the simplex was associated with an inner product and orthonormal
bases were identified (Aitchison and others, 2002; Egozcue and others, 2003). A partition of
the support of a random variable generates a composition by assigning the probability of each
interval to a part of the composition. One can imagine that the partition can be refined and the
probability density would represent a kind of continuous composition of probabilities in a simplex
of infinitely many parts. This intuitive idea would lead to a Hilbert-space of probability densities
by generalizing the Aitchison geometry for compositions in the simplex into the set probability
densities.

This approach is appealing due to several circumstances. We remark some of them:

◦ perturbation between probability densities is just the operation implied in the Bayes theorem,
as remarked by J. Aitchison for discrete probabilities, and now generalized to continuously
defined variables and parameters;

◦ the approach suggests a new distance between probability densities, based on the principles of
the standard Aitchison distance for compositions;

◦ probability densities would be approached by orthogonal series and least squares approximations
would be allowed;

◦ probability densities would be represented by their coefficients on some orthonormal basis. This
would allow a proper definition of expectation of random probability densities as they are
used in Bayesian statistics (predictive distributions).

Other points could be pointed out but they should be developed in future research.

The present aim is to give the basic definitions of perturbation, power transformation, Aitchi-
son inner product, norm and distance when generalized to probability densities whose support
is an interval. Several technical aspects are also proved; they are mainly related to the required
completeness of the Hilbert space. Finally, three Hilbert bases (orthonormal) are defined using
the standard theory of L2(−`, `), the Hilbert space of square-summable functions in the interval
(−`, `).

2 Algebraic structure of probability density functions on
finite intervals

In what follows, we will deal with probability density functions on a finite interval, (−`, `), ` > 0,
without loss of generality. That is, we will consider real functions f : (−`, `) → R such that: (i)

0 ≤ f(x) and (ii)
∫ `

−`

f(x) dx = 1. Additionally, for our initial results, we also restrict our attention

to bounded densities, 0 < m ≤ f(x) < M . We will denote by A2
` the set of such bounded pdf’s.



The fundamental algebraic composition laws are the perturbation and power transformation that
we define as

Definition 2.1 Let f, g ∈ A2
` be any two probability density functions on (−`, `). We define its

perturbation as the function ⊕ : A2
` ×A2

` → A2
` given by

f ⊕ g =
f(x)g(x)∫ `

−`

f(ξ)g(ξ) dξ

= C(fg). (1)

Definition 2.2 Let f ∈ A2
` be a probability density function on (−`, `) and let α be a real number.

We define the power transformation of f as the function ⊗ : R×A2
` → A2

` given by

α⊗ f =
fα(x)∫ `

−`

fα(ξ) dξ

= C(fα). (2)

Now, we can state and prove the main result on the algebraic structure of the set A2
` .

Theorem 2.1 The set of probability density functions with the perturbation and the power trans-
formation, (A2

` ,⊕,⊗), is a vector space.

Proof. We have to prove the following properties:

(a) Commutative group structure of (A2
` ,⊕). For any f, g, h ∈ A2

` we have that

• operation (1), f ⊕g, is closed in the set A2
` . In fact, the product f(x)g(x) is bounded as

0 < mfmg ≤ f(x)g(x) ≤ MfMg, being mf , Mf , mg, Mg the lower and upper bounds
for f and g respectively and the product is integrable.

• Perturbation is commutative, f ⊕ g = g ⊕ f.

• Perturbation is associative, (f ⊕ g)⊕ h = f ⊕ (g ⊕ h).

• There exist a unique neutral element e(x) = 1/2` such that f ⊕ e = e⊕ f = f.

• To each f corresponds a unique f = f−1 such that f ⊕ f = f ⊕ f = e.

(b) Power transformation properties. For any f, g ∈ A2
` and α, β ∈ R we have that

• operation (2), α⊗ f , is in A2
` for any real α. Indeed, 0 < mα ≤ fα ≤ Mα if α ≥ 0 and

0 < Mα ≤ fα ≤ mα if α < 0 and fα is integrable.

• Power transformation is associative, α⊗ (β ⊗ f) = (α · β)⊗ f.

• Neutral element, 1⊗ f = f.

• Power transformation is distributive with respect perturbation, α⊗ (f ⊕ g) = (α⊗ f)⊕
(α⊗ g).

• Power transformation is distributive with respect to scalar addition, (α + β) ⊗ f =
(α⊗ f)⊕ (β ⊗ f).

The preceding properties immediately follow from (1) and (2) and the proof is completed. ¤



3 Geometric structure of probability density functions on
finite intervals

In order to structure A2
` as a pre-Hilbert space, we define the inner product of bounded probability

densities. The associated norm and distance are also defined. These definitions are directly inspired
in the corresponding inner product, norm and distance in the simplex which constitute the main
features of the so called Aitchison geometry (Aitchison and others, 2002; Egozcue and others,
2003). This is the reason why these definitions are subscribed with A and the spaces of densities
are also denoted with A’s.

Definition 3.1 Let f, g ∈ A2
` be any two probability density functions on (−`, `). We define its

inner product as the function <,>A: A2
` ×A2

` → R given by

< f, g >A=
1
4`

∫ `

−`

∫ `

−`

log
f(x)
f(y)

× log
g(x)
g(y)

dxdy . (3)

Developing the right hand side of (3) we get

< f, g >A=
1
4`

∫ `

−`

∫ `

−`

[
log f(x)− log f(y)

]
×

[
log g(x)− log g(y)

]
dxdy

=
1
2`

[∫ `

−`

∫ `

−`

log f(x) log g(x) dxdy −
∫ `

−`

∫ `

−`

log f(x) log g(y) dxdy

]

=
∫ `

−`

log f(x) log g(x) dx− 1
2`

∫ `

−`

log f(x) dx

∫ `

−`

log g(y) dy. (4)

We point out that, for density functions in A2
` satisfying

∫ `

−`
log f(x)dx = 0, their inner product

in A2
` is equal to the ordinary L2 inner product of their logarithms.

Definition 3.2 Let f ∈ A2
` be any probability density function on (−`, `). We define its norm,

associated with the inner product defined in (3), as the function ‖ ‖A: A2
` → R given by

‖ f ‖A=
√

< f, f >A =

[
1
2`

∫ `

−`

∫ `

−`

log2 f(x)
f(y)

dxdy

]1/2

=




∫ `

−`

log2 f(x) dx− 1
2`

(∫ `

−`

log f(x) dx

)2



1/2

. (5)

Definition 3.3 Let f, g ∈ A2
` be any two probability density functions on (−`, `). We define the

distance between them as the function dA : A2
` ×A2

` → R given by

dA(f, g) =

[
1
4`

∫ `

−`

∫ `

−`

(
log

f(x)
f(y)

− log
g(x)
g(y)

)2

dxdy

]1/2

. (6)

The existence of the inner product in A2
` is guaranteed by the boundness of the functions and their

logarithms. From (3), (5) and (6) next theorem immediately follows

Theorem 3.1 The set of probability density functions with the inner product, norm and distance
defined previously, (A2

` , <, >A, || ||A, dA), is a pre-Hilbert space (also metric and normed space).



In order to complete A2
` to a Hilbert space of probability densities we need to characterize the

closure of A2
` , i.e. to identify all the limits of Cauchy’s sequences of elements in A2

` . A comfortable
way to do it is to build up a Hilbert base in A2

` and then obtain the Fourier coefficients of
the probability densities. The completion of A2

` is then got when all absolutely square-sumable
sequences of Fourier coefficients are considered (Berberian, 1961, p. 49-50).

Now, we state and prove the following theorem.

Theorem 3.2 If {ϕj}j≥0 is a set of bounded functions that are orthonormal and a Hilbert base of

L2(−`, `) with ϕ0(x) =
1√
2`

, then {ψj}j≥1 where ψj = C [exp(ϕj)] , is an orthonormal set in A2
` .

Proof. We claim that for all j ≥ 1, is ψj ∈ A2
` . In fact, since ϕj is bounded, then 0 < m <

ψj < M. That is, ψj is also bounded. Furthermore,
∫ `

−`

exp[ϕj(x)] dx < +∞, and
∫ `

−`

ψj(x) dx =
∫ `

−`

C [exp(ϕj(x)] dx = 1. As a consequence, ‖ ψj ‖2A< +∞, and our claim is proved.

Next, orthogonality is established, i.e., < ψj , ψk >A= 0 for all (j, k) with j 6= k. Explicitly,

< ψj , ψk >A =
∫ `

−`

log {C(exp[ϕj(x)])} log {C(exp[ϕk(x)])} dx

− 1
2`

∫ `

−`

log {C(exp[ϕj(x)])} dx

∫ `

−`

log {C(exp[ϕk(y)])} dy

=
∫ `

−`

ϕj(x)ϕk(x) dx−
∫ `

−`

ϕj(x) log

[∫ `

−`

exp[ϕk(w)] dw

]
dx

−
∫ `

−`

ϕk(x) log

[∫ `

−`

exp[ϕj(w)] dw

]
dx

+ 2` log

[∫ `

−`

exp[ϕk(w)] dw

]
log

[∫ `

−`

exp[ϕj(z)] dz

]

− 1
2`

∫ `

−`

log





exp[ϕj(x)]∫ `

−`

exp[ϕj(z)] dz





dx

∫ `

−`

log





exp[ϕk(x)]∫ `

−`

exp[ϕk(w)] dw





dx

= − 1
2`

∫ `

−`

ϕj(x) dx

∫ `

−`

ϕk(x) dx = 0.

Notice that in the last equality we have used the fact that for all j ≥ 1, is < ϕj , ϕ0 >= 0, the

orthogonality in L2(−`, `). That is,
∫ `

−`

ϕj(x) dx = 0. This completes the proof. ¤

Following the notation in the preceding theorem,

Theorem 3.3 If g ∈ A2
` , then

∞∑

j=1

∣∣< g, ψj >A

∣∣2 < +∞.



Proof. In fact,

∞∑

j=1

∣∣< g, ψj >A

∣∣2 =
∞∑

j=1

∣∣∣∣∣< log g, log ψj >A − 1
2`

∫ `

−`

log g(x) dx

∫ `

−`

log ψj(y) dy

∣∣∣∣∣

2

=
∞∑

j=1

∣∣∣< log g, ϕj − log
∫ `

−`

exp[ϕj(z)] dz >

− 1
2`

(∫ `

−`

log g dx

)(∫ `

−`

ϕj(x) dx− 2` log
∫ `

−`

exp([ϕj(z)] dz

)∣∣∣
2

=
∞∑

j=1

∣∣∣< log g, ϕj > −
(∫ `

−`

log g dx

)
log

∫ `

−`

exp[ϕj(z)] dz

− 1
2`

(∫ `

−`

log g dx

)(∫ `

−`

ϕj(x) dx− 2` log
∫ `

−`

exp[ϕj(z)] dz

)∣∣∣
2

=
∞∑

j=1

∣∣< log g, ϕj >
∣∣2 < +∞.

¤

After obtaining an orthogonal set in A2
` , we can complete A2

` automatically by closing the space
with all density functions whose Fourier coefficients are square-summable. This closed space is
denoted A2(−`, `) and it is a Hilbert space.

Perturbation (1) is extended from A2
` to A2(−`, `) in a standard way. Any two densities f, g ∈

A2(−`, `) are characterized by Cauchy sequences of bounded densities in A2
` , namely {fi}i≥1 and

{gi}i≥1. Perturbation is defined for i-th term, fi ⊕ gi = hi. The sequence {hi}i≥1 is easily proved
to be a Cauchy sequence in A2

` and then representing a density h ∈ A2(−`, `). The extension is
thus attained by setting f ⊕ g = h. Extensions of power transformation (2), inner product (3),
norm (5) and distance (6) are defined in a similar way.

However, the density functions of A2(−`, `) are not explicitly characterized. The following theorem
gives an equivalent explicit definition of A2(−`, `).

Theorem 3.4 Let g : (−`, `) → R be a non-negative function such that
∫ `

−`

g(x) dx = 1. Then,

g ∈ A2(−`, `) if and only if log g ∈ L2(−`, `).

Proof. The result follows from
∣∣∣
∫ `

−`
log g(x) dx

∣∣∣
2

≤ ∫ `

−`

∣∣log g(x)
∣∣2 dx. ¤

A simple density function in (−1/2, 1/2) is the Beta density, namely

f(x) =
1

B(a, b)

(
x +

1
2

)a−1 (
x− 1

2

)b−1

, a > 0, b > 0,

where B(a, b) is the Euler Beta function. It has either zeros or asymptotes at ±1/2 and then it is
not in A2

1/2. However, log f(x) is in L2(−1/2, 1/2) and then f ∈ A2(−1/2, 1/2).

4 Hilbert Basis in A2(−`, `)

Theorem 3.2 provides a simple method to find out Hilbert basis in A2(−`, `). Each bounded
Hilbert base in L2(−`, `) containing the constant is straightforward transformed into Hilbert base
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Figure 1. Blue: Beta density in (−1, 1), a = 5, b = 7.
Red: 12 term truncated Fourier series with respect the
Fourier base in A2(−1, 1).
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Figure 2. Blue: Beta density in (−1, 1), a = 5, b = 7.
Red: 15 term truncated Fourier series with respect the
Haar base in A2(−1, 1).
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Figure 3. Blue: Beta density in (−1, 1), a = 5, b = 7.
Red: 12 term truncated Fourier series with respect the
Legendre base in A2(−1, 1).



in A2(−`, `) taking closed exponentials. Three standard Hilbert basis for A2(−`, `) follow:

Fourier base

For i = 1, 2 and k ≥ 1, {fin(x)} where

f1k(x) = C
[
exp

(
1√
`

cos
kπx

`

)]
, f2k(x) = C

[
exp

(
1√
`

sin
kπx

`

)]
,

is a Fourier basis in A2(−`, `).

Haar base

For m = 0, 1, 2, . . . and n = 0, 1, 2, . . . , 2m − 1,

ψmn(x) = C
[
exp

{√
2m

2`
ψ

(
2m x + `

2`
− n

)}]
,

where

ψ(x) =





1, 0 ≤ x <
1
2
;

−1,
1
2
≤ x < 1;

0, otherwise,

is the Haar (1910) function. It is a Haar base in A2(−`, `).

Legendre base

For n ≥ 1,

ξn(x) = C
[
exp

[√
2n + 1

2`
Pn

(x

`

)]]

where Pn are the ordinary Legendre polynomials (Abramowitz, 1972, p. 775), i.e., P0(z) = 1,
P1(z) = z, P2(z) = (3z2 − 1)/2, and

Pn(z) =
1
2n

bn/2c∑

k=0

(−1)k

(
n

k

)(
2n− 2k

n

)
zn−2k, n = 1, 2, 3, . . .

is a Legendre basis in A2(−`, `).

A Hilbert base in A2(−`, `) allows us representation of densities by Fourier series. Assume {ψi}i≥1

is a Hilbert base in A2(−`, `) and f ∈ A2(−`, `). The i-th Fourier coefficient of f is ci = 〈f, ψi〉A
and f is represented by the Fourier series

f(x) =
∞⊕

i=1

(ci ⊗ ψi) .

Truncated Fourier series produce least squares approximations of probability densities in the sense
of Aitchison square norm, i.e. the error is Aitchison-orthogonal to the projection subspace. Figures
1, 2 and 3 show a beta probability density in (−1, 1) with parameters a = 5, b = 7 and a truncated
Fourier series using the Fourier (Fig. 1), Haar (Fig. 2) and Legendre (Fig. 3) Hilbert basis.
We notice that Aitchison norm approximation forces truncated series to match more accurately
low values of the density than higher ones as we expect when approximating compositions in the
simplex following Aitchison geometry.



5 Conclusion

Basic concepts of Aitchison geometry of the simplex have been generalized to the set of probability
density functions with support on a finite interval. Probability density functions are intuitively
viewed as compositions of infinitely many parts and the operations in the simplex are in this way
adapted to density functions.

The set of probability density functions whose logarithm is square-summable is shown to be an
infinite dimensional Hilbert space and some Hilbert basis are built up from the corresponding well
known Hilbert basis in the space of the square-summable functions.

The obtained results suggest several research lines concerning probability density functions. In
this context, appealing points are the possibility of representing probability densities by their
Fourier coefficients and the review of the concept of expectation of a random probability density
(predictives in Bayesian statistics).

We have avoided the problem of generalizing this theory to densities whose support is the whole
real line. This generalization implies additional difficulties and it remains open.

6 References

Abramowitz, M. and Stegun, I.A., 1972, Handbook of Mathematical Functions: Dover, New York.

Aitchison, J., 1986, The Statistical Analysis of Compositional Data: Monographs on Statistics and
Applied Probability. Chapman & Hall Ltd., London (UK), 416 p.
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