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Abstract

Although dermoscopy is nowadays a well-established practice for der-

matologists in order to diagnose melanocytic tumors, full body exams

using dermoscopy involves a long, time-consuming examination for

each patient, and images from different explorations have to be com-

pared every few months in order to detect changes over time. The

utilization of this technique has demonstrated its utility in reducing

the number of biopsies and allowing the early diagnosis of melanoma.

Unfortunately, it is a tedious, slow and costly process, since each ex-

ploration needs a significant amount of time of an expert. Moreover,

human-based visual inspection is prone to errors due to inattention of

the physician, and only a limited number of dermatoscopical images

are acquired for each patient, leaving several lesions unrecorded on

patients with a high number of nevi.

This thesis investigates the problem of developing new computer vi-

sion techniques for early detection of skin cancer.

The first part of this work presents a novel methodology to correct

color reproduction in dermatological images when different cameras

and/or dermoscopes are used. The proposed algorithm includes spec-

tral lighting information, contributing to the state-of-the-art in the

dermatological color calibration with a novel formulation.

Next, the problem of automatic full body mapping is addressed by

proposing a mosaicing method based on an off-the-shelf digital com-

pact camera and a set of markers. This method increases the possibil-

ities of total body photography by taking the low-resolution images

of a whole body exploration and automatically combining them into

a high-resolution photomosaic. In this way, a full body exploration is

registered into a single image, simplifying the task of comparing dif-

ferent explorations, either analyzing the mosaics of both explorations

or comparing the corresponding images between explorations.

The third contribution of this work consists of the development of

a full body scanner for acquiring cutaneous images. On one hand,



the scanner reduces the long time-consuming examinations done in

dermoscopy explorations, and on the other hand, it increases the res-

olution of total body photography systems. The proposed optical

scanner automatically acquires images of the entire body, and then

represents them either in a 2D mosaic or on a dense 3D reconstruction.

Throughout this dissertation, the performance of the algorithms is

evaluated using real skin images, including dermoscopy, traditional

macro photography, and cross-polarized imaging.
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Resum

Encara que la dermatòscopia sigui avui en dia una pràctica molt util-

itzada pels dermatòlegs a l’hora de diagnosticar tumors melano-ćıtics,

es tracta d’una pràctica tediosa i llarga per a cada pacient, on les imat-

ges de diferents exploracions han de ser comparades en pocs mesos de

diferència amb la finalitat de detectar canvis en el temps. La util-

ització d’aquesta tècnica ha demostrat la seva utilitat en la reducció

del nombre de biòpsies, permetent aix́ı, la detecció precoç del càncer

de pell. Desafortunadament, és un procés lent i costós, ja que per

a cada exploració és necessària una quantitat significativa de temps

per part d’un expert. Al mateix temps, la inpecció visual és propensa

a errors deguts a la falta d’atenció per part del metge, i al limitat

nombre d’imatges dermatoscòpiques que es poden adquirir per a cada

pacient, restant algunes lesions sense examinar en pacients amb un

gran nombre de nevus.

En aquesta tesi s’investiga el desenvolupament de noves tècniques de

visió per computador per a la detecció del càncer de pell.

La primera part d’aquest treball presenta una nova metodologia per

a la correcció del color en imatges dermatològiques quan s’utilitzen

diferents càmeres i/o els dermatoscops. L’algorisme proposat inclou

informació espectral sobre la il·luminació emprada, contribuint aix́ı

amb una nova formulació en l’estat de l’art dins el camp del calibratge

de color en dermatologia.

A continuació es proposa una solució al problema del registre au-

tomàtic d’imatges de cos complert amb la proposta d’un mètode de

mosaicing basat en l’ús de càmeres compactes i un conjunt de mark-

ers. Aquest mètode incrementa les possibilitats de la fotografia de cos

complert mitjançant l’acquisició d’imatges a baixa resolució de tot el

cos i posteriorment combinant-les automàticament per a l’obtenció

d’un fotomosaic d’alta resolució. D’aquesta manera, una exploració

de cos complert pot ser registrada en una sola imatge, simplificant

aix́ı la tasca de comparar diferents exploracions, ja sigui analitzant



els mosaics de les dues exploracions o comparant-ne les imatges cor-

responents.

La tercera contribució d’aquest treball consisteix en el desenvolu-

pament d’un escàner de cos complert per a l’adquisició d’imatges

cutànies. D’una banda l’escàner redueix el llarg temps necessari per a

les exploracions dermatoscòpiques, i de l’altre, incrementa la resolució

de la fotografia de cos complet. L’escàner òptic proposat adquireix

automàticament imatges de cos complert, i després proporciona resul-

tats ja sigui en mosaics 2D o en reconstruccions denses 3D.

Al llarg d’aquesta tesi, el rendiment dels algoritmes s’ha avaluat mit-

jançant l’ús d’imatges reals de la pell, incloent imatges dermatoscòpi-

ques, imatges macro i imatges amb polarització creuada.
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Chapter 1

Introduction

The aim of this research is the development of a reliable set of tools to help in the

early diagnosis of skin cancer. This initial chapter starts with a brief introduction

about Skin Cancer and detection systems. In addition, a general overview of the

thesis is provided including a description of its structure.

1.1 Skin Cancer

Skin cancer is a major public health problem. Each year there are more new

cases of skin cancers than the combined incidence of breast, prostate and colon

cancers[160]. A study developed in 2010 by the American Cancer Society esti-

mates that in the United States around 74,000 new cases appear each year and

18,000 deaths occur. The new cases correspond to 5% in men and 4% in women

of the total number of new cancers in the United States.

In Europe, skin cancer accounted for 35,000 new cases and 9,000 deaths in

2000[23]. Men have a 1 in 37% probability of developing skin cancer during their

lifetime with women coming in at 1 in 56. The highest probability for both men

and women is in old age, i.e. from 70 years old, on.

However, although skin cancer incidence has increased by 45% between 1992

and 2004, the death rate is one of the lowest, being only 9% in the period 1999

to 2005.

Skin cancer is divided into two main groups; non-melanoma skin cancer
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1. INTRODUCTION

(NMSC) and melanoma skin cancer (MM). The second group is the primary dis-

ease of whites. Melanoma is classified into superficial spreading melanoma (SSM),

nodular melanoma (NM), acral lentiginous melanoma (ALM) and lentigo ma-

ligna melanoma (LMM). Non-melanoma skin cancer is the most prevalent cancer

among light-skinned people. It is classified into basal cell carcinoma (BCC)(75%),

squamous cell carcinoma (SCC)(24%) and other rare types (1%) such as seba-

ceous carcinoma. Non-melanoma skin cancer is seldom lethal, but in an advanced

stage can cause severe disfigurement and morbidity.

Figure 1.1: Skin Cancer Types

Superficial spreading melanoma (SSM) accounts for 70% of melanoma skin

cancers, and arises in a preexisting dysplastic nevus more often than any other

type. It has a radial growth phase where the lesion is confined within the epi-

dermis and increases in diameter. The second phase of this kind of lesion is a

vertical, downward extension to the dermis, increasing the metastic potential.

SSM evolves in from 1 to 7 years, varying the shade and pigmentation. It occurs

equally in men and women, however it commonly appears on the trunk in men

and lower extremities in women.

Nodular melanoma (NM), which accounts for 15% to 30% of melanoma skin

cancers, is the most aggressive type, predominantly affecting men of around 50.

It often arises in new lesions, although it can also occur at the site of preexisting

nevus. NM has a radial growth phase in which it can be of a small diameter. The

growth phase is predominantly vertical, with a deep invasion associated with a
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(a) SSM (b) NM (c) ALM

(d) LMM (e) BCC (f) SCC

Figure 1.2: Skin Cancer Classification, Melanoma: Superficial Spreading
Melanoma (SSM), Modular Melanoma (NM), Acral Lentiginous Melanoma
(ALM) and Lentigo Maligna Melanoma (LMM). Non-melanoma: Basal Cell Car-
cinoma (BCC) and Squamous Cell Carcinoma (SCC). (Images from of The In-
ternational Atlas of Dermoscopy, The Skin Cancer College of Australia and New
Zealand)

prognosis usually worse than any other type. The lesion characteristically appears

as a smooth, shiny, dome-shaped nodule of a uniformly dark black or blue color

and has a rapid growth.

Lentigo maligna melanoma (LMM), also known as insitu melanoma, occurs

on extremely sun-damaged skin. It is the least aggressive and common type of

melanoma skin cancers, accounting for less than 5%. Basically, it affects women

in their seventh decade of life and can appear on the head, neck, or dorsum of

the hands. It grows slowly for 3 to 15 years in a radial shape, reaching 3 to 6 cm.

Acral Lentiginous Melanoma (ALM) accounts for 5% of all melanoma skin

cancers, although it affects 35% to 65% of darkly pigmented individuals (African

Americans, Asians and Hispanics). It appears on the palms, soles, nail beds and

occasionally on the mucous membranes.

Basal cell carcinoma (BCC) is the most common type of skin cancer. Although
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1. INTRODUCTION

it rarely metastasizes or kills, it causes significant destruction and disfigurement.

30% of caucasians may develop a BCC cancer during their lifetime[186]. 80% of

all cases are found on the head and neck, recently however, BCC has appeared

more on the torso.

Squamous cell carcinoma (SCC) is the second most common cancer of the skin

after BCC. It usually occurs in areas exposed to the sun. The risk of metastasis

is low, but higher than BCC. 20% to 50% of SCC of the lip and ears have high

rates of local recurrence and distant metastasis.

1.1.1 Skin Cancer Causes

Ultraviolet (UV) light exposure, most commonly from sunlight, is overwhelmingly

the most frequent cause of skin cancer[189]. Other important factors are:

• Use of tanning booths.

• Immunosuppression-impairment of the immune system, which protects the

body from foreign entities, such as germs or substances that cause an allergic

reaction. This may occur as a consequence of some diseases or can be due

to medications prescribed to combat autoimmune diseases or prevent organ

transplant rejection.

• Exposure to unusually high levels of x-rays.

• Contact with certain chemicals-arsenic (miners, sheep shearers, and farm-

ers), hydrocarbons in tar, oils, and soot may cause squamous cell carcinoma.

On the other hand, people who have the greatest risk of developing a skin

cancer are[139]:

• People with fair skin, especially types that freckle, sunburn easily, or suffer

pain in the sun.

• People with light (blond or red) hair and blue or green eyes.

• Those with certain genetic disorders that deplete skin pigment such as al-

binism or xeroderma pigmentosum.
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• People with numerous moles, unusual moles, or large moles that were

present at birth.

• People who have already been treated for skin cancer.

• People with close family members who have developed skin cancer.

• People who have at least one severe sunburn early in life.

1.1.2 Skin Cancer Treatment

Treatment depends on the type of skin cancer, its stage and location and the

individual’s age and overall health. For instance, people with small basal cell

carcinomas may require only simple treatment because BCC cancers rarely spread

to other parts of the body and are seldom fatal. SCC is the opposite because

it tends to spread and therefore requires more treatment. Malignant melanoma

may require complicated treatment because of its high risk of spreading.

Biopsy can completely remove some tiny skin cancers, however to eliminate

all the cancer cells most skin cancers need additional treatment such as:

• Surgery: Taking out or destroying the cancer.

• Chemotherapy: Giving drugs to kill the cancer cells.

• Radiation therapy: Using powerful energy from x-rays or other sources to

destroy the cancer cells.

• Others: Photodynamic therapy, Biological therapy, ...

1.2 Diagnostic Techniques for Skin Cancer De-

tection

In this section we review different approaches to detect skin cancer, describing

their main features and highlighting the differences among them. The key objec-

tive is to point out the advantages and disadvantages of these approaches (see

Tab. 1.1). We decided to divide the diagnostic techniques into non specific

5



1. INTRODUCTION

skin imaging and specific skin imaging technology. The first group includes vi-

sual detection, magnifying lens, wood’s lamp, sniffer dogs and baseline clinical

photography, while the second presents dermoscopy, confocal scanning laser mi-

croscopy, multi-spectral digital dermoscopy, ultrasound, optical coherence tomog-

raphy, tape stripping mRNA, laser doppler perfusion imaging (LDPI), electrical

bio-impedance, magnetic resonance imaging (MRI), positron emission computed

tomography(PET), and reflex transmission imaging. Some algorithms for the

most common diagnostic systems are described.

1.2.1 Non-Specific Skin Imaging Technology

This section includes all the diagnostic approaches that do not require any specific

dermatological device. Visual detection, magnifying lens, wood’s lamp, sniffer dog

and baseline clinical photography are presented. These methods, combined with

a complete patient history, can provide enough evidence to make a good initial

diagnose. A detailed history of a patient should include:

• age and sex

• personal medical history of melanoma or non-melanoma skin cancer

• family medical history of melanoma

• number of nevus

• presence of atypical or dysplastic nevus

• skin type

• tanning habits

• response to sun exposure and evidence of skin damage from the sun

1.2.1.1 Visual Detection

Visual inspection together with the patients history form the basis for early de-

tection of melanoma.
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Table 1.1: Comparison of mole scanning methods

Method Principle Advantages Main disadvantages

Visual Inspection and mag-
nifying lens

ABCDE rule is the usual
clinical guide for most le-
sions and EFG is more ap-
propriate for nodular le-
sions.

Easy to perform. Limited sensitivity in
melanoma diagnosis.

Baseline Clinical Photogra-
phy

Digital imaging in stan-
dardized positions. Nearly
whole skin surface visual-
ized.

Identification of ‘ugly duck-
lings’. Identification of new
or evolving lesions.

Only gives macroscopic in-
formation.

Wood’s Lamp UVL emissions are strongly
absorbed by melanin.

Can reveal irregular pig-
ment distributions, defin-
ing the letigo maligna
melanoma borders.

Limited sensitivity in
melanoma diagnosis.

Dog Sniffer Based on the odor. Detection in non treated pa-
tients.

Few cases reported.

Dermoscopy Visualization of subsurface
anatomic structures of epi-
dermis and upper dermis.

Well-established criteria.
Increases diagnostic sensi-
tivity without diminishing
specificity. Dermoscopes
with polarized and non-
polarized light are available.

It requires specialized train-
ing.

Multispectral Digital Der-
moscopy

Light reflected at different
skin depths is collected and
analyzed.

Gives visual information of
deeper skin layer in compar-
ison with dermoscopy. Au-
tomated diagnosis possible.

Needs further evaluation in
clinical trials.

Ultrasound and optical co-
herence tomography

Vertical imaging of the skin. Monitoring of topical treat-
ment possible.

To date, no diagnostic aids.

Confocal scanning laser mi-
croscopy

Horizontal imaging of the
skin with laser light that
causes no tissue damage.
Melanin/melanocytes are a
strong source of contrast.

Quasi-histological resolu-
tion offers in vivo biopsy,
monitoring of treatments,
presurgical margin assess-
ment.

It requires specialized train-
ing. Limited imaging depth.
Involves moving parts, mak-
ing scanning more difficult.
To date, mainly used for re-
search.

Tape stripping mRNA RNA analysis from suspi-
cious melanocytic lesions.

Pre-screen for suspiciously
pigmented lesions.

Under investigation, al-
ready creating gene expres-
sions.

Laser doppler perfusion
imaging

Doppler effect. Visualization of cellular and
subcellular structures.

To date, mainly used for re-
search.

Electrical bio-impedance Different electrical
impedance of cancer
and healthy cells.

Almost 100% sensitivity for
in situ and thin melanoma.

Scanning and image analy-
sis takes 7 minutes.

Magnetic resonance imag-
ing

Utilizes radio waves and
strong magnets.

Allows differentiation of the
different skin layers.

Cost, size, time, and spe-
cialized training. Not us-
able for patients with metal
implants.

Positron emission computed
tomography

‘Warburg Effect” The entire boy can be ana-
lyzed.

Expensive and time con-
suming.

Reflex Transmission Imag-
ing

High resolution ultrasound Good discrimination. Hight cost.

7



1. INTRODUCTION

Two algorithms can be applied to visual detection; the ABCDE rule (asymmetry,

border irregularity, colour variegation, large diameter and evolution, see Table

1.2) and the EFG algorithm (elevated, f irm to touch and growing progressively

over more than a month) which is more appropriate for nodular melanomas that

often have a more subtle clinical appearance[83].

Table 1.2: ABCDE rule for dermatologic diagnosis.

A - Asymmetry Normal moles or freckles are quite symmetrical. In cases
of skin cancer, spots do not look the same on both sides.

B - Border A mole or spot with blurry and/or jagged edges.
C - Color A mole that has more than one hue is suspicious and

needs to be evaluated by a physician. Normal spots are
usually one color. This can include lightening or dark-
ening of the mole. Melanoma cells usually continue to
produce melanin, which accounts for the cancers appear-
ing in mixed shades of tan, brown and black.

D - Diameter If the spot is larger than 6mm, it needs to be examined
by a doctor. This includes areas that do not have any
other abnormalities (color, border, asymmetry).

E - Elevation/Evolving The mole with an uneven surface raised above the
surface. It looks different from neighboring moles or
changes in size, shape and/or color.

One single visual inspection fails to detect small melanomas and amelanotic

melanomas. Thus for high-risk individuals, a full cutaneous examination sup-

ported by total body photography and dermoscopy every six month is recom-

mended as well as patient education for self-examination.

1.2.1.2 Magnifying Lens

The simple use of a magnifying glass can often assist clinicians in differentiating

and correctly diagnosing many pigmented lesions[47]. Magnification allows easy

visualization of comodo-like openings in seborrheic keratoses and telangiectasias

in pigmented basal cell carcinomas, thus helping to exclude melanoma from the

differential diagnosis.

Lumio from 3Gen is one of the multiple examples of magnifying lenses avail-

able. Lumio has a 75 mm lens offering a magnification of 2× and 40 bright-white
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LEDs (light emitting diodes) on a cross-polarization set-up. It is used in der-

matology for examining varicose veins, pigmented skin lesions and hair follicles

among others. Some of the commercial magnifying lenses used in dermatology

are shown in table 1.3

Table 1.3: Magnifying Lens

Company Country Website

3Gen LLC San Juan Capistrano, CA USA http://www.dermlite.com
Daray R© Medical Moira, Derbyshire UK http://www.daray.co.uk

1.2.1.3 Wood’s Lamp

Wood’s lamp was invented in 1903 by Robert W. Wood[187]. It was first used in

dermatology practice for the detection of fungal infection of hair.

Wood’s lamp, emits ultraviolet light at a wavelength of 360 mm that can

help to diagnose dermatoses with a characteristic fluorescence (tinea capitis, ery-

thrasma, tinea versicolor, pseudomonas infections, porphyrians, and pigmentary

alterations)[181].

The emissions are transmitted into the dermis, where they give a white to

blue-white fluorescent color. These emissions are strongly absorbed by melanin,

aiding in the diagnosis of lentigo maligna melanomas by revealing irregular pig-

ment distribution, and defining subtle clinical borders. Melanin present in the

epidermis (but not dermis) absorbs long-wave UVL. Wood’s light accentuates

the contrast between pigmented and non-pigmented skin, but, more importantly,

it separates hypo-pigmented from totally amelanotic areas (the latter have true

white to blue-white fluorescence). We can find a high number of projects in the

literature where this technology is used, e.g. [67], [9], [91], [36], [124] and [62].

Some companies still produce Wood’s lamps for dermatology (see Tab. 1.4).

1.2.1.4 Sniffer Dogs

Sniffer dogs may be able to detect malignant tumors on the basis of odor. This

fact was first described in [183], reporting a case were a dog was able to detect
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Table 1.4: Wood’s lamp devices

Company Country Website

Amjo Corp. West Chester, OH USA http://www.woodslight.com
Daray R© Medical Moira, Derbyshire UK http://www.daray.co.uk

a malignant melanoma. Since then, similar anecdotal claims are described in

the literature of skin cancer[35]. Recently, some studies have presented a more

accurate reasoning in the accuracy of sniffer dog detection [184] [10].

1.2.1.5 Baseline Clinical Photography

Comparing images over time is one of the simplest ways of detecting melanomas.

Melanomas change in size, shape and/or color whereas normal moles are usu-

ally stable[11], this fact allows the detection of suspicious moles. The presence

of baseline photography can help in deciding of whether biopsy is needed or

not[153]. Baseline photography is very useful for patients with many nevi or with

the dysplastic nevus syndrome, due to the time needed to carry out a complete

dermoscopic exploration.

The photographic equipment varies from Polaroid cameras or 35 mm cameras

in the past to the new digital cameras nowadays. Any camera available on the

market can be useful for clinical explorations. Other considerations to take into

account are lights, patient position, etc., elements to set up in the acquisition

process that can facilitate further comparisons.

In order to help skin self examination, the images can be printed and the

patient can compare them by himself, or with the help of another person.

The images can be obtained lesion by lesion or using total body photogra-

phy. Each system presents advantages and disadvantages. The positions for the

patients are defined in the literature in [66], the patient should assume stan-

dardized positions under good lighting conditions. Images should be taken of the

face, neck, area behind the ears, scalp (in bald individuals), anterior and posterior

torso, and the extremities (including palms and soles).

All the photographic images should be appropriately stored for later com-

parison with new explorations. To this end, there are some commercially avail-
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able systems such as Fotofinder, DermoGenius, Dermagraphix and MoleMap (see

table 1.5). Using these systems, different explorations can be opened and im-

ages compared by superimposing one over the other. For instance, systems such

as Molemax allows superimposing images in order to detect changes. In [179]

the benefits of topodermatographic sequential images are presented, showing the

advantage of detecting subtle clinical changes in the measurement or shape of

multi-pigmented skin lesions.

Total Body Photography is well described in [65], where the photographic

technique, anatomic poses, camera system and examination procedure are ex-

plained in detail. It can reduce the number of biopsies in high-risk patients[86][49].

This approach easily detects new lesions, but it is difficult to observe small changes

in nevi over time, and it is possible that some areas of skin may be covered by

undergarments or hair and, thus, missed in baseline photographs.

Table 1.5: Computer Aided Systems

Device Names Company Website

DermoGenius Ultra LINOS Photonics, Inc. http://www.dermogenius.de
MelaFind Electro-Optical Sciences, Inc. http://www.melafind.com
SIAscope Astron Clinica http://www.astronclinica.com
MoleMax II Derma Instruments L.P. http://www.dermamedicalsystems.com
MicroDerm VisioMED http://www.zn-ag.com
NevusScan Romedix http://www.romedix.com
SolarScan Polartechnics Limited http://www.polartechniques.com.au
FotoFinder Derma Edge Systems Corp. http://www.edgesystem.net
DBDermo-Mips University of Siena http://www.skinlesions.net
VideoCap100 DS Medica http://www.dsmediagroup.it

1.2.2 Skin Imaging Technology

This section reviews some techniques that use specific devices for detecting skin

cancer.

1.2.2.1 Dermoscopy

Dermoscopy (also known as dermatoscopy or epiluminescence microscopy), is a

diagnostic technique used worldwide in the identification and diagnosis of nu-
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merous skin lesions. The literature presents results with increased accuracy in

diagnosing melanoma when physicians followed training in Dermoscopy[163].

Dermoscopy is based on examining the pigmented and non-pigmented lesions

of the skin by means of a photographic camera equipped with a dermatoscope:

a magnifier (typically 10× or 12×), a light source (typically a LED ring), and

a transparent plate placed on the skin with the objective of making subsurface

structures more easily visible when compared to conventional clinical images[7]

(Fig 1.3).

Figure 1.3: Dermoscopy functions by trasillumination of the lesion. This allows
for the visualization of sub-surface structures not seen with the naked eye. (From
Pizarro A. Techniques and instruments. In: Malvehy J, Puig S, editors. Principles
of dermoscopy. Spain: CG Creaciones Graficas S.A.; 2002. p.28)

A large number of dermatoscopes are available on the market[113](see Figure

1.4). These devices can be divided into two main groups: those using an un-

polarized light source with an incident angle of 45◦ (non-polarized dermoscopy

[NPD]) and those using use perpendicularly oriented light towards the skin with

polarized filters (polarized dermoscopy [PD]).

NPD requires a liquid between the dermatoscopes plate and the skin that is

in contact with the tool. The use of the fluid (oil or water) helps to roughen the

area and makes the skin surface uneven, reducing the amount of light reflected

from the stratum corneum as well as reducing the amount of air between the

skin and the device. This effect makes the epidermis essentially translucent and

12



Figure 1.4: Sample set of commercially available dermoscopes.

allows in vivo visualization of subsurface anatomic structures of the epidermis

and papillary dermis that are otherwise not discernible to the unaided eye.

With this effect the skin becomes transparent to light and reflect the subsur-

face structures.

PD uses two polarizing filters aligned with a difference of 90◦ between them

(known as cross-polarization) allowing 60 to 100 µm penetration of the light

under the skin. The backscattered component of the light can reach the sur-

face and be registered with a photographic camera. PD can be divided into

Polarized Light Non-contact Dermoscopy (PNCD) and Polarized Light Contact

Dermoscopy (PCD).

Table 1.6: List of some available dermoscopes

Dermoscope Company Website

DermLite Platinium R© DermLite 100 R© 3Gen, LLC USA http://www.dermlite.com
DermLite Foto R© DermLite PROtextregistered 3Gen, LLC USA http://www.dermlite.com
Mini 2000 Dermoscope R© Heine Optotechnik, Germany http://www.heine.com
Delta 10 R© Heine Optotechnik, Germany http://www.heine.com
Delta 20 R© Heine Optotechnik, Germany http://www.heine.com
Alpha+ R© Heine Optotechnik, Germany http://www.heine.com
DermoGenius R© basic II LINOS Photonics, Inc. MA http://www.dermogenius.com
Dino-lite Digital Microscope AM-413-ZT AnMo Electronics Corporation, Taiwan http://www.dino-lite.com
AMD-2030 AMD Global Telemedicine, UK http://www.amdtelemedicine.com

Dermoscopy is usually combined with photographic images of the full body

(Total Body Photography) and a computer assisted diagnosis. Table 1.6 shows

different commercial devices with their softwares and capabilities. Below we

present some of the basic algorithms used in CAD systems for helping dermatol-

ogists to diagnose skin cancer (see. Table 1.7 ).
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Table 1.7: Various mole scanning systems with Computer Automatic Diagnosis
tools
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Molemax (http://www.equipmed.com) * * * * *
Fotofinder (http://www.fotofinder.de) * * * * * *
DermoGenius Ultra (http://www.biocam.de) * * * *
MicroDerm (http://www.visiomedag.com) * * * *
Db-Dermo Mips (http://www.skinlesions.net) * *
MelaFind (http://www.eosciences.com) *

Pattern Analysis Pattern recognition has historically been used by clinicians

and histopathologists to differentiate benign lesions from malignant neoplasms.

In 1987 Pehamberger et al. [134] presented a similar process for dermoscopy,

known as pattern analysis. This method uses specific global patterns and combi-

nations of additional local features for the classification of pigmented skin lesions

as melanoma, clark, spits/reed or blue nevi[134]. Pattern analysis is the most

well-known and reliable method for the dermoscopic diagnosis, but it is difficult

to use by non-experienced dermatologists.

The complexity of this diagnostic approach is due to the subjective evaluation

of multiple criteria and morphological patterns. Another reason is the great

variability of the morphological expressions of each parameter. An incomplete or

insufficient definition of the criteria results in only modest reproducibility in some
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of the dermoscopic variables, and studies have shown that the reproducibility of

a criterion is greater in its quantitative evaluation (presence or absence of a given

parameter) than in its qualitative evaluation (regularity, distribution, size, shape,

etc.).

Pattern analysis improves the rate of correct diagnosis of PSL by 10-30%.

Nevertheless, because of problems inherent in the reliability and reproducibility of

the diagnostic criteria used in pattern analysis, a number of additional diagnostic

methods based on scored algorithms have been introduced in the last few years

with the aim of increasing sensitivity in detecting melanoma.

ABCD rule The first approach for simplifying the pattern analysis method is

the ABCD rule of dermoscopy (Asymmetry, Borders, Colors and Dermoscopic

structures, see. Fig. 1.5), introduced by Stolz et al. [164] in 1994.

This diagnostic method permits a more objective diagnosis of melanoma with

the evaluation of only four dermoscopic criteria. Some studies present a speci-

ficity of 59% and a sensitivity of 92% in the diagnosis of melanoma, disclosing a

high diagnostic accuracy improvement over less experienced observers[103]. For

trained dermatologists, the ABCD rule presents less sensitivity and specificity

than pattern analysis.

Table 1.8: ABCD rule: Calculation of the total dermoscopy score(TDS)

Criteria score * factor = result

Asymmetry in perpendicular axes: contour,
colors and structures

0 - 2 1.3 0 - 2.6

Borders, 8 segments: abrupt ending of pig-
ment pattern

0 - 8 0.1 0 - 0.8

Colours: White, red, light-brown (tan),
dark-brown, blue-grey, black

1 - 6 0.5 0.5 - 3.0

Different structural components or Dermo-
scopic structures (pigment network, struc-
tureless areas, dots, aggregated globules,
branched streaks)

1 - 5 0.5 0.5 - 2.5
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Figure 1.5: Criteria for the calculation of TDS of the ABCD rule of dermoscopy.
(From Handbook of Dermoscopy. In: Malvehy J., Puig S., Braun R.P., Marghoob
A.A., Kopf A.W.;2006, p.34)

7-Point checklist The 7-Point checklist[6] is an alternative diagnostic ap-

proach based on a simplified pattern analysis, using seven standard criteria.

The seven criteria are categorized according to their different diagnostic weight

into major and minor criteria, the diagnosis of melanoma being suspected when

at least two criteria (one major and one minor criterion) are recognized (see

Fig. 1.6). In expert hands this method allows correct classification of 95% of

melanomas (sensitivity) and 75% of clinically atypical melanocytic nevi (speci-

ficity).

• Atypical pigment network (2)
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Table 1.9: ABCD scoring system for melanocytic neoplasms

Total score

Benign melanocytic lesion < 4.76
Suspicious lesion; close follow-up or excision recommended 4.76-5.45
Lesion highly suspicious for melanoma > 5.45

• Blue-whitish veil (2)

• Atypical vascular pattern (2)

• Irregular streaks (1)

• Irregular dots/globules (1)

• Irregular blotches (1)

• Regression structures (1)

In order to increase sensitivity, the seven-point rule was revised in 2011 so

that each individual item scores 1 (total is 7)[5]. Patients with atypical nevi, any

lesion with a score of one, should be carefully examined. Excision of such lesions

will pick up many early-stage melanomas.

Menzies Method The Menzies Method[117] was proposed in 1996. It is an

algorithm based on the recognition of two negative dermoscopic features (not

favouring melanoma diagnosis) and nine positive features (favouring melanoma

diagnosis).

The two non-favouring melanoma diagnosis features are symmetry of pattern

and presence of a single color. Symmetry of pattern is present if the lesion has

symmetry across all axes through the center of the lesion. The considered colors

are black, gray, blue, dark brown, tan and red. Here white is not considered as a

color. Melanoma is discarded if both criteria are accomplished.

Positive features include blue-white veil, multiple brown dots, pseudopods, ra-

dial streaming, scar-like depigmentation, multiple (5-6) colors, multiple blue/grey
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Figure 1.6: Seven-point checklist (From Handbook of Dermoscopy. In: Malvehy
J., Puig S., Braun R.P., Marghoob A.A., Kopf A.W.;2006, p.38)

dots and broadened network. Blue-white veil is considered when an irregu-

lar, structureless area of confluent blue pigmentation with an overlying white

“ground-glass” haze is present. The pigmentation cannot occupy the entire le-

sion and cannot be associated with red-blue lacunes. Multiple brown dots are

considered when focal areas of multiple brown (usually dark brown) dots (not

globules) are present. Pseudopods are bulbous and often kinked projections that

are found at the edge of a lesion directly connected to either the tumor’s body

or a pigmented network and are never seen distributed regularly or symmetri-

cally around the lesion. Radial streaming are finger-like extensions at the edge

of a lesion that are not distributed regularly or symmetrically around the lesion.
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Scar-like depigmentation covers areas of white, distinct, irregular extensions (

true scarring) and should not be confused with hypo or depigmentation due to

simple loss of melanin. Peripheral black dots/globules found at or near the edge

of the lesion are taken into account. The colors scored are black, gray, blue, dark

brown, tan and red. Again white is not counted as a color. The presence of mul-

tiple blue/gray dots (not globules) is often described as being “pepper-like” in

pattern. A broadened network is a network made up of irregular, thick “cords”,

often seen as being focally thicker. The presence of one of these positive features

associates the lesion to melanoma.

When used by experts, the Menzies method gave a sensitivity of 92% and

a specificity of 71% [117]. In a study based on the evaluation of clinical and

dermoscopic pictures taken after a brief dermoscopy training session on the Men-

zies method, a group of 74 primary care physicians (PCPs) improved sensitivity

without a decrease in specificity for the diagnosis of melanoma compared with a

control group.

CASH Algorithm The CASH algorithm (Colors, Architecture, Symmetry and

Homogeneity) is a simplified version of pattern analysis, designed for use by

less experienced dermatologists. The algorithm considers colors, architecture,

symmetry and homogeneity[73].

Although there is some overlap between the ABCD Dermatoscopy scoring

system and the CASH algorithm, the latter adds architectural disorder as an

important component and does not include border sharpness. Architectural or-

der/disorder is a subjective feature that measures the nevus cell proliferation.

Benign nevus cells evolve to a finite size in a relatively organized (orderly) and

controlled manner. In contrast, melanoma cells caused by a failure in growth

control pathways lack the ability to construct an organized lesion.

The number of colors, symmetry, and homogeneity/heterogeneity (the increas-

ing number of dermoscopic structures) are key components in other dermoscopic

algorithms[74]. For this reason the authors of the CASH algorithm decided to

maintain these features in their algorithm, helping to distinguish benign from

malignant melanocytic neoplasms.

Add up the scores for a total CASH score (2 to 17). A score of 7 or less is
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Table 1.10: CASH algorithm

Suspicion for melanoma Low Medium High

Colors: few vs many
Light brown, dark brown, black, red,
white, blue

1-2 colors (1-2 points) 3-4 colors (3-4 points) 5-6 colors (5-6 points)

Score 1 point for each color

Architecture: order vs disorder None or mild disorder (no points) Moderate disorder (1 point) Marked disorder (2 points)
Score 0-2 points

Symmetry vs asymmetry Symmetry in 2 axes (no points) Symmetry in 1 axis (1 point) No symmetry (2 points)
Consider contour, colors and structures
Score 0-2 points

Homogeneity vs Heterogeneity Only one structure (1 point) 2 structures (2 points) 3 or more structures (3-7 points)
Consider pigment network,
dots/globules, blotches, regression,
streaks, blue-white veil, polymorphous
vessels
Score 1 point for each structure

most likely benign, while scores of 8 or more are suspected melanomas. Table.

1.10 summarizes the scoring system.

Chaos and Clues Algorithm Chaos (asymmetry of structure and/or colors)

and clues is an algorithm designed to detect any type of malignancy in any type

of pigmented skin lesion. While pattern analysis techniques focus on classifying

a lesion from among the different skin cancer types, the Chaos algorithm only

recognizes malignant and non malignant lesions[88].

To this end, they use a three-step procedure. First, they define simple geo-

metric elements and basic patterns created by the lesion. Second, they integrate

information gleaned from color. Third, they distinguish specific pigmented skin

lesions according to their stereotypical presentation that results from characteris-

tic combinations of elements, patterns and colors. These repeatable combinations

of elements, patterns and colors are referred to as “clues”. Each of the three steps

is then integrated into an algorithm that directs the practitioner to a diagnosis.

The clues to melanoma are:

• Thick reticular lines.

• Grey or blue structures of any kind.

• Pseudopods or radial lines at the periphery.

• Black dots in the periphery.
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• Eccentric structureless areas of any color.

• Polymorphous vascular patterns.

• White lines.

• Parallel lines on ridges.

The BLINCK algorithm Even for experienced dermatologists, some kind of

skin cancers, such as in situ melanoma, hypo/ameloanotic melanoma, naevoid

melanoma and Merkel cell carcinoma are difficult to diagnose with a purely der-

moscopic inspection. For this reason, Bourn proposed the BLINK algorithm that

uses other clues for diagnosis. Table 1.11 defines the mnemonic, BLINCK, that

refers to a logical progression of six clinical questions that should be asked when

examining a suspicious skin lesion.

Table 1.11: Blink algorithm

Benign If not, then consider the following:
Lonely An ugly duckling Score 1
Irregular Asymmetrical pigmentation pattern or >1 color Score 1
Nervous Nervous patient

Score 1
Change Changing lesion
Known Known clues to malignancy Score 1

Known Clues to malignancy are:

• An atypical network

• Segmental streaks

• Irregular black dots, globules, clods

• An eccentric structureless zone

• An irregular blue or grey color

• Polymorphous, arborising, glomerular vessels
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• A parallel ridge pattern or diffuse irregular brown/black pigmentation in

acral lesion

The algorithm is followed only if the lesion is not considered as benign. Each

question with a positive answer accounts for 1 in the final score. For “Nervous”

and “Change” only a total score of 1 can be either given if one or both of the

questions have a positive answer.

If the lesion scores 2 or more, it should be excision biopsied. If there is a

score of 0 or 1, the lesion does not require biopsy and may be either reviewed at

a later time, digitally monitored, or the patient simply reassured that the lesion

is benign.

1.2.2.2 Confocal Scanning Laser Microscopy

Confocal Scanning Laser Microscopy (CSLM) is a non-invasive technique that

permits the in vivo examination of the skin at variable depths in horizontal

planes[140][112], and is the only in vivo technique that allows the examination

of the epidermis and papillary dermis at a resolution approaching histological

detail[25]. CSLM works by tightly focusing a low-power laser beam (visible or

near infrared) on a specific point on the skin, and detecting only the light re-

flected from that focal point through a pinhole-sized spatial filter (see Fig. 1.7

). This beam is scanned horizontally over a 2-dimensional grid to obtain a hor-

izontal microscopic section. The measured lateral resolution of CSLM images is

approximately 0.5 µm, and axial resolution is approximately 3-5 µm, while the

imaging depth is limited to the level of papillary dermis, 200 to 300 µm [55]. This

depth capability is associated with the penetrating depth of the wavelength of

the laser light used.

CSLM can be classified into reflectance[29] or fluorescence mode[44]. The

former relies on inherent differences in the reflectivity of structures, while the flu-

orescence mode relies on the differential distribution of endogenous or exogenous

fluorescent molecules (fluorophores) to produce contrast in the tissue.

The principal advantage of CLSM is the ability to noninvasively assess the cel-

lular components of intact skin lesions with detail approaching histology. Lesions

can be examined temporally to determine the extent of their lateral margins. A
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Figure 1.7: Confocal Scanning Laser Microscopy (CSLM). Only the light from
the exact focal plane of interest is able to return to the detector via a pinhole,
while out of focus light is excluded. (From Science Education Resource Center
at Carleton College (SERC))

number of lesions can be examined during the same office visit, using telepathol-

ogy. CLSM images can be viewed simultaneously by the clinician and the pathol-

ogist facilitating the decision of biopsy, clinically follow up, or to excise the lesion.

One of the limitations of this technique is the strong contrast attenuation and

light scattering caused by hyper-pigmented or hyperkeratotic lesions.

Some examples of CLSM are shown in Tab. 1.12.

Table 1.12: Confocal Scanning Laser Microscopy devices

Device Name Company

Vivascope 1500, 2500 and 3000 R© Lucid Inc, NY, USA
Optiscan F900 Optiscan Pvt Ltd, Australia
LSM 700, 710 and 780 Carl Zeiss MicroImaging, LLC, North Amer-

ica

1.2.2.3 Multispectral Digital Dermoscopy

Multispectral digital dermoscopy consists of a CCD camera, a multispectral

source (white lamp), and some simple intermediary optics. The system allows
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the visualization of the horizontal plane of a given skin lesion down to the pap-

illary dermis, 0.75 mm. from the surface skin[174]. Using computer-based image

analysis, the various images can be combined providing information from a range

of depths in a lesion (see Fig. 1.8 ).

This technique allows physicians to analyze features indiscernible to the hu-

man eye, probing up to 2 mm below the surface, and limiting physician-to-

physician variability. The following table 1.13 enumerates commercial solutions

based on this technique.

Table 1.13: Multispectral Digital Dermoscopy

Device Name Company

SIAscope Biocompatibles International plc [120]
MelaFind R© Electro-Optical Sciences [121]
Stratum Optiscan Pty Ltd, Melbourne

Figure 1.8: Siascan example. These images represent (from left to right)
hemoglobin, collagen, melanin, dermal melanin and a dermatoscopic view of a le-
sion (From: Biocompatibles webpage: http://siascopy.biocompatibles.com)

1.2.2.4 Ultrasound

Ultrasound images are created due to the different acoustic properties of tissues.

High-frequency sound impulses are transmitted into the skin and then reflected,

refracted, or inflected when tissues interface when different acoustic impedance

is encountered [82].

There are three modes of ultrasound scans; the A-mode scan that displays

a one-dimensional graphic showing the amplitude of the intensity at different

levels in the skin tissue, the B-mode scan which creates two-dimensional images
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from the brightness level of multiple A-mode scans and is most commonly used in

clinical settings, and the C-mode scan whose image is formed in a plane normal to

a B-mode image. A gate that selects data from a specific depth from an A-mode

line is used, then the transducer is moved in the 2D plane to sample the entire

region at this fixed depth. When the transducer traverses the area in a spiral, an

area of 100 cm2 can be scanned.

Transducers with higher frequency wavelengths are beneficial for diagnosing

skin lesions because they allow better resolution of small lesions located near the

skin surface[174][113]. However, higher frequency suffers from larger attenuation

of the signal, decreasing the depth of penetration. Table 1.14 shows the resolution

and penetration for commonly used ultrasonic devices available for dermatological

use. The axial resolution is the smallest thickness that can be measured and the

lateral resolution refers to the width of the smallest structures that can be seen.

Because of the limited resolution, ultrasound alone is not a reliable diagnostic

aid. It is more appropriately used for preoperative management in dermatol-

ogy, as, for example, in assessing tumor thickness and vascularity. Some of the

ultrasound devices used are cited in table 1.15.

Table 1.14: Ultrasound frequency

Frequency (MHz) Axial Resolution (µm) Lateral Resolution (µm) Penetration (mm)

7.5 200 400 >15
10 150 300 >15
20 100 350 7
40 30 94 4
50 39 120 4

100 11 30 2

1.2.2.5 Optical Coherence Tomography

Optical Coherence Tomography (OCT) was originally used to examine eye struc-

tures in the 1980s but it is currently widely used in dermatology[180]. OCT is

analogous to ultrasound B imaging, except that it uses light rather than sound

waves[111]. It uses a fiber-optic Michelson interferometer with a low-coherence

length broadband light source, reaching a penetration depth of about 1 mm (de-
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Table 1.15: Ultrasound device systems

Device Name Company

DermaScan C Cortex Technology, Hadsund, Denmark
DUB 20 Taberna pro medicum, Lüneburg, Germany
SSA-340 A Toshiba Medical Systems, Neuss, Germany
Siemens Sonoline Elegra Siemens, Erlangen, Germany
AU 4 Idea and AU 5 Idea sonog-
raphy

Esaote Biomedica, Genoa, Italy

Dermcup 2020 R© Atys Medica, St Soucieu en Jarrest, France

pending on the scattering properties of the tissue) (see Fig. 1.9 ). Lateral reso-

lution is determined by the numeric aperture of the objective[169].

The resolution of OCT does not reach the capabilities of reflectance confocal

microscopy of histopathology, however, cellular details can be viewed with the

more modern devices (Table 1.16 presents some modern devices). Compared with

ultrasound, it has a deeper detection depth and a stronger resolution compared

to CSLM[176].

Table 1.16: Optical Coherence Tomography

Device Name Company

SkinDex-300 ISIS optronics GmbH, Mannheim, Germany
VivoSight R© Michelson Diagnostics Ltd., Orpington, Kent, UK
StratusOCT Carl Zeiss Ophthalmic Systems, Dublin, CA, USA
Skintell Agfa Healthcare, Mortsel, Belgium

1.2.2.6 Tape Stripping mRNA

Tape Stripping Messenger Ribonucleic Acid (mRNA) is a non-invasive method

that allows for the recovery of cells comprising the upper epidermis. When the

tape is removed from the skin, superficial cell layers of the stratum corneum are

stripped off and RNA is harvested from these skin samples. These mRNA are

analyzed by ribonucleic protection assay (RPA) to differentiate melanoma from

benign lesions based on gene expression profiles[122].
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Figure 1.9: Optical Coherence Tomography. The light from a diode is channeled
into optical fibers and divided into a reference and a sample beam. The reference
beam is reflected by a scanning mirror system, while the sample beam is focused
onto the skin. Backscattered photons from the skin recombine with the reference
signal and are detected by interference if they match within the short coherence
length (from Isis Optronics GmbH, Germany)

In [18] the tape-stripping, the toluidine blue method demonstrated a sensitiv-

ity of 68.7% and a specificity of 74.5% over 150 suspicious pigmented lesions.

Clinical trials are currently underway to finalize candidate gene expression

profiles for identifying early stage melanomas. Tape stripping will not be a substi-

tute for necessary biopsies, but it is most beneficial as a pre-screen for suspiciously

pigmented lesions. Two devices are available (see 1.17).

Table 1.17: Tape Stripping mRNA

Device Name Company

DermTech La Jolla, CA. Epidermal Genetic Information Retrieval
(EGIR

TM
)

siRNAsense siRNAsense, Oslo, Norway
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1.2.2.7 Laser Doppler Perfusion Imaging (LDPI)

Malignant melanomas usually show a higher heterogeneity in their structure and

a higher vessel density when compared to benign PSLs because of neovascular-

ization which starts very early during the radial growth phase [13].

The principle of LDPI is the Doppler effect on monochromatic radiation

caused by movement of erythrocytes in the micro-vascular network [166]. The

output of the LDPI system consists of two different two-dimensional data sets,

perfusion and total backscattered light intensity (TLI), with point-to-point cor-

respondence.

LDPI has a sensitivity of almost 100 % and a specificity of 85-90 % [165].

Some commercially available devices are presented in Table 1.18.

Table 1.18: Laser Doppler Perfusion Imaging (LDPI)

Company Location

Oxford Optronix Ltd. Oxford, United Kingdom
Moor Instruments Devon, United Kingdom
Perimed AB Järfälla, Sweden

1.2.2.8 Electrical Bio-Impedance

Electrical Bio-impedance is a new non-invasive approach, based on the electri-

cal differences between malignant and benign skin lesions. Electrical impedance

scanning (EIS) reflects information about cell shape, structure and orientation,

integrity of cell membranes, relative proportions of intra and extra cellular fluids

and ionic composition.

During an EIS examination, an alternating electric field is created between

a voltage source and a measuring probe placed at the site of the suspicious le-

sion. The detection probe is composed of electrodes that penetrate the stratum

corneum. The induced electric current is detected at each sensor element and

measured using a trans-impedance measurement technique.

Newer models of electrical impedance have a digital camera along with an au-

tomated software analysis tool (see Table 1.19). The electric current is registered
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at each sensor element and measured using a trans-impedance technique, while

the other electrodes remain at ground potential[54].

A digital picture of the lesion and its surroundings is recorded together with a

close-up frame of the lesion. The borders and the axis of the lesion are displayed

on the computer, and the software automatically extracts five parameters of each

lesion. The asymmetry (A1 and A2) defines the ratio between the non-overlapping

area of the lesion when folded over either of the two perpendicular axes, and the

total area. The Border (B) defines the ratio between the squared perimeter of

the lesion and a factor of the area inside the border. The Color parameter (C)

is the standard deviation of the red-gray levels inside the border. The Surface

(S) is the area of the lesion in square millimeters. Bioimpedance measurements

of suspiciously pigmented lesions are taken at both the center of the lesion and

a noninvolved reference skin site. Lesional and reference skin are measured at

5 depth levels, approximately 0.1 mm to 2 mm into the tissue, and data are

analyzed by a computer. The entire process takes approximately 7 minutes to

complete [69].

Electrical impedance is almost 100% for in situ and thin melanomas [69]. Elec-

trical impedance can also differentiate melanoma from benign nevi with studies

demonstrating ranges of 92-100% sensitivity and 67-75% specificity. However,

electrical impedance properties of human skin vary significantly with the body

location, age, gender and season [1].

Table 1.19: Electrical Bio-Impedance

Device Name Company

TransScan Ltd. Migdal Haemek, Israel
SciBase II impedance spectrometer SciBase AB, Huddinge, Sweden
TS2000M Mirabel Medical System Ltd., Migdal,

Ha’Emek, Israel

1.2.2.9 Magnetic Resonance Imaging (MRI)

MRI scans utilize radio waves and strong magnets instead of X-rays. The working

principle is based on the absorption and re-emission of radio waves from tissue
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protons exposed to a strong magnetic field. Under the influence of radio frequency

pulses, a proton returns to a stable low-energy state and emits radio waves that

are detected by the coil[30].

Specific imaging devices have been developed that permit high-resolution

MRI imaging of the skin (see Table 1.20), allowing differentiation of the stratum

corneum, epidermis and dermis in vivo with an image acquisition that requires

around 3-4 minutes for a section thickness of 1.2 mm. The epidermis appears as

a high-intensity layer, while the dermis appears as hypointense with an irregular

interface of sub-dermal fat[60].

MRI scanning has some disadvantages, namely its cost, size, duration of eval-

uation time, and the need for specialized training. Also, it is not suitable for

patients with metal implants.

Table 1.20: Magnetic Resonance Imaging (MRI)

Device Name Company

Gyroscan Intera Philips Medical Systems, Amsterdam,
Netherlands

Magnetom Siemens, Erlangen, Germany
1.5T GE Signa HDx scanner General Electric HealthCare, Waukesha,

USA

1.2.2.10 Positron Emission Computed Tomography(PET)

PET is a non-invasive, high-resolution imaging technique used to detect the

metastatic spread of melanoma. PET shows great promise in the detection of

metastatic cutaneous melanoma and may also prove useful in the secondary pre-

vention of primary melanoma in those individuals at high risk or with a familial

disposition[52]. Some PET systems are presented in Table 1.21.

Although rare, primary melanomas have also been found in ocular, gastroin-

testinal, anorectal, genitourinary, mucosal, leptomeningeal, sinonasal, pulmonary,

mediastinal, ovarian, vaginal, and vulvar sites and can represent diagnostic chal-

lenges [61][155]. PET may be valuable in detecting these primary melanocytic

lesions in non-skin sites as a dermatologist’s trained eye and the other diagnostic
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techniques described above can only detect those primary melanomas located on

the skin.

Table 1.21: Positron Emission Computed Tomography(PET)

Device Name Company

Discovery VCT General Electric HealthCare, Waukesha, USA
Biograph mCT Siemens, Erlangen, Germany

1.2.2.11 Reflex Transmission Imaging

Reflex Transmission Imaging (RTI) is a form of high-resolution ultrasound that

can be used in combination with white light digital photography for classification

of pigmented lesions [142]. Table 1.22 presents an ultrasound device that can be

combined with a digital camera.

Some studies have present good enough results in discriminating among melanomas,

seborrheic keratoses, and nevi to potentially reduce the referral of benign tumors

by 65% without missing melanomas. Taking into account the limited reports

using RTI in the literature and its high cost, its future use as a primary imaging

modality for melanoma detection is unclear[141].

Table 1.22: Reflex Transmission Imaging

Device Name Company

DermaScan Cv3TM Cortex Technology, Hadsund, Denmark

1.3 Scope of Research

The Computer Vision and Robotics group (VICOROB) of the University of

Girona has been working on the development of skin cancer tools since 2006.

Two main directions have been explored: the study and development of algo-

rithms to detect temporal changes of skin diseases and the implementation of a

skin scanner technology for acquiring full body imaging.
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The Spin-off Coronis Computing of the VICOROB research group is involved

in the project, helping in the development and research on the acquisition, anal-

ysis and processing of medical images. Coronis was started in 2007 by two pro-

fessors of the University of Girona, Rafael Garćıa and Jordi Freixenet who were

later joined by Susana Puig and Josep Malvehy, physicians in the Melanoma Unit

at the Hospital Clinic of Barcelona.

The cooperation with the Melanoma Unit at the Hospital Clinic in Barcelona

provided feedback during the development of this thesis, adding a valuable con-

tribution to all the objectives. The Melanoma Unit was created in 2001 by the

Dermatology and Medical Oncology services and has become a reference service

around the world.

1.4 Objectives of the thesis

The main goal of this thesis is to obtain a new framework for the diagnosis of

cutaneous skin cancer. We focus the interest of this research on three main

objectives:

The first goal includes a pre-processing step for correcting non uniform

dermatoscopic images in order to help physicians using different dermoscopes

or cameras, and also to provide a uniform image acquisition useful for telederma-

tology.

The second goal is to improve Total Body Photography providing tools

for physicians in order to register different sequences of images in an automated

way.

The third goal involves the implementation of a full body scanner to

acquire cutaneous images. The scanner will increase the resolution of the already

existing systems, in order to provide the first medical tool able to acquire images of

the whole body in an automatic way with enough resolution to file high specificity

and sensitivity of the skin cancer diagnosis.
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1.5 Thesis Outline

In the next subsection, we summarize the proposed framework designed accord-

ing to the objectives mentioned. Subsequently, an overview of this document is

described.

1.5.1 A new framework for Skin Cancer Detection

We introduced above the diagnostic techniques for skin cancer detection that are

currently in use. We pointed out some of their advantages and disadvantages.

Keeping these systems inmind we incorporate as many of their good characteris-

tics as possible and solve their inherent problems.

For this reason, we propose a new framework for skin cancer detection able to

resolve the poor resolution of the existing systems by employing high quality im-

age sensors and solving the non-uniform lighting with post-processing techniques.

We also want to automatize the acquisition process with images having a closer

resolution to the ones described in dermoscopy rather than the ones described in

baseline photography.

We aim to provide the first tool for a reliable method to detect skin cancer

based on detecting changes.

1.5.2 Document Overview

This thesis is structured according to the mentioned objectives. The introduction

showed the existing Diagnostic Systems for dermatology.

Chapters 2, 3 and 4 summarize our proposal describing in greater detail

the 3 objectives stated above. Results and conclusions are provided for each of

them.

Chapter 2 describes a color correction pipeline applied to dermatoscopical

images in order to unify the images obtained with different cameras and dermato-

scopes.

Chapter 3 covers the skin mosaicing system proposed to facilitate the task

of registering different total body images in order to enable a temporal study of

the patient.
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1. INTRODUCTION

Thus, in Chapter 4, a new proposal for full body image acquisition is pro-

posed. The chapter describes the hardware and software used in our proposal

and shows preliminary results in 2D and 3D reproductions of the body.

Finally, the thesis ends with Chapter 5, where the conclusions are sum-

marized and further work is pointed out. Moreover, in this chapter, a list of

publications related to this thesis is included.
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Chapter 2

Color Calibration

Different approaches for color calibration have been proposed in order to improve

accuracy in the diagnosis of melanoma. In this chapter, we first describe some of

them and secondly, we present our developed method for improving their results.

The problem to be solved is that images recorded using dermatoscopes and

commercial digital cameras present differences in the colors recorded. So, they

present important differences in the image depending on the camera, the different

dermatoscopic systems, the computer as well as the screen used by the physician

(see Fig. 2.1). The camera is affected by various factors such as the non-linearities

of the sensor, the management of the white reference point used (white balancing)

and the storage format. Moreover, the dermatoscopes on the market at the

moment present different characteristics in the spectrum and uniformity of the

lighting, because the illumination of the images acquired with each device is

different, and also if the dermatoscope is in direct contact with the skin or has

any liquid between it and the skin, it will cause subtle color differences in the

images acquired. On the computer, every graphical card has different properties

such as the gain incorporated in the R, G and B output channels. Also graphical

cards can have different output signals (analog or digital) and a different number

of bits. These differences will generate a different signal for the screen. Some

visualization software may also make adjustments to the images to increase image

contrast, modifying the colors of the images originally acquired by the camera

sensor. Unfortunately, the corrected images may have a different appearance on

different LCD monitors. This issue should be addressed by monitor calibration,
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2. COLOR CALIBRATION

ensuring correct colors according to the reproducible gamut of the screen.

Figure 2.1: Elements affecting color reproduction.

Also, due to their nature, dermatoscopes also reduce the number of observable

colors that can be noticed, particularly for the whitish-blue hue[135]. The differ-

ences between acquisition systems makes the task of detecting melanoma difficult

if dermatologists have not been trained with the same camera and dermatoscope

they normally use and makes the use of color information with automatic image

processing techniques impossible.

2.1 Related Works

Color calibration is a well-known problem in the computer vision community

[147]. Several methods have been proposed to solve it. Basically, they can be

divided into three main groups:

1. Methods that directly compute the spectral sensitivity functions for the R,

G and B channels.
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2. Methods that compute the response of the device by taking pictures of a

known set of color samples.

3. Methods that use a variety of other color models.

The first group computes the spectral sensitivity for each channel (R, G, B)

[12], using a spectrophotometer and a light source. The light source produces a

series of spectral distributions with a narrow bandwidth. These lights are acquired

at the same time by the spectrophotometer and the camera, and both responses

are used to estimate the camera sensitivity curve. Accurate response curves can

also be measured with high spectral resolution using a monochromator or tunable

laser illumination over the full visible spectrum.

The second group relates the RGB values of the device with the XYZ val-

ues already known from a color chart (e.g. Gretag Macbeth [116]) and with a

known lighting system (typically D65). CIE 1931 XYZ color space, created by

the International Commission on Illumination (CIE) in 1931 is a commonly used

standard, and serves as the basis from which many other color spaces are defined.

The relation between the pixel RGB values and XYZ will be computed using a

polynomial regression method.

In the dermatological context, Haeghen and Naeyaert[64] presented a method

for color correction in clinical images. Their method requires a visible color

chart in the clinical image and the color correction is computed for each image.

In a previous work by the same research group, Haeghen et al.[63] tested dif-

ferent non-linear operators for estimating the relationship between the camera

and the calibration chart. As opposed to the work presented by Haeghen and

Naeyaert[64], the approach proposed in [63] was designed to be used on their

custom imaging system, which is similar to a dermatoscope. The images were

extracted from the video frames provided by the camera and they needed to tune

some offsets on the camera to adjust some settings, such as the gamma factor.

A color calibration system for clinical images of human wounds was described

by Van Poucke et al.[138]. Their system uses the JPEG values of two commercial

digital cameras, one Canon D10 and a Nikon D200. The procedure described in

the paper is similar to that proposed by Haeghen and Naeyaert[64]. The system

first performs an inverse gamma correction for obtaining lineal RGB values, then
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2. COLOR CALIBRATION

a linearizing LUT is applied for gray-balancing, and finally a polynomial transfor-

mation (linear, quadratic or cubic) is performed for each color channel, relating

the acquired Gretag Macbeth R© color patches to the theoretical spectrophotomet-

ric values. The output image is gamma corrected for further processing.

Grana et al.[59][58] performed color calibration on a FotoFinder R© video mi-

croscope. Their method first corrects the effects of non-uniform illumination of

the instrument, then a gamma value is estimated to compensate for the visualiza-

tion effects introduced by the apparatus and finally, different non-linear operators

are applied for computing the calibration. Once XYZ color values have been ob-

tained, Grana et al. measure Euclidean distances between the average lesion and

skin RGB values and histogram intersection percentages.

Maglogiannis et al.[110] presented their own system for clinical dermatological

imaging, composed of two CCD cameras and a polarized lighting system. The

system first acquires an image of a Gretag Macbeth R© color chart. Then, the

black/white and grayscale patches are corrected and an image averaging is per-

formed. Finally the values obtained and the reference RGB values of the patches

are interpolated, obtaining a Look Up Table (LUT). This table is then used on

real images for mapping the skin colors. This method also performs radial lens

distortion correction in both cameras finally obtaining the 3D reconstruction of

the skin.

The benefits of RAW with respect to JPEG are presented in the Wighton et

al.[182] work in which the authors compared the accuracy and precision values

for a Canon camera acquiring RAW images with those of a Sony system that

only provided JPEG images. In their work, Wighton et al. [182] performed color

and lighting correction and also presented a method able to correct chromatic

aberrations in JPEG and RAW images.

The third group comprehends color correction methods using other color mod-

els. Iyatomi et al.[80] [81] developed a fully automated method for dermoscopy,

making use of the HSV color system. This method performs normalization on

hue, saturation and intensity channels independently. The normalization is com-

puted with filters generated with statistical studies of already known datasets.

The performance of this method depends on the quality of the dataset used,

and how similar the new images are, compared with those in the dataset. This
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method does not require a color chart, and can ensure the constancy of images.

However, the restored colors may be very different from the real ones, since there

is no ground-truth calibration. Moreover, when two images are different (due to

any change over time) the system would tend to minimize this difference.

With the goal of detecting lesion borders in dermatoscopic images, Schaefer et

al.[151] [152] performed a color normalization, named Automatic Color Equaliza-

tion (ACE), as a pre-processing step. This algorithm consists of two main stages:

(1) chromatic/spatial adjustment and (2) dynamic tone reproduction scaling.

The first step performs color normalization and image contrast enhancement,

while the second performs accurate tone mapping and lighting constancy. While

contrast is increased between the lesion and the background skin, the contrast

within the lesion is decreased. However, although this characteristic helps their

algorithm to distinguish between the lesion and the skin, the fact that the lesion’s

contrast is decreased does not allow further analysis in the final image. They pro-

pose returning to the original image once the segmentation has been computed.

At this point, if any further study is needed, colors should be corrected using a

color calibration process (such as the one proposed in this Chapter).

2.2 Theoretical Model

Typically, physicians acquire images with digital cameras set (by default) to auto

mode and auto white balance. This camera setup tries to fix the white point for

each image with the data obtained from the scene. This may cause each image

to look different even though the camera and the dermatoscope are the same

because the white reference point may be different for each image. Moreover, the

camera also tries to change the exposure time and aperture value automatically

to obtain the best-fitting histogram. Finally, when storing JPEG images, the

camera carries out an additional internal manipulation of the bitmap, an unknown

black-box that varies from one manufacturer to another. For all these reasons, we

propose a new method to acquire and correct images and to obtain more realistic

colors and make them identical on different acquisition systems.

We propose a new calibration pipeline (see Figure 2.2) that starts by acquiring

RAW instead of JPEG images. RAW images have been selected since they provide
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2. COLOR CALIBRATION

linear values directly, and non-linear correction is not needed. After the images

are acquired, they are transformed from the specific camera format (in our case

CR2) to a standard raster graphics format such as TIFF. This transformation can

be done using dcraw (free software for converting RAW images to TIFF). With

this program, it is possible to obtain the original linear values of the camera

without any extra transformation.

Calibration images are acquired using the camera Av mode. This option is

selected to facilitate the acquisition of dark and light images without saturating

the camera’s dynamic range.

After transforming the images and before starting the calibration procedure,

the different exposure times for each image must be compensated. This normal-

ization is basically carried out in two steps. First the image values are divided

by their exposure time (Eq. 2.1) and then divided by the maximum exposition

of the full image sequence.

R =
R

E
, G =

G

E
, B =

B

E
(2.1)

where E is equal to the exposure time.

Once the images are normalized, the calibration procedure takes place. This

process relates the camera-dependent color space with an independent color space

(XYZ). Our system relates the 24 colors from a Gretag Macbeth color checker

chart or from a Digital Color Checker SG (see Figure 2.3) obtained by the acqui-

sition system with the expected XYZ values measured by a spectrophotometer.

The XYZ values are often referred with ideal daylight, with the standard CIE

D65 light source approximated during the computation in the spectrophotometer.

The correct way is to apply the spectral reflectivity of the sample and multiply

it by the spectral distribution of the light source, being in our case, the spectral

data of the LED used in the dermatoscope (see Figure 2.4).

XYZ values can be computed by Eq. (2.2) if the light source is taken into

consideration. This equation uses the CIE 1931 color-matching function tables

(x̂(λi), ŷ(λi) and ẑ(λi)) that correspond to the spectral sensitivity curves of the

three linear light detectors that yield the CIE XYZ tristimulus values X, Y ,

and Z, the reflectance of each patch (s(λ)), and the spectral distribution of the
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Figure 2.2: Camera Calibration Pipeline. In the first step, the 24 color chart im-
ages are acquired. Next the XYZ values are computed using the color reflectance
values, the dermatoscope spectral light distribution, and the color matching ta-
bles. Finally, the color correction matrix is computed to relate both colorspaces.

dermatoscope’s LED light (ρ(λ)). K is used to make Y equal to 100 for the white

reference.

k ·

XY
Z


LED

=
i=730∑
i=380

s(λi)ρ(λi)

x̂(λi)

ŷ(λi)

ẑ(λi)

 (2.2)

Given the RGB values measured by the camera (v) and the XYZ values already

computed (vref ), it is possible to compute the mathematical relationship (M)

between them (Eq. 2.3).

vref = Mv (2.3)

Eq. 2.3 can be extended using Eq. 2.4, where vref is formed by the nth X, Y, Z

triplets, one for each Gretag Macbeth patch, v is formed by the nth R,G,B triplets
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2. COLOR CALIBRATION

Figure 2.3: Color Checker. The Gretag Macbeth R© color checker chart and the
Digital Color Checker. SG R© chart

and αij are the elements of the correction matrix.

[
v1ref · · · vnref

]
=

α11 α12 α13

α21 α22 α23

α31 α32 α33

[v1 · · · vn] (2.4)

Eq. 2.4 can be rearranged into a linear algebraic formulation:



v1
T

v1
T

v1
T

· · · · · · · · ·
vn

T

vn
T

vn
T


=



α11

α12

α13

α21

α22

α23

α31

α32

α33



v
1
ref

· · ·
vnref

 (2.5)

or:

A3n×9X9×1 = b3n×1 (2.6)

where A and b are known and x can be computed using SVD or least squares.
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Figure 2.4: Relative spectral power distribution of Dermlite Foto R© acquired with
X-Rite i1 R© Pro spectrophotometer(blue) and illuminant D65 (red). The y axis
shows the relative spectrum power while the x axis shows the wavelength (nm).

Is it also possible to use a weighted version of Least Squares, adding weights to

colors similar to the skin and the pigmented lesions, but then the final results

will be more accurate on the skin color reproduction test but highly inaccurate

on the colors not presents or less weighted in the calibration.

The previous equations take into account only the R, G and B values for

each camera in order to compute the relation between colorspaces. Other works

such as Hong et al. [75], suggests the use of more parameters to compute the

M matrix. These parameters represent the covariance relationship between color

spaces.

We tested our approach using the following polynomials:
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2. COLOR CALIBRATION

M[3×3] : [R G B]

M[3×10] : [R G B RG RB GB R2 G2 B2]

M[3×10] : [R G B RG RB GB R2 G2 B2 1]

M[3×11] : [R G B RG RB GB R2 G2 B2 RGB 1]

M[3×20] : [R G B RG RB GB R2 G2 B2 RGB R2G G2B

B2R R2B G2R B2G R3 G3 B3 1]

M[3×35] : [R G B RG RB GB R2 G2 B2 RGB R2G G2B

B2R R2B G2R B2G R3 G3 B3 R3G R3B G3R G3B

B3R B3G R2GB RG2B RGB2 RGB2 R2G2 R2B2

G2B2 R4 G4 B4 1]

(2.7)

These polynomials will increase the size of the M matrix in a range from 9 to

105 parameters.

Although RAW values would provide the best image quality since they pro-

vide high bit depth(e.g 12 bits per channel) and accurate linear RGB values,

many cameras produce only JPEG images. Therefore, when RAW values are not

available, we propose two different solutions. First, color calibration should be

carried out using the JPEG values from the camera. Second, a white patch of

the calibration pattern should be used to set the custom white balance (CWB)

setting of the camera.

In any case, when images are corrected, we propose an automatic exposure

correction of the images based on the Minimal Information Loss algorithm. The

dynamic range of each image is stretched by the same prescribed value that is

applied for pixel intensities in the logarithmic domain. In this way we obtain

equally well-exposed images while the uniformity of their color appearance is

retained (up to what the color calibration is able to provide).

2.2.1 JPEG limitations

The camera can be calibrated using the JPEG values and the same procedure

as that for the RAW values. The only difference is the way the input data is

preprocessed. A JPEG image has two main sources of nonlinearity in its values.
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First of all, the acquired images are affected by the sensor’s non-linear response.

These nonlinearities are particular for each camera and affect the final results in

different ways. Second, manufacturers build visual effects into the cameras such as

contrast or gamma-curve enhancements or increased color saturation to enhance

the image’s appearance. For amateur usage these effects typically produce a

pleasant appearance, but in our case they are unknown factors that affect the

final results.

Fortunately, the two main sources of nonlinearity described below are signif-

icantly less important than the third effect, which is the gamma curve that is

finally applied to the image. The non-linear gamma value is used in all JPEG

images to compensate for the displays. This power function also compensates for

the nonuniformity of the luminance sensitivity of the human eye. The eye per-

ceives approximate light intensity uniformly on a logarithmic scale, and displays

are produced following this nonlinear function. In this way, uniform luminance

steps can be ensured over a long scale (1,2, . . . 255), and with fine tone transi-

tions. Therefore, for a JPEG image, we need to obtain linear RGB values through

the inversion of this built-in gamma nonlinearity. The rules of nonlinearity are

defined in the sRGB1 conversion formulas.

To remove these nonlinearities, three alternative procedures can be applied:

1. Exploit the non-linear sRGB to the linear RGB algorithm (Alg. 1) taking

into account a standard gamma value (2.4).

2. Estimate the CCD response curve using the Debevec algorithm [43].

3. Compute the camera response curve by fitting a function between the im-

ages acquired from a known gray scale chart and the expected values of this

chart.

1sRGB is a color standard defined by the International Electrotechnical Commission (IEC)
as IEC 61966-2-1 (IEC, 1999), and involves recommended parameters for displaying photo-
graphic images on a monitor.
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Algorithm 1 Non-linear sRGB to linear RGB

if R,G,B ≤ 0.04045 then
sR = R÷ 12.92
sG = G÷ 12.92
sB = B ÷ 12.92

else
sR = −

(−R+0.055
1.055

)2.4
sG = −

(−G+0.055
1.055

)2.4
sB = −

(−B+0.055
1.055

)2.4
end if

2.2.2 Custom White Balance (CWB)

The simplest way to perform color correction is to fix a CWB on the camera. This

is a typical option on all digital cameras. It fixes the white point of the camera

to match the light source. We propose this method because it is fast and can be

executed in real time on the camera. Physicians who use a CWB will be able to

see the images from anterior explorations and the new images simultaneously as

they acquire each new image. Different images from different cameras will have

the same white point value, although other colors may already be shifted away

from their real values.

CWB scales color values of all the pixels in an image, so that a white reference

specified by the user becomes white on the image. In RGB space, a CWB performs

the operation defined by (Eq. 2.8).RG
B

 =

255/R′w 0 0

0 255/G′w 0

0 0 255/B′w


R

′

G′

B′

 (2.8)

where R′w, G′w and B′w are the red, green, and blue components of a pixel believed

to be a white surface in the image before the color balancing. The value 255

assumes that images are only 8-bit.
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2.3 Experimental Validation

To validate our method, we performed some experiments using various dermato-

scopes and cameras. These experiments compare our method with those de-

scribed in the literature.

Our first validation consisted of obtaining objective results describing the

precision of our method. In this validation, we first acquired 24 images from the

Gretag Macbeth color chart using three different cameras (a Canon 5D Mark II, a

Canon 50D and a Canon G9 ) with the same dermatoscope (Dermlite Pro). These

images were used to obtain a set of 12 calibration matrices for each camera. These

matrices correspond to the polynomials defined in Eq. 2.7, corresponding to 3,

9, 10, 11, 20 and 35 parameters, respectively. Every matrix is then solved under

two different assumptions: first without taking into account the light spectral

characteristics, and next by applying our method, which incorporates the specific

spectral properties of the light.

Once the calibration step was done, we computed the differences using the

14 skin colors of the Digital Color Checker SG not used in the calibration step.

These patches were corrected using the calibration matrices and then compared

with the values obtained from the spectrophotometer. We also compared these

results with the ones obtained by performing the custom white balance.

To compute the difference between two colors, we converted both colors into

the CIELab color space (CIE, 1986), and then we computed the Euclidean dis-

tance between the colors. CIE L*a*b* color triplets (L*,a*,b*) are a nonlinear

transformation of CIE XYZ tristimulus values (X,Y,Z), which are an attempt to

obtain a perceptually uniform color space. The transformation from XYZ to Lab

can be computed from Eq. 2.9.

L∗ = 116f(Y/Yw)− 16

a∗ = 500(f(X/Xw)− f(Y/Yw))

b∗ = 200(f(Y/Yw)− f(Z/Zw)) (2.9)

f(t) =

1.787t+ 16
116
, if t < 0.008856

t1/3, if 0.008856 <= t <= 1
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where L∗ is the luminance and a∗ b∗ are the perceptually uniform red/green and

yellow/blue opponent channels, respectively. Xw, Yw and Zw are the tristimulus of

the white point. Color differences, ∆E∗ab (CIE, 1986), are defined as the Euclidean

distance between two colors (L∗1,a
∗
1,b
∗
1) and (L∗2,a

∗
2,b
∗
2).

∆E∗ab =
√

(∆L∗)2 + (∆a∗)2 + (∆b∗)2 (2.10)

According to the literature [24], ∆E differences lower than 4 are not distinguish-

able to the human eye. In the printing industry, the accepted ∆E∗ab average is 6,

while in video camera work and television it is normally set to 5 [37].

Figure 2.5 illustrates the pipeline used for these testing experiments, and

Figure 2.9 shows the ∆E values obtained for each matrix and method. The

results show that our proposed method performs better than assuming daylight

as other projects in the literature do. On the other hand, it also shows how more

complex polynomials do not always perform better than simpler ones.

Figure 2.5: Pipeline for computing the ∆E error for the skin color chart using
various cameras and dermatoscopes.

Tables 2.1 and 2.2 report the accuracy in color reproduction for a set of

14 skin-color patches that have not been used for color calibration, since the

calibration has been carried out by using the 24 standard color patches of the
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Model
3 9 10 11 20 35

5D
D65 2.5 4.7 3.7 3.7 11.8 63.8
SC 2.6 4.5 3.2 2.8 12.2 62.2

G9
D65 4.0 5.3 4.4 3.9 7.5 60.9
SC 4.0 5.7 4.5 3.9 10.4 58.6

50D
D65 4.1 4.6 4.2 3.9 15.9 70.5
SC 3.4 4.4 3.5 3.6 13.0 69.0

Table 2.1: Color reproduction accuracy (measured in ∆E) for the 14-skin color
patches, after calibration using the 24 Gretag Macbeth color chart. Note that
none of the 14 tested colors are included in the color calibration chart.

Gretag Macbeth ColorChecker. It is important to note that this approach of

using some colors to calibrate, and using a different set of colors to quantify

the accuracy of calibration, is more realistic than just using the same colors for

calibration and verification, as done by some methods in the literature [59].

In table 2.1, the ∆E error values are shown for the state-of-the-art approach

(D65) versus our proposal that models the light spectrum (SC). Our approach

performs better in most cases. On the other hand, it can be observed that

higher order polynomials using 20 and 35 parameters never perform better than

lower order ones. The 3-parameter polynomial provides the best results for the 2

reflex cameras (5D and 50D), while the 11-parameter polynomial obtains the best

results for the G9 camera. It is especially remarkable that our method (which

uses RAW data) fails more often in the G9 camera, while it performs much better

for the two reflex apparatus. This probably means that the RAW data provided

by a compact camera is not as accurate as the RAW images acquired by higher

quality cameras.

Figures 2.6, 2.7 and 2.8, presents the ∆E error values for each camera. Each

one of the 24 Gretag Macbeth patches and the 14 skin patches are represented

for the state-of-the-art approach (D65) and for our proposal that models the light

spectrum (SC). The 3-parameter polynomial is the one used for calibrating the

cameras. These figures shows that the error distribution is similar between both

approaches, but in mean is smaller on the SC approach.

Table 2.2 compares how similar two images are when acquired with different
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(a) (b)

(c) (d)

Figure 2.6: ∆E error comparison for the Canon 5D Mark-II camera. Calibration
is permormed from the 24 Gretag Macbeth patches and results are applied to
the same 24 color patches and the 14 skin patches. (a) Error between the 24
calibrated colors and the expected ones using D65. (b) Error between the 14
calibrated skin colors and the expected ones using D65. (c) Error between the
24 calibrated colors and the expected ones using SC. (d) Error between the 14
calibrated skin colors and the expected ones using SC.

cameras. The accuracy is measured in ∆E differences for the 14-skin color patches

after calibration using the 24 Gretag Macbeth color chart. Again, none of the

14 tested colors are included in the color calibration chart. As already stated

above, higher order polynomials should be avoided since they provide large ∆E

values, i.e., the same lesion acquired with two different cameras would have a
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(a) (b)

(c) (d)

Figure 2.7: ∆E error comparison for the Canon 50D. Calibration is performed
from the 24 Gretag Macbeth patches and results are applied to the same 24 color
patches and the 14 skin patches. (a) Error between the 24 calibrated colors and
the expected ones using D65. (b) Error between the 14 calibrated skin colors and
the expected ones using D65. (c) Error between the 24 calibrated colors and the
expected ones using SC. (d) Error between the 14 calibrated skin colors and the
expected ones using SC.

very different color appearance. In this comparison, our method (SC) always

performs better than the state-of-the-art (D65). Moreover, reflex cameras provide

better results, independently of the method used (CWB, D65 or SC). Considering

the best possible result (marked in boldface), table 2.2 shows that our method

improves between 0.1 and 0.9 ∆E with respect to D65.
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(a) (b)

(c) (d)

Figure 2.8: ∆E error comparison for the Canon G9. Calibration is performed
from the 24 Gretag Macbeth patches and results are applied to the same 24 color
patches and the 14 skin patches. (a) Error between the 24 calibrated colors and
the expected ones using D65. (b) Error between the 14 calibrated skin colors and
the expected ones using D65. (c) Error between the 24 calibrated colors and the
expected ones using SC. (d) Error between the 14 calibrated skin colors and the
expected ones using SC.

The second test consists of acquiring skin images using two compact cam-

eras (Canon G7 and Canon A640) equipped with polarized and non-polarized

dermatoscopes. First, these images were corrected with the parameters obtained

through the calibration and, next, non-uniform lighting was corrected, applying

the procedure described below. For calibration, an image of a white surface is
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Model
3 9 10 11 20 35

50D-5D
CWB 6.32
D65 2.9 3.5 3.5 3.8 8.6 64.0
SC 2.8 3.1 3.3 3.7 13.6 64.1

50D-G9
CWB 17.2
D65 5.1 4.9 4.9 5.1 14.3 49.7
SC 5.0 4.3 4.4 4.4 17.6 49.7

5D-G9
CWB 13.9
D65 4.2 4.5 4.4 5.2 12.5 42.6
SC 4.1 3.7 3.5 4.3 12.9 42.6

Table 2.2: Color matching comparison using two different cameras. Given 3
cameras (5D, 50D and G9), the 3 possible comparisons are illustrated. In every
comparison, we include the use of custom white balance (CWB), state-of-the-art
(D65) and our method (SC). Differences are measured in ∆E for the 14-skin color
patches after calibration using the 24 Gretag Macbeth color chart patches. Note
that none of the 14 tested colors are included in the color calibration chart.

(a) (b)

Figure 2.9: ∆E error comparison. Calibration is done with the 24 Gretag Mac-
beth patches and results are applied to the 14 skin patches. (a) The error between
the calibrated colors and the expected ones. (b) The error between the two cam-
eras, with calibrated images and using the custom white balance.

acquired first, then the mean of a small central patch is computed, assuming

uniform lighting for that central patch. This value will be used as the expected
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one for the entire image. For this reason, we create a mask, Eq. 2.11, and apply

this mask to each image according to Eq. 2.12.

Mask(x, y) =
R(x, y)−Mean

Mean
(2.11)

OutputImage(x, y) =
InputImage(x, y)

1 +Mask(x, y)
(2.12)

Finally, the images are transformed from the XYZ color space to RGB using

Eq. 2.13, and the linear values obtained are corrected with a “standard ”gamma

(γ = 2.4, see Eq. 2.14). R

G

B

 =

 3.2410 −1.5374 −0.4986

−0.9692 1.8760 0.0416

0.0556 −0.2040 1.0570


 X

Y

Z

 (2.13)

CsRGB =

{
12.92Clinear, Clinear ≤ 0.0031308

(1 + a)C
1/2.4
linear − a, Clinear > 0.0031308

(2.14)

where C corresponds to each color channel.

Figures 2.10 and 2.11 show the difference between calibrated and non-calibrated

real images. The first figure shows the differences between the three systems used

using auto white balance, custom white balance, and calibrated cameras. The

second figure shows the difference between custom white balance and calibrated

images using JPEG images and RAW images. The images corrected from RAW

values show the best results and, at the same time, have colors closer to the real

ones and the closest colors between the different cameras. Without using RAW

values the images improve in quality but are significantly less than when RAW

images are used.

The third experiment quantifies the accuracy for the 24 corrected images

that correspond to each Gretag Macbeth R© color patch. This test quantifies the

accuracy of the color calibration process by measuring how different corrected

colors are from the ones that can be perceived with the naked eye. This test was

performed using three commercial digital cameras (Canon 5D Mark II, Canon 50D

and Canon G10).The images were obtained using Custom White Balance, setting

the camera to the Av mode (fixed camera aperture and variable time exposure)
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Figure 2.10: Skin images using the a640 with polarized and non-polarized light
and the G7 with polarized light. The first column shows the original images with
auto white balance, the second column shows the improvements using custom
white balance, and the last column shows results of a color calibration using
JPEG values.

and fixing the ISO value to the minimum available for each camera (100 for 5D

and 50D, and 80 for the G10). The color of each image is adjusted using custom

white balance. For the Canon cameras taking an image of a white reference

enables this setting for the JPEG images, RAW images are independent on the

white point selected, and depend exclusively on the camera and the available

lighting.

The dermatoscopes used in this study are the Dermlite DL3, the Dermlite II

Fluid and the Dermlite Foto (3Gen LLC, Dana Point, California, USA). The first

one consists of a photographic lens attachment, and uses 21 light-emitting diodes

(LEDs) in cross-polarized mode and 7 non-polarized LEDs for immersion fluid

dermoscopy (not used in our experiment). The Dermlite II Fluid uses 16 or 32

LEDs with non-polarized lighting, allowing physicians to perform immersion fluid

dermoscopy. The DermLite Foto uses a cross-polarized system with 24 cold white
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Figure 2.11: Skin images using the G9 and 5D with a polarized dermatoscope.
The first column shows the custom white balance images, the second, the cali-
brated images using JPEG, and the third, the images obtained after calibrating
with the RAW values.

light emitting LEDs; the system is combined with a digital camera. During the

experiment, batteries were always fully charged to avoid illumination changes.

Table 2.3, shows the ∆E error values between each of the 3 cameras and the

3 dermatoscopes compared with the values obtained using a spectrophotometer.

This table clearly shows the large initial input error of each image. The differences

in the ∆E error are statistically significant between the original images before

calibration and the JPEG images after color correction (P < 0.001), as well as

between the original images and their color-corrected counterpart using RAW

images (P < 0.001). The improvement between RAW and JPEG images is also

statistically significant (P < 0.001).

The corrected images are still 1.5 ∆E worse (on average) than the ones cali-

brated using RAW values.

Figure 2.12 presents the highest probability of having images corrected with

less error than the original ones. Almost 84% of the JPEG corrected images

present less than 4 ∆E errors, while if we consider RAW images, 99% of them
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Table 2.3: Color reproduction accuracy using three different cameras. Given 3
cameras (5D, 50D and G10), and 3 dermatoscopes (DermLite DL3, DermLite II
Fluid and Dermlite Foto) the 9 possible comparisons are illustrated. In every
comparison, we include error before calibration (Before), after calibration with
JPEG images (after JPEG) and after RAW calibration (After RAW). Differences
are measured in ∆E for the 24 Gretag MacBeth color patches.

Color Correction DermLite DL3 DermLite II Fluid DermLite Foto

5D Before 27.07 72.88 23.43
After JPEG 2.90 1.18 3.93
After RAW 1.67 0.89 0.90

50D Before 31.81 30.38 24.41
After JPEG 1.83 1.87 1.09
After RAW 0.75 0.82 1.24

G10 Before 32.84 28.02 27.51
After JPEG 2.98 1.10 2.19
After RAW 0.97 0.64 0.61

are within the same threshold.

Figure 2.12: Distribution of the probability of having n of the 24 Gretag
Macbeth R© colors with a given difference between them and the expected spec-
trophotometric value. Images are compared with and without calibration.

Most of the corrected colors present small ∆E values on the JPEG and RAW
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corrected images when comparing their values with the spectrophotometric ones.

However, note that a few of them reach the value of 12 ∆E on JPEG and 6 ∆E

on RAW images.

Table 2.4 shows a comparative analysis of the accuracy of our method com-

paring different cameras with the same dermatoscopes. We can see that the error

is always smaller when RAW values are used. The differences in the ∆E error

are statistically significant between the original and JPEG images (P < 0.001),

between the original and RAW images (P < 0.001) and between RAW and JPEG

images (P < 0.01).

Table 2.4: Color matching comparison using three different cameras. Given 3
cameras (5D, 50D and G10), and 3 dermatoscopes (DermLite DL3, DermLite II
Fluid and Dermlite Foto) the 9 possible comparisons are illustrated. In every
comparison we include error before calibration (Before), after calibration with
JPEG images (after JPEG) and after RAW calibration (After RAW). Differences
are measured in ∆E for the 24 Gretag MacBeth color patches.

Color Correction DermLite DL3 DermLite II Fluid DermLite Foto

5D Before 8.83 8.75 10.83
After JPEG 1.53 0.97 4.50
After RAW 1.02 0.47 1.88

50D Before 11.07 11.33 15.87
After JPEG 1.15 0.90 2.43
After RAW 0.93 1.30 1.08

G10 Before 13.20 10.60 11.77
After JPEG 1.95 1.37 2.62
After RAW 0.45 1.15 0.92

The forth experiment presents some results on in vivo images, although, note

that spectrophotometric measurements were not made on them due to the dif-

ficulty of measuring exactly the same area with the spectrophotometer and the

camera. For in vivo images, we only tested how constant the color of each image

is with respect to the colors of images acquired with different dermatoscopes or

cameras (Figures 2.13, 2.14 and 2.15).

Table 2.5 presents numerical results for the two in vivo images. We decided

first to check the accuracy of our method by looking at a part of the skin that

does not contain the lesion and then comparing the lesion part of the images.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.13: Original images. Each column corresponds to a Canon 5D, 50D and
G10, respectively. The rows correspond to DermLite DL3, DermLite II Fluid and
DermLite Foto

Results show an improvement of 5 ∆E when RAW images are used comparing

them with the original images. Also we observe a small improvement with JPEG

corrected images.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.14: Calibrated images using JPEG values. Each column corresponds to
a Canon 5D, 50D and G10, respectively. The rows correspond to DermLite DL3,
DermLite II Fluid and DermLite Foto

2.4 Discussion

The relevance of color calibration in dermatological images has previously been

discussed in the literature. In this work, we show that our color calibration

methodology provides accurate color reproduction, improving the results pre-

sented in the literature up to date. Some studies have reported the importance of

color calibration, both for clinical and dermoscopic images. Our procedure per-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.15: Calibrated images using RAW values. Each column corresponds to
a Canon 5D, 50D and G10, respectively. The rows correspond to DermLite DL3,
DermLite II Fluid and DermLite Foto

forms color calibration in dermoscopic images, independently of the dermatoscope

and camera used. Moreover, our approach is able to work with RAW or JPEG

images, although our results prove that color correction is much more effective

when RAW is used as input. This is due to the fact that the camera introduces a

gamma correction in the JPEG as well as other unknown adjustments to enhance

the image, adapting it to the spectral response of the human eye. One of the

main differences in our work with respect to all other reported work is the use of
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Table 2.5: Comparison of different patches on two different lesions. Each value
corresponds to the average ∆E error after combining all the dermatoscopes and
cameras

Lesion 1 Lesion 2 Total
Skin Lesion Skin Lesion Skin + Lesion

Before calibr. 12.92 16.50 14.98 19.26 15.92
After JPEG calibr. 9.52 14.53 12.76 16.80 13.90
After RAW calibr. 9.04 8.42 9.21 11.44 9.53

spectral information of the lighting system in the dermatoscope to improve color

calibration accuracy.

Although this method is devised for RAW images, a simple but powerful

solution has also been presented for low-cost digital cameras producing JPEG

images, which are “black boxes”, colorimetrically speaking. Thus, in the case of

JPEG images, we have shown that “custom white balance” produces an initial

improvement over the use of “auto white balance”.

The final results show the importance of using the new features proposed in

this paper, and the advantages/disadvantages of using different polynomial or-

ders. We have illustrated how important it is to use the classic 3× 3 calibration

matrix to obtain good results in the calibration of unknown colors and also to

preserve the relationship between color channels. Our proposal shows the impor-

tance of computing the lighting spectral sensitivity when images captured from

different cameras are compared, obtaining improvements between 0.1 and 0.9 ∆E

over day light assumption (state-of-the-art).

Table 2.6: Accuracy measurements for our method with respect to previous works.

Accuracy Maximum

Haeghen et al.[63] 6.20 13.30
Wighton et al.[182] 10.00 23.60
Wighton et al.[182] 6.40 14.80
Proposed JPEG Cal. 2.16 12.35
Proposed RAW Cal. 0.95 5.22

It is evident from our results that the error is considerably reduced for both
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the Gretag MacBeth R© color checker chart and the in vivo images.

The error in the original JPEG images is due to a number of facts, namely:

the different lighting used by each dermatoscope, the different way of processing

the values of each camera, and the non-linearities in the JPEG image forming

process.

Although calibration using JPEG images partially compensates for some of

these effects, it is not able to eliminate all of them. Using RAW values (whenever

this option is available in the camera) considerably reduces the final error, even

when certain colors may be reproduced with a noticeable inaccuracy.

Moreover, by comparing the accuracy of our method with respect to the state

of the art (see Table 2.6), it has been proved that we provide better calibration

results using both JPEG and RAW images in overall accuracy as well as regarding

the worst corrected value. Haeghen and Naeyaert’s[63] previously published study

presents a camera color calibration using JPEG data with a mean error of 6.20

∆E, Whigton et al.[182] recently presented a study with a mean error of 10.00

and 6.40, the first error using JPEG values and the second with RAW images.

Our error of 2.16 and 0.95 shows the benefit of using spectral information of the

dermatoscope lighting.

Our results illustrate the importance of using RAW values as opposed to

JPEG, since JPEG is a black box [37] where pixel values may experience changes

due to unknown non-linear image manipulations carried out by the camera, thus

being less reliable for diagnosis. This is supported by the results presented in

this paper, where JPEG images produce larger errors than RAW images. It is

important to note, moreover, that even a perfect calibration would not ensure

accurate color reproduction in real world JPEG images due to the non-linear

procedures applied, as opposed to RAW images.

The procedure described in this paper shows how to improve the color con-

stancy in different cameras and dermatoscopes. However, as some colors could

not be perfectly corrected, we finish with a tool that can be used by physicians

for improving their diagnosis, both with their own images and when using tele-

dermatology. Finally, it should be noted that our software could be also used

as pre-processing for automatic mole classification when color information is re-

quired.
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Chapter 3

A novel system for skin mosaicing

This chapter introduces a novel methodology for skin exploration. Our state-of-

the-art discovered various techniques based on total body photography lacking

enough resolution for adequate clinical practice. Our proposal takes the low

resolution images of a total body exploration and merges them into a single,

higher-resolution image. This technique is known as image mosaicing. In this

way, a full body exploration is registered into a single image, simplifying the

task of comparing different explorations, either analyzing the mosaics of both

explorations or comparing the corresponding images between explorations.

3.1 Related Works in Image Mosaicing

Image mosaicing[27] (also known in the literature as image stitching[99] or image

montage[40]) is used to combine tens or hundreds of images to make a single wide-

angle or panoramic view, usually bigger than the initial images. This combina-

tion of images is applied to several different fields such as document analysis[125],

augmented reality[167], scene stitching[168][26], etc, performing panoramic pho-

tography, super-resolution imaging, object insertion, texture synthesis, virtual

environments, vision based navigation systems, etc.

Mosaics could be used to build a map with the location of detected moles,

showing their positions in the map and tracking them on time for studying the

evolution in size, color and shape.
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In our case, constructing a map of the human skin is based on building a

global mosaic from several images of the body. The mosaic is usually created

without any information about the camera position at each shot. Therefore, all

the known information provided for generating the mosaic is retrieved from the

images, and only the order of the images is known. To build the mosaic without

human intervention, the estimation procedure should be performed in a robust

and fully automatic way. The quality of the texture image matching depends on

the images and the transformation presented between them.

Fig. 3.1 presents the mosaicing pipeline, composed of image acquisition, regis-

tration, prediction of non-consecutive overlaps, global registration and rendering.

Each step is described below.

Skin images normally suffer from acquisition noise, non-uniform illumination,

lack of texture and non-rigid deformations of the body. These problems increase

the difficulty of solving the registration problem. The camera can be shifted and

rotated relative to all the three axes between images. Moreover, changes in scale,

illumination and perspective can be present.

The registration process tries to recover the position of the camera in each

acquisition procedure. Once these camera positions are computed, is it possible

to stitch all the images into a common frame. As the positions are incrementally

computed, some errors could be generated by small differences accumulating at

each camera position. For this reason, non-consecutive image pairs are located

and matched. The mosaic with the new correspondences is then re-aligned. This

process is repeated iteratively until no more new overlapping image pairs are

found. Finally, the images are merged onto a single frame. Blending algorithms

solve the intensity value for the overlapping areas.

3.1.1 Image Acquisition

The mosaicing pipeline in Fig. 3.1 starts with the acquisition of the images.

These images should have enough quality to clinically useful, enough at least to

detect changes. This quality is of the utmost importance in order to obtain good

results in the next steps. Having enough resolution at the scale of the nevus of

the patient’s body is required because we aim to monitor every single nevus as
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Figure 3.1: Mosaicing Pipeline: Steps needed to solve the image stitching prob-
lem.

well as the areas of the body where no previous nevi are present, i.e. the full

body. In the first case, the intention is to monitor the evolution of this single

nevus, while, in the second case, the goal is to see if any new nevi appear.

3.1.2 Image Registration

Determining the transformation that takes place between images as the viewpoint

of the camera changes is an essential problem in image mosaicing. This is widely

known as the image registration problem[26].

Image registration has been greatly discussed in the literature where many au-

thors have proposed methods to tackle this problem [167][41]. Broadly speaking,

these methods can be classified into: frequency domain based methods (Fourier

transform), dense methods (optical flow) and sparse methods (feature based).

We describe these methods in the following pages.
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3.1.2.1 Frequency Domain

Frequency-based methods were used in phase-correlation in order to estimate the

shifts between two images. These methods were extended in order to account

for rotation and scale transformations[143] as well as affine transformations[185]

using log-polar coordinates.

3.1.2.2 Optical Flow

Optical Flow methods estimate the disparity (apparent motion) of pixels be-

tween pairs of images. Usually, optical flow uses the Brightness Constancy Model

(BCM), in which it is assumed that the photometric properties (intensity and

color) remain constant.

There are two main approaches in estimating the optical flow: global methods

such as Horn-Schunck[76], which yield dense flow fields, and local methods such as

Lucas-Kanade[107][108] that produce non-dense regularized grid flow fields that

are more robust to noise.

Lucas-Kanade is one of the most widely used methods based on the local

Taylor series approximation using partial spatial and temporal derivatives, and

is based on the following equations:

I(x+ δx+ δx, y + δy, t+ δt) = I(x, y, t) +
∂I

∂x
∂x+

∂I

∂y
∂y +

∂I

∂t
∂t+ ξ (3.1)

where I(x, y, t) is the pixel intensity at coordinates (x, y) at time t, and ξ is a

reminder (small enough to be ignored). Making use of the BCM assumption

through images, we have

∂I

∂x
∂x+

∂I

∂y
∂y +

∂I

∂t
∂t = 0 (3.2)

or

∂I

∂x

∂x

∂t
+
∂I

∂y

∂y

∂t
+
∂I

∂t

∂t

∂t
= 0 (3.3)

therefore,
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∂I

∂x
Vx +

∂I

∂y
Vy = −∂I

∂t
(3.4)

Using Ix, Iy and It as the spatial and temporal derivatives, we obtain −It =

IxVx + IyVy or simply −It = ∇I · ~V , which is an equation that imposes a single

constraint with two unknowns, thus not solvable as is. However, assuming con-

stant flow within small windows, for instance over 3 × 3 pixels, we can obtain a

set of 9 equations:

Ix11 · Vx + Iy11 · Vy =− It11 (3.5)

Ix12 · Vx + Iy12 · Vy =− It12 (3.6)

Ix13 · Vx + Iy13 · Vy =− It13 (3.7)

... (3.8)

Ix3 · Vx + Iy33 · Vy =− It33 (3.9)

Therefore, we can construct an over-determined system of 3×3 = 9 equations:


Ix11 Iy11

Ix112 Iy12
...

...

Ix33 Iy33

 ·
(
Vx

Vy

)
=


−It11
−It12

...

−It33

 (3.10)

This over-determined system is expressed by BT ·~v = BT (−b) and, therefore,

~v = (BTB)−1BT (−b). Hence,

(
Vx

Vy

)
=

( ∑
I2xij

∑
Ixij · Ixij∑

Ixij · Ixij
∑
I2yij

)−1
·

(
−
∑
Ixij · Itij

−
∑
Iyij · Itij

)
(3.11)

Local optical flow methods yield a vector direction for each considered patch

in the image.

Some approaches present better alternatives to BCM. These alternatives as-

sume linear changes in illumination, like Generalized Dynamic Image Model
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(GDIM)[126][129], and color[109][128].

Due to the problem’s formulation, optical flow methods can not deal with

disparities that exceed 1 pixel. For solving this problem, multi-resolution ap-

proaches should be used[127]. In this way, images are gradually reduced and the

optical flow is computed from coarse levels towards fine levels. The drawbacks

here include the computational time (optical flow needs to be computed at each

level) and the maximum pixel disparity has to be a known a priori in order to

set the number of decimation levels. Multi-resolution approaches are very sen-

sitive to noise, since errors in the estimation of optical flow at coarse levels will

propagate to fine levels.

3.1.2.3 Feature Based Image Registration

Feature based techniques rely on locating features in both images and using these

features to obtain the transformation parameters for registering the two images.

These features must be: (i) repetitive - features can be correctly tracked through

images even if their focal point is different or the lighting conditions have changed

and (ii) discriminative - they can be singly matched in the images.

The performance of these techniques depends on several factors, such as the

area of overlap between images and to what extent it is possible to model the

image distortions with simple geometric transformations. Further, image quality,

affected by degradations such as noise contamination and blurring as well as image

characteristics such as smooth/textured areas or similarity of different areas also

play a role in the techniques’ performance.

Feature-based image registration involves four steps (see Fig. 3.2 ):

Feature detection. This is the process of extracting salient points that cor-

respond to corners, boundaries, highly textured patches or regions differing in

intensity need to be detected independently in every image. There are various

extraction techniques. The primary issue of these algorithms is to detect points

invariant to the 2D image deformations resulting from 3D camera motion. These

deformations include translation, rotation, scaling, shear and projective distor-

tion. In this work, a number of point detectors will be tested with skin images:

Harris, SIFT and SURF, respectively.
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Figure 3.2: Feature Based Mosaicing Pipeline: Steps needed to solve image stitch-
ing problem in feature based methods.

Feature description. Once a set of keypoints are detected in each image, an

invariant descriptor based on the intensity information of the point neighborhood

is computed. The descriptor should be distinctive for each detected point, and at

the same time it should be robust to noise, detection errors, and geometric and

photometric deformations (lighting, color and contrast changes between images).

Feature matching. The first step toward the estimation of the image regis-

tration parameters consists of finding feature correspondences. This is referred to

as the matching problem and has different solutions in the literature, like methods

using spatial relations, invariant descriptors, etc [190].

Motion Estimation. Once the feature correspondence has been established,

the next step is to solve for the parameters of some global transformation. Usually,

this involves finding the translation, rotation and scale parameters to transform

one image to another.

The next sections will describe each step in detail.
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Feature detector Edge Corner Blob
Canny[31] x

Sobel[137] x

Harris & Stephens[70] x x

SUSAN [159] x x

Shi & Tomasi[154] x

Level curve curvature[87][90] x

FAST[146] x

Laplacian of Gaussian[101] x x

Difference of Gaussians[106] x x

Determinant of Hessian[101] x x

MSER[115] x

Grey-level blobs[100] x

Table 3.1: Classification of Feature Detectors : Some algorithms for detecting
features are classified depending on the detected element (Edge, Corner or Blob).

3.1.3 Feature detection

The points detected at the detection step should have the property of repeatabil-

ity. This means that the same feature should be detected in two or more different

images of the same scene. If the same point is detected in two different images,

their matching can be performed. The points are distinguished by an interest

measure, called cornerness. This term is used for all the detectors for simplicity,

but not all the detectors search corners, blobs and ridge structures are also de-

tected. In these cases, the interest points are called keypoints or features. Taking

into account this difference, three main groups are formed, see Table 3.1.

Some of these detectors will be explained in detail.

Harris Corner Detector This detector was introduced by Chris Harris

and Mike Stephens in 1988 [70] and defines a corner as a point with low self-

similarity. The algorithm checks if a corner is present in any pixel of the image by

considering how similar a patch centered on the pixel is to the patches centered on

his neighbors, see Eq.3.12. The similarity is measured using the sum of squared
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differences, SSD, between the two patches. Lower values obtained with SSD

describes more similarity between patches. The Harris corner detector presents

invariance to rotation, illumination variation and image noise.

c(x, y) =
∑
w

[I(xi, yi)− I(xi + ∆x, yi + ∆y))]2 (3.12)

Where I(·,·) denotes the image function and (xi, yi) are the points in the

window W (Gaussian) centered on (x,y). The shifted image is approximated by

a Taylor expansion truncated to the first order term, where Ix and Iy denote the

partial derivatives in x and y, respectively.

I(xi + ∆x, yi + ∆y) ≈ I(xi, yi) + [Ix(xi, yi)Iy(xi, yi)]

[
∆x

∆y

]
(3.13)

After substituting Eq. 3.13 into Eq. 3.12 yields,

c(x, y) =
∑
w

[I(xi, yi)− I(xi + ∆x, yi + ∆y))]2 (3.14)

=
∑
w

(
I(xi, yi)− I(xi, yi)− [Ix(xi, yi)Iy(xi, yi)]

[
∆x

∆y

])2

(3.15)

=
∑
w

(
−[Ix(xi, yi)Iy(xi, yi)]

[
∆x

∆y

])2

(3.16)

=
∑
w

(
[Ix(xi, yi)Iy(xi, yi)]

[
∆x

∆y

])2

(3.17)

= [∆x∆y]

[ ∑
w(Ix(xi, yi))

2))
∑

w Ix(xi, yi)Iy(xi, yi)∑
w Ix(xi, yi)Iy(xi, yi)

∑
w(Iy(xi, yi))

2))

][
∆x

∆y

]
(3.18)

= [∆x∆y]C(x, y)

[
∆x

∆y

]
(3.19)

where matrix C(x, y) captures the intensity structure of the local neighborhood.

The geometric interpretation of the gray levels is encoded in the eigenvectors and

eigenvalues of the matrix. C(x, y) is symmetric and has two nonnegative eigenval-
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ues λ1 and λ2, so it can be expressed by rotation of the coordinate axes shown in

Eq. 3.20, where CT (x, y) is the matrix C(x, y) after the applied transformations.

CT (x, y) =

[
λ1 0

0 λ2

]
(3.20)

The eigenvalues of C(x, y) form a rotationally invariant descriptor of the pixel

neighborhood, depending on the magnitude of the eigenvalues. Three cases are

described:

1. λ1 ≈ 0 and λ2 ≈ 0

The local auto-correlation function is approximately flat. This means that

the changes in c(x, y) have few changes in any direction, i.e. the windowed

image region has constant intensity, with no features of interest.

2. (λ1 ≈ 0 and λ2 � 0) or (λ1 � 0 and λ2 ≈ 0)

If one eigenvalue is high and the other low, the local auto-correlation func-

tion is ridge-shaped. In one direction, only small changes are produced and

in the other (orthogonal to the ridge) significant changes are detected. This

indicates the presence of an edge.

3. λ1 � 0 and λ2 � 0

If both eigenvalues are high, the local auto-correlation function is sharply

peaked, shifts of the window in any direction will produce significant differ-

ences in the function. This indicates a corner.

Fig. 3.3 displays the three cases described, namely when the windowed image

region is flat (a), when there is an edge (b) and when there is a corner (c).

Hessian blob detector. This was one of the first image feature detectors.

Proposed by Beaudet in 1978[16], it represents the basis for many recent corner

detectors.

The Baudet operator is a rotationally invariant measurement of cornerness

given by the determinant of the Hessian matrix H, which represents a second-

order partial derivative of an image I:
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(a) (b) (c)

Figure 3.3: Harris Detector: (a) flat region, (b) edge and (c) corner.

H(x, y) =

[
Ixx(x, y) Ixy(x, y)

Ixy(x, y) Iyy(x, y)

]
(3.21)

where Ixx, Ixy and Iyy are the second partial derivatives of the image intensity

function.

The second derivatives used in the Hessian matrix correspond to blobs and

ridges, being represented by the local maxima of KHessian:

KHessian(x, y) = Ixx(x, y)Iyy(x, y)− I2xy(x, y) (3.22)

Harris affine and Hessian affine detectors. These are robust to image

noise and invariant to rotation and lighting changes. However, none of them is

invariant to scale and affine transformations[118]. This makes them ineffective in

wide base-line image registration where changes in the camera’s viewpoint can

induce significant geometric transformations.

Mikolajczyk et al.[119] proposed modifications for Harris and Hessian feature

extractors, making them invariant to scale changes and affine transformations.

For dealing with the scale changes, they propose the use of a scale selection

method based on the Laplacian, with the idea of selecting a scale that is charac-

teristic to the local structure. For this purpose, the Harris autocorrelation matrix

is modified to include scale information:

CAffine(x, σI , σD) = σ2
Dg(σI) ∗

[
I2x(x, σD) IxIy(x, σD)

IxIy(x, σD) I2y (x, σD)

]
(3.23)

where g(σI) is the Gaussian kernel of scale σI and x = (x, y). I(x) is the Gaussian-
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smoothed image, and the ∗ operator denotes convolution. Ix(x, σD) and Iy(x, σD)

are the derivatives in their respective direction applied to the smoothed image and

calculated using a Gaussian kernel with scale σD. The σI parameter determines

the current scale at which the Harris corner points are detected.

The local image derivatives are computed using Gaussian kernels of scale σD

and averaged by smoothing with a Gaussian window of scale σI .

In the case of the Hessian feature extractor, the second order matrix becomes:

HAffine(x, σD) =

[
Ixx(x, σD) Ixy(x, σD)

Ixy(x, σD) Iyy(x, σD)

]
(3.24)

where Ixx(x, σD) and Ixy(x, σD), Iyy(x, σD) are the second-order partial derivatives

of the image, σD is the Gaussian scale at which the second partial derivatives of

the image are computed.

The affine shape of the neighborhood around the feature points in both the

Harris and Hessian cases is estimated using an iterative method using the eigen-

values of the second moment matrix.

SIFT Detector: Difference of Gaussians. This detector, descriptor and

matching algorithm was introduced by Lowe in 2004[106]. The SIFT detector is

invariant to scale, hence it incorporates a multi-scale representation of the image.

To increase the speed with respect to Hessian algorithms, Lowe introduced an

approximation of the Laplacian of Gaussian by a Difference of Gaussians, called

DoG. DoG is used to compute the spatial coordinates of the feature and the scale

selection.

To detect the features, two main steps are performed: the scale-space local

extrema detection and keypoint localization.

Scale-space extrema detection. The first stage of this algorithm is to

identify the locations and scales that can be repeatedly assigned under differing

views of the same object. Detecting locations invariant to scale change of the

image can be accomplished by searching for stable features across all possible

scales, using a continuous function of scale, known as scale space.

The Difference of Gaussians is calculated from the Gaussian scale space L(x, y, σ)

76



that is produced from the convolution of a variable-scale Gaussian, G(x, y, σ),

with an input image, I(x, y):

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (3.25)

G(x, y, σ) =
1

2πσ2
e−(x

2+y2)/2σ2

(3.26)

The Difference of Gaussians function D(x, y), convolved with the image I(x, y)

is computed from the difference of two nearby scales of L(x, y, σ) separated by a

constant multiplicative factor k as shown in Eq. 3.27.

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) = L(x, y, kσ)− L(x, y, σ) (3.27)

The smoothed images L(x, y, σ) need to be computed in any case for the

scale space feature description, and D can therefore be computed by simple im-

age substraction, which is much faster than computing the LoG space, which

involves second-order derivation. The difference-of-Gaussian function provides

a close approximation to the scale-normalized Laplacian of Gaussian, σ2∇2G,

demonstrated in Fig.3.4. Lowe derives the relationship between D and σ2∇2G

from the heat diffusion (see Eq.3.28), parametrized in terms of σ.

∂G

∂σ
= σ2∇2G (3.28)

The term ∇2G can be computed from the finite difference approximation to

∂G/∂σ, using the difference of nearby scales at kσ and sigma:

σ2∇2G =
∂G

∂σ
≈ G(x, y, kσ)−G(x, y, σ)

kσ − σ
(3.29)

and therefore,

G(x, y, kσ)−G(x, y, σ) ≈ (k − 1)σ2∇2G (3.30)

The σ2 scale normalization required for the scale-invariant Laplacian is already

included in Eq. 3.30. The factor (k− 1) is a constant over all scale and does not
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Figure 3.4: GSS - Gaussian scale space; DoG - Difference of Gaussians scale scape

influence the local extrema location. The approximation error will go to zero as

k tends to 1, but in practice, this effect has no effect on the stability of extrema

detection.
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An example of constructing D(x, y, σ) is shown in Fig.3.4, where the initial

image is incrementally convolved with Gaussians to produce images separated by

a constant k factor in scale space, shown stacked in the left column. s+3 blurred

images are produced for each octave and final extrema detection covers a complete

octave. The adjacent image scales are combined producing the difference-of-

Gaussian images shown on the right. Once a complete octave has been computed,

the Gaussian images are re-sampled having twice the initial value of σ (2 images

from the top of the stack) by taking each second pixel in each row and column.

The accuracy sampling with respect to σ is the same as starting from the previous

octave and the computational cost is reduced.

Keypoint localization In order to detect the local maxima and minima of

D(x, y, σ) at each sample point, this point is compared with its eight neighbors in

the current image and nine neighbors in the scales above and below. The selected

points are the ones that are larger or smaller than all of their neighbors.

(a) (b)

Figure 3.5: SIFT local extrema detection: (a) Maxima and minima of the
difference-of-Gaussian images are detected by comparing a pixel (marked with
X) to its 26 neighbors in 3×3 regions at the current and adjacent scales (marked
with circles). (b) Image with detected SIFT keypoints.

Once a keypoint candidate is detected, a detailed data for location, scale, and

ratio is performed. To determine the location of the point, Brown and Lowe de-

veloped a 3D quadratic function for fitting a function to the local sample points
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to compute the interpolated location of the maximum, providing a good stability

and matching for the keypoint. Their approach uses the Taylor expansion func-

tion, Eq. 3.31 (up to the quadratic terms) of D(x, y, σ), shifted so that the origin

is at the sample point.

D(x) = D +
∂DT

∂x
x+

1

2
xT
∂2D

∂x2
x (3.31)

The location of the local extremum (x̂) is determined by taking the derivative

of this function with respect to x and setting it to zero Eq. 3.32.

x̂ = −∂
2D−1

∂x2
∂D

∂x
(3.32)

Substitution of x̂ from Eq. 3.32 into Eq. 3.13 gives a function for evaluating

the SIFT saliency D(x̂), shown in Eq. 3.33.

KSIFT = D(x̂) = D +
1

2

∂DT

∂x
x̂ (3.33)

SURF Detector: Fast Hessian. The SURF detector was proposed by Bay

et al. in 2006 [15] and later extended in [14]. Like SIFT, the SURF algorithm

also has three main parts, namely detection, description and matching.

The SURF detector is based on the determinant of the Hessian matrix for

selecting the location of the keypoint and its scale. Given a point x = (x, y) in an

image I, the Hessian matrix H(x, σ) in x at scale σ is defined by Eq. 3.34, where

Lxx, Lxy and Lyy are the convolutions of the Gaussian second-order derivatives

with the image I at the point (x, y).

H(x, σ) =

[
Lxx(x, y, σ) Lxy(x, y, σ)

Lxy(x, y, σ) Lyy(x, y, σ)

]
(3.34)

Based on Lowe’s idea of computing LoG approximations, Bay et al. approx-

imate the Gaussian filters using box filters, see Fig. 3.6. These approximated

second order Gaussian derivatives can be evaluated very quickly for any filter size

by using integral images instead of the original images.

The 9 × 9 box filters in Fig. 3.6 are approximations for the Gaussian sec-

ond order derivatives with σ = 1.2 and represent the lowest scale layer. These
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  Lyy    Dyy       Lxy      Dxy

Figure 3.6: SURF: Approximation of the second-order derivatives of Gaussian
Lyy and Lxy with box filters Dyy and Dxy (mean/average filter).

approximations are denoted as Dxx, Dyy and Dxy. These filter responses are nor-

malized with respect to the mask size, the normalization guarantees a constant

Frobenius norm for any filter size as in Eq. 3.35. The SURF scale space instead

of iteratively reducing the image size, up-scales the filter size. Such filters could

be applied at exactly the same speed directly onto the original image, or even in

parallel.

det(Happrox) = DxxDyy − (0.9Dxy)
2 (3.35)

The output of the above 9 × 9 filter is considered as the initial scale layer,

refereed as s = 1.2 (corresponding to Gaussian derivatives with σ = 1.2). The

following layers are obtained by filtering the image with gradually larger masks,

taking into account the discrete nature of integral images and the specific struc-

ture of the box filters. Specifically, this results in filters of 9 × 9, 15 × 15, 21

× 21, 27 × 27, etc. For each octave, the filter size is doubled and the sampling

intervals for the extraction of the interest points can be doubled as well. Fig. 3.7

compares the classical approach of multi-scale image pyramid construction and

the SURF filter-scaling method.

In order to localize interest points in the image and over scales, the same

steps previously explained for SIFT are performed. The comparison to the 26

neighbors in a 3 × 3 × 3 scale space volume is applied for each selected point.

The maxima of the determinant of the Hessian matrix are then interpolated in

scale with the method proposed by Brown and Lowe. Scale space interpolation

is especially important in SURF, because the difference in scale between the first

81



3. A NOVEL SYSTEM FOR SKIN MOSAICING

S
c
a
le

S
c
a
le

Figure 3.7: SURF: Comparison of the classical approach to image scale space
construction and the SURF method using box filters.

layers of every octave is relatively large.

MSER detector. Maximally Stable Extremal Regions (MSER) was pro-

posed by Matas et al.[115] to detect blob regions in wide baseline image regis-

tration. As defined by the authors, a maximal region is a connected component

of an appropriately thresholded image. In other words, MSER extracts com-

pact regions whose pixels have either higher (bright blobs) or lower (dark blobs)

intensity values than all the surrounding pixels.

In order to extract MSER regions, the image is binarized using gradually in-

creasing intensity thresholds. The binarization is used to extract compact dark

and bright regions. MSER selects only those regions whose area changes insignif-

icantly over a large range of intensity thresholds. These areas prove to be highly

stable in both illumination (linear and non-linear) and affine transformations.

3.1.4 Feature Description

Once a set of keypoints are detected in each image, an invariant descriptor based

on the intensity information of the point neighborhood needs to be computed.

This descriptor should be invariant to image deformations, change of lighting and

robust to the presence of noise. In this subsection, a classical technique based
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on correlation [172] is explained as well as descriptor based techniques[27], such

as SURF and SIFT will be overviewed for their good results in many different

applications.

3.1.4.1 Correlation

Correlation methods are based on template matching. During this process, win-

dows of predefined size taken from two images are tried to be matched using

similarity based measures. The cost of this process is very high, since all possible

window pairs from the two images should be investigated. This cost could be

reduced by opening only windows on previously detected points. This will reduce

the number of computations.

Two main groups of techniques are included in correlation based matching

techniques, these are similarity measure (NCC - Normalized Cross-Correlation)

and difference measure (SAD - Sum of Absolute Differences and SSD - Sum of

Squared Differences).

Given a keypoint p1 in the first image I1, with coordinates (x1, y1), and a

keypoint p2 in the second image I2, with coordinates (x2, y2), the NCC score

between two rectangular windows of size 2r × 2r centered on each keypoint is

given in Eq. 3.36, where I and σ2(I) denotes the average (Eq. 3.37), and the

variance (Eq. 3.38) of pixel inside the window.

NCC(p1, p2) =

∑i=r
i=−r

∑j=r
j=−r(I1(x1 + i, y1 + j)− I1)(I2(x2 + i, y2 + j)− I2))

r2
√
σ2(I1)σ2(I2)

(3.36)

I =

∑i=r
i=−r

∑j=r
j=−r I(x+ i, y + j)

r2
(3.37)

σ2(I) =

∑i=r
i=−r

∑j=r
j=−r(I(x+ i, y + j)− I)2

r2
(3.38)

The difference measures, SAD and SSD, are given by Eq. 3.39 and Eq. 3.40

respectively.
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SAD(p1, p2) =
i=r∑
i=−r

j=r∑
j=−r

|I1(x1 + i, y1 + j)− I2(x2 + i, y2 + j)| (3.39)

SSD(p1, p2) =
i=r∑
i=−r

j=r∑
j=−r

(I1(x1 + i, y1 + j)− I2(x2 + i, y2 + j))2 (3.40)

The limitations of these methods originate in their basic idea. The shape

of the windows, usually rectangular or circular, only allows the images to be

registered locally by a translation. If the images are deformed by more complex

transformations, these window shapes are not able to cover the same regions in

both images. Correlation based methods only take into consideration the image

intensities and not the structural analysis. Consequently, they are not invariant

to intensity changes introduced by noise and illumination. NCC is invariant to

linear changes in intensity and quite robust to image distortion, but it fails for

more complex lighting changes and is not invariant to rotation. The correlation

of these image patches is highly sensitive to changes in the 3D viewpoint and

non-rigid deformations. These effects will produce miss registrations.

3.1.4.2 SIFT Descriptor

The SIFT detector provides invariance to translation and scale. Therefore, the

invariance to image rotation, changes in lighting and the 3D view point is obtained

with the SIFT descriptor. To compute the invariance to image rotation, the

descriptor is specially calculated for each keypoint orientation.

To assign a local orientation to each detected keypoint, first the scale of the

keypoint is used to select the smoothed image, L, with the closest scale. Then all

computations are performed in a scale-invariant manner. For each image sample,

L(x, y) in the closest scale, the gradient magnitude, m(x, y) and the orientation,

θ(x, y), are precomputed using pixel differences as shown in Eq. 3.41 and Eq.

3.42.
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Figure 3.8: SIFT orientation: an orientation histogram formed from the gradient
orientations of sample points around the keypoint.

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (3.41)

θ(x, y) = tan−1
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)
(3.42)

An orientation histogram is formed from the gradient orientations of sample

points within a region around the keypoint. The orientation histogram, shown

in Fig. 3.8, has 8 bins covering the 360-degree range of orientation. Each sample

added to the histogram corresponds to a dominant direction of local gradients.

Once the histogram is constructed, the highest peak and the peaks higher than 80

percent of the maximum are selected to compute the orientation of the keypoint.

If the same position has multiple peaks of similar magnitude, multiple keypoints

will be created at the same location and scale but with different orientations.

Finally, to increase the accuracy, a parabola is fitted to the 3 histogram values

closest to each peak to interpolate their position.

Each vector of a detected SIFT keypoint is composed of 5 entries (x, y, σ,m, θ),

where x, y and σ represent the spatial coordinate and the scale, and m and θ

represent the gradients magnitude and orientation respectively.

Computing the SIFT descriptor is done by first sampling the image’s gradient
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magnitude and orientation around the keypoint location, at the selected scale of

the keypoint. The gradients are computed in the same way as for computing the

orientation assignment. In order to achieve orientation invariance, the coordinates

of the descriptor and the gradients orientation are rotated relative to the keypoint

orientation, then a Gaussian weighting function with σ equal to half the width of

the descriptor window is used to assign a weight to the magnitude of each sample

point. This process will avoid sudden changes in the descriptor with small changes

in the position of the window, and also has less influence on the gradients farther

from the center of the descriptor.

The keypoint descriptor is formed by creating an orientation histogram for

each 4 × 4 sample region of the initial histogram. This orientation histogram

is composed of 8 bins covering the 360-degree range of orientations. Each entry

within a bin is multiplied by a weight of 1− d for each dimension, where d is the

distance of the sample from the central value of the bin as measured in units of

the histogram bin spacing.

The final vector that describes the keypoint contains the values of all the

orientation histogram entries. The SIFT paper uses a 4 × 4 array of orientation

histograms with 8 orientation bins in each computed from a 16 × 16 sample array.

This will generate an array of 4 × 4 × 8 = 128 entries to define the keypoint.

This vector will be normalized to reduce the effects of lighting changes. This

process is summarized in Fig. 3.9.

To use SIFT with detectors that do not provide orientation, like Harris, the

keypoint descriptors were computed in the same way, but at a single scale.

3.1.4.3 SURF Descriptor

The SURF descriptor is based on the same idea as SIFT. The first step consists of

fixing a reproducible orientation, based on the information provided by a circular

region around the interest point. Then, a square region is aligned to the selected

orientation and the SURF descriptor is extracted from it.

For each detected keypoint, an orientation is assigned to achieve invariance

of rotation changes. The orientation is obtained by computing the Haar-wavelet

responses in the x and y directions shown in Fig. 3.10. Wavelet responses are

86



(a) (b)

Figure 3.9: The SIFT descriptor: (a) Creation of the orientation histograms,
forming the SIFT descriptor of the detected keypoint. The gradient magnitude
and orientation of each image sample point is computed in a region around the
keypoint location. These are weighted by a Gaussian window, illustrated by the
overlaid circle. The samples are then accumulated into orientation histograms
summarizing the contents over 4 × 4 subregions, with the length of each arrow
corresponding to the sum of the gradient magnitudes near that direction within
the region. This figure shows a 4 × 4 descriptor array computed from a 16 ×
16 set of samples. (b) SIFT descriptors of several SIFT keypoints detected at
different scales.

computed in a circular neighborhood of radius 6s around the keypoint, where s

corresponds to its scale. The sampling step is also chosen to be s. The size of

the wavelet filters is adjusted to the scale, higher scales will define larger filters.

Using integral images allows us to compute the response in the x or y direction at

any scale with only six operations. The side length of the wavelet is 4s. Wavelet

responses are calculated and weighted with a Gaussian (σ = 2.5s) centered on

the keypoint. These responses are represented as vectors in a space with the

horizontal response strength along the abscissa (x axis in Fig. 3.10) and the

vertical response strength along the ordinate (y axis in Fig. 3.10). The dominant

orientation is computed by the sum of all responses within a sliding orientation
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Figure 3.10: A SURF orientation assignment. Left: In the circular neighborhood
of radius 6s around the keypoint, where wavelet responses are computed. s is
the scale of the keypoint. Middle: Haar wavelet 2D filters used for SURF. Right:
The space for representation of the wavelet responses as vectors with coordinates
x (horizontal response) and y (vertical response). The dominant orientation is
estimated by calculating the sum of all vectors within a sliding orientation window
covering an angle of π/3.

window covering an angle of π/3. The horizontal and vertical responses within

the window are summed to form a new vector. The longest vector gives its

orientation to the interest point.

To extract the SURF descriptor, a square region centered on the keypoint is

constructed and oriented along the selected orientation. The size of this region

is 20s and is split up regularly into 16 (4 × 4) smaller square sub-regions, which

keeps important spatial information in. For each sub-region, a simple feature of

5 × 5 regularly spaced sample points is computed.

The Haar wavelet response in the horizontal direction is called dx and dy for

the vertical (filter size is 2s). Both are defined in relation to the selected keypoint

orientation, as illustrated in Fig. 3.11 (b) The wavelet responses are weighted

with a Gaussian (σ = 3.3s) centered on the keypoint, increasing the robustness

against geometric deformations and localization errors. dx and dy are summed

up independently over each subregion to form a first set of entries for the feature
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(a) (b)

Figure 3.11: SURF Descriptor: (a) The descriptor is constructed with sums of
wavelet responses along x and y over the 20s keypoint neighborhood splitted reg-
ularly into 16 square sub-regions. The descriptor entries of a sub-region represent
the nature of the underlying intensity pattern. Left: In case of a homogeneous
region, all values are relatively low. Middle: In presence of frequencies in the x
direction, the value of Σ|dx| is high, but all others remain low. If the intensity
is gradually increasing in the x direction, both values Σdx and Σ|dx| are high.
(b) A square region centered in the keypoint is constructed and aligned to the
keypoint orientation. “Horizontal”(x) and “vertical”(y) wavelets responses are
defined also in relation to this orientation.

vector, providing information about the polarity of the intensity changes, and the

sum of the absolute values responses, |dx| and |dy|, are also extracted. For all 4 ×
4 regions the descriptor structure v = (Σdx,Σdy,Σ|dx|,Σ|dy|) is stored in a final

64 length array. The wavelet responses are invariant to a bias in illumination

(offset). Invariance to contrast (a scale factor) is also obtained by turning the

descriptor into a unit vector through normalization.

3.1.5 Feature Matching

Once the keypoints and descriptors are computed in two different images, they

have to be matched. The simplest method to match two image keypoints is to

compute the similarity between their descriptors, computing the Euclidean dis-

tance between them. Let v1 = (v11, v
1
2, ...v

1
N) and v2 = (v21, v

2
2, ...v

2
N) be descriptors

of keypoint p1 and p2 in the first and second images respectively, where N is equal

to 128 in SIFT and 64 in SURF. The Euclidean distance between v1 and v2 is
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given by Eq. 3.45.

Dist(p1, p2) =

√√√√ N∑
i=1

(vi1 − vi2)2 (3.43)

Each descriptor is highly distinctive. This means that it is highly probable

to find a good match taking into account only the Euclidean distance between

two descriptors of different images. However there are often many features that

will not have a corresponding pair in the other image. This is because some of

them could be occluded, do not appear in the second image, or simply, they are

not robust enough to be detected in both images. For this reason a threshold

describing the maximum distance between the actual descriptor and its closest

correspondant is usually set to discard the incorrect matches.

SIFT and SURF have more sophisticated techniques to find matches. These

methods take into account the distance with respect to the first and the second

closest neighbors. Correct matches need to have the closest neighbor significantly

closer than the closest incorrect match to achieve reliable matching. The second-

closest match estimates the density of false matches within this portion of feature

space and, at the same time, identifies specific instances of feature ambiguity.

In the original SIFT [106] paper, the threshold on the ratio of second-closest

and first-closest neighbors of each keypoint was set to 1.5. p1 being a keypoint in

image 1 and pfirst2 and psecond2 keypoints detected in the second image, and taking

into account the Euclidean distance dE between the descriptors, the keypoints p1

and pfirst2 are matched if Eq. 3.44 holds.

dE(p1, p
second
2 )

dE(p1, p
first
2 )

> 1.5 (3.44)

3.1.6 Motion Estimation

The number of correspondences from the previous stage is usually quite large,

and often half of these initial matches are incorrect[173]. Outliers should be

rejected using a robust motion estimation algorithm, which checks if the spatial

coordinates of each correspondence agrees with the dominant motion.
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Figure 3.12: Matched images from a patient. SURF was used for detection and
description. The number of keypoints detected in the first and second images
is 1666 and 1661 respectively. The number of matched keypoints is 256, among
which there are 41 false correspondences (outliers).

The motion can be represented in 2D by a matrix called Homography [71].

The homograph H defines a planar transformation between two images. The

transformation matrix H relates the points in one image to those in the other.

For any point p in the first image, only one point p′ in the second image is

defined, by p′ = Hp, and vice-versa: p = H−1p′, where p = (x, y, 1)T is a 2D

point expressed in homogeneous coordinates.

Several methods have been studied to estimate a Homography according to

[71]. These methods can be classified into four different groups according to

their degrees of freedom, which are the number of parameters that might vary

independently. These models are Euclidean, Similarity, Affine and Projective, in

increasing order of degrees of freedom (see Fig. 3.13). It is important to note that

a set of image correspondences can always be adjusted better with a projective

transformation, because it will minimize the Euclidean norm of the residuals.

However, computing a projective transformation does not always provide the

expected result, since measurements have errors and the real motion between

two images can be much simpler than that estimated by the homograph. Motion

estimation using a transformation model with fewer degrees of freedom sometimes

produces better results.
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(a) (b)

(c) (d)

Figure 3.13: Planar transformations: (a) Euclidean (rotation and translation), (b)
Similarity (rotation, translation and scale), (c) Affine (translation, rotation, shear
and anisotropic scaling), (d) Projective (translation, rotation, shear, anisotropic
scaling and perspective distortion).

3.1.6.1 Homography Estimation Methods

Euclidean transformation. Euclidean transformations have three degrees of

freedom, two for translation and one for rotation. In order to calculate a Eu-

clidean transformation, a minimum of two correspondences are needed. The

homograph is defined by Eq. 3.45.

x′y′
1

 =

cosθ −sinθ tx

sinθ cosθ ty

0 0 1


xy

1

 (3.45)

Similarity transformation. A similarity transformation is a Euclidean trans-

formation that may suffer a scaling (s). It has four degrees of freedom, one for

rotation, two for translation and one for scaling. Two correspondences are enough

to calculate similarity transformations.
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x′y′
1

 =

scosθ −ssinθ tx

ssinθ scosθ ty

0 0 1


xy

1

 (3.46)

Affine transformation. The affine transformation is composed of six unknowns,

allowing transformations that include translation, rotation, shear and anisotropic

scaling, which is a direction-depending scaling. The matrix representation of

affine transformation is given by Eq. 3.47.

x′y′
1

 =

h11 h12 tx

h21 h22 ty

0 0 1


xy

1

 (3.47)

Affine transformation can be broken down into three rotations and one non-

isotropic scaling by using Singular Value Decomposition (SVD) given in Eq. 3.48.

First, a rotation by angle φ is applied. Next a non-isotropic scaling (l1, l2) along

the new rotated x and y axes is performed. Then, a back rotation by −φ and

finally, a rotation by θ completes the process.

(
h11 h12

h21 h22

)
=

(
cosθ −sinθ
sinθ cosθ

)(
cos(−φ) −sin(−φ)

sin(−φ) cos(−φ)

)(
ρ1 0

0 ρ2

)(
cosφ −sinφ
sinφ cosφ

)
(3.48)

Projective transformation. The projective transformation includes all the

possible deformations in a planar scene; translation, rotation, shear, anisotropic

scaling and perspective distortion. It can be represented by Eq. 3.49 where λ is

an arbitrary scaling factor.

λx′λy′
λ

 =

h11 h12 h13

h21 h22 h23

h31 h32 1


xy

1

 (3.49)
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λx′ = h11x+ h12y + h13

λy′ = h21x+ h22y + h23 (3.50)

λ = h31x+ h32y + 1

Projective transformation can be calculated from a set of point correspon-

dences in the following way. By substituting the third equation from the linear

system 3.50 into the first two, the system can be rewritten as Eq. 3.51.

x′ = h11x+ h12y + h13 − h31x′x− h32x′y

y′ = h21x+ h22y + h23 − h31y′x− h32y′y
(3.51)

In order to find the eight coefficients of the homograph, at least four corre-

spondences are needed, since every correspondence provides two constraints for

x and two more for y. For n point correspondences, system 3.51 can be rewritten

in the form b = Ah with Eq. 3.52.



x1′
y1′
x2′
y2′
x3′
...

xn′
yn′


=



x1 y1 1 0 0 0 −x1′x1 −x1′y1
0 0 0 x1 y1 1 −y1′x1 −y1′y1
x2 y2 1 0 0 0 −x2′x2 −x2′y2
0 0 0 x2 y2 1 −y2′x2 −y2′y2
x3 y3 1 0 0 0 −x3′x3 −x3′y3
...

...
...

...
...

...
...

...

xn yn 1 0 0 0 −xn′xn −xn′yn
0 0 0 xn yn 1 −yn′xn −yn′yn





h11

h12

h13

h21

h22

h23

h31

h32


(3.52)

The solution for h which minimizes ‖Ah‖ subject to ‖h‖= 1 is the unit

singular vector corresponding to the smallest singular value of A. The SVD

can therefore be used to obtain the solution [71]. The SVD of a given matrix

Am×n is written as A = UDVT, where Um×m and Vn×n are orthogonal matri-

ces, UUT = I,VVT = I, and D is a diagonal matrix with non-negative elements.
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The elements of D, d1, d2, . . . , dn, are singular values of A:

‖Ah‖= ‖UDV Th‖= ‖DV Th‖= ‖Dz‖ (3.53)

where z = VTh and ‖z‖= 1 since U and V are norm preserving matrices. Eq.3.53

is minimized by setting z = (0, 0, 0, . . . , 1), as D is a diagonal rectangular matrix

Dm×n with its elements are sorted in descending order. Finally, the homograph

is found by means of the equation h = Vz, which corresponds to the last column

of V.

3.1.6.2 Rejection of Outliers: RANSAC

The homograph estimation algorithm described above assumes that the only

source of error in the set of presented point correspondences is the measurement

of the points location, but this assumption is not always true, since in practical

situations, mismatched points are also present. These points are considered out-

liers, and introduce errors in the estimated homograph. The goal of this step is to

determine which of the initial matches are inliers and which are outliers. Then,

estimate the homograph again through least squares taking into account only the

inliers. In order to deal with these correspondences not obeying the dominant

motion, two common solutions are used[77]. These solutions imply an outlier

rejection algorithm, the most frequently used being: RANSAC (RANdom SAm-

ple Consensus [50]) and LMedS (Least Median of Squares [148]). The RANSAC

algorithm needs information on the percentage of outliers, which is not usually

available, while the LMedS estimation does not require such information, but is

very time consuming. For this reason, RANSAC has been selected for this work.

The RANdom SAmple Consensus (RANSAC) algorithm presented by Fisher

and Bolles in 1981 is a robust estimator able to deal with a high proportion of

outliers. It has proved extremely effective in computing two-view relations, such

as homographies, from point-to-point image correspondences. In general, the

RANSAC idea is very simple: two of the dataset points are selected randomly

and defines a line. Then the distance from all the other points to the line is

computed and those that lie within a distance threshold are selected. This random

selection is repeated a number of times and the line with the most accepted points
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is selected as the robust fit. The points that lie within the threshold distance are

the inliers while the others are the outliers. If one point is an outlier, the line will

not gain much support from it (see Algorithm 2).

Algorithm 2 The RANSAC Robust estimation algorithm

1: Randomly select a sample of s data points from S and instantiate the model
from this subset.

2: Determine the set of points Si that are within a threshold distance of the
defined threshold.

3: If the size of Si is greater than any predefined threshold T , re-estimate the
model with the points in Si and terminate.

4: If the size of points of Si is less than T , select a new subset and repeat the
above.

5: After N trials, the largest consensus set Si is selected and the model is re-
estimated.

If the model is a planar homograph (H), and the data a set of 2D point

correspondences (x, x′), then the minimal subset consists of four correspondences.

The homograph estimate returned by the algorithm could be used to initialize

a non-linear homograph estimator described in the next Section. In this case, the

set of point correspondences selected as inliers is used to compute a refinement

of the estimated H.

(a) (b)

Figure 3.14: RANSAC: The number of initial matched keypoints is 256 from
Fig. (3.12), (a) 215 accepted matches (inliers) by RANSAC and (b) 41 false
correspondences (outliers).
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3.1.6.3 Homography Optimization

A number of nonlinear methods have been proposed to refine homographs [71]

[32]. These refinements of the estimation of the homograph basically have the goal

of minimizing a defined cost function. This method could be linear or non-linear

depending on the function selected and on the homograph model. Minimizing

such cost functions requires the use of iterative techniques.

x

H

H
^

�x
1

I
1

I
2

Figure 3.15: The error of the projected point x of image I1 into I2 is defined by δx.
Ĥ represents the estimated homograph and H is the ground-truth homograph.

From Eq. 3.49, a cost function e could be expressed as the Euclidean squared

distance between the detected match and the one estimated by the homograph

by Eq. 3.54. This difference is represented in Fig. 3.15.

e(h) =
n∑
i=1

((
xi′ −

h11xi + h12yi + h13
h31xi + h32yi + 1

)2

+

(
yi′ −

h21xi + h22yi + h23
h31xi + h32yi + 1

)2
)

(3.54)

Where n is the number of correspondences and h = [h11, h12, h13, h21,

h22, h23, h31, h32]
T . Solving the problem means obtaining a homograph h that

minimizes the cost function e(h). This problem is known as a nonlinear least

squares problem, which can be solved using iterative methods such as Newton

Iteration or Levenberg-Marquardt [98] [114]. Eq. 3.54 can be rewritten in closed

form as Eq. 3.55, assuming f as locally linear, a first order Taylor expansion can

be formulated around h0 as Eq. 3.56, where h0 is the initial estimation of the

homograph.
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e = |f(h)− x′| (3.55)

f(h) = f(h0) +
∂f

∂h
(h− h0) + rn (3.56)

where rn is called the remainder and is calculated as follows in Eq. 3.57.

rn =

∫ h

h0

f (n+1)(u)
(x− u)n

n!
du (3.57)

Consider J =
∂f

∂h
as a linear mapping represented by the jacobian of f with

respect to the elements in h and then the function that minimizes f(h1)− x′ can

be written as Eq. 3.58

f(h1) = f(h0) + J∆h− x′ = e0 + J∆h (3.58)

Where h1 = h0 + ∆h. Now the function |e0 + J∆h| needed to be minimized over

∆h is linear and can be minimized using normal equations like Eq. 3.59

JTJ∆h = −JT e0
∆h = −J+e0

(3.59)

and h1 = h0 − J+e0. Vector h that minimizes the Eq. 3.54, can be computed

iteratively with hi+1 = hi + ∆hi. In order to start the iteration (i = 0), an initial

estimation of h0 should be provided (normally using a linear estimator). This

initial estimation plays an important role in achieving converge, since this non-

linear approach could be stuck around a local extrema if the initial estimation is

not good enough.

3.1.7 Global Registration and Alignment

The objective of this section is to describe two of the last steps in the mosaicing

pipeline. First of all, global registration will transform all the images into a global

coordinate frame which contains the whole scene.
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3.1.7.1 Global Registration

This step will register every image into a global coordinate frame which contains

the whole scene. This coordinate frame is usually aligned to one of the images

called the reference frame. First of all, by using the methods described above

to compute the homographies between an image pair, we estimate the transfor-

mations between the first image and the second image, between the second and

third images, and so on. For each of these transformations, it is possible to obtain

the transformation from the reference frame by concatenating (multiplying) the

intermediate sequence of homographs as shown in Eq. 3.60.

H(ref→k) =
k−1∏
n=ref

H(n→n+1) (3.60)

where H(n→n+1) is the homograph between the reference image n and the next

image n+ 1.

This computation accumulates the error in each homograph, and this effect

is usually detected when the image sequence has a loop, which means that the

same part of the scene is mapped more than once. To solve this problem, the

global alignment methodology presented in the next section is needed.

3.1.7.2 Global Alignment

To create a globally consistent mosaic we have to consider that a point that ap-

pears in different images should be mapped to the same point in the mosaic. Some

solutions are proposed for this problem in [42] where global consistency of the

inter-frame alignment matrices is solved by using a linear system of equations. In

[32] the maximum likelihood between all the point matches is computed. Finally,

in [150] [84] [145], a graph representation is used.

When consecutive images are registered, a graph-based registration and a

simultaneous registration (i.e., bundle adjustment) are performed. The vertices

of the graph represent each image and every edge represents the homograph

between images see Fig. 3.16. This graph representation allows detection of the

edges between non-consecutive images. The last step of simultaneous registration
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uses local constraints to determine the optimal global registration that minimizes

an error function.

Figure 3.16: Graph-based registration: The vertices represent images and the
line edges between them. Blue edges represent consecutive pairs and red edges
non-consecutive image overlaps.

The graph can have all the possible links between images, but if all the possible

edges are selected, the computational cost of estimating the homographs will be

expensive. For this reason, the graph contains only the edges with a higher

probability of success in the computation of the homograph. The vertices added

are those which have a significant overlap between the image pair. An overlap

formula can be computed according to the distance between centroids:

δij =
max(0, |ci − cj|−|di − dj|/2)

min(di, dj)
(3.61)

where ci, cj are the centroids of the projection onto the mosaic of images Ii and

Ij, respectively. And di and dj are the distances between the image center and the

farther image corner when the image is projected onto the mosaic. If in δij > 1

there is no overlap, the smaller the value, the bigger the overlap surface between

the images.

Once the new edges are detected, the homograph between them is computed

with the methods described above. Finally, bundle adjustment[104] is applied to
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find the optimal motion parameters, with the aim of globally aligning the mosaic.

From these parameters, the absolute homograph of each image can be computed.

For each overlapping pair of images Ii and Ij, with N points-wise correspon-

dences between them, it is possible to define a cost function. These points are

mapped to the mosaic according to Eqs. 3.62 and 3.63, respectively.

MXi =MHi·xi (3.62)

MXj =MHj·xj (3.63)

where M represents the mosaic frame, and xi and xj are points on the image

frame and Xi and Xj are points on the mosaic coordinate system.

The cost function E that minimizes 3.62 and 3.63 can be written as Eq. 3.64,

where the sum is calculated over all the pairs of overlapping images Ii and Ij for

all the correspondences (n) between them.

E =
∑
i,j

n∑
k=1

(||ixk −iHj·jxk||2 + ||jxk −iH−1j ·ixk||2) (3.64)

For all the image pairs, the function to minimize can be written as Eq. 3.65,

where m is the number of image pairs.

min

m∑
k=1

E2
k (3.65)

This approach usually generates a good solution on a Levenberg and Mar-

quardt algorithm and few iterations are needed to get a global minimum.

3.1.7.3 Four Point Transformation

Even when the mosaics are optimized, some problems can still appear. These

problems include the scale of the mosaic and image deformations. The reason is

that some mosaics do not include loops that allow the refinement of the image

correspondences. We added four markers to the scene; two that can be seen

in the first image and two other seen in the last image of the sequence. The

distance between these points is known in proportion to the algorithm, which
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at the same time detects the points in the acquired images. The four extracted

image points are correlated with the 4 reference markers, computing a projective

homograph between them, then, the initial mosaic is transformed with respect to

this homograph. In this way, the final mosaic has 4 imposed points that correct

the size and deformations of the images. Finally, the absolute homograph of each

image is corrected and the final mosaic is built.

This approach preserves the local alignment between consecutive images and

globally reduces the distortion effect on the image size.

3.1.8 Mosaic Blending

Image blending is the last step to building a mosaic. Blending tries to mini-

mize the visibility of the seams between images in order to achieve a verisimilar

appearance of the created mosaic.

Two main approaches to image blending are described in the literature [99]:

transition smoothing [28] and optimal seam finding [45]. The first group of meth-

ods tries to minimize the visibility of seams by smoothing the common overlap-

ping regions of stitched images. Optimal seam finding methods place the seam

between two images where intensity differences in their common overlapping area

are minimal. Furthermore, it is also possible to find techniques that take ad-

vantage of the benefits of both approaches [2], in what can be called combined

techniques. Fig. 3.18 shows an example of image blending.

Figure 3.17: Serratus mountain panorama built using AutoStitchTM software
developed by M. Brown [27].
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Figure 3.18: Blending mosaic corresponding to the mosaic in Figure 3.17 built
using AutoStitchTM software developed by M. Brown [27].

3.1.8.1 Transition Smoothing Techniques

Transition smoothing is performed in the image intensity and image gradient

domains. In this procedure, the images are first broken down into a set of band-

pass filtered component images and joined using a weighted average within the

transition zone, which is proportional in size to the wavelengths represented in

the band. Gradient domain methods reduce the inconsistencies due to illumi-

nation changes and variations in the photometric response of the cameras since

differences between the gradients in the overlapping regions are invariant to the

average image intensity.

3.1.8.2 Optimal Seam Finding Techniques

In contrast to transition smoothing techniques, the optimal seam finding ap-

proach uses only image intensity information. Davis [42] described an image

blending that computes the relative photometric differences between two images

and searches for the dividing boundary along the lowest intensity of the difference

image Dijkstra’s algorithm.

Based on a similar idea, Efros et al. [45] proposed a texture synthesis method

that selects the texture blocks to be cut from a given texture sample that agrees

with its neighbors and finds a dividing boundary that minimizes intensity incon-

sistencies.

Other authors, such as Uyttandaele et al., [175] proposed a method based on

a set theory that tries to determine the regions of the images belonging to any
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moving object in order to select the images that have to contribute information,

rendering the object with the best possible appearance.

The approach of Gracias et al. [56] exploited the watershed transform to

reduce the complexity of a graph cuts computation when searching for the best

placement of the seam between images.

3.1.8.3 Combined Techniques

Other approaches, such as the one proposed by Agarwala et al.[2], may be clas-

sified as transition smoothing and optimal seam blending because they use both

ideas to perform blending. Firstly, these techniques use graph cuts to find the

contribution regions among several images in which each pixel is treated inde-

pendently, and secondly, a gradient domain fusion is carried out in order to refine

and minimize the visibility of the seams in overlapping regions between images.

3.2 A proposal to Skin Image Mosaicing

This section presents a proposal focused on skin mosaicing for skin cancer detec-

tion, although it can work on any other kind of image, giving further applications.

The designed algorithm follows the steps described in Algorithm 3. Steps 1 to

4 are applied to all the image sequences with the goal of registering each image

in the mosaic. Once the mosaic is created, two further steps can be performed.

On one hand, if the 4 markers are found, 4-point warping is applied. On the

other hand, if no markers are present but non-consecutive overlaps exist, a global

alignment of the image sequence can be performed. Finally, a blending algorithm

can be applied for correcting non-uniform lighting.

3.2.1 Marker Detection

This step performs a detection on each image in order to detect a pre-defined

marker. These markers are used with the goal of:

1. defining the initial and final image sequence.

2. optimizing the mosaic by applying the 4-point algorithm.
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Algorithm 3 Mosaicing Pipeline.

1. Extract and describe keypoints.

2. Initial matching.

3. Compute homographies.

4. Global registration and change on coordinate frame.

5. Find markers.

6. if (Markers present)

7. Compute 4-point warping.

8. else

9. if (non-consecutive overlaps exists)

10. Compute global alignment.

11. end if

12. end if

13. Mosaic Blending

3. determining the relation between pixels in the image and meters in the

scene (fixing the zooming factor).

With the use of markers, see Fig. 3.19 (a), it is possible to detect different

sequences in the same image set. The first and second images in which two

markers are present delimit a sequence. Then, the next steps for computing the

final mosaic will be applied for each detected sequence.

The four markers are divided into two pairs. Each pair of markers is composed

of two circles separated by 50 cm. One pair will be located near the patient’s

head and the other pair near to the feet. The circles are formed by alternating

quarter black and white quarter-circles, creating an easily distinguishable corner

that can be detected using Harris [70]. Harris corners are used since they are

very salient.
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(a) (b)

(c) (d)

Figure 3.19: Finding Markers: (a) image of a pair of markers. (b) Harris detected
keypoints. (c) patch to correlate. (d) Central point for each marker.

Once a set of around 10 to 20 keypoints are detected (see Fig. 3.19 (b)), they

are matched applying normalized cross correlation (details at Section 3.1.4.1).

The correlation is performed between selected patch centered on the keypoint

and a patch for the left marker, Fig. 3.19 (c) and their negatives for the right

marker. The corner that gives the best correlation will be selected as the one

with the highest probability of being the central point of one of the markers. If

only one marker is detected and not its pair, the markers in the image are not

used. Fig. 3.19 (c) shows the 2 detected corners in an initial image sequence.

The second reason for using markers is to apply 4-point warping of the algo-

rithm (see Section 3.1.7.3). Its application will be explained in Section 3.2.6.
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The final advantage of knowing the position of the markers is to establish a

relation between pixels in the image and meters. With this information, it is

possible to add more information to the final mosaic. The user will be able to

guarantee the size of the nevus allowing him to self-monitor its evolution.

3.2.2 Extraction and description of keypoints.

For each input image, interest points are extracted using SIFT or SURF de-

pending on the detector and descriptor chosen. It is also possible to use a GPU

implementation of SIFT [188] that will decrease the computation time with sim-

milar results as the non-GPU implementation. Detected points can be differents

due to the differences on the algorithm implementation. The designed software

uses a GPU implementation by default, because it is less demanding in terms

of memory and CPU. The next sub-section describes the advantages of GPU. If

the computer is not able to use GPU, the program will use SURF or SIFT on

the CPU. The final computation time will increase, but the results will not be

significantly different.

(a) (b) (c)

Figure 3.20: Extracted keypoints: (a) Using SURF. (b) Using SIFT. (c) Using
GPU-SIFT.

For more details on computing the descriptor for each keypoint see Section

3.1.4.
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3.2.2.1 GPU-SIFT

GPU-based SIFT was designed by Sinha et al. [158]. It works on NVIDIA cards

and is able to extract about 800 features from an 640 x 480 video at 10Hz,

which is approximately 10 times faster than an optimized CPU implementation

of SIFT. This improvement is generated by the graphics hardware that contains

powerful co-processors (GPUs) with a peak performance of hundreds of GFLOPS,

one order of magnitude higher than CPUs. They are designed to independently

process streams of vertexes and fragments (pixels) in parallel. However, their

data parallel SIMD (Single Instruction Multiple Data) architecture also provides

an abstraction for performing general purpose computations on GPUs (GPGPU)

and for treating the GPU as a stream processor.

For the implementation of an algorithm on the GPU, some streams are usually

needed. For each of these computational steps, the appropriate fragment program

is bound to the fragment processor and the render operation is invoked. The

rasterization engine generates a stream of fragments and provides a fast way of

interpolating numbers in graphics hardware.

To decrease the computational time of the SIFT algorithm, some steps are

computed in parallel on the GPU [156]. In fact, the Gaussian scale space pyra-

mid is accelerated on the GPU using fragment programs for separable Gaussian

convolution. The values of intensity and DoG are stored in a RGBA texture and

computed at the same pass using vector operations in fragment programs. To

find the local maxima and minima in the DoG pyramid, blending operations are

performed in parallel at each pixel location. Depth and Alpha tests are used to

threshold these keypoints. The final results of the keypoint extraction (location

and scale) are stored in the RGBA data, which is read back to the CPU and

decoded there.

Since translating the gradient pyramid from the texture memory to the CPU

is expensive, the next steps performed are also in the GPU. At this point, to

compute the orientation of each keypoint, gradient vectors near the keypoint

location are Gaussian weighted and accumulated inside an orientation histogram

by another fragment program. The orientation histogram is read back to the

CPU where its peaks are detected (histogram computation is more expensive on
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the GPU, for this reason the data is translated to the CPU).

The final step involves the computation of a 128-element descriptor of SIFT

[157]. As this part is not efficiently computable by the GPU, it is divided between

the CPU and the GPU. First, each feature’s gradient vector patch is weighted by

a Gaussian mask using the GPU. The re-sampled and weighted gradient vectors

are collected into a tiled texture block which is subsequently transferred back for

the CPU and used for compute the descriptor.

Summarizing GPU-SIFT provides a large speed-up in the Gaussian scale-space

pyramid construction and keypoint localization steps. The compressed read back

of binary images containing feature positions reduces the read back data-size by

a factor of 32. The feature orientation and descriptors computation is partitioned

between the CPU and GPU in a way that minimizes data transfer. Overall, a

8-10 times speed-up is observed compared to CPU versions.

3.2.3 Initial matching

As discussed in Section 3.1.5, to compute the initial matching between two data

sets, it is necessary to compute the nearest neighbor for each point using their de-

scriptor. The distance from each point in the first data set to all the points in the

other is computed, and the closest one is selected as the matching point. Another

possibility is to take into account the first and second neighbors and compute the

ratio between them. Taking into account that the number of points at each data

set could be large (more than one thousand points), and the descriptors of these

points could be 80 or 128 entries, the library ANN [123], implemented by Mount,

will be used. We selected this library because of its advantage of being able to

specify a maximum approximation error bound, thus allowing the user to control

the trade-off between accuracy and running time.

Efficiently finding the nearest neighbor or the k nearest neighbors, especially

in higher dimensions, is a very difficult problem. It is always possible to solve this

problem with a simple brute-force process of computing the distances between

the query point and each of the data points. However, this may be too slow for

many applications that require a large number of queries to be answered in the

same data set. Instead of using brute-force, ANN reprocesses a set of data points

109



3. A NOVEL SYSTEM FOR SKIN MOSAICING

into a data structure from which nearest neighbor queries are then answered.

There are a number of data structures that have been proposed for solving this

problem [17] [8].

Extracting the exact nearest neighbor has the problem that the running time

(or space) grows exponentially as function of data dimensions and usually, these

methods are not any better than brute-force on small datasets. If the user is

willing to tolerate a small amount of error in the search (returning a point that

may not be the nearest neighbor, but is not significantly far from it) then it is

possible to achieve significant improvements in running time.

3.2.4 Homography computation

For this proposal, four homograph models are implemented: Euclidean, Similar-

ity, Affine and Projective (moreover, optimization of this last method is imple-

mented and called non-linear projective).

The initial guess of the Homography is obtained using RANSAC [50], based on

a Matlab implementation provided by [92] where the number of iterations needed

to obtain a good result is recalculated at each iteration, taking into account

the ratio between inliers and outliers of the best homograph found at the last

iteration.

3.2.5 Global registration and coordinate frame change

At this step, the software first computes the absolute homograph, for each image.

To compute the absolute homograph one image is chosen as the reference frame.

In our case, the first frame of the sequence is chosen as reference and the abso-

lute homograph of each image is iteratively computed by multiplying its relative

homograph by the absolute homograph of the previous image. By doing this, all

the images will be related to the reference frame.

By changing the coordinate frame we obtain all the points with positive co-

ordinates in the final mosaic. Top left, top right, bottom left and bottom right

have to be known at this stage. Once this information is known, the mosaic is

shifted in order to have each corner on a positive coordinate value. Also, these
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Element Attribute
Description

<MOSAIC> Document root node.
ver GMML format version.
subver GMML subformat version.

<INIT> Initialization data of mosaicing system.
os Operating System where the mosaic is computed.
cpu Processor used to compute the mosaic.

<COMMENT> Author’s comments about the mosaic.
<CONFIGURATION> Configuration used to compute the mosaic.

src Path where configuration file is stored.
<NAV DATA> Navigation File information (if exists).

src Path where navigation file is stored.
<GEO DATA> Geographic localization of the mosaic (if provided).
<MOSAIC ORIGIN> Mosaic UTM coordinates.

x x coordinate of the mosaic origin.
y y coordinate of the mosaic origin.
z z coordinate of the mosaic origin.

<PIXEL SIZE> Relation between pixel and meters.
x Width, in meters, of one pixel.
y Height, in meters, of one pixel.

<MOSAIC SIZE> Size of the mosaic in pixels.
x Width, in meters, of the final mosaic.
y Height, in meters, of the final mosaic.

<NODE> Description data of one mosaic node.
Time Acquisition time, for the actual image.
Index Order of the image in the sequence.

<IMAGE> Used Image.
src Path where the image is stored.

<HOMO> Homography that relates the transformation be-
tween two images.

model Homography model used.
type Absolute or relative homograph.

<VALUES> Matrix containing the homograph values.
<COVARIANCES> Matrix covariances.
<POINT MATCH> List of point and matches.

src Path where point-match file is stored.
<POSE> Position, in meters, of the camera.

type Absolute or relative position.
<EDGES> Set of image overlaps.
<EDGE> Relation between one frame and the others.

node Index of the related node.

Table 3.2: GMML 3.0a specifications: The elements and attributes of GMML
3.0a format.
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steps provide information about the size of the mosaic. All these data will be

used in order to render the mosaic.

Finally, all the information retrieved from the last steps will be stored in a

GMML (Girona Mosaic Markup Language)[93], a format created by the Under-

water Vision Lab is defined based on an XML (eXtensible Markup Language)

and is used to store all the related data generated in the mosaic construction in

an ordered and coherent way. Also, the GMML format is exportable to other pro-

grams like MosaicViewer (also developed by VICOROB). Version 3.0a of GMML

specifications are defined in Table 3.2.

3.2.6 Compute 4-point warping

With the four markers detected, see Section 3.2.1, it is possible to apply a trans-

formation to the mosaic as defined in Section 3.1.7.3. Using this technique, the

final mosaic will be corrected in orientation and scale, by imposing a predefined

distance between markers.

The four detected markers (see Fig. 3.21) will be multiplied by the absolute

homograph of their image. With this operation, the position of the four markers

will be known with respect to the mosaic frame. Then, a projective homograhy

representing the transformation between them and the real position of the markers

is computed. After that, each absolute homograph will be multiplied by this

homograph, and each image will be moved to the correct location. Table 3.3

shows how the 4 detected markers are moved to their correct place. The position

of the final position is in pixels, and is equal to the distance introduced by the

user multiplied by the relation pixel/meters.

3.2.7 Global alignment

When one region is acquired more than once by non-consecutive photographs, a

closing loop may be detected. This allows the software to update the topology

of the mosaic, and therefore the position of each image. From the estimated

absolute homograph, it is possible to extract the x and y position of each image

center. Then, taking into account the projection on the mosaic of each image, it
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Figure 3.21: 4-point warping: (a)Mosaic preview from a non-warped mosaic, blue
stars show the centers of the markers. (b) Mosaic preview from the transformed
mosaic.

Non Optimized 4-Point Optimized

Marker Position x y x y

top-left 1219 436 841 464
top-right 3919 412 3532 464
bottom-left 999 9983 841 8366
bottom-right 4454 9871 3532 8366

Table 3.3: 4-point warping: Pixel position of markers before and after the 4-point
transformation.

is possible to estimate which images could potentially overlap, see Fig. 3.22 (a)

and (b).

After that, the homograph between these image pairs is computed and their

correspondences are used to constrain the optimization. This step will try to

minimize the error contained in a set of matching points and the error contained

on the position of the camera at the moment of acquiring the images(x, y, z,

yaw, roll and pitch). Once the camera positions are re-estimated, the absolute

homographs are recalculated and stored in a new GMML (see Fig. 3.22 (c)).
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Figure 3.22: Global Alignment: (a) Preview of a non optimized mosaic. (b)
Consecutive and non-consecutive edges from last mosaic. (c) Optimized mosaic.

3.2.8 Mosaic Blending

Mosaic blending is the last step of the mosaicing pipeline and will correct the

photo-metric errors appearing in the final mosaic.

The first step is rendering the mosaic, where the value of each mosaic pixel is

computed by searching the images containing this point. This step can be done

using various techniques:

1. The simplest one takes into account only the first or the last image that

contributes to each position.

2. More sophisticated techniques choose the closest image to each pixel. For

every pixel on the mosaic the distance between this point and the center of

the contributing images is computed. The image with an smaller distance

is used and the intensity value of the pixel image is applied on the mosaic.

The second technique was implemented in the software as it provides the best

results. Fig. 3.23 (a) shows the contributing image at each pixel, called closest

map. Figure 3.23 (b) shows the intensity value of the closest map. This second

image is called the closest mosaic.

From the closest mosaic, x and y gradient images are formed and the seams

between the images are forced to be equal to zero. Then, the data is fitted into a

Poison-Neummann [48][136] solver in order to recover the intensity image of each

channel.
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(a) (b)

Figure 3.23: Mosaic Blending: (a) Closest Map. (b) Closest Mosaic.

3.3 Results

This section illustrates some of the results obtained from applying the presented

mosaicing software to different data sets. Some of these datasets are related to

whole body maps, but others are completely independent, showing the different

possibilities provided by the software. Finally, some problems that can appear in

the registration of images are also discussed.

3.3.1 Test Data Set Description and Results

The image data sets used in the tests are shown below. The particularities of

their stitching and the properties that want to be highlighted in each case will

also be exposed.

Data Set 1

The following images show the building process of a mosaic with a rigid object.

The movement of the camera between the 4 images, can be described by a z

translation, and a rotation on the axis defined by the image plane and the z axis.

The images are acquired with a Canon A 650 IS.
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Fig. 3.24(a) shows the results of the mosaic computed by only applying con-

secutive homographs. This mosaic presents good registration between images,

but the shape of the full mosaic is not correct. This problem is due to the motion

described by the camera. It is possible to see that the top two markers have a dif-

ferent horizontal distance than the bottom ones. This problem can be corrected

by applying a four point transformation.

The four detected markers are translated to their correspondent positions

introduced by the user on the interface. By doing this, the vertical and hori-

zontal distances between the markers are corrected, and also any supposing that

the markers are oriented in the same way a it is possible to correct rotational

problems. Fig. 3.24(b) shows the results after 4-point wrapping.

Finally, image blending is used in order to correct the illumination change

between images. Fig. 3.24(c) shows the final result were the seams between

images are not visible.

(a) (b) (c)

Figure 3.24: Rigid Object Mosaic: (a) Not optimized, (b) Optimized and (c)
blended.

Data Set 2

These images correspond to a 10 x 5 cm. mosaic of the back of a patient. The

acquisition procedure is done by adding a led ring to a Canon EOS 40D reflex

camera. The final mosaic is composed of 22 images. The sequence 3.25 (a) is

acquired by first taking one vertical strip from the top to the bottom and then
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the second strip is acquired from the bottom to the top. This acquisition was

done without undergoing any rotation.

(a)

(b) (c) (d)

Figure 3.25: Back Mosaic: (a) Topological Map, (b) Non-optimized, (c) Opti-
mized and (d) Blended.

The mosaic construction seems to be easily solved by applying an Euclidean

transformation between images, but due to changes in the relative depth between

117



3. A NOVEL SYSTEM FOR SKIN MOSAICING

the camera and the patient, and some small rotations caused by small movements

of the camera, a projective homograph is needed.

The mosaic obtained from computing the homographs from the consecutive

images is shown in Fig. 3.25(a). From this result, it is possible to see some

misalignments due to the accumulative error. This error is more evident when

comparing the first and last images of the sequence, in which the same zone is

mapped into different pixels. As this sequence is closing a loop, it is possible to

apply a global alignment. Fig. 3.25(b) shows the results after optimization, with

the result of a reduced misalignment.

Finally, the mosaic is blended correcting in all the photometric differences

produced by the illumination changes produced in the image acquisitions. Fig.

3.25(b) shows the blended mosaic.

Data Set 3

Sequence number 3 is provided by the Melanoma Unit at the Hospital Clinic

of Barcelona. It shows the back of a patient with a high density of nevi. It is

formed by of only 3 images. Initial mosaicing results are shown in Fig. 3.26(a).

In this sequence, it is not possible to compute a global optimization of a 4-point

transformation, since it does not use markers and there are not any loops in the

sequence.

The initial mosaic is blended minimizing the small differences between the

images caused by some illumination changes. Fig.3.26(b) shows the blended mo-

saic.

Data Set 4

The last data set is formed of 4 different sequences, describing the front, sides

and back of a patient. The first three mosaics contain the 4 markers, but the last

one is cut in the middle. For this reason, it is only possible to apply a 4 point

transformation in the first 3 mosaics.

Each mosaic is blended reducing the photometric errors. In this way, it is

possible to correct a highly noticeable intensity difference between the first and

last images of each sequence.

Some errors were found once these sequences were registered were registered.

Further details are provided in the next section.
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(a) (b)

Figure 3.26: Patient A mosaic: (a) No optimized and (b) blended.

3.4 Registration Problems

The last mosaics show some problems in registration for two different reasons:

• The non-rigidness of the body provokes problems in different parts of the

mosaic, for example, the arms and other parts of the body that move due

to breathing. Fig. 3.28 (a).

• Parallax problems occur from the translations from the camera. Where 3D

parts of the scene could not be registered by a 2D homograph. Fig. 3.28

(b).
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(a) (b) (c) (d)

Figure 3.27: Mosaic of B patient: (a) Frontal mosaic (b)(c) lateral mosaics and
(d) rear mosaic

(a) (b)

Figure 3.28: Registration Problems: (a) Non-rigidness: breathing movement. (b)
Parallax

The first problem can be solved or at least minimized by applying non-rigid

transformation techniques [20]. These techniques involve elastic registration to

cope with the deformation of the subject (due to breathing, anatomical changes,

etc.). These deformations can be produced between images or between different

explorations that need to be compared.
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The homograhy matrix is only able to describe planar transformations, im-

plying that the images involved have to belong to a planar scene. This constraint

is too restrictive for a wide range of possible mosaicing applications as shown in

Fig. 3.28 (b). The regions of the images belonging to an object that presents

parallax [89] may be ignored in the motion estimation procedure only if they are

not significant with respect to the size of the images. Nevertheless, misalignment

will still exist. For this reason it will be necessary to determine which image will

contribute to the mosaic with the information relative to the conflict object.

Registration is also possible when moving objects are present in the scene if

the regions that belong to the moving objects are not considered in the estimation

of the motion. Nevertheless, when registration into a mosaic is performed under

these conditions, moving objects may appear deformed in the overlapping regions.

Specifically, the objects can be cut in the borders of the images and do not

correctly match in the seams between consecutive images. In the worst case, the

objects may appear duplicated in more than one location, if the movement has

placed it outside the overlapping region between the images involved.

3.4.1 Computational Cost

Table 3.4 shows the computational time of each sequence at a common worksta-

tion (1.80GHz Intel R© Pentium R© Dual CPU E2160). The graphic card used in

order to compute the GPU-SIFT is a NVIDIA R© GeForce 7300 GT.

3.5 Conclusions

We have presented a tool for the medical community, specially addressed to pa-

tients with skin cancer, in order to enable dotors to create optical maps of the

whole body. These maps will allow them to monitor unusual changes in the skin

such as a sore that does not heal, a nevus that has grown or changed color or the

detection of new nevi.

Firstly, the basic concepts required to proceed with a deep study of skin

mosaicing have been explained. These techniques focus on the detection and de-

scription of interest points, matching of images, homograph computation, mosaic
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Sequence number: 1 2 3 4(a) 4(b) 4(c) 4(d)

Marker Detection 14” 8” 7” 8”

Keypoint 36” 2′ 25” 12” 2′ 16” 1′ 59” 1′ 42” 26”

Homogrpahy 40” 55” 5” 1′ 44” 1′ 31” 1′ 18” 8”

Global Alignment 3′ 30”

4 Point Warping 10 ” 5” 5” 5”

Blending 1′ 10 ” 4′ 00 ” 30” 1′ 40” 1′ 35” 1′ 37” 26”

Final time 2′ 50 ” 10′ 50 ” 47” 5′ 53” 5′ 17” 4′ 50” 1′ 00”

Table 3.4: Computational Time: Time required for each of the 4 sequences.

optimization and image blending.

The photomosaicing system is fully designed with respect to the knowledge

acquired in the study of the main steps of the mosaicing procedure.

Also, a graphical user interface is designed to enable the interaction between

the dermatologist or the patient and the image processing software, see Fig 3.29.

Finally, some results from different image sequences have been presented,

showing the performance of these algorithms. Some errors produced due to poor

registration have been presented.
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Figure 3.29: Mosaic Viewer interface.

123



3. A NOVEL SYSTEM FOR SKIN MOSAICING

124



Chapter 4

Design and development of a new

3D Body Scanner

This chapter describes the current technology for 3D body scanning and its ap-

plications to skin cancer detection. It also presents two new devices specifically

designed for skin cancer detection.

Although dermoscopy is nowadays a well-established practice for dermatolo-

gists in order to diagnose melanocytic tumors, it involves a long time-consuming

examination for each patient (30-50 minutes), and images from different explo-

rations have to be compared every 3-6-12 months in order to detect changes in

already existing nevi or to detect new nevi. The utilization of this technique has

demonstrated its utility in reducing the number of biopsies and allowing the early

diagnosis of melanoma[177]. Unfortunately, only a small group of patients can

benefit from this methodology due to its complexity and cost.

The main drawbacks of this approach are:

• It is a tedious, slow and costly process, since each exploration needs a

significant amount of time of an expert.

• Visual inspection is prone to errors due to inattention on the part of the

physician.

• A new nevus may not be detected without the aid of a previous image with

enough resolution of the affected zone.
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• Only a limited number of dermatoscopical images are acquired for each

patient (from 10 to 200) but never for all the lesions on patients with a

high number of nevi.

Dermatologic images can be stored in systems such as PhotoMAX, where a

technician or a dermatologist links each image with the current location of the

mole on the body by hand. Later on, dermatologists can visually compare images

of the same lesion in different explorations, and decide whether a lesion is benign

or malignant. In this process, three steps are needed: first, acquire the image;

then, select where its correspondence lays on the body; and, finally, diagnose. All

these steps are not automatized and for this reason, human intervention is always

needed.

Figure 4.1: PhotoMAX software for managing patient images and database. Im-
ages are linked to an avatar by hand. From Derma Medical Systems (http:
//www.dermamedicalsystems.com)

This thesis proposes the development of an optical scanner, which allows the

acquisition of dermatoscopic images of the whole skin surface of the patient, with

the aim of building a high-resolution map in a fully automatic way. This pho-

tomosaic will be compared with photomosaics acquired in previous explorations,
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allowing the detection of any type of suspicious change. In summary, we will

initially solve the acquisition and positioning of each image in an automatic way,

and only the diagnosis will remain manual.

Two scanner prototypes have been implemented on this thesis, namely hori-

zontal and vertical scanners. In both cases, the scanner performs a full exploration

of the patient, taking images of the whole cutaneous surface. Both systems use

cross-polarized lighting.

The next section reviews the current state-of-the-art in 3D body scanning.

This review will guide us in finding the best solution for implementing our pro-

posed 3D scanner.

4.1 State-of-the-art in 3D Body Scanning

By means of 3D body scanning, the acquisition of images can be performed

automatically. Recently, some new devices have appeared on the market. These

systems have been used in different fields[4][105] such as the medical sciences, the

textile industry, cosmetics, ergonomics, anthropology, fitness, security, animation,

sculpture and communications, among others.

The acquisition technologies of these devices can be divided into laser scan-

ning, coded structured light scanning, photogrammetry and others (see Fig. 4.2).

Figure 4.2: 3D Body Scanning Classification
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4.1.1 Laser Scanning

Laser scanning systems[97] use one or more strips of lasers projected onto the

body while a camera simultaneously acquiring images of the patient. The surface

of the body is measured applying simple geometrical rules.

Figure 4.3: Schema of 3D body scanning based on laser scanning.

Some systems use special optical systems and mirrors in order to generate

multiple strips from a single laser[51]. Two kind of systems are available: those

that rotate the object[149], and those that rotate the optical system (light sensor

and laser)[33].

Many different types of laser scanners have been proposed ranging from foot

scanners such as the one proposed by I-Ware Laboratory[78], to head scan-

ners, such as in the one proposed by Cyberware[39], or even full-body scanners

such as Vitronic[178], Cyberware[39], Hamamatsu Photonics[68] and Human-

Solutions[162].

The main disadvantage of these systems is the high cost of producing the

required hardware. The correct calibration of these systems is crucial in order

to reconstruct the object. The time needed to explore the entire body is a huge

problem because the whole body must be kept immobile during the acquisition

time. Uncontrollable movements such as breathing can induce errors. Lasers

present a risk to the eye as well as to the body in skin cancer patients. Laser
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scanning only provides a point cloud, representing the range of the 3D volume

scanned; no information on texture or color is provided.

(a) (b)

Figure 4.4: 3D body scanning based on laser scanning: (a) Cartesia R© 3D Body
Scanner (Spacevision) and (b) 3D Vitus R© (Vitronic)

4.1.2 Coded Structured Light Scanners

Coded structured light scanners[133] are based on the projection of a light pattern

(usually in the form of strips) onto the human body. A digital camera measures

the strips on the body surface and, singularly, recovers their positions by using

triangulation. Usually, binary coding systems are used to determine the origin of

each strip. Also, to increase their resolution, the projected strips are shifted in

space and time.

This system presents the advantage of reducing the digitalization time com-

pared with laser systems. An entire body image can be acquired in a short period

(seconds) so human body images can be digitalized without problems caused by

movement.

If the area to be scanned is large, systems with multiple projectors and cam-

eras are used.

Examples of this kind are the scanners developed by Beuckmann Gmbh[19]
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Figure 4.5: Scheme of 3D body scanning based on Coded Structured Light

and InSpeck[79] for head scans or Textile and Clothing Technology Corporation[171]

or Telmat[170] and inSpeck[79] for a full body scan. These systems present good

results in the recovery of the 3D volume. They are also robust on the occluded

parts of the body. Their main drawback is the poor texture recovery due to the

pattern projected on it. This problem is also present when segmentation methods

are applied to the 3D volume due to the discontinuity of the texture and color

through the volume.

4.1.3 Photogrammetry

Photogrammetry systems use one or multiple cameras for data acquisition. Once

the images are acquired, computer vision and image processing techniques are

employed to obtain 3D data from the images[144]. Three different systems are

considered within photogrammetry: the multi-image photogrammetry, visual hull

and silhouette analysis.

Multi-image photogrammetry uses multiple images from one or more cali-

brated cameras. Once the images are acquired, matching algorithms determine

corresponding points in the images. By intersecting rays between camera posi-

tions, it is possible to compute the 3D points in the scene, creating a dense 3D

point cloud.

The visual hull method[95] employs a set of images acquired from different
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(a) (b)

(c) (d)

Figure 4.6: 3D body scanning based on coded structured light: (a) bodySCAN R©

(Breuckmann), (b) NX-16 3D Body Scanner ([TC]
2

R©), (c) Mephisto 3D Body
Scanner (4DDynamics R©) and (d) Symcad R© (Telmat Industrie)

directions. The 3D reconstruction is performed using the volume intersection

approach. The bounding geometry of the object scanned can be obtained by

intersecting the cones formed by their projection onto the image planes and the

focal points of the cameras. The 3D volume scanned is called a visual hull[96][34].

The silhouette analysis approach acquires two images of the human body;

one from the front and another from the side. By using the body’s symmetry,

some relevant measurements with sufficient accuracy can be determined from the

silhouettes[21].

Examples of this kind are found in the scanners developed by Human-Solutions[162]

that use the silhouette analysis, 4D View Solutions[161] which employ a visual
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Figure 4.7: Scheme of 3D body scanning based on photogrammetry

hull method and Orscan[132] that commercialize a multi-image phtogrammetry

3D scanner.

Figure 4.8: A 3D body scanner based on Photogrammetry: Skin-Vision360
TM

by
Orscan Technologies

4.1.4 Other

Other 3D sensors use ultra-high frequency radio waves, time-of-light (TOF) cam-

eras and contact measurements.
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Ultra-high frequency radio waves allow a whole body scan while the person

remains fully clothed. A transceiver illuminates the body with extremely low-

powered millimeter waves; the radiation penetrates clothing and reflects off the

body. The reflected signals are then collected by an array of transceivers and

processed for measurement[72][57]. Intellfit Corporation commercializes ultra-

high frequency radio wave scanners.

TOF cameras are based on an array of diodes that emit a near-infrared wave

front that is intensity-modulated[131]. The light is reflected by the object and

imaged by an optical lens onto the dedicated 3D-sensor. By measuring the

phase delay between the emitted and received light, it is possible to measure

the distances between the objects[94]. CSEM (Centre Suisse d’Electronique et de

Microtechnique)[38] commercialize TOF cameras.

Contact measurement devices, such as Elinvision[46] and Amfit Inc.[3], pro-

vide digital measurements of the body, either with electronic tape measurements

or with scanners that have a touch probe matrix.

(a) (b)

Figure 4.9: Other 3D body scanning systems: (a) Iqube R© (Elinvision) and (b)
CamCube R© (PMDTech)
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4.1.5 Scanner Proposal

After reviewing the different systems, it is noticeable that most of them are not

appropriate for medical applications such as skin cancer detection. Skin cancer

detection first needs to have high-resolution images in order to detect lesions and

classify them, either by a dermatologists or in an automatic way. Secondly, tex-

ture and color are needed for most diagnosis systems, characteristics not present

in most of the 3D scanners presented. Above, we show the characteristics of each

group of devices.

Laser scanning can scan the entire body, from head to foot, but presents

problems in the high cost of the device, the need of a precise calibration to render

3D reproductions and a long acquisition time that can introduce errors due to

small movements.

Coded Structured Light scanners need less time to perform the acquisition.

Their main problem is the need of different devices (cameras and projectors) to

cover the whole body. Due to the interference between the strips of the different

projectors, it is not possible to shoot them simultaneously, but it should be done

in a sequential way, increasing the final acquisition time.

Photogrammetry systems already on the market suffer from either not be-

ing able to cover the entire body (Multi-image photogrammetry) or not having

enough resolution (visual hull and silhouette analysis). In general, they have low

resolution due to the high computational cost of the 3D reconstruction algorithms.

Other sensors such as ultra-high frequency radio waves, present a perfect 3D

scan but without any texture or color information. TOF cameras do not have

high resolution or good color quality, but they provide 3D scans without any

extra computation. Contact measurements only provide distances from different

parts of the body for a posteriori to compute a 3D avatar.

All these systems have been mainly developed for the textile, ergonomy and

fitness industries, where a clear reconstruction of the body is preferred over a high

resolution of any specific part of it. Also, most of these systems will not provide

more than an avatar or a set of measurements once they finish the acquisition.

For these reasons, we decided to use photogrammetry with multiple cameras

covering the full body in order to achieve good resolution of the body and a 3D
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reproduction of the person as well.

4.2 Design and development of a cutaneous scan-

ner

This section describes our two cutaneous scanners (see Figs. 4.11 and 4.16)

developed for the acquisition of high quality images of the whole body. The two

proposals were developed in order to cover different kinds of patients with different

characteristics. The horizontal scanner is designed to be used with older people or

people with difficulties in standing steady for some minutes. The advantage of the

horizontal scanner is that it is easy to maintain the same position if the patient

is lying on a table. The main disadvantage is the time required to perform a

full exploration with the horizontal scanner. This time is double the time needed

for the vertical scanner. Furthermore, the vertical scanner does not require the

use of a dark room so that ambient light does not mix with the polarized light

of the scanner. On the other hand, the cabin of the vertical scanner can cause

claustrophobia in the patient.

4.2.1 Horizontal Scanner

The horizontal scanner was developed between 2008 and 2009 and is composed

of a small bed with a mattress and an acquisition header. The patient lies on

the table either on his/her back or on his/her stomach. The acquisition head

is composed of CCD cameras and a lighting system. This head moves over the

patient, acquiring images every 10 cm over the entire body. Once the scanner

arrives at its last position, the patient turns over and a new data acquisition is

performed to complete the exploration.

4.2.1.1 Mechanical Aspects

The scanner is constructed on the basis of modular aluminium profiles, which

allowed design modifications in the prototyping phase of development. The final

external dimensions of this scanner are 1700 × 2500 mm by 1400 mm in height
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Figure 4.10: Horizontal Scanner Schema

Figure 4.11: Horizontal Scanner.

(see 4.10). The dimensions of the scanner in width and length are primarily

defined by the size of the table for the patient and the height of the acquisition
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head, which is placed as close as possible to the patient, yet still allowing the

cameras to focus.

Figure 4.12: Bloc diagram of the proposed scanner.

4.2.1.2 Computer Module

The scanner uses an industrial panel PC that has a touchscreen as an input

device, where a technician can operate the scanner. The PC has connections

to the main parts of the scanner such as the Power Control motherboard, the

Programmable Logic Controller (PLC) and the acquisition module.

The Power Control motherboard is connected to the scanner through a serial

port, and is used to switch on/off the lighting system and to start/stop the

acquisition device explained below.

The PLC module is in charge of controlling their actuators, which will be

described in the next section. The PLC is connected to the computer module

and uses a serial port for sending information. Its main functions are sending

start/stop signals to the actuators and receiving the current position from the

encoder. Also, other options such as configuring the velocity and acceleration of

the motor are enabled.
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The PC is linked to the acquisition module, connecting all the cameras and

sending configuration and acquisition messages to them through a USB port.

4.2.1.3 Actuators

The actuator suite is based on a motor for moving the acquisition head. This

motor has an encoder in order to control the position. The system is connected to

the PLC in order to control them. The PLC used is a Danfoss VLT Automation

Drive FC-300 which allows the use of three-phase current motors.

The PLC on the scanner communicates directly to the PC by sending serial

messages that contain the position to be reached by the scanner.

4.2.1.4 Lighting System

The lighting system is designed to maximize the amount of light on the scene,

while keeping it within comfortable levels for the patients. For this reason, 8

fluorescent tubes are used together with a customized reflector in order to direct

all the light intensity towards the patient (see Fig. 4.13).

Two linear polarizers are used to generate cross-polarized images. The first

is placed in front of the lighting system, while the second is placed in front of

the cameras and rotated 90 degrees with respect to the first one. Following this

method, it is possible to eliminate any reflections on the skin. The scanner should

be used in a dark room to avoid interference from any other light source that may

disturb the cross-polarized system.

Having a high quantity of light allows the cameras to use a smaller aperture,

thus giving a better depth of field and image quality. Also, having more light

reduces the exposition time, minimizing motion blur problems in the images due

to small movements of the patient.

4.2.1.5 Image Acquisition Module

The scanner has 11 cameras with the goal of maximizing the overlap between

images (see Fig. 4.14) and covering the entire body. All the cameras are Canon

PowerShot G9 with 12 MegaPixels (4000 × 3000 pixels) on a sensor of 1/1, 7”
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Figure 4.13: Detail image from the acquisition head, showing the acquisition
system (11 cameras) and the lighting system (8 fluorescents, reflectant system
and polarizer film).

and an optical zoom of 6×. We chose these cameras as they made the best qual-

ity/price compromise when we started the project. Also, as opposed to most

industrial cameras, these cameras have the possibility of setting up different pa-

rameters such as focal point, zoom, etc, which will be needed to focus on different

parts of the body. With cameras without auto-focus, the various distances from

the camera to the body would not allow a single focus for all the images, requiring

a smaller lense aperture and even more light.

Software The first prototype was developed under a Windows operating sys-

tem and used the Canon Software Development Kit (SDK). The interfaces were

implemented in qt, providing a user-friendly communication with the scanner

technician. Further work will allow the system to manage patients’ databases.

Also, an input/output data module will be implemented to send images to servers

in order to post-process them.

The acquisition module allows as to configure most of the camera’s param-

eters, such as the acquisition mode (Auto, Manual, Aperture Value and Time

Value), the exposition time (seconds), aperture (F-value), ISO, focus point (cen-

tral or multiple focusing points), zoom (× factor), white balance (Daylight, Tung-

sten, etc), etc.

The acquisition system also allows us to synchronize image acquisition, trig-
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Figure 4.14: Overlapping images on the Horizontal Scanner: With a person lying
on the table, the numbers shown on the right of the figure are the number of
images that cover each position of the table, having at least 6 views of the same
position. This will minimize the problems due to occlusions. Moreover, only the
closer images will be used for mapping in order to select those that present the
best focus in each position.

gering them simultaneously, and storing the images either on the SD cards or

directly in the PC.

Control. Lights and power are controlled by a Programmable Interrupt Control

(PIC) connected to the PC serial port. The objective of this module consists of

sending start/stop messages to either the camera power or the acquisition light.

4.2.2 Vertical Scanner

The second prototype was conceived to reduce the size of the system and the

acquisition time. Moreover, the patient’s position was also modified (the patient

stands up, as opposed to lying on a bed). In this version of the scanner, the patient

is placed in the center of a rotating platform. The cameras and the lighting system
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are placed on one side of the cabin, and the scanner acquires images while the

patient rotates. Once half of the entire acquisition is done (after a rotation of 180

degrees), the patient changes his position to cover the remaining half of the body

not yet covered in the first acquisition. Once the patient has changed position,

the scanner acquires images of the patient’s back.

This scanner has a dimension of 990 × 1400 and 2272 mm in height, approx-

imately half the size of the horizontal one, allowing installation in smaller rooms

(see 4.15). We also worked on the external aspect of the scanner making it more

presentable in a medical ambient (see 4.16). The use of a cabin to cover the

scanner allows the system to be used in any room without the need of switch-

ing off the ambient lights to prevent undesired effects on the cross-polarization

configuration of the scanner’s lighting system.

The computer module is approximately the same, but the industrial PC has

been changed to a standard PC because of its lower cost. However, a PC allows

us to add extra USB-PCI cards, thus reducing the need for hubs to connect each

camera.

However, the cabin covering the scanner generates a new problem: the techni-

cian operating the scanner can not see what is happening during the acquisition.

For this reason, a webcam is connected and visualized during the acquisition

application in order to control the state of the patient when the cabin is closed.

The control of the actuators is performed by a different PLC; the one used in

this version is a Danfoss VLT Micro Drive FC-51. This PLC is smaller than the

one used in the horizontal scanner since it does not have to control large motors,

like the one used on our first version of the scanner. The communication between

the PLC and the PC has also been improved in this version. This new PLC

allows the use of the libnodave library. This standard library allows the exchange

of data with Siemens PLCs. In our case, we use it for sending/receiving position

values.

The lighting system presents two modifications with respect to the horizontal

scanner. First, we increased the number of fluorescents to 12 to maximize the

amount of light, and secondly, we added what we call the ambient light, that is

a small LED light placed on the roof of the scanner. This light goes on when the

patient enters the scanner before starting the acquisition and helps the technician
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to put the patient in place. The light is controlled by the Power Control module

connected to the PC.

Also, the number of cameras is increased from 11 to 19. The difference in the

number of cameras is due to a number of factors, like the different movements of

each scanner, the zone to be covered at each step and the final acquisition time.

The linear movement on the horizontal scanner allows the system to take

images of the bodu’s side, while the vertical scanner only acquires images from

either the top or the bottom of the body at each step. Therefore, the area of

the body covered by the vertical scanner is larger than on the previous scanner.

On the other hand, the disadvantage of having more cameras is compensated by

the reduction in the acquisition time on the vertical scanner, since it is possible

to cover the whole body with the same resolution as with the horizontal scanner

but with fewer steps.

The second scanner is developed under the Linux operating system and uses

open source libraries (libgphoto) to control the cameras. This change made the

system more stable as well as adding extra options to it. The webcam on the

vertical scanner is controlled using the OpenCV libraries.

Figure 4.15: Vertical Scanner Schema
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(a) (b)

Figure 4.16: Vertical Scanner: (a) Exterior part of the vertical scanner and (b)
interior of the scanner with the patient mattress, the lighting system and the
acquisition.

4.3 3D in vivo skin mapping

Both scanners are equipped with a software developed in our lab and able to create

3D body maps. A common shortcoming of the existing systems outlined above

is the limited image and texture resolution they provide on the reconstructed 3D

models. For this reason, our proposed 3D skin mapping system was designed to

have enough resolution to enable automatic detection of temporal changes. In

contrast with the state-of-the-art devices currently employed by dermatologists,

our approach can map the entire body, thus going beyond the standard procedure

of manually linking images of lesions on top of avatars. Our solution not only

allows the detection of new lesions, but also allows recording the state of the nevi

at every exploration, thus enabling the detection of changes over time. In our

system, images could be automatically located and mapped onto an avatar. This

automatic location enables the comparison of the image containing the lesion and

143



4. DESIGN AND DEVELOPMENT OF A NEW 3D BODY
SCANNER

the image of the same lesion but from another exploration.

4.3.1 Method

4.3.1.1 Image preprocessing

The proposed 3D body mapping system is not only designed to be used with

our scanner, but is able to perform 3D reconstruction using images acquired by

other means, ranging from low-resolution images provided by cell phone cameras

to high-resolution images such as those acquired by professional digital cameras.

However, the higher the number of images, the more detailed 3D reconstruction

can be obtained.

The only pre-requisite is the calibration of the intrinsic camera parameters[22]

in order to model the image formation process and to correct radial and tangential

image distortions. Once the images are corrected, the proposed image processing

pipeline is based on a series of successive steps detailed in the following subsec-

tions, namely: estimation of the position and orientation of the cameras, dense

reconstruction, surface reconstruction and texture mapping.

In comparison with other products already available on the market, our so-

lution significantly increases the resolution and provides the required texture for

change detection. This higher resolution will allow the development of automatic

change detection software to assist dermatologists in the detection of new lesions

and/or to detect small changes in an already existing lesion.

4.3.1.2 Estimation of Camera positions

First, the position of the images is estimated by a Structure From Motion (SFM)

procedure similar to the one described in[130]. This algorithm performs an in-

cremental reconstruction based on the direct registration of the images to a set

of already reconstructed 3D points. It comprises two main steps: first, an initial

model is obtained by using a standard motion estimation technique[71], and then

this initial model is used to directly register new images.

Fixing the first image in the sequence as the reference frame initializes the

model. Then, a second image is selected from the set of available images as the one
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that maximizes the overlap with respect to the reference image. In typical SFM

algorithms, the fundamental matrix is usually used for camera motion estimation.

This is the correct approach when the scene has a high 3D relief or has a noticeable

parallax. However, some of the images in our intended application may present

very low parallax or nearly planar content, thus generating an ill-conditioned

fundamental matrix[71]. In this case, a more robust approach consists of modeling

that motion using a homography[71]. The SFM algorithm selects one or another

model depending on the scene observed.

Once the initial model has been built, positions of new images can be com-

puted by finding correspondences between imaged 2D points and reprojected 3D

points. To perform this matching, each 3D point has an associated description

vector, which is the mean of the different descriptors[106] of each of the 2D points

that have generated it. By having the correspondence between 2D and 3D points,

the procedure to compute the position also follows a dual approach of using a

projection matrix or a homography based on the planarity of the scene. The esti-

mated final position is refined through Bundle Adjustment[104] to further reduce

the reprojection error.

4.3.1.3 Dense Reconstruction

In this step we do not focus on finding correspondences between the most distinc-

tive features in the images, like in the SFM procedure. Instead, the goal here is to

obtain a comparatively larger set of correspondences by using a less constrained

approach based on the distinctive measure of each feature. For this purpose, we

use the method described in[53], which creates a model in the form of a dense set

of points with associated normals. This method consists of three main blocks:

matching, expansion and filtering.

4.3.1.4 Matching

The matching step first detects a set of corners and blob features using the Harris

detector[70] and Difference-of-Gaussians (DoG). The selected features are forced

to be uniformly spread to cover the entire image. The features are then matched

across multiple images to reconstruct a sparse set of patches. For each feature f
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detected in image I, a set of features F is selected from the other images, using

epipolar constrains to restrict the search. Once the set of correspondences has

been found, the computation of the patch is performed by constraining its position

along a line of sight of a reference image, and then finding the position and

orientation parameters of the patch by minimizing the photometric consistency

of its projection across images.

4.3.1.5 Expansion and Filtering

Once the matching step has been performed, the expansion and filtering steps

are iterated. The expansion step aims to add new neighbors to existing patches

until they cover the surfaces visible in the scene. The filtering step accounts for

visibility consistency of the recovered patches, i.e., it removes outliers taking into

account self-occlusions among patches in 3D. This filtering is carried out in two

steps. The first filter focuses on removing patches that lie outside the surface

described by the points, while the second filter focuses on outliers lying inside

this surface.

4.3.1.6 Surface Reconstruction

The points obtained from the dense reconstruction described above can be seen as

discrete samples of the scanned surface. This representation is not sufficient to get

clear visibility, i.e., an observer cannot tell whether a point is closer to or farther

away from another without moving the point of view around the model. For

this reason, a triangle mesh describing the surface is needed. Furthermore, this

representation will allow the projection of the texture from the original images

onto it, thus obtaining a useful model for 3D body inspection.

The set of points resulting from the dense reconstruction step are called unor-

ganized, since they are not assumed to follow any underlying structure. There are

several methods in the literature to deal with the ill-posed problem of finding a

surface from a set of unorganized points. One of the more widely used techniques

is the Poisson method[85], which discretizes the working space into a voxel grid,

and splats the samples on it. The volume of the object will then be recovered

implicitly in this grid as an indicator function, i.e., the value of a given voxel will
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be zero if it is part of the outside of the object, and will be one if it is part of

the inside. From this representation, the surface is extracted using the Marching

Cubes algorithm[102].

The splatted points and normals are seen as a discretization of the gradient of

the indicator function described above. The problem then is to find the inverse

of this gradient, i.e., to find the indicator function whose gradient best approxi-

mates the vector field defined by the oriented samples. By means of applying the

divergence operator, this problem can be cast as a Poisson problem, consisting of

finding the scalar function whose Laplacian (divergence of gradients) equals the

divergence of the vector field.

4.3.1.7 Texture Mapping

Once the surface mesh is built, the original images are used to obtain the texture

corresponding to each of its triangles. The set of views compatible with a given

triangle (i.e., the views where it is visible) are computed using line-of-sight con-

straints, and then the triangle is back-projected into these images. The image

containing the reprojected triangle with largest area is the one selected to provide

the texture.

4.4 Results

4.4.1 3D reconstruction results

In this section we illustrate a 3D reconstruction process using only an arm and

not the entire body to clearly show the full process. The sequence has 23 images,

more that those used in the scanner to describe the arm once the full body is

acquired. The arm is one of the more challenging parts of the body due to

the difficulty of reconstructing occluded zones such as some parts of the middle

fingers. Fig. 4.17 shows the pipeline of matching, expanding and filtering of the

3D model.

Fig. 4.18 presents a final view of the reconstructed arm, with an example of

the obtained resolution.
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(a) (b)

(c)

Figure 4.17: Sample reconstruction pipeline: (top) dense 3D points; (middle)
mesh of triangles forming the surface as returned by the Poisson method; and
(bottom) texturized surface.

4.4.2 2D - 3D results on the scanner

In this section we present some results from the images acquired by the horizontal

scanner. The image sequence contains 352 images from 11 cameras. All the

cameras are setup with the same parameters. The average resolution of the images

is 25 pixels per millimeter. This means that small changes between sequences can

be returned as a big difference in the acquired image. These results represent some

of the possibilities the scanner can obtain, but the final goal of our system is to

place each lesion of a patient to a standarized 3D map of the patient in order to

compare the same image from different sequence acquisitions.

First, we present the mosaic in Figure 4.19 built by using the techniques and

software described in chapter 3. The mosaic presents some inaccuracies due to

the presence of 3D on the scene and therefore unable to be considered planar for

a 2D representation.

Although 2D mosaicing allows the estimation of an approximate location of
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(a)
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Figure 4.18: Three views of the final reconstruction after applying the described
pipeline.

every image with respect to the patient body, accurate location of the patient’s

lesions (needed for analysis of their temporal evolution) requires a 3D approach,

which is not affected by parallax. Unfortunately, a 3D reconstruction approach

would pay the price of reducing the resolution of the texture patch associated to

the lesion. For this reason, we propose a mixed model where the 3D mesh allows

the proper mapping of lesions within the patient body, and the original 2D image

will be used for diagnosis and change detection.

Fig. 4.20 illustrates the 3D point cloud recovered from the intersection of

interest points from among the cameras.

The expansion of these points through all the images produces 3D represen-

tations such as those illustrated in Figures 4.21 and 4.22. The first one presents

the mesh of triangles forming the surface as returned by the Poisson method and

the second figure presents the resulting texturized surface.

Fig. 4.23 represents a small part for the patient’s back. A detailed image of

the 3D texturized view of three lesions and the original image are illustrated. It
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Figure 4.19: 2D Mosaic of the full body. The small images on the top shows the
real resolution of the scanner, every millimeter on the human body is represented
by at least 20 pixels on the mosaic. Bottom: incorrect alignment due to the use
of a 2D approach under the presence of strong parallax.

should be noted that the 3D model has a lower resolution than the original 2D

image, since it is not intended for diagnosis purposes, but only to correctly localize

every lesion within the patient’s body. Its lower resolution is due to the different

processing steps performed, avoiding extremely large 3D meshes, but still allowing

the 3D model to encode information about the normal vector of each lesion, i.e.,

the orientation of the patch where the lesion is located, avoiding slanted views

of the lesions. These normals would improve local alignment between images of

the same lesion, acquired in different explorations. Therefore, the original 2D

image is more suitable for diagnose, and the 3D model enables the correction of

the orientation of the lesion with respect to the camera, making 2D comparison

more reliable.
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Figure 4.20: 3D Point Cloud representation of the patient’s back. Each point has
correspondence in at least 3 cameras.

Figure 4.21: Mesh of triangles forming the surface as returned by the Poisson
method for the patient’s back.

4.5 Conclusions

This chapter presented a proposal for 2D/3D mapping with the aim of providing

the basis for automatic detection over time. First, we reviewed most of the 3D

scanners available on the market, showing their characteristics, advantages and
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Figure 4.22: Texturized Surface for the patient’s back.

3D reconstruction Info.

N◦ of images 209
N◦ of matched images 155
N◦ of 3D Dense Points 11,002,962
N◦ of vertex 189,484
N◦ of triangles 373,276

Table 4.1: 3D Reconstruction Results.

drawbacks. From these approaches, we decided to proceed with a photogrammet-

ric approach because it is the only one that provides texture and color information

needed for skin cancer detection.

We developed two prototypes: the first one is called the horizontal scanner

and the second one is a vertical scanner. Now both are in the last stages of

development and close to being ready for the test phase in a real environment at

the Hospital Clinic in Barcelona.

Finally, we developed and tested a 3D reconstruction software in order to ob-

tain a model of the patient for locating moles. This approach has some problems

due to the inaccuracies of the procedure. For this reason, we will implement a

simpler function in the future that will relate any acquired image with a 3D posi-
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(a)

Figure 4.23: (a) Texturized Surface for the patient’s back. (b) Detail of an small
part of the 3D surface. (c) same part on the original image.

tion on an avatar. For comparing images over time, the images lying in the same

position on the avatar will be compared individually, looking for new or changed

lesions.
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4. DESIGN AND DEVELOPMENT OF A NEW 3D BODY
SCANNER
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Chapter 5

Conclusions

This chapter concludes the work presented through this document. It first sum-

marizes the thesis by reviewing the contents described in each chapter and some

aspects that, although not accomplished during the thesis, point out some inter-

esting future research issues. The chapter then points out the research contri-

butions extracted from the proposals and experiments. Finally, the publications

related to this work are listed.

5.1 Summary of the Thesis

The aim of this thesis has been the development of a reliable set of tools to

assist dermatologists in the early detection of skin cancer. We began studying

and analyzing the proposals available in the literature. We made an extensive

literature review of all the systems which are commercially available and can be

potentially associated for the diagnosis of skin cancer. Pros and cons of each

technique/instrument are detailed and compared leading to the conclusion that

some diagnosis methods can be improved and new technologies can be applied

to dermatology. Mainly increasing the resolution of dermatological images and

improving their color consistency.

We developed a new framework which takes three objectives into account; the

quality of the dermatological images, the registration of full body exploration,

and the automatic acquisition of high quality full body images.

Over the last few decades color correction has been widely investigated, but
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some improvements can be still made, such as the ones proposed in this the-

sis. Our algorithm minimizes the problems produced by the use of different

dermatoscopes and cameras with the goal of having more similar colors between

these different devices. Correcting the colors prior to any further computations

is a mandatory preprocessing step for automatic skin cancer detection. Also,

inexperienced dermatologists or general practitioners would be able to increase

their diagnostic accuracy by applying algorithms such as the 7-Point checklist or

ABCDE rule that uses color as one of their main criteria.

Chapter 2 presents our algorithm for color calibration of dermatological im-

ages, comparing them with the state-of-the-art methods. We established a new

procedure for acquiring dermatoscopical images as well as, new procedures for

color correcting them. Based on the prior knowledge of the acquisition lighting,

the spectral distribution of illuminant is introduced to the calibration algorithm,

improving the results presented in the literature. The performance of our algo-

rithm is tested on different cameras and image formats. RAW images and images

acquired with high quality cameras produces the best results which are better,

in terms of color differences that the state-of-the-art technique. Also a Custom

White Balance (CWB) technique is presented for low cost cameras that only

produces JPEG images.

Our second objective in this work, described in chapter 3, addresses the prob-

lem of how to automatically combine images from the same patient in a single

image, generating a single frame composed from different images. This software

will allow storage of some views of the patient instead of saving all the individual

images. Every detected nevus will be easy to point out on the map, and the

patient will be able to look at the same lesion in different explorations, lessening

the time needed to go image by image to find the same mole. Once the same

mole is detected, the patient can see if any change has taken place, and decide to

visit a dermatologist for an accurate diagnosis. The Chapter starts presenting an

state-of-the art of the latest keypoint detectors and descriptors. The matching

process and image registration is modelled by an homography. Optimization and

blending methods are presented in order to improve the final results. With full

body image sequences 4 markers are placed on the scene that help calculating

a global homography from the first to the last frame. Finally some examples
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of different mosaic are presented highlighting some strenghs and wekness of the

method. Hardware optimization have also been considered by means of the use of

the GPU-SIFT detector and descriptor running over a CUDA-adapted graphical

card.

Chapter 4 presents a new and innovative proposal to acquire full body explo-

rations from patients. Some devices which obtain 3D full body representations of

the human body are described in the literature, most of them are being used in

the textile, ergonomics, and fitness industries, among others but not in medical

usage. The other systems reviewed in Chapter 4 present accurate 3D representa-

tions of the body useful for defining the size and shape of the body. Their main

limitation is the lack of image quality, texture and color information, which does

not allow dermatologists to see the moles and form a diagnosis from their 3D

representation. Our system produces high-quality images that provide texture

and color information. Two options are presented for viewing our images. The

first is the construction of a 3D model using all the images, and the second is to

automatically locate each image on to the avatar of a person.

5.2 Contributions

The main contributions of this thesis are:

• An extensive survey of dermatological devices for skin cancer detection,

which are classified according to the technology used. The different methods

are compared and the main advantages and disadvantages are shown.

• A color correction scheme to improve the quality of dermatoscopical images.

The differences produced by using different dermoscopes and cameras are

corrected after applying the algorithm rendering the colors from different

images closer to the real ones. The approach is validated with synthetic

and real experiments. The results are consistent and present a major im-

provement with respect to the state-of-the-art.

• A new method based on mosaicking for registering various explorations of

the whole body is presented. Multiple images from the same patient can be
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combined in a single one, allowing self-exploration by the patient himself

and easily enabling the detection of changes over time.

• A new device for acquiring full body explorations is proposed. This device

allows the generation of 3D body models with the aim of increasing the

resolution and quality of the state-of-the-art.

• 2D and 3D body maps are obtained, presenting the techniques and software

required to generate them.

5.3 Further Work

Short term perspectives

• The color calibration algorithm has been probed to work in synthetic images

and on few real skin images. Our future plan is to apply this algorithm to a

huge number of dermatoscopical images and compare the diagnosis results

if dermatologists uses corrected or uncorrected images.

• The approach presented in this work to acquire and generate 3D full body

models has been tested on a reduced number of sequences acquired in our

research lab. The next step would be to acquire new sequences in a clinical

environment, mapping the nevi on a 3D model of the body. This remains

as immediate future work.

• It is a must to continue collaborating with dermatologists in order to im-

prove the algorithms developed, and incorporating them in the daily prac-

tice.

Long term perspectives

• This thesis presented some algorithms that will help dermatologists to auto-

matically detect skin lesions. Our further goal is to automatize this process.

• In terms of change detection, the use of existing approaches, as well as the

performance of new techniques will be tested, both using the proposed 2D

and 3D approaches.
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• It would be interesting to validate the 3D scanner in a clinical study, en-

abling the future commercialization of this device.

• Finally, a very ambitious aim is to complete a set of tools in order to

acquire, improve the quality of dermatological images, segment skin lesions

and finally diagnose according to the changes discovered in each lesion in a

fully automated way.

5.4 Related Publications

A list of publications by the author for the PhD candidacy is given below, ordered

according to their topic.

Publications related to camera color calibration:

• [CMIG11] J. Quintana, R. Garcia, L. Neumann. A novel method for color

correction in epilluminescence microscopy. Computerized Medical Imaging

and Graphics. Volume 35. Numbers 7-8. October–December 2011. Pag.

646–652.

Publications related to the novel system for skin mosaicking:

• [MSC08] J. Quintana. Assessment of cutaneous lesions through mosaicing.

Thesis Submitted for the Degree of Msc Automatic Control and Computer

Engineering. Girona. July 2008.

Publications related to the design and development of a new 3D body scanner:

• [MICCAT11] J. Quintana, R. Campos, N. Gracias, J. Freixenet, R. Gar-

cia. 3D Skin Mapping for Melanoma Detection Conference. Barcelona.

December 2011.

• [WCD12] J. Quintana, R. Campos, R. Garcia, J. Freixenet, N. Gracias, S.

Puig, J. Malvehy. A novel acquisition device for Total Body Photography.

World Congress of Dermoscopy. Brisbane. May 2012.
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