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VLSI Architecture for Motion Estimation

in Underwater Imaging

Resum

El treball desenvolupat em aquesta tesi aprofundeix i aporta solucions inno-

vadores en el camp orientat a tractar el problema de la correspondència en imatges

subaquàtiques. En aquests entorns, el que realment complica les tasques de processat

és la falta de contorns ben definits per culpa d’imatges esborronades; un fet aquest

que es deu fonamentalment a il·luminació deficient o a la manca d’uniformitat dels

sistemes d’il·luminació artificials. I és en aquest context on els treballs de la comu-

nitat cient́ıfica avancen en adaptar, a aquestes condicions extremes, els algoritmes i

mètodes més àmpliament utilitzats.

La solució proposada en aquesta tesi permet detectar, en temps real, corre-

spondències de parells de punts entre diferents imatges. Un problema fonamental

en robòtica submarina és estimar el moviment d’un AUV a partir de les diferen-

cies percebudes entre imatges successives captades per una càmera muntada en el

propi vehicle. Aquestes diferencies es poden estimar analitzant correlacions entre

paràmetres caracteŕıstics, i fonamentalment per tècniques de matching. En aquest

sentit, la tesi proposada aporta una solució que permet, en temps real, detectar

aquesta correspondència.

Criteris basats en diferències d’intensitat tal com la suma de les diferencies ab-

solutes SAD (Sum of Absolute Differences) han estat sovint els més utilitzats per

resoldre el problema de la correspondència. No obstant, quan es tracta d’analitzar

seqüències reals d’imatges subaquàtiques, mètodes més complexes tal com el cri-

teri de correlació normalitzada MNCC (Mean Normalized Cross Correlation) s’han

mostrat com a més eficaços. Anant més a fons, quan les condicions esdevenen encara

més complexes pel fet de trobar-nos amb rotacions o objectes en moviment (peixos,

algues, etc.), la presència de punts erròniament correlacionats augmenta consider-

ablement. En aquests entorns cal treure profit de la textura, la qual és una font

especialment rica per a la caracterització de paràmetres invariants.

I és en aquesta ĺınia en la que la present tesi complementa la informació de

nivells de gris amb l’anàlisi de textura, mitjançant un procediment innovador que
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permet eliminar els punts erròniament correlacionats per etapes dematching prèvies.

Aquest procediment s’ha mostrat especialment robust i fàcilment aplicable per re-

butjar les falses correspondències conegudes com a outliers. En comparació amb

mètodes probabiĺıstics, aquesta aportació no requereix de cap procediment a priori

d’estimació de moviment.

Trobar correspondències de punts entre dues imatges requereix tasques de pro-

cessat previ de baix nivell que portin a la detecció de caracteŕıstiques singulars de les

imatges i facilitin l’aplicació posterior d’algorismes de correlació. Aquestes tasques

solen ser repetitives i afecten a un nombre molt elevat de dades, per la qual cosa,

quan es tracta d’obtenir resultats en aplicacions reals es requereixen sistemes po-

tents de càlcul, i molt especialment quan es desitja obtenir resultats en temps real.

Aquests condicionants són els que fan especialment recomanables els dispositius re-

configurables, els quals aporten una nova dimensió als processament d’imatges en

temps real, i sobre els quals es presenta en aquesta tesi un estat de l’art dels sistemes

existents. Les caracteŕıstiques dels nous dispositius programables tal com la seva

reconfigurabilitat, l’elevat nombre d’entrades i sortides, la integració de blocs fun-

cionals complexes i un número elevat de blocs de memòria han obert perspectives

de processament d’una flexibilitat mol elevada.

Els esforços per implementar algoritmes de correlació en un sol xip i que operessin

en temps real han estat considerables. En aquest àmbit, aquest treball també pre-

senta un anàlisi comparatiu d’arquitectures sistòliques per detecció de moviment que

han estat sovint utilitzades en aplicacions de codificació de video. En aquest camp,

el present treball proposa una nova arquitectura VLSI dissenyada per a realitzar,

amb un alt grau d’efectivitat, operacions de maching en aquests entorns complexes

d’imatges subaquàtiques. L’algorisme proposat està dividit en dues parts fonamen-

tals: el detector de punts d’interès i el procediment de detecció de correspondències.

La primera etapa de l’arquitectura detecta N punts de la imatge adquirida per la

càmera. Una segona etapa del sistema correlaciona els punts detectats en la etapa

anterior entre dues imatges adquirides en instants de temps diferents.

L’algoritme de matching està dividit en diferents parts executades en un conjunt

complex processadors concurrents. La disposició o estructura dels processadors està

escollida de forma que es redueixi el numero d’accessos a la memòria i el temps

d’execució, alhora que faciliti el posterior processament de les dades. Els assaigs

per demostrar la viabilitat i fiabilitat de l’algorisme, aix́ı com la seva optimització,
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s’han realitzat en seqüències d’imatges submarines reals.

L’arquitectura desenvolupada ha estat implementada mitjançant plataformes

basades en dispositius reconfigurable. Les noves eines de disseny digital han permès

analitzar en detall el comportament de l’arquitectura i optimitzar els recursos en

funció dels resultats obtinguts en cada moment. L’algorisme ha estat parametritzat

per permetre tenir flexibilitat en el tractament d’imatges de mida variable, aix́ı com

en la selecció del nombre de punts a tractar i de paràmetres de correlació diferents.

En resum, els objectius aconseguits en aquesta tesi es poden remarcar en dues

grans direccions:

• Millorar l’algorisme d’estimació de moviment proposant un nou mètode que

introdueix paràmetres de textura per rebutjar falses correspondències entre

parells d’imatges. Un seguit d’assaigs efectuats en imatges submarines reals

han estat portats a terme per seleccionar les estratègies més adients.

• L’ús de paral·lelisme per accelerar algunes parts de l’algorisme d’estimació de

moviment amb alt cost computacional. Amb la finalitat d’aconseguir resultats

en temps real, es proposa una innovadora arquitectura VLSI, la qual ha estat

prototipada mitjançant plataformes reconfigurables basades en FPGAs.
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Chapter 1

Introduction

1.1 Systems for underwater environment explo-

ration

Underwater exploration opens new perspectives to an amazing world different from

our own. Water environments such as rivers, lakes, dums, seas or oceans cover about

78% of the surface of the Earth. Exploring these zones is still a great challenge for the

human being. Understanding underwater environments is essential for ocean science,

observation of oceanographic and geothermal events, exploitation of offshore life

and mineral resources, undersea agriculture, ocean mining, oil industry or military

purposes.

Whatever the environment is, land, air or sea, the aim of robotics is to develop

tools that can be used to facilitate the work in real-world domains. Nowadays,

underwater robotics receives a considerable amount of attention as it allows us to

explore areas which are extremely difficult for humans to rich. Scuba divers and

advanced diving techniques, remotely operated and autonomous robots, manned

submersibles or underwater observatories are used to explore the underwater envi-

ronment. Since first manned underwater vehicle called “The Turtle” built over 30

years ago, the research community has provided more and more sophisticated diving

technologies, including human occupied submersibles, Remotely Operated Vehicles

(ROV) and Autonomous Underwater Vehicles (AUV). There is no doubt that ROV

and AUV are very important for exploring underwater environments. They reduce

1



2 CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.1: URIS underwater vehicle: a) Photograph of the URIS robot; b) URIS robot
on the dock at Banyoles lake.

risks of offshore exploration and, due to their smaller size, they can perform missions

that other craft cannot. Among them, small-sized underwater robots are very ap-

propriate for these tasks due to their low-cost, safety and convenience (they are easy

to manipulate). URIS (Underwater Robot Intelligent System) (see figure 1.1) is an

example of a small-size, low-cost underwater vehicle. This robot is a research proto-

type platform designed and built at the Computer Vision and Robotic Group of the

University of Girona. URIS has been successfully used in many experiments dealing

with either intelligent control system applications or underwater image processing.

Autonomous Underwater Vehicles (AUVs) are unmanned, untethered submersible

robots that are capable of carrying out missions autonomously. The robot localisa-

tion is a key problem when a robot must perform a mission autonomously. During

a mission, a robot must know “where it is” so it can decide “what to do next”.

Relative and absolute measurements give feedback about the robot driving actions

and the state of the environment around it. There are many sensing technologies

available to provide the vehicle with knowledge about its position. Among them,

vision based systems represent a good option due to their low cost, high-rate and

high resolution information. When images acquired by a camera mounted on the

vehicle(see figure 1.3), are processed adequately they can provide rich information

about the environment and also about the position of the robot. Nevertheless, in

most cases information provided by the camera is complemented by information

from other sensors, such as acoustic sensors, gyroscopes and accelerometers, etc., in
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Level Characteristics Examples

Low Small neighbourhood, data ac-
cess, simple operations, large
amount of data.

Edge detection, filtering convolu-
tion.

Intermediate Small neighbourhood, more com-
plex operations.

Point matching, relaxation, seg-
mentation and labelling.

High Nonlocal data access, complex
operations.

Object recognition, 3D recon-
struction, localisation.

Table 1.1: Computer Vision

order to provide a more robust and reliable sensing system.

1.2 Computer vision

The goal of computer vision is to automatically extract information about a given

scene by analysing images taken of the scene. The advances in computer vision

algorithmic have resulted in many robotic applications integrating a vision based

system into their structure. Visual sensors are potentially the most powerful source

of information among all the sensors used on robots to date. The advantage of video

cameras is that they have a of wide range of perception and a passive nature, which

means that they do not transfer energy to the environment.

In general, computer vision tasks can be grouped into three levels low-level,

intermediate-level and high-level. Low-level tasks consist in pixel operations such as

filtering, edge detection or convolution algorithms. Tasks at this level are charac-

terised by a large amount of data-pixel, small neighbourhood operators and relatively

simple operations. Pixel-grouping operations like segmentation, region labelling or

matching algorithms belong to the intermediate-level. These kind of tasks are also

characterised by local data accesses and more complex algorithms. High-level tasks

are more decision-oriented and are able to interpret the scene. A more schematic

description of this classification is presented in table 1.1.
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Image processing can reach a high-level of complexity, due either to the large

amount of computation it requires or due to the fact that the problems are often

ill-defined. In case of using image processing facilities in an on-line application, for

example localisation of a robot performing a mission, powerful systems are needed

to perform these data-intensive operations.

1.3 Motivation

The framework of this thesis is underwater robotics, in particular, a vision system

for motion estimation and localisation of an underwater robot. Motion estimation

involves operations from low-level computer vision such as feature detection and

matching algorithms. When an underwater vehicle undertakes a mission alongside

the ocean floor, images taken by a down-looking camera attached to the robot can

provide rich information for the robot’s navigation system. In order to recover the

motion from a sequence of underwater images, point-features should be detected in

the current image. A matching algorithm can be applied to find their correspon-

dences in the reference image. Although this correlation technique provides good

results in standard images, it may lead to detecting incorrect correspondences in un-

derwater sequences. This aspect has led us to investigate the possibility of applying

textural characterisation methods to eliminate bad-correlated points.

Motion estimation is often referred to as one of the most demanding operation

in computer vision. The high computational load of computer vision algorithms can

lead to a slow response time of such systems. One of the main objectives of this

work is to obtain frame-rate performance for the execution of computer vision tasks.

As the technology has evolved, the scientific community has come up with new ideas

for implementing computer vision tasks with the aim of reducing the response time

of the system.

Many image processing algorithms can achieve high performances by processing

the tasks with high computational burden in parallel. Parallel processing can involve

either hardware or software. This thesis investigates the possibility of accelerating

parts of these algorithms by means of a hardware implementation of parallel archi-

tectures for motion estimation algorithms. This framework is used to give a new

derivation of classic parallel Very Large Scale Integration (VLSI) architectures for
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Figure 1.2: Research fields involved in this thesis.
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Figure 1.3: Samples of underwater images.

motion estimation, into a method which has been proved to work better in under-

water imaging. Recently, reconfigurable devices such as Field Programmable Gate

Arrays (FPGA) have become a viable option for implementing image processing

algorithms. There are many reasons why reconfigurable devices are suitable to be

used in image processing application and we will discuss them later on this thesis.

Most important fact to be mention here is that these devices can achieve a much

higher performance than software while maintaining a high level of flexibility.
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1.4 The objectives of this thesis

The goal of this thesis is to continue the work carried out by the VICOROB1 re-

search team from the University of Girona in the field of underwater imaging. The

objectives are distributed into two main directions:

a) To improve the motion estimation algorithm by proposing a new method which

introduces texture measurements to reject “bad correspondences” between im-

age pairs. Tests using underwater images were performed to select the most

suitable strategy in this direction.

b) To speed-up the parts of the motion estimation algorithm that have a computa-

tionally high load, by using parallel implementation. A new VLSI architecture

is proposed with the aim of achieving real-time processing. Reconfigurable

platforms such as FPGAs have been used to prototype and test the architec-

ture.

In order to achieve these goals several studies have been carried out during the

research process:

• An exhaustive analysis of the vision based motion estimation algorithm applied

to underwater images has been performed.

• The state of the art in reconfigurable systems for image processing purposes

has been studied and presented in this thesis.

• A survey of VLSI architectures for motion estimation has been completed

focusing on the structures which are suitable for our application.

1.5 Organisation of the thesis

This thesis integrates knowledge from several fields such as underwater robotics,

computer vision, VLSI architectures and reconfigurable devices as shown in fig-

ure 1.2. Underwater robotics is the motivation of this work, even though computer

vision and parallel VLSI architectures play the most important role. Algorithms

1From catalan: “VIsió per COmputador i ROBótica”
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from computer vision are mapped into a VLSI architecture which furthermore tar-

gets reconfigurable devices. The thesis is organised into seven chapters including this

introduction. Chapter 2 provides a technical background in field of reconfigurable

devices and parallel approaches for image processing. The third chapter is a review

of related works in the field of image processing algorithms targeting reconfigurable

platforms. Solutions for increasing the performance of hardware implementation

of image processing algorithms and new trends in this field are analysed in this

chapter. Chapter 4 makes an overview of the algorithm for motion estimation and

localisation of an underwater robot, detailing and analysing the parts to be accel-

erated by means of hardware implementation. A new method for rejecting bad

correspondences based on texture analysis is proposed.

Mapping the algorithm into parallel architecture has been inspired by some sim-

ilar VLSI approaches applied to motion compensation for multimedia standards.

Chapter 5 highlights some of the most important works in this field. Our proposal

for a new hardware architecture to estimate motion in underwater imaging is pre-

sented in chapter 6. An extensive analysis of the implementation of the system is also

performed in this chapter. Finally, conclusions, future work and related publications

are presented in chapter 7.





Chapter 2

Parallel Image Processing:

Concepts and Solutions

2.1 Introduction

This chapter introduces some important concepts and taxonomies which will further

be used in the following chapters of this thesis. We start by introducing in the field

of parallel image processing in section 2.2. There are several different choices for

designers when implementing image or signal processing applications. Real-time

imaging systems like the one analysed in this dissertation require high speed video

processing. Treating images is a difficult task considering the size of the image and

the complexity of the algorithms. We can have a clue about the computational cost

of an image processing algorithm by considering a simple 3 × 3 convolution kernel

applied to an image size of 512×512 pixels. This involves 2.5 million basic operations

such as accessing data, multiplications and additions as well as storing the result into

memory. Powerful systems are necessary to perform these data-intensive operations

in real-time.

Section 2.3 of this chapter is an overview of reconfigurable systems in the context

of being one of greatest challenge to achieve high-performances in image process-

ing. This field involves various hardware structures. We discuss one of the most

important of these structures in section 2.4 by introducing and examining Field

Programmable Gate Array (FPGA) devices. We also look at the basic internal

structure, characteristics of the new FPGA devices and design’s phases and tools.

9
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2.2 Parallel image processing

The history of parallel image processing began in the early 60′s with the idea of

emulating the main functionalities of the human visual system. It was obvious that

this challenge would require more powerful processing systems. We would start this

journey through the field of parallel image processing referring to a what Michael

Duff stated in [18]: “Many hands make light work is a well known saying, but then

so is too many cooks spoil the broth”. This means that increasing the number of

processors does not necessarily reduce the cost or the time to execute a task.

As we mentioned in the introduction of this thesis, computer vision tasks can

be grouped in three levels: low-level, intermediate-level and high-level [74, 73].

Tasks from low-level image processing deal with simple operations applied to a large

amount of data. In the intermediate-level, tasks are characterised by more complex

algorithms applied to one or more images input from the low level. High-level tasks

are more decision oriented and are able to interpret the scene.

In order to understand the parallel processing concept, we will introduce some of

the main taxonomies for computing machines. The most popular computer architec-

ture classification was defined by Flynn [22] in 1966. The classification is based on

the idea of a stream of information. Two types of information flow into a processor:

instructions and data. Conceptually these can be separated into two independent

streams. The four combinations are presented below.

Single Instruction stream, Single Data stream (SISD) :

This is the typical Von Neumann serial computer architecture. Only one

instruction is executed each time. Nowadays, even in commercial computers,

a small level of parallelism is used to achieve greater efficiency, pure SISD

architecture is seldom met.

Single Instruction stream, Multiple Data streams (SIMD) :

Several processors execute the same instruction on different data. In a typical

SIMD architecture a control unit is used to provide a single instruction to

an array of Processing Elements (PEs). They execute the instruction using

the data that is stored in the memory. This structure is suitable for low-level

image processing where simple operations are applied to multiple data.

Vector-processors are a subclass of the SIMD systems. In vector-processors
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instruction are applied to arrays of similar data rather than to single data items

using specially structured CPUs. Vector processors execute the instruction

using the data almost in a parallel way the so called “vector mode”. Thus,

they are several times faster than when executing in conventional scalar mode.

Multiple Instruction streams, Single Data stream (MISD) :

This type of architecture involves several processors which execute different in-

structions for the same datum. Taking into account that distinct PEs receive

distinct instructions applied to the same datum, this category can be consid-

ered hypothetical and impractical. However, when the datum flows through a

series of processing units pipeline architectures can be defined. The pipelining

principle consists of partitioning the computation into subcomputations which

can be executed independently in distinct modules.

Systolic arrays can be considered as highly pipelined MISD machines. In sys-

tolic architectures the data is rhythmically pipelined from the memory through

a network of the PEs. Data is synchronised with a global clock, which con-

trols all PEs. Systolic arrays can be organised into linear or two-dimensional

structures. Many applications from intermediate-level image processing can

be mapped onto systolic arrays to reduce the computational burden (eg. block

matching algorithms for video compression).

Multiple Instruction streams, Multiple Data streams (MIMD) :

Several processors execute different instructions on different data. Each pro-

cessor can access either its own or a shared memory. They can run the same or

different instructions and process different data streams asynchronously. Con-

sidering the memory allocation these architectures can address shared memory

or distributed memory.

• In the shared memory architecture, processors access a common memory.

There are two ways of interfacing the processing elements to the memory.

The PEs and the memory can communicate through a bus. A more

sophisticated technique comprises a multi-layer interface network, which

is responsible to interconnect the PEs with the pieces of memory. These

kind of machines are used more in high-level than in low-level image

processing. They are applicable to parallel image processing, where each

PE must process a certain part of the image. They are not as efficient
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Figure 2.1: Flynn’s taxonomy, computer architectures. (Control (C); Processing Element
(PE); Memory (M); Interconnection Network (IN)); Shared Memory (SM)

as SIMD and the system can become very time-consuming due to the

synchronisation requirements of the PEs.

• Distributed memory architectures consist of several processors intercon-

nected in various ways. Each processor communicates with its local mem-

ory as well as with the adjacent processors. This type of machine can be

applied to image processing algorithms which engage matrices.

Due to the nature of many image processing algorithms it is quite straight forward

that an effective method for reducing the execution time can be based on parallel

processing. Many image processing routines can achieve high performances with the

addition of some processing elements working in parallel. A SIMD architecture for

image processing can be composed of multiple PEs running the same instructions

applied to a small part of the image. A pipeline processor is useful for processing

a sequence of images. In this case one PE treats an image and passes the result to

the next processor which can execute a different operation. More complicated image

processing systems can be based on MIMD structure but this type of machines are
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difficult to programme. Michael J.B. Duff [18] affirmed that Flynn’s taxonomy is

“so crude as to be virtually useless”, as many parallel architectures can fall into

more than one of the forth classes presented above. However this is not the only

taxonomy, other classifications can be found in the literature [87, 19, 52]. But the

importance of Flynn’s taxonomy is beyond doubt, as it is the starting point for all

other classifications of processor’s architecture.

Most of the time, the parallel processing term refers to how the system process

the information. It can involve hardware, algorithms or software. Pipelining, multi-

processor architectures, interconnection between processing elements are topics of

hardware parallel processing. Efficiency and concurrency techniques are algorithmic

issues. Software tools are compilers and libraries for parallel computing. Parallel

hardware architecture can effectively speed up a computation system to reach a

performance level that is higher than that of a single processor. Nevertheless, map-

ping algorithms in hardware is in general a difficult task. Tools and compilers for

automatising the parallelization have been developed to generate efficient code to

be executed in a given hardware platform. When parallelism is introduced in the

execution of an application it must fit the target architecture, which sometimes is

constrained by the available technology. However, when we refer to parallel pro-

cessing four main levels of parallelization can distinguished: job-level, task-level,

instruction-level, gate-level.

Parallelism at job-level. A parallel computer is a computer having more than

a one processor executing a single application simultaneously. Supercomputers are

the most expensive and most powerful category of parallel computers [38]. They

are typically used for scientific and engineering applications that must handle very

large databases or do a great amount of computation like in image processing and

computer graphics applications [71]. One of the leaders in visualisation supercom-

puter manufactures is Silicon Graphics. They develop powerful visualisation systems

for many technical fields such as: modern science with data-intensive requirements,

security and defence, modern design processes and advanced media applications.

These powerful parallel systems are extremely expensive (∼ 30.000$), but on the

other hand supercomputers are the only systems in the world capable of solving

great scientific and engineering challenges.

Parallelism at task-level. Parallel processing does not refer only to many pro-

cessors working in parallel, software can do this, as well. In parallel program-
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ming we have many programs processing the data in different ways at the same

time. Thus, multiple programs can be executed in parallel, if there are no data

dependencies. In the case of data dependency, several parallel programming mod-

els are commonly used: Shared Memory, Threads, Message Passing, Data Parallel

or Hybrid [82]. Many software libraries for parallel image processing are available

(MasPar’s MPIPL). They are a set of routines which allow the user to perform

operations on images in a parallel manner. Many implementations of well-known

programming language compilers, such as C and C++, are used today for compiling

high-performance computing applications based on parallel paradigms.

Parallelism at instruction-level. Parallelism at instruction-level can be also de-

fined. Superscalar architecture refers to the use of multiple execution units, so that

more than one instruction can be processed at a time [50]. These multiple parallel

processing units are inside one processor. Most of the modern processors are super-

scalar. When the instructions are pipelined into the processor, there is a mechanism

which selects the instructions which will be executed in parallel. Some compilers can

make easier this process by sending the instructions in a proper way to the processor.

Another way to achieve parallelism at instruction level can be seen in the case of

vector processors. They provide high-level operations that work on vectors (linear

or array) instead of a single data. A vector instruction is equivalent to an entire

loop instruction. This type of processing avoids data hazards, reduces instruction

bandwidth requirements and are obviously faster than scalar operations. In general

Digital Signal Processor (DSP) devices have hardware which support the execution

of vector operations. Advanced DSP processors integrates instruction parallelism

where several RISC-equivalent (reduced instruction set computer) operations can be

executed in parallel. These architectures allow the individual machine operations to

overlap (addition, multiplication, load, store). Many of these fully programmable

processors are used in multimedia applications as well as image coding and decoding

(TMS 320 C6xx series) [85, 86].

Parallelism at gate-level. Hardware devices based on array architecture are able

to execute a large amount of logic operations at the same time. In parallelism at gate-

level, bit-level operations are executed in parallel. Moreover, the new devices in this

category provide the necessary computing resources to meet the high-performance

required in digital signal processing applications. An important advantage of gate-

level parallelism is that the designer can implement as many parallel resources inside



CHAPTER 2. PARALLEL IMAGE PROCESSING 15

the device as necessary to achieve the performance required by the system. The re-

sources are not fixed like in general-purpose processors where each processor contains

a finite number of basic computing functions. This thesis exploits the characteristics

of gate-level implementation to test parallel architectures for image processing with

the aim of obtaining frame-rate performance.

In spite of the large potential performance of parallel architectures, the image

processing community does not benefit a hundred percent from high-performance

computing. Essentially, this is due to the lack of optimised programming tools that

can effectively help non-expert parallel programmers to develop multimedia appli-

cations for high-performance parallel architectures. The main objective of parallel

processing is to wipe out the physical limits of serial processors by employing sev-

eral processors working in parallel in order to reduce the execution time. Thus, a

huge amount of research has been carried out in the field of parallel processing in

the past decade, either concerning parallel hardware architectures or algorithms and

programming languages.

2.3 Reconfigurable computing

For a given application, we can decide between implementing it using custom hard-

ware or software design. The best choice, of course, would be to combine the ad-

vantages of both hardware and software:

Hardware:

• customised to the problem: no extra overhead for interpretation;

• relatively fast, as it uses high parallelism.

Software:

• flexible, tasks can be modified by changing the instruction stream in rewritable

memory;

• general purpose computing.
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Taking all of these characteristics into consideration the scientific community

introduced the new concept of reconfigurable computing [12]. These systems com-

bine the effectiveness hardware implementation with programmable processors to

enhance the performance. Often these systems must also address the difficulties of

both hardware and software, because they mix both technologies. Reconfigurable

computing has existed as a concept since early sixties and it refers to systems incor-

porating some form of hardware programmability, customising how the hardware is

used with a number of physical control points [10].

A reconfigurable system can integrate microprocessors, memory, I/O interface

and Reconfigurable Devices (RD). Field Programmable Gate Arrays (FPGA) are

reconfigurable devices which can bring a new dimension to digital system develop-

ment. Advances in Very Large Scale Integration (VLSI) technology and design tools

have had a great impact on the rapid evolution of reconfigurable devices in the past

decade, increasing their performance and flexibility. Taking a look at the literature

in this field, some important surveys such as [10] [12] [88] [91] place these devices

in the category of digital signal processing (DSP) technologies between micropro-

cessors and specific integrated circuits. While the Application Specific Integrated

Circuits (ASICs), so called hardwired devices, and Programable Digital Signal Pro-

cessors (PDSP) still play an important role in implementing mechanisms for DSP

applications, we should be aware that RDs fill the gap between hardware and soft-

ware, achieving better performance than software while maintaining a high level of

flexibility.

As shown in figure 2.2, reconfigurable devices offer a compromise between the

performance advantages of ASICs and the flexibility of software programable devices.

Recent tendencies are clearly defined by an increase in flexibility and integrability

and they are oriented towards reducing the design time. FPGA devices can be

generically defined as functional platforms which offer the functional efficiency of

hardware and the programmability of software.

Reconfigurable systems can use different combinations of microprocessors and

reconfigurable logic (RL). Microprocessors can perform operations that can not be

efficiently carried out by FPGAs. Compton et al. [10] defines four levels of coupling

the reconfigurable systems: the RL and the processor are tightly coupled; RL used

as a coprocessor able to perform operations without a constant supervision of the

processor; attached RL which behaves as an additional processor and the loosest
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Figure 2.2: Digital devices on the scale of Programmability and Specialisation

coupling where the RL is an external stand alone processing unit. Each of these

categories has pro and cons, choosing the most adequate for your design depends

on the performance required and system constraints.

In reconfigurable computing the size of the computational basic blocks can vary

from logic blocks like in FPGA devices to more complex structures such as arithmetic

logic units (ALUs) or even CPUs. This aspect defines the granularity of the system.

Gate-level configuration is performed in fine-grained reconfiguration, thus the

operations are performed at bit-level. In this case, individual tasks are relatively

small in terms of computation size and execution time. These architectures are used

to implement glue logic and irregular structures like state machines. Reconfigurable

devices such as FPGA’s are a typical hardware taking part of this category. These

devices are configured at the logic-level which leads to complex hardware specifica-

tion. However, existing compilers and Computer Aided Design (CAD) tools make

this process easier and enable very high-level design specification. Hartenstein [35]

claimed that this reconfiguration level appears as a methodology of logic design for

hardwired logic but applied “on a strange platform” which is not really hardwired.

While this type of devices was mainly used in prototyping hardwired systems, nowa-

days, their novel technological characteristics mean that they play an important role

in reconfigurable systems. Data often does not use the whole word width, so, in the

case of fine-grained solutions we are not forced to implement constant bit size, and
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this can reduce the silicon area. On the other hand, bit-level implementation of

arithmetic operators requires using of a big number of interconnection resources.

Compared with full customised solutions, performance of synthesised operators is

reduced. For this purpose new architectures integrate dedicated circuitry for multi-

plication and accumulation. Fine-grained solutions are developed and continuously

improved by many hardware devices manufacturers [48, 42]. Their increasing per-

formance, high-level of parallelism and high input/output throughput set them over

other reconfigurable solution used in image processing applications.

Reconfiguration at the functional level is performed in coarse-grained architec-

tures. Typically coarse-grained architecture consists of an array of configurable

functional blocks called Data Path Unit (DPU) with a wide path width (8, 16 or

32 bits). As the functional blocks are optimised for some specific computations,

they will perform these operations much more quickly. The number of basic blocks

are several order of magnitude lower than in fine-grained computing solutions. This

results in a major reduction of configuration data and memory and also reduces rout-

ing requirements, increasing the silicon area usability and energy efficiency. They

can also provide wider data-path and more complex operations. On the other hand,

due to their fixed functional block configuration, they are unable to optimise the

size of the operands. Even though a large amount of research effort has been carried

out in this field (RAPID and Chameleon projects) [20, 37], there are only a few

commercially available coarse-grained reconfigurable systems [45]. In some research

projects such as REMARC architecture [64] or RAW project [65], the functional

units are in fact small processors grouped into a mesh structure and integrated into

a single chip or multiple chips. A large variety of reconfigurable architectures are

present in the literature from fine-grained to very coarse-grained or even heteroge-

neous structures. We will see later in this chapter that new reconfigurable systems

provide multiplier functional blocks and even embedded microprocessors within the

reconfigurable device [42, 48].

The following section of this chapter introduces the internal structure of FPGA

devices, new technologies in this field and the main steps of the design flow.
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2.4 Field Programmable Gate Arrays

When describing the basic architecture of a Field Programmable Gate Array (FPGA)

we must take into consideration that the enhancements in their technology are

quickly and continually being developed, this implies important changes in the struc-

ture of the devices every time a new family comes out on the market. Nowadays

devices are for the most part derived from mid-80th FPGA technology. A basic

FPGA device consists of a large array of configurable cells generally contained on a

single chip. Each of these cells contains a computation unit capable of implement-

ing one of a set of logic level functions and/or perform routing to allow inter-cell

communication to take place. All of these operations can take place simultaneously

across the whole array of cells. The first commercially available FPGA which ap-

peared on the market in 1986 was the XC2000 family introduced by Xilinx. It had

a very low capacity, less than 2000 gates and was very expensive.

A typical FPGA contains an array of individual cells called Logic Blocks (LB)

interconnected by a matrix of wires and programmable switches. The user’s design is

implemented by specifying a simple logic function for each cell and selectively closing

the switches in the interconnection matrix. The array of LB and interconnections

between them form basic building blocks for logic circuits. Complex designs are

created by combining these basic blocks to build the desired circuit. Apart from

this, an FPGA can also have internal memory, I/O blocks assigned to each pin and

recently, clock management blocks, digital signal processing dedicated circuits and

hard-embedded microprocessors.

2.4.1 Basic inner structure

Each logic block has one Look Up Table (LUT), optional D flip-flops (DFF) and

some fast carry logic. An N -input (usually N = 4) LUT is basically a memory

that can be programmed to compute a function up to N-inputs. The DFF can be

used for pipelining, registers, state-holding or any other situation where the clock

is required. Set/reset lines and clock signals are normally global signals routed in

special resources. The fast carry logic is a special resource to speed up carry-based

computation like addition, parity, wide AND operations, etc. A basic structure of

the LB with a 4-input LUT, DFF and a carry logic is shown in figure 2.3. The inter-
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Figure 2.3: Generic FPGA architecture.

cell communications take place through interconnection resources. The outer edge

of the array consists of special blocks capable of performing certain I/O operations

to and from the chip. The architecture of a typical FPGA is illustrated in figure 2.3.

2.4.2 Characteristics of new FPGA devices

Altera [42] and Xilinx [48] are currently the leading FPGA vendors. This subsection

does not pretend to compare the two current top FPGA families at the moment:

Altera Stratix (see figure 2.4(a)) and Xilinx Virtex II Pro (see figure 2.4(b)). Its

purpose is to highlight some important new characteristics of these devices, which

must be taken into consideration in our design process. As we mentioned before,

nowadays FPGA architectures can have additional internal memory, dedicated cir-

cuitry for digital signal processing, clock management blocks and hard-embedded

microprocessors. A short introduction of these embedded components correspond-

ing to both families is presented below. Some confusion can arise from there not

being a consensus on the terminology used to describe device architecture. This

is due to the different technologies being used by the two vendors. For instance,

while in Stratix devices logic is organised in Logic Arrays Blocks (LABs) based on

10 Logic Elements (LE), Virtex II Pro architecture is based on Configurable Logic

Blocks (CLBs) integrating four Logic Cells (LC). Benchmarks and comparison be-
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Figure 1:  Virtex-II Pro Generic Architecture Overview
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Figure 2.4: a) Altera Stratix device. b) Xilinx Virtex II Pro device.

tween these two families are provided by both the vendors and users. Controversial

points of view arise due to the fact that making benchmarks is a difficult and expen-

sive task and depends on many factors such as tools, user constrains, interpretation

of the result, etc.

The Stratix family of FPGAs has densities up to 114, 140 logic elements (LEs)

and up to 10Mb of RAM. This device family offers up to 28 DSP blocks based on

9× 9-bit embedded multipliers. Stratix devices support various I/O standards and

also offer a complete clock management solution with its hierarchical clock structure

through up to 12 phase-locked loops (PLLs).

The internal memory is organised in three types of RAM blocks called TriMa-

trix RAM: M512, M4K, and M−RAM blocks. Although these memory blocks are

different, they can all implement various types of memory with or without parity,

including true dual-port, simple dual-port, and single-port RAM, ROM, and FIFO

buffers. DSP blocks consist of hardware multipliers, adders, subtractors, accumu-

lators, and pipeline registers and can be used for implementing high-performance

digital signal processing applications. One DSP block can implement up to either

eight full-precision 9 × 9-bit multipliers, four full-precision 18 × 18-bit multipliers,

or one full-precision 36 × 36-bit multiplier with add or subtract features. These

blocks also contain 18-bit input shift registers for digital signal processing applica-
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tions. Phase-locked loops (PLLs) use several divide counters and delay elements to

perform frequency synthesis and phase shifts. The PLL reconfiguration feature is

useful in applications that might operate at different frequencies.

Similar characteristics appear in the Xilinx Virtex-II Pro family from Xilinx.

The devices can have up to 125, 136 Logic Cells, 8Mb RAM, up to 444 18 × 18

dedicated multipliers. One important new characteristic in this family of devices is

that the devices can incorporate multi-gigabit transceivers and up to two PowerPC

CPU blocks.

Block SelectRAM+ memory modules provide large 18 Kb storage elements of

True Dual-Port RAM. Digital Clock Manager (DCM) blocks provide self-calibrating,

fully digital solutions for clock distribution delay compensation, clock multiplication

and division. Embedded IBM PowerPC 405 RISC processor blocks achieve perfor-

mance up to 400 MHz. Embedded high-speed serial transceivers enable data bit

rate up to 3.125 Gb/s per channel.

It should be noted that powerful new families like Altera Stratix II and Xilinx

Virtex 4 are already available on the market. Transistors are becoming smaller and

faster. 90nm technology has become a reality and opens the way to new solutions

in FPGA design. In the last 40 years the feature size of silicon technology has been

shrinking by a factor 1.25 each year, this is known as Moore’s low. The implication

of this low for FPGA devices were analysed by Vuillemin et al. [93]. They predicted

that, if the device contained 400 logic blocks operating at 25MHz in 1992, in 2001

would contain 24k de logic blocks operating at 200MHz. This prediction has been

reached and even passed by the last generation of FPGAs, which have achieved the

incredible size of 180K logic blocks.

2.4.3 Advance in FPGA-based solutions

Programmable Digital Signal Processor (PDSP) devices have long been the best way

to handle signal processing in many applications. But nowadays, the engineers often

use these devices with a supporting role and even replace them by microprocessors

or field programmable gate arrays (FPGA). Switching to FPGA devices can dra-

matically improve the performance. Computation in digital signal processing needs

a lot of multipliers. In the latest FPGA devices like Altera’s Stratix II or Xilinx’s

Virtex-4 several hundreds (400) of 18×18 multipliers are available and a lot of logic
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gates (9000K). Computation that must be done sequentially using microprocessors

can be done in a highly parallel way using FPGAs. It could be considered that

FPGAs are more expensive and difficult to program than DSP or general purpose

microprocessors. However, advances in technology have made it possible to decrease

the FPGA price considerably (e.g. Cyclone II family from Altera and Virtex-4 by

Xilinx). From designer’s point of view, general purpose processors are still preferred,

since they can be programmed with the widely used languages C and C ++.

This drawback is overcome by integrating embedded “soft” processors such as

Nios II processor from Altera and MicroBlaze & PicoBlaze processors from Xilinx.

These processors are easy to be configured according to the system requirements and

then mapped onto FPGA devices. New software tools for programming, building,

debugging and running C applications on these embedded processors are also avail-

able. Design cost, complexity and power consumption are significantly reduced by

integrating such processors together with embedded memory, peripherals and I/O

interfaces in a single FPGA. In this context, the concept of System on Programmable

Chip (SOPC) can be defined. Furthermore, FPGA family device such as Spartan

from Xilinx integrates up to two embedded PowerPC microprocessor cores. New

solutions in digital design are based on microprocessors tightly coupled with recon-

figurable logic, embedded memories and wide throughput I/O interfaces. On the

other hand, a lot of research is being carried out in the development of very high-

level programming environments for FPGA. These environments should completely

hide hardware details from the user point of view. They must also produce efficient

FPGA configuration directly from a very high-level description language. Several

structural design environments such as: Java HDL (JHDL), Handle-C, System-C,

etc already exist. Although they are inherently sequential like C language, by in-

structing the compilers on how to build hardware to execute statements in parallel,

these high-level languages target low-level hardware rather then microprocessors.

We can conclude by saying that nowadays, FPGA-based solutions offers a very

high flexibility for design as well as a low-cost with very attractive performance

capabilities. These devices are now built up with a combination of reconfigurable

logic and programmable general-purpose microprocessors. Compilation tools for

reconfigurable devices range from tools to assist a programmer in performing a

hard mapping of the circuit to the hardware, tools to complete automated systems

that take a circuit description in a high-level language and also tools to map it to
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reconfigurable devices (e.g. DSP Builder from Altera).

2.4.4 FPGA design flow

The first step in a designing process is partitioning the application into parts which

will be implemented in the software and computation which needs some hardware

acceleration. The part that is implemented in hardware can be programmed at

the register transfer level (RTL) or gate level circuit. Many Hardware Description

Languages(HDL) exist, e.g. VHDL and Verilog. These HDLs allow designers to

design at various levels of abstraction. VHDL is an acronym which stands for VH-

SIC Hardware Description Language. VHSIC is yet another acronym which stands

for Very High Speed Integrated Circuit. VHDL is a standard (VHDL-1076) devel-

oped by the Institute of Electrical and Electronics Engineers (IEEE). The language

has gone through a few revisions. Currently, the most widely used version is the

VHDL’93 version. However, there is an old revision of the language referred to as

VHDL’87. Verilog was created as a simulation language. Using Verilog for synthe-

sis was a complete afterthought. Verilog became IEEE Standard Std.1364 in 1995.

The final draft of Verilog-2000 was completed on March 2000, once IEEE approved

Verilog HDL to be a standard called IEEE Std.1364 − 2000. As we mentioned

in section 2.4.3, research is being carried out into developing sequential high-level

description languages and compilers for hardware description.

Due to the increasing complexity of the applications it is no longer practical to

manage million gate systems at the gate-level. “Design by reuse” is a new technique

which includes using Intellectual Property (IP) components or so called Virtual

Components (VC). IP cores help the designer by providing pre-tested, reusable

functions that can be easily plugged into the design. They eliminate the need to

“reinvent the wheel” reducing the design time and optimising it for the silicon device.

However, this process requires complex methodologies to be developed, either by IP

providers or IP integrators.

One of the most essential steps in the design methodology is to synthesise the

HDL code. This process takes the conceptual HDL design definition and generates

the logical or physical representation for the targeted silicon device. There are syn-

thesis tools either for VHDL or for Verilog or other HDLs. There are also tools

for both and even for combination of VHDL and Verilog. Synthesising a hardware
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Figure 2.5: FPGA design steps.

description means mapping the circuit described using HDL into logic blocks within

the reconfigurable devices. The resulting architecture must be optimised and must

respect user-defined constraints regarding the targeted device and timing require-

ments. Verification must be performed to make sure that the design is correct before

placing it into hardware. This is the most time-consuming phase of the design cycle.

HDL code simulation is as important to the digital design as a debugger is to a soft-

ware developer. When developing a complex design, each module can be separately

simulated and validated before it is integrated. Functional and timing analysis must

be performed during the simulation. Functional simulation determines if the logic in

your design is correct before it is implemented in a device. Timing simulation shows

how fast the circuit can be operated. It verifies that your design runs at the desired

speed for your device under worst-case conditions. This process is performed after

your design is mapped, placed, and routed for a given FPGA. The simulation can

be done functional-first timing-after or viceversa. It is important to separate the

complexity of functional correctness from the timing accuracy. It is usually faster

and easier to correct design errors if there are performed functional simulation early

in the design flow. The critical parts can be determined using human insight or by

means of high-level simulations which can identify potential problems in the design.

The possibility of reconfiguration is one enormous advantage of FPGA design
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compared with ASIC design which makes it possible to use Hardware-In-the-Loop

(HIL) testing approach. In the case of ASIC design one mistake can costs hundreds

of thousands of dollars and weeks of schedule time. For FPGA design, there is no

such penalty, as the device can be reconfigured whenever necessary. In fact, FPGA

devices are widely used nowadays for prototyping and verifying ASIC designs.

After synthesis, a Gate-level netlist is generated. Using the place and route

(P&R) process, all the gates and flip-flops are placed and the clock tree synthesis

and reset signal are routed for the target device. Output of the P&R tool is a file

which contains the hardware bitstream configuration.

All these steps, when performed using an automatic compilation system, require

minimum effort from the designer. After design specification using HDL code, syn-

thesis and P&R are fairly straight-forward. The designer must define some device

and time constrains and verify the design through simulation processes.



Chapter 3

Image Processing Algorithms on

Reconfigurable Devices

3.1 Introduction

A variety of applications, including robotics, multimedia, quality control, assembly

lines and security systems, require high-speed image processing. Considering that

in most of these applications, one important goal of image processing is to scan

objects or environments and make judgements at rates as fast as a skilled human

observer can do, or even faster, powerful systems based on parallel processing must

be developed. Due to the size of an image (e.g. 512×512 pixels), in order to process

this amount of data at video rate (25 frames/sec) the system must be really fast.

In the case of general purpose computers, achieving this performance rate is a big

challenge.

As seen in the previous chapter, one solution is to use many general purpose

processors working in parallel to execute computer vision algorithms. The size, cost

and control requirements of these systems are considerable. The best performance,

concerning execution time, can be achieved by programming the application at gate

level, using Application Specific Integrated Circuits (ASICs). Typically this has

always been a far more expensive alternative. On the other hand, tasks from the

intermediate-level and high-level, algorithms are quite complicated and require a lot

of flexibility in implementation, characteristic which is not found in ASIC devices.

Reconfigurable devices combine advantages of both approaches, implementation at

27
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a very low-level from ASIC devices, and the flexibility and rapid prototyping of

software. Using reconfigurable devices such as FPGAs, the overheads associated

with instruction fetch, decode and operand location are eliminated. This chapter

analyses some important reconfigurable systems for image processing applications

in relation to using FPGAs to accelerate performance. We do not pretend to cover

all the applications, the aim of this chapter is to highlight the main FPGA-based

concepts applied in image processing applications.

3.2 Review of FPGA-based solutions for image

processing

For any imaging system of average complexity the biggest bottleneck in performance

is the time taken to process each frame. Typically, image processing involves apply-

ing the same repetitive function to each pixel in the image, creating a new output

image. A DSP device that aims to process one data-frame, fetches the data, per-

forms the required mathematical operation, and then stores the result back in the

memory. Usually, the whole frame is large to be stored in an on-chip memory and

therefore, the data will need to be stored into an external memory. This adds several

cycles to those required for mathematical operations.

A low-level image processing algorithm can be broken down into highly repetitive

tasks which can be processed in parallel. When using an FPGA device, logic parts

of the device can be mapped to execute these tasks in parallel. The important

thing when using an FPGA is that the data rate through the FPGA is better

than through a DSP. When the complexity overcome the device’s capacity, several

FPGAs can be linked together to increase the performance. New advances in the

technology of these devices have made on-the-fly reconfiguration possible. When the

reconfiguration time is short enough, the image processing algorithm can be split

into several tasks which can be consecutively mapped into the device. The result

of one task can be stored in the memory and then used as input for the next task.

When computation complexity increases or decisions must be taken, many gates

into the FPGA device are used. In these cases DSP devices still prove to be a highly

effective tool. A solution is to mix both FPGAs and DSPs in one system. The latest

FPGA device generation makes it possible to integrate these systems into one chip
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(SoC). The advantage is huge considering the direct link between the devices and

small integration surface. Several universities and research centres have explored

the possibility of developing FPGA based systems to implement image processing

algorithms. The solutions proposed by the scientific community are based on multi

FPGAs boards, closely coupled DSP and FPGA devices, dynamically reconfigurable

platforms and recently microprocessors, memory and logic all together in the same

device (System on Chip). This section also introduces some new trends in the field,

such as coarse-grained systems and evolvable hardware.

3.2.1 Multiple FPGA prototyping boards

SPLASH-2 computing machine

Splash-2 was one of the leading FPGA-based custom computing machine of all time

designed and developed by Maryland SuperComputer Research Center [73, 74]. It

uses a one-dimensional array of FPGA elements with a crossbar on a VersaModule

Eurocard (VME) bus. A Splash-2 based system consists of 1 to 15 Splash-2 array

boards, an interface board and a SPARC Station II host. Each array board contains

16 programmable elements (PEs), arranged linearly and fully connected through

a 16x16 crossbar switch. Each PE consists of one Xilinx XC4010 FPGA and a

256Kx16 static RAM. A seventeenth control element regulates the crossbar network.

An image processing system called VTSpals, has been developed based on Splash-2

general purpose platform. The system is made up of a video camera and a custom

built frame-grabber card based on Splash-2 architecture. A SPARC Station host

configures the Splash-2 processor and sends runtime commands intermixed with the

video stream. Algorithms from different levels of computer vision have been mapped

onto the system.

A simple one-dimensional convolution algorithm was implemented. A number

of k PEs were chosen, which corresponds with the size of the mask (k × k) . Each

PE receives the pixel value and the partial result available from its left neighbour.

The PE multiplies the pixel value with the mask assigned to it and adds the partial

sum to it. This result and the pixel value are passed to the next PE. At the end of

the systolic path, the result of the convolution algorithm is available. The Splash-2

implementation of this algorithm reduces the processing time by almost 300 times
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compared to a C code execution on a SPARC Station 20. A page segmentation

algorithm was implemented in Splash-2 based architecture to test intermediate-level

image processing tasks. The goal of this application is to separate the text and the

images from the background in a page. The sequential algorithm implemented in

C in a SPARC Station 20, takes 90 seconds of CPU time to segment a 1024× 1024

image. In a Splash-2 system it only takes 0.2 seconds for the same application.

Fingerprint matching is another application tested using Splash-2 based system. A

fingerprint is characterised by ridges and valleys. Both exhibit anomalies of various

types, such as ridge bifurcations, ridge endings, short ridges, and ridge crossovers.

All together, these features are called “minutiae”. A lookup table (LUT) stores all

possible points within a tolerance box that a feature can be mapped to. The LUT is

computed for the query fingerprint minutiae on the host. For a 1 MHz clock rates,

the Splash-2 system could perform around 6, 300 matches per second. Increasing the

clock speed, the performance archived approximately 110, 000 matches per second.

The Splash system is one of the first reconfigurable architecture, having a high

capacity spread over several FPGAs. The system’s memory access is improved due

to its distribution. In addition, the possibility of partial reconfiguration makes the

system adequate for image processing implementation.

PAM computer

The PAM (Programmable Active Memory) computer utilise a fixed size of 16 FPGAs

with global memory on a “turbo” channel adapter [7, 93]. PAM is a virtual machine,

controlled by a standard microprocessor, which can be dynamically reconfigured into

a large number of application-specific circuits. As its name suggests, Programmable

Active Memory, the array is a kind of memory attached to the high-speed bus of

the host computer, like any RAM memory, but it can also process the data between

write and read instructions. The board is comprised of 23 Xilinx logic cell arrays

(LCAs). The centre of the board is composed by a 4× 4 matrix of LCAs. Each of

them is linked to its four neighbours by a 16-bit-wide bus. Four on-board 256 words

static RAM synchronous interface are used for storing purpose at a speed of 25MHz.

These data buses are connected to four LCAs called switchers. Another two LCAs

are used to provide the control and the address bus signals. The connection with

the host uses a 32-bits/25MHz ”turbo” channel bus.
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Applications from stereo vision were implemented for testing the PAM computer.

The stereo system was developed by the Institute de Recherche en Informatique et

Automatique (INRIA), France to be used for correction the inertial and odometric

navigation errors of a cart. The proposed implementation of the matching algorithm

avoids any redundancies in the criterion computation and makes the processing

time independent of the window size. For comparison purposes, the algorithm was

implemented and tested using three different platforms: a SPARC-Station II, a

PDSP device and the PAM architecture [93]. The software implementation computes

the correlation between a pair of images in 59 seconds in SPARC-Station II. A

dedicated hardware implementation using four DSPs performs the same tasks 6

time faster: 9.6 seconds. A PAM implementation of the same algorithm is 30 times

faster: 0.28 seconds [21].

PARTS engine

Another powerful scalable reconfigurable computer is the PARTS engine built by

Interval Research Corporation from Palo Alto, California. It consists in 4× 4 array

of FPGAs connected in a partial torus. Each array is associated with one-megabyte

SRAMs, so that all SRAM can be accessed concurrently. PARTS engine fits perfectly

on a standard PCI card in a personal computer or work station [94, 99]. If necessary,

the multiple PARTS boards can be linked together in 4× 8 or 4× 16 FPGA array.

One of the applications implemented in the PARTS engine was a depth from stereo

vision algorithm that computes 24 stereo disparities in 320× 240 pixel images at 42

frames per second.

Reconfigurable systems that are composed of multiple FPGAs require efficient

connection schemes between the devices and also communication with the host and

memory. Mesh and crossbar interconnection between FPGAs were tested [36]. In

a mesh type connection, the nearest neighbours are connected. Sometimes it is

necessary that for some signals to pass through one FPGA just to connect with

non-neighbouring devices. The crossbar connection tries to overcome this drawback

using special routing resources. While Splash-2 reconfigurable system was designed

to support crossbar connection, the PAM and PARTS architectures are examples of

mesh connections.
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3.2.2 Combining FPGAs and general purpose processors

RETINA card

Complementing the FPGAs devices with DSP devices or microprocessors can be

helpful in applications with more complex computations. Some examples are present

in the literature. The heterogeneous image processing system called RETINA was

developed at the University of Mining and Metallurgy from Krakow, Poland [30, 31].

The 32-bits RETINA card is used for image acquisition, processing and analysis. The

system is composed of high-speed video A/D and D/A converters, a Virtex FPGA

device working together with floating point Motorola 96002 DSP and a 32 bits PCI

Master interface. The FPGA implements all the control logic and also performs

image processing operations. The platform was initially designed for implementation

of Log-Polar [1] remapping algorithm, but due to the flexibility of its components,

it has become a universal platform for image processing and analysis.

Hierarchical LINDA

LINDA system was developed at the Université de Technologie de Compiègne,

France [39, 63] and permits user friendly parallel programming and real time exe-

cution of applications. It consists of four parts. An image acquisition board with a

40 MHz TMS340C20 graphic processor is used to generate the video control signal

for image acquisition and display. The low-level image processing board contains

an array of 6 × 6 Altera FLEX 8000 FPGAs and interfaces directly with the im-

age acquisition board and processing element board. Real-time edge detection and

edge tracking algorithms were mapped onto this board. The output of this module

can be stored back in the image acquisition board or in the shared memory of the

high-level processor. The high-level image processing board is a parallel processing

development system with a Texas TMS320C40 DSP processing element. The inter-

connection network permits the system to be reconfigurated and adapt to different

algorithms in order to get the optimal performance. A recursive and multi-stage

interconnection network was developed by using FPGA technology. A 3D scene

reconstruction for mobile robot perception, was implemented to test the LINDA

architecture.
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Automated Image Recognition (AIR) system

Institute of Software Integrated Systems from Vanderbilt University of Nashville de-

veloped a real time embedded Automated Image Recognition (AIR) system based on

FPGA and DSP devices [66]. The computational complexity of a distance classifier

correlation filter (DCCF) algorithm needs a DSP processor to be integrated. The

prototype system uses 10−14 DSPs and 2−6 FPGA modules. The two-dimensional

Fast Fourier Transform (2DFFT) required by the algorithm was implemented using

FPGA devices. One FPGA module (slave) implements a 32/128 point 1DFFT, while

the other (master) breaks down the 2DFFT into two 1DFFT operations, supporting

operands and receiving results from the slave. The 1DFFT was implemented using

Altera’s FFT megacore block. This is a scalable AHDL (Altera Hardware Descrip-

tive Language) component, that contains multiplier and adder sub-units, which,

together with scheduler logic that addresses on chip memory fulfills a butterfly op-

eration for storing temporal results. The master module also controls the data flow

of the 2D operations. The performance achieved by this prototype, at a maximum

clock frequency of 12.84 MHz, is 0.9024 ms for a 32× 32 2DFFT.

3.2.3 The codesign approach and experimental platforms

Partitioning an algorithm in hardware and software can be done either manu-

ally or automatically. In the systems presented above the algorithms were man-

ually distributed over FPGAs and microprocessors. Moreover, the concept of hard-

ware/software codesign can be introduced at a higher abstraction level. Codesign

changed the way researchers approached reconfigurable hardware and also the way

of designing high-performance applications. In codesign, the hardware mainly serves

as an accelerator to reduce high computational burden or a real-time interface with

the environment. Co-developers bring the power of software programming languages

to programmable hardware targets. There is now a need for software tools to as-

sist the co-design, as well as the cosimulation of hardware and software and the

proper interface between them. When talking about codesign we do not only refer

to implementing applications on a hardware platform based on FPGAs and general

purpose processors, we are also referring to partitioning the design between the host

processor and the hardware accelerator [81].
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Riley-2 experimental platform for codesign

Riley-2 [62] is a flexible experimental platform for codesign and dynamic recon-

figuration developed jointly by Imperial College, London and Hewlett-Packard. A

collection of tools to facilitate rapid design, evaluation and validation was also devel-

oped. The platform is based on a general purpose processor, several FPGA devices

and flexible interfaces such as PCI interface with the host or extensible external I/O.

A model of the system which makes it possible to examine the interaction between

the software and the dynamically changing hardware was developed in VHDL lan-

guage as well as a commercial simulator for codesign. A number of real time image

processing applications were developed using codesign in order to evaluate this plat-

form. The designs could fit properly into the proposed system but the performance

was poor, mainly because the camera used was a limitation(QuickCam).

3.2.4 SoC concept applied in image processing applications

Adopting new System-on-Chip (SoC) design technologies, traditional hardware-

software codesign techniques need to be adaptated and revised to satisfy the growing

needs of complex system designs. Characteristics of new FPGA devices make it pos-

sible to integrate soft and/or even embedded hard processors into an FPGA device.

Software and hardware can work together in a platform which consists of a single

chip. In this case, part of the application can be programmed and executed in a

sequential manner (software approach) and some other parts can be accelerated by

means of hardware implementation. As we mentioned above, this can be useful

when application requires a decision-making process. New FPGA devices can be

used as prototyping platforms for SoC systems in different kind of applications of

image processing. On the other hand, hardwired SoC solutions for image process-

ing have been proposed by the scientific community, some of them even bringing in

improvements in timing and area in comparison with FPGA architectures.

Embedded reconfigurable array

Khawam et. al [54] proposed a heterogeneous platform with multiple processors and

computational elements. A vision-based motion estimation algorithm was tested

using this platform. The SoC system targets low-power multimedia applications
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for future mobile devices. It integrates specific programmable arrays for motion

estimation, a DSP processor and microcontrollers which communicate through an

AMBA bus. This new approach consumes less power and occupy less chip area than

FPGA solutions. Reconfigurable array are based on hardware multiplexers, adders,

accumulators and comparator which can be used to implement a motion estimation

algorithm in parallel [98]. The implementation was compared with ASIC, FPGA

and ARM processor based solutions. The proposed architecture reduced power

consumptions compared with FPGA and ARM processor, it had a 45% smaller area

than FPGA and four times higher frequency than the ASIC implementation. It is

important to point out that by replacing a fine-grained approach by a coarse-grained

approach power consumption and silicon area can be reduced.

3.2.5 Run-time reconfigurable solutions

Computing solution which takes advantage of the dynamic nature of FPGAs, are

called Run-Time Reconfigurable (RTR) solutions. They solve the scalability prob-

lems of the rapid prototyping techniques by adopting a divide-and-conquer approach.

This means that, large problems are temporally broken up into stages, each fitting

into the system. After one stage is executed, the output is stored in a memory and

that part of the device is reconfigured for the next stage that processes the stored

data. This process is repeated until all the required stages are executed and the final

result is available. In this case the efficiency depends on the amount of time the

system spends on reconfiguration. These kinds of systems are efficient when more

time is spent in computation than on reconfiguration. Some examples are presented

below.

Image interpolation algorithm

An example is the implementation of an image interpolation algorithm in a Xilinx

XC6264 device [2, 49]. The interpolation problem is broken down into two parts:

the Inverse Filter IF, and the Fast Spline Transform FST. Since the Xilinx XC6264

does not have enough resources to implement the entire computation, the algorithm

has to be divided up into different stages to be executed sequentially in the platform.

This is an efficient approach if the reconfiguration time is much smaller than the

time required for each step to be executed. Partial reconfiguration is one of the
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methods used by RTR applications designers in order to reduce the reconfiguration

time. In this case, if parts of the algorithm from two consecutive stages are similar,

after being loaded into hardware they can be reused in the next stage. Therefore,

only the part that differ from the previous stage are reconfigured.

ARDOISE platform

Architecture Reconfigurable Dynamically Oriented Image and Signal Embedded

(ARDOISE) [9, 53] is a prototyping platform based on an Atmel FPGA device

used for evaluating the performance of an image processing dedicated architecture

using dynamic reconfiguration (DR). The Atmel AT40k family has been chosen due

to its reduced reconfiguration time, while it needs less than 1 ms for total device

reconfiguration. The ARDOISE project is supported by ten French research teams

and its main goal is to help in the research into the DR paradigm applied to image

processing applications. The ARDOISE architecture is composed of three identical

modules, each including one FPGA connected with two memories. A fourth FPGA

is in charge of the configuration storage and scheduling, clock generations and com-

munication with the host processor. In one of the tests, a part of the JPEG2000

standard for image compression was implemented in the ARDOISE board [9]. The

algorithm was partitioned in order to exploit the dynamic reconfiguration of the

FPGA device. Another test consisted in implementing an image segmentation al-

gorithm. The architecture was reconfigured for each stage of the algorithm: noise

filtering, edge detection, contour closing and region labeling. It achieved a perfor-

mance of 31 ms for the whole algorithm applied to an image of 512× 512 pixels.

The idea of run-time reconfiguration is to exploit temporal parallelism instead of

spatial parallelism. The main objective is not to reduce the execution speed but to

optimise the hardware usability. As image processing tasks require a large amount

of hardware resources, this solution can be considered when the system has limited

space.

3.2.6 Evolvable hardware

Another interesting idea to be considered is based on the theory of evolution from

biological systems. The advances in technology in the field of reconfigurable de-
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vices permits increasingly complex algorithms to be implemented in hardware. Ap-

plying evolutionary techniques to hardware design is called Evolvable Hardware

(EHW) [6, 17, 90]. The main goal is to replace traditional design methods with

evolutionary techniques for given applications which cannot be achieved using tra-

ditional methods. EHW applies the concept of genetic algorithms (GA) to recon-

figurable devices like FPGAs in order to properly reconfigure the device through an

evolutionary process. In the past, evolutionary computation methods have mainly

been applied to software applications, but recently these methods have been suc-

cessfully applied to the design of hardware circuits.

GAs provide the robustness necessary for efficiently searching for possible solu-

tions to a given problem in a complex spaces [29]. Each “individual” can be evaluated

using hardware simulation or hardware itself. The GA can be implemented either in

a host computer or directly in the hardware. Taking in consideration these aspects

we can distinguish three types of evolvable systems:

• Extrinsic evolution uses the software simulation of the hardware to evaluate

the fitness value of each individual. This may be an advantage if you do not

wish to be too technology specific and in this case the hardware model could

be quite abstract. On the other hand if technology is the goal, then more

accurate fitness values may be obtained. Since fitness is an important element

in the evolution, abstracting the model can lead to a less optimal solution.

• Intrinsic evolution fitness evaluation, is based on a hardware implementation

in which every individual is implemented and evaluated on the target technol-

ogy. This approach can be used to explore properties of the technology which

cannot be exploited using traditional design methods. The evolution process

runs on a host computer responsible for selection and the performance of ge-

netic operators. Each individual is downloaded to the chip as configuration

data. The fitness of a given individual is evaluated by applying test vectors

to the implemented individual and then calculating the fitness value from the

response.

• In Complete Hardware Evolution the genetic algorithm (GA) is implemented in

the same chip as the evolving design. The individuals from the GA are placed

in a RAM and the fitness is evaluated in the same way as in the previous
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approach. Since the GA and the evolving design are implemented in the same

chip, the evolution process can observe the evolving design continuously.

Using complete hardware evolution, in which the evolution process is in the same

chip, means that adaptation does not need to be decided on during the design process

but rather the changes required in the circuit are free to evolve with the changing

external factors. Choosing one of the three approaches presented of depends on the

requirements of the application. The question that appear is “why do we need to

design hardware circuits using alternative methods?”. One of the main reasons is

to look for better circuits, i.e. smaller, faster or less power consuming. A classical

designer is limited to a set of mathematical models, rules, techniques, etc. In the

case of EHW they can explore freely all possible circuits, and new unconventional

designs can appear.

Khepera robot

In the Micro-engineering department of the Lausanne Polytechnic (Switzerland), an

X6216 FPGA device set on a basic Khepera robot was evolved to perform navigation

in a labyrinth, including an obstacle avoidance behaviour [69]. The objective was to

use EHW as a motor controller for the same Khepera mobile robot. The robot can be

able to move towards a pattern sensed by a camera placed on top of the robot. The

EHW was implemented in an FPGA. The robot performs in a box with the pattern

placed on one of the walls. Completely unconstrained evolution was performed on

the FPGA using a classic genetic algorithm. The FPGA receives visual information

coming from the camera and outputs the commands to be applied to the motors.

The controller’s performance is evaluated by monitoring the behaviour of the robot

with an onboard program.

CAM brain machine

We should also mention one of the greatest projects in this field. Genobyte Inc.

(Boulder, Colorado, USA) in collaboration with STARLAB from Brussels, Belgium,

built the CAM-brain machine (CBM). This is an experimental machine composed of

reconfigurable hardware, Xilinx XC6264 FPGA, capable of training and evaluating

cellular automata based neural network modules directly in silicon. The main ob-
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Nr. Architecture First Author Characteristics

1 Splash-2 computation system Ratha N. K. et al., 2000

2 PAM computer Vuillemin J. E. et al., Multiple FPGA

Bertin, 1993

3 PARTS engine Woodfill J. et al., 1997

4 RETINA card Gorgon M. et al.,1997

5 LINDA architecture Hou K.M. et al., 1995 FPGA and

General Purpose

Processors

6 AIR system Neema S. et al., 1997

7 Relay-2 codesign platform Mackinlay et al.,1997

8 Image Interpolation Algorithm Athanas P. M. et al., 1998
Run-Rime

Reconfigurable

9 ARDOISE platform Kessal L. et al., 2000

10 Embedded reconfigurable array Khawam s.et al., 1998 SoC Concept

11 Khepera robot Roggen D.et al., 2000
Evolvable

Hardware

12 CAM brain machine De Garis H.et al., 2000

Table 3.1: Image processing algorithms on reconfigurable devices.

jective of developing the CBM was to design a computationally powerful evolvable

hardware research tool for the evolution of complex digital circuits [14, 15, 16].

3.2.7 Summary

Table 3.1 summarises the systems and architectures presented above, each category

represents a solution for increasing the performance of hardware implementation of

image processing algorithms or, in case of EH, new trends in this field.

Big breakthroughs in semiconductor technology have made developing high-speed

and high-density FPGA devices possible. A few years ago, tasks were mapped onto

multiple FPGA-based system, but now these tasks can be implemented using only a
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Figure 3.1: FPGA-based platforms and concepts.

small part of one powerful device. The features of new FPGA devices make it pos-

sible to integrate on-chip DSP and FPGA mixed architectures. Nowadays, higher

reconfiguration speed can be achieved and the devices can be partially reconfigu-

rated. These aspects can improve the performance and efficiency considerably. One

of the larger contributions of the systems presented above (e.g. PAM, SPLASH2,

etc.) consists in the way that image processing algorithms are mapped over several

parallel processing elements and memory blocks in order to reduce redundances and

to achieve high computation speed. Some of the systems presented here were de-

signed to implement specific algorithms. Since the programming of an FPGA can

be entirely or even partially changed by downloading a new configuration, these

systems became general purpose platforms for image or any other signal processing.

Comparing the algorithms execution in a hardware platform and in a microproces-

sor (or other general purpose processors) demonstrates that they provide orders of

magnitude better performance. It has also been proved that some of them, such

as the SPLASH-2 architecture, reached world-record performance for many appli-

cations [36]. As we can see, there are different forms in which this performance can

be archived: using multiple-FPGA system, co-design, RTR or SOC solutions (see

figure 3.1). On the other hand, EHW is a new concept for developing hardware
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applications. In EHW the design is not particularly oriented towards optimising the

performance, but rather exploring new hardware configurations which can be used

in adaptive systems.

3.3 Commercial FPGA based platforms for image

processing

Many commercially powerful FPGA-based platforms are currently available on the

market and are mainly dedicated to rapid prototyping of hardware systems or devel-

opment kits for educational purpose. The recent advances in parallel implementation

of image processing algorithms has resulted in the rapid development of reconfig-

urable systems based on FPGA devices. Several companies, who were confident

about the potential of FPGA devices in the field of signal and image processing,

embedded this technology into their products such as frame grabbers or specific

boards. One of the first commercial such system was the Spectrum G800 from the

GigaOps corporation. This custom computing was a commercially available con-

figurable video rate system capable of supporting a wide range of graphics, image

processing and computer vision applications [28]. It can hold up to 16 G210 mod-

ules, each G210 module containing 2 Xilinx XC4010 FPGAs. FPGA configurations

can be loaded within 20 ms. The video module of the G800 custom computer board

contains a frame grabber and an encoder which enables S-video and Composite video

I/O. Giga-Ops Spectrum G800 custom computer can compute the video data up to

a rate of 320 MB/sec.

Nowadays, many powerful commercial image processing FPGA based systems

are available on the market. For example, MaxRevolution [44] is Datacube’s latest

addition to the MaxRevolution family of frame grabbers based on FPGA processing

capabilities. Pro-Design’s VisioSpeedster2 [46] is the second generation of a product

family of high-speed FPGA-based image processing cards for PCs. The system is

based on a VIRTEX-II FPGA from XILINX and it has excellent memory resources

and possibilities for expansion. Titan Corporation commercialises former VisiCom

products such as VigraVision and VigraWATCH [47] product families. These are

high-performance visualisation products for graphic and imaging based on FPGA

technology from Xilinx. PCI Reconfigurable Image Advanced Processor (PRIAP) is
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another real-time image processing board designed and manufactured by the SECAD

company [41], specialised in Xilinx FPGA design. Annapolis Micro Systems [43] in-

troduced Wildfire reconfigurable platform based on the SPLASH-2 image processing

architecture presented above. FPGA devices from the board can be independently

configured by the host processor.

Many other FPGA-based frame grabbers or imaging systems exist on the market.

The main drawback of these powerful commercial systems is the incredibly high cost

which make them incompatible for research application such as robotic prototyping

systems. Sometimes, space and shape limitation are also important aspects of these

systems. The idea we wanted to emphasise above is that FPGA devices play an

important role in imaging systems and can be considered as a huge breakthrough in

this field.

The latest generation of FPGAs platforms for hardware acceleration offers the

possibility of implementation of computationally-intensive algorithms. Design teams

taking advantage of these platforms intensify their research in the field of parallel

algorithms for signal processing in general as well as for image processing. This

is a reverse process, evolution in hardware determines evolution in algorithms and

tools and viceversa. Recently, there have been advances in design tools supporting

software-oriented design techniques for programmable hardware platforms. This

makes life easier for software designers who can now take advantage of the power

of FPGA-based platforms. In image processing, where the algorithms are more and

more complex, helpful intellectual property (IP) available solutions considerably

reduce the design time. However, this field is still underdeveloped. Only specific

IPs are available for image processing and research continues to optimise image

processing oriented high-level HDL compilers. What is beyond a doubt is that FPGA

devices are low-cost, low-risk platforms oriented towards application prototyping and

they can also be used in high-performance end-products.



Chapter 4

Vision-Based Motion Estimation

as a Tool to Localise an

Underwater Vehicle

4.1 Introduction

This chapter provides an overview of an algorithm for motion estimation and lo-

calisation of a submersible, detailing and analysing those parts which need to be

accelerated by means of hardware implementation. Once the algorithm has been

tested using general purpose processors, the necessity to speed up some parts with

a high computational load emerged. A high-level implementation of the algorithm

using MATLABr has been carried out prior to its parallelization. The algorithm

has many parameters. These have been tested a priori using tools oriented to image

processing such as MATLABr “Image Processing Toolbox”, or C++ libraries such

as Matrox Image Processing Library (MIL). As well as describing every step of the

algorithm, this chapter also introduces a new method to improve the result of the

correspondence problem in motion estimation. This method takes into consideration

textural characterisation for rejection of bad correlated points.

43
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4.1.1 Systems and sensors for localisation in underwater

robotics

Localisation is an important problem when a robot needs to complete a mission

autonomously. It is the process by which a robot or any other system determines

where it is. Apart from image-based localisation systems many other technologies

have been developed to provide information about vehicle position. These include

inertial systems, doppler-based systems, acoustic transponder networks, global po-

sitioning systems and more.

Inertial navigation systems (INS) are composed of gyros and accelerometers.

They are normally used in fields like civil and military aviation, cruise missiles,

submarines and space technology. Because of these areas of operation, the systems

and all their components have to be very precise and reliable (bias error' 0.015o/h).

As a consequence, the costs for such a system are still very high (> 100.000$) and

the systems are not yet small enough to be used for small robotic prototypes.

Sound navigation and ranging (sonars) are based on the propagation of

sound waves. They emit ultrasonic pulses and “listens” to reflect pulses from a

potential obstacle. In underwater robotics they can serve to determine the distance

from the sea-floor and also survey the area beneath the vehicle. The speed of

the sound can be affected by different factors from the underwater environment:

temperature, salinity and depth. Since it is an active sensor it might be not adequate

for some applications. A sonar-based system can be used to build a map of the

seabed. Sonar images can be used to build up a map of the environment. This map

can be further used for the localisation of the robot. Doppler effect based sonars are

based on the Doppler principle, which states that the frequency of the received signal

differs from the frequency of the emitted one when the source and the reference point

are in motion relative to each other. Such devices are called Doppler Velocity Log

(DVL) and their precision is affected by various factors such as altitude from the

seabed, signal power, frequency, pulse length, etc. The use of Dopplers as well as

other sonars for slow moving vehicles is mainly affected by the variation in sound’s

speed depending on water conditions.

Acoustic Transponders Network (ATN) can be placed in the area where

the mission is going to be carried out. The vehicle can interrogate all transpon-

ders simultaneously and each of them replies using its own frequency. The robot
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can then calculates its position by means of triangulation. This method has sev-

eral drawbacks, such as the fact that navigation is restricted to the area where

the transponders are placed, the transponders must be carefully calibrated and, of

course, the cost of installing and recovering the entire system in the area is high.

Global Positioning System (GPS) is a radio navigation system based on

an array of 24 satellites orbiting the Earth and some antennas for ground support.

They are outdoor localisation systems for small devices but GPS signals are not

available to vehicles operating at depths where the GPS signal berely propagates

through solid or aquatic media.

Vision-based localisation systems. From relative observations of the seafloor,

a vision system can estimate the vehicle’s motion. While moving, the robot can

build a map of the seafloor and uses it to provide continuous estimates of the ve-

hicle’s location. The construction of visual maps of the ocean floor can be used

in motion estimation and localisation of an underwater vehicle. These visual maps

are known as “mosaics”. As well as for localisation of a submersible vehicle, un-

derwater mosaics can be used in undersea exploration like sea-floor mapping, the

study of oceanographic and geothermal events, geological sampling, the inspection

of submersed structures such as pipes, dams and harbours, in ocean mining and oil

industry or military purposes. Figure 4.1 synthesises the main systems and sensors

for localisation of un underwater robot.

4.1.2 Underwater platform

URIS (Underwater Robot Intelligent System) (see figure 4.2) has been designed and

build up at the Computer Vision and Robotic Group of the University of Girona.

The robot is a small-size, low-cost Autonomous Underwater Vehicle (AUV) used

as a research prototype. It was build with the aim to perform missions either in a

controlled environment such as water tanks, or in natural environments such as lakes

or sea. The vehicle can be powered by an external source using an umbilical cable for

long term experiments but it can also carry its own batteries which provides more

autonomy to the robot. The hull has been design as a sphere and it offers equal

hydrodynamic coefficient in any directions. It is build up by two hemispheres joined

by nuts and bolts. The vehicle is passively stable in roll and pitch. Therefore it has

four Degrees Of Freedom (DOF): x, y, z, and Yaw. The submersible incorporates
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Figure 4.1: Systems and sensors for localisation of an underwater vehicle.

a magnetic compass, pressure sensor, water speed sensors, water leakage sensors

and computer vision systems. The control system runs on a Pentium processor

from an embedded PC104 plus architecture. A 80C552 microcontroller-based card

is used to reduce the computing load of the main processor and is in charge of

handling the peripherals. Table 4.1 summarises the main characteristics of this

robot. URIS underwater platform, is a low-cost, small-scale robot. This means that

making some of the available localisation systems are inadequate for our vehicle.

Small accelerations are present in the motion of the AUV and these require large,

(a) (b)

Figure 4.2: URIS underwater vehicle: a) Photograph of the URIS robot in natural envi-
ronment; b) URIS robot, synthetic image.
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Type Autonomous Underwater Vehicle (AUV)
Propulsion 4 thrusters
D.O.F. 4 : x, y, z, Yaw
Energy 4 packages NiCd batteries (50W × 12V )
Umbilical cable Functions: power supply, differential video and Ethernet
Computing System 80C552 µcontroller + Pentium processor
Max. depth 30 metres
Sensors Magnetic Compass

Pressure sensor
Vision System
Speed sensors
Differential GPS
Water and battery charge detection

Table 4.1: Characteristics of URIS underwater vehicle.

expensive inertial systems. GPS systems do not work underwater, since radio waves

are attenuated in such environments. In the case of acoustic transponder networks

the system is also very expensive. For every mission a complex system consisting

of a boat and the acoustic transponders network must be deployed than recovered

after the mission is completed. DVL sensors are also too large to be integrated in

the URIS architecture. In addition to the sensors presented above, compasses and

inclinometers can also be used to measure the orientation of the robot with respect

to Earth’s magnetic field and the deviation from the gravity frame, respectively.

4.2 Overview of the mosaicking algorithm

A sequence of images acquired by the camera mounted on the robot can be used to

construct a map of the zone surveyed by the submersible. This map is a composite

image constructed by aligning a set of smaller consecutive images. In most cases the

process involves recovering the motion of the vehicle by mean of gray level correla-

tion [32] or using optical flow [96]. Although these techniques provide good results

in standard images [27], they may lead to detection of incorrect correspondences in

underwater sequences.
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Figure 4.3: Synthetic image of underwater robot navigating alongside seafloor.

4.2.1 Properties of underwater images

The special properties of the medium makes underwater images difficult to pro-

cess [51]: the elements of the image become blurred and some regions of interest

present high clutter and lack of distinct features. Although most of the techniques

neglect the use of textural information, considering only image intensity, texture pro-

vides a rich source of information to solve image alignment [24]. In the mosaicking

algorithm, every image of the sequence is registered to a reference image. Therefore,

when an inaccuracy is introduced in the transformation between two images, this

error affects not only the current registration, but all the following ones.

One solution can be to install a down-looking camera on the robot’s hull. When

the robot perform a mission along the sea-floor, the relative motion of the vehicle

can be recovered from the two consecutive image. Furthermore, when a sequence of

image is acquired by the camera, a map of the sea-bed can be build using mosaicking

techniques. In order this information to be used by the robot’s control system, some

factors such as the distance from the bottom of the sea, the robot’s velocity and the

camera angle must be considered.

Estimation of the motion between the current frame and the mosaic image is nec-

essary in order to extract the information which to help us to align the frame to the

whole mosaic. Motion is considered as a main operation in many computer vision

application. A great research effort is therefore dedicated in this field. When dealing

with underwater images transmission proprieties of the medium makes the extrac-



CHAPTER 4. VISION BASED MOTION ESTIMATION 49

(a) (b)

(c) (d)

Figure 4.4: Samples of underwater images: (a) scattering produces blurring in the image;
(b)strong shading effects produced by the waves; (c) blurring; (d)non-uniform illumination

.

tion of the information even more difficult [23]. Light incidents in an underwater

environment basically produces two processes: absorption and scattering [24].

Absorption is produced due to the fact that the light energy is transformed

in a different form (e.g. heat) and it disappears from the image-forming process.

Artificial light is therefore needed to explore this environment. On the other hand,

artificial light also introduces many problems such as non-uniform illumination.

This can play an important role in motion estimation algorithms. Normally the

source of light is connected with the camera so that when the camera is moving the

light source does so. One feature extracted from the image will appear differently

illuminated in the next frame and this can affect the matching process. Scattering is

another process present in an aquatic environment. It is produced by the changing of

direction of individual photons which causes blurring of the elements of the image.

This phenomena can affect the feature extraction process because of the lack of

well-defined contours.
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Figure 4.5: Mosaicking algorithm: mosaic controller and mosaic engine.

4.2.2 Underwater mosaicking system

An underwater mosaicking system has been proposed as a means for localisation of

the URIS submersible while performing a mission [26]. The proposed mosaicking

system is divided into two main parts, namely the mosaic controller and the mosaic

engine. The mosaic controller keeps the state of the mosaicking system and takes

decisions according to this state. It is in charge of the mosaic data structure, i.e.,

updating the mosaic image Im according to the estimated motion. Meanwhile, the

motion is estimated by the mosaic engine. It considers the current image Ic acquired

by the camera and a reference image Ir and computes a planar “homography” which

describes the motion between the two. The homography is a matrix which relates

the 2D coordinates of any point from the current image Ic with the coordinates

of the same point in the reference image Ir. Selection of the reference image is

performed by the mosaic controller. Figure 4.5 shows the relationship between the

two modules.
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Mosaic controller

The mosaic controller module aims to analyse how the vehicle is moving and gen-

erates the pertinent commands to control the mosaic engine. The mosaic controller

provides the engine module with the reference image which will be used to estimate

the motion of the vehicle. The reference image Ir can be the previous image or an

image extracted from the mosaic image Im by the controller. Every iteration of the

algorithm starts when the current image Ic is acquired.

The current image and the reference image at time instant k are denoted Ic(k)

and Ir(k), respectively. Let us consider a 3 × 3 matrix rHc(k) as the homography

which transforms the coordinates of a point in image Ic(k) into its corresponding

coordinates in the reference image Ir(k). The motion estimated at the previous time

instant, rHc(k − 1), is assumed to be valid as an “a priori” motion estimation for

instant k, since motion between two consecutive images is quite small due to the

high frame-rate of the sequence. Then, images Ir(k) and Ic(k), together with “a

priori” motion estimation matrix rHc(k− 1), are passed to the mosaic engine and is

told to execute. The output of the mosaic engine is the homography matrix rHc(k),

which estimates the motion between Ic(k) and Ir(k) at time instant k.

Once the engine has finished its execution, the controller decides whether or not

Im should be updated . The controller uses equation (4.1) to update the mosaic

image Im(k) with the current image Ic(k). Im is only updated in those areas which

have not been updated before by the previous images. Thus, the first available

information for every pixel is used to actualise the mosaic image. This strategy of

using the less recent information to construct the mosaic is known in the literature

as “use first” [2].
mHc(k) =

m Hr(k) ·m Hc(k) (4.1)

The next step consists of deciding whether a new reference image Ir has to be

selected for the next iteration. The controller uses matrix rHr(k) to check if the

overlapping between the reference image Ir(k) and current image Ic(k) is below a

given threshold (e.g. 40% of the size of the image). In this case, it has to select a new

reference image Ir(k+1) for the next iteration of the algorithm. The new reference

image will be extracted from the mosaic image Im(k) at the same position and ori-

entation as that of the last image added to the mosaic. Following this methodology,

drift in the estimation of the trajectory of the vehicle increases more slowly than
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by registering every pair of consecutive images. On the other hand, if the overlap

between images Ic(k) and Ir(k) is greater than the threshold, the reference image

will not change, i.e. Ir(k + 1) = Ir(k).

Mosaic engine

The mosaic engine begins its execution by detecting interest points in image Ic.

The goal of the interest point detector is to find scene features which can be reliably

detected and matched with points in the reference image. These features should

be stable when lighting conditions of the scene change. Corner detectors proposed

by Harris [34] and Tomasi-Kanade [89] were tested for underwater images and both

will be detailed in the following section. Once the relevant features of image Ic have

been detected, the next step consists of finding their correspondences in the reference

image Ir. Before searching for correspondences, both images are smoothed with a

3× 3 Gaussian mask. Given an interest point cp in image Ic, instead of considering

the point as an individual feature, we select an n × n region R(cp) centred at this

point. The system then aims to find a point rp in the reference image Ir, surrounded

by an n× n area which presents a high degree of similarity to cp. This “similarity”

is computed as a correlation function (4.2):

corr{R(cp), R(rp)} = cov{R(cp), R(rp)}
σ{R(cp)} · σ{R(rp)} (4.2)

From equation (4.2) we can observe that the correlation between two points is defined

as the covariance between the grey levels of region R(cp) in the current image and

region R(rp) defined in Ir, normalised by the product of the standard deviation of

these regions. Equation (4.2) is computed for all points of the reference image which

fall inside a small search window. The search window is centered either in the same

coordinate of the interest point from current image or, in a point rc̃, as shown in

the equation (4.3). The point rc̃ can take into account the estimation of the motion

at the previous stage and this is needed when rotation or scaling motions appear in

the sequence of images.

rc̃ =r Hc(k − 1) ·c m̃ (4.3)
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being rc̃ the projection of interest point cm̃ into the reference image. The coordinates

provided by rc̃ are uniquely used to open the search window for the matching process.

Equation (4.2) is normalised by subtracting the mean and dividing by a fac-

tor which takes into account the dispersion of the gray levels in the regions under

consideration. For this reason, this measurement of correlation is very suitable for

underwater imaging, where lighting inhomogeneities are frequent.

According to equation (4.2), given an interest point cp in the current image Ic,

its correspondence rp in Ir should be the point which has obtained the highest

correlation score. Those pairs (point-matching) which have obtained a correlation

score lower than a given threshold are deleted. However, experimental work de-

veloped in our group with underwater images has proved that in some cases the

true correspondence is not the one with the highest correlation score [24]. Although

these techniques provide good results in standard images [27], they may lead to the

detection of incorrect correspondences in underwater sequences.

In order to characterise incorrect correspondences (known as “outliers”) through

textural analysis, the textural properties of the neighbourhood of both the interest

point cp and its estimated correspondence rp are computed. In this way, the regions

R(cp) and R(rp) are characterised by two feature vectors (cv and rv), which encode

their textural properties. Some of the Energy Filters defined by Laws (e.g. L5S5,

E3E3, etc.) are used to perform the textural analysis. This textural characterisation

may consist, for instance, of measuring the texture at neighbouring locations. If the

similarity error between both vectors is smaller than a selected threshold, the pair of

point-matching is considered to be an outlier. In fact, this approach is based on the

assumption that interest points and their correspondences are located at the border

between at least two regions with different textural properties. It is a reasonable

assumption since interest points are detected by finding areas of high variation of

the image gradient through a corner detector, i.e. located in the border of different

image textures.

After a pair of correctly matched points is obtained, the motion estimation rHc(k)

between current and reference images can be computed from the remaining pairs of
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points applying equation (4.4).

rp̃ = rHc · cp̃ or



λ · rx
λ · ry
λ


 =



h11 h12 h13

h21 h22 h23

h31 h32 1


 ·




cx
cy

1


 (4.4)

where λ is an arbitrary non-zero constant. Therefore, solving the homography

of (4.4) involves the estimation of eight unknowns. By using inhomogeneous co-

ordinates instead of the homogeneous coordinates of the points, and operating the

terms, the projective transformation of (4.4) can be written as:




cx1
cy1 1 0 0 0 −rx1 · cx1 −rx1 · cy1

0 0 0 cx1
cy1 1 −ry1 · cx1 −ry1 · cy1

...
...

...
...

...
...

...
...

cxn
cyn 1 0 0 0 −rxn · cxn −rxn · cyn

0 0 1 cxn
cyn 1 −ryn · cxn −ryn · cyn




·




h11

h12

h13

h21

h22

h23

h31

h32




=




rx1
ry1

...

rxn
ryn




(4.5)

When the engine completes its execution, it gives the control back to the mosaic

controller.

This section has given an overview of the mosaicking algorithm used in the

localisation system of an underwater robot. The algorithm has two main parts:

the mosaic controller and the mosaic engine. The functionality of both has been

explained. Sections below will focus on the mosaic engine since the work carried

out in this thesis revolves around this subject. Several feature detection methods

are detailed in section 4.3.1. Section 4.3.2 of this chapter shows the efficiency of

normalised correlation in underwater imaging. In addition, a method for outliers

rejection through textural characterisation is proposed in section 4.4 of this chapter.

4.3 Solving the correspondence problem

In order to build up the mosaic image, the apparent motion of the camera mounted

on the underwater vehicle must be estimated. This motion can be computed in image

coordinates. Many motion estimation methods describe the differences between suc-

cessive frames of an image sequence. The literature suggests that motion estimation
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Figure 4.6: A classification of methods for motion estimation.

methods can be divided between spatial-domain motion estimation and frequency-

domain motion estimation. Concerning frequency-domain techniques, where the rel-

ative motion between two images is determined by their Fourier spectrum, very few

examples of applying this technique to construct a mosaic exist [78]. Olmos et al.

asserted that spatial methods provide better results that frequency-based methods

in underwater imaging [68]. Spatial techniques are based on a natural way to de-

scribe a motion. Algorithms in spatial techniques can be classified as feature-based,

area-based algorithms or optical flow. Features can be extracted from an image and

used to register two images. The algorithm uses some type of correlation measure

to search for a corresponding match in a previous image. These scene features can

be reliably found when for example the camera moves from one location to another

or lighting conditions change. In area-based matching methods the image is di-

vided in blocks. The algorithm uses the correlation measure to search for a block

within an image which most closely matches a particular block in a previous im-

age. This method yields dense depth maps, but fail within occluded areas and/or

poorly textured regions [70]. Optical flow computes the apparent motion of pixels

from an image taking into consideration image gradient. An important assumption

in optical-flow methods is the uniform illumination. But non-uniform illumination

and poor gradient are two of the major problems in underwater images. Additional

image processing such as local brightness transformation [96] must be performed to

counteract this inconvenience in the case of underwater images. These methods are

represented in figure 4.6.
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4.3.1 Feature detection

Feature detection is a fundamental problem in computer vision. Recovering the

displacement of a feature in a sequence of images gives us information about the

structure of the environment and the motion of the viewer. Typical features to be

matched are interest points [80], straight line segments [13] or, less frequently, image

contours [79]. The selection of features may depend on the application, although

points are commonly used because they can be easily extracted and are quite robust

to noise [34]. The scattering phenomenon, present in an underwater environment,

makes the extraction of features such as line segments or contours difficult. Points

are reliable features when lightning condition are changing and can be easily detected

in underwater images.

Point feature extraction is usually called corner detection or interest point de-

tection. Many algorithms have been developed in this field. A corner detector

algorithms consists of computing the image gradient components: Ix and Iy by

convolving the current image with the Prewitt masks [72] (see equation (4.6)).

H =



−1 0 1

−1 0 1

−1 0 1


V =



−1 −1 −1
0 0 0

1 1 1


 (4.6)

These components are combined resulting in: Jx = IxIx; Jy = IyIy and Jxy = IxyIxy

and then smoothed with a 3×3 Gaussian mask. In case of the Harris-Stephens corner

detector the “cornerness” value c is computed according to the equation (4.7):

c =
Jx + Jy

JxJy − J2
xy

(4.7)

Small values of parameter c imply high image gradient. Then, for the neighbour-

hood under consideration, any values which are not the minimum of the neigh-

bourhood are suppressed. This leads to a sparse map of interest points for each

image. Finally, since c provides a measure of the quality of the corner, the corners

are sorted in descending order and best N points are chosen. When considering

hardware implementation of this method two problems can arise: the division has

a high computational cost and floating-point numbers need to be manipulated. For

this reason other strategies were studied. Benedetti et al. [4] proposed a modified
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Tomasi-Kanade [89] algorithm which avoids this problem, providing similar results.

The method is robust to noise and distortion while characterising each possible cor-

ner by an Ns size patch where Ns is small (i.e. 9). The algorithm starts from the

assumption that all points in the patch are moving with the same velocity, which

is reasonable for small inter-frame displacements. In this algorithm, matrix G of

partial derivatives is computed as in equation (4.8):

G =




Ns∑
k=1

(Ikx)
2

Ns∑
k=1

(IkxI
k
y )

2

Ns∑
k=1

(IkxI
k
y )

2
Ns∑
k=1

(Iky )
2


 =

(
a b

b c

)
(4.8)

The algorithm, first calculates a(i, j), b(i, j), c(i, j); then

Pλt(i, j) = (a− λt)(c− λt)− b2 (4.9)

is found and every pixel having:

Pλt(i, j) > 0 and a(i, j) > λt (4.10)

is retained, where λt imposed lower bound for the solutions of the equation (4.9).

In the last step the algorithm discards any pixel that is not a local maximum of

Pλt(i, j). Similar to previous method, the best N interest points are selected, but

considering highest values for Pλt(i, j). Using this approach the complexity is con-

siderably reduced and no floating point operation is required. Figure 4.7 compares

the presented feature detection methods applied to different image samples either

indoor scenes or underwater images. It can be observed that the results are quite

similar in both cases.

4.3.2 Matching algorithm

Detecting correct correspondences in a pair of images taken at two consecutive

time instants is an important issue in computer vision. Often this means detecting

features in one image and matching them in the second. However, the matching of

these features in the second image is normally a complex task. Quite often, local

gray level correlation is applied to detect matchings in the pair of images.

Several measure functions for similarities have been proposed in the past. Some
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(a) (b)

(c) (d)

Figure 4.7: Comparison between Harris-Stephens and Modified Tomasi-Kanade corner
detectors. (a)(c) Harris-Stephens; (b)(d) Modified Tomasi-Kanade

authors compared and characterised them, while the selection of this function in-

fluence the performance of the motion estimation [27]. The matching criteria is

a measure of the degree of similarity between the current image and a reference

image. The correspondence problem can be influenced by many factors [70] such

as: ambiguity, when the search requires some physical constraints: search window

or epipolar constraints; occlusion, when points from one image do not appear in

the previous one; photometric distortion, when illumination conditions changes and

figural distortion due to the fact that perspective images of the same objects appear

different taken from different views.

Ambiguity is solved by choosing a proper search area in the reference image.

While the aim of this work is to achieve real-time performance, motion between

frames is small enough to avoid occlusion. Photometric distortion is one of the most

important problems which can affect the correctness of the result. Non-uniform

illumination appears when artificial light has to be used in the visualisation process.
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A correlation algorithm provides, for each interest point pc = (cx,c y) of the

current image Ic, its corresponding match pr = (rx,r y) in the reference image Ir.

Each interest point is characterised by the intensity of the pixels from an area called

the correlation window. The algorithm looks for similar pathes in an wider area in

the reference image called search area.

Several distance-similarity measures such as SAD (Sum of Absolute Differences)

(equation (4.11)) and SSD (Sum of Squared Differences) (equation (4.12)) were

widely used to solve the correspondence problem.

SAD =
α∑

i=−α

α∑
j=−α

| (Ic(cx+ i,c y + j)− Ir(
rx+ i,r y + j)) | (4.11)

SSD =
α∑

i=−α

α∑
j=−α

(Ic(
cx+ i,c y + j)− (Ir(

rx+ i,r y + j))2 (4.12)

where α = (n − 1)/2 and n × n is the size of the correlation window. The SAD or

SSD measurements are computed for every candidate in the search area. Minimising

these distances we obtain the best candidate provided by the method.

Distance minimisation can be replaced by the maximisation of another corre-

lation measure called cross-correlation (CC). The value of CC is computed as in

equation (4.13).

CC =
α∑

i=−α

α∑
j=−α

(Ic(
cx+ i,c y + j)Ir(

rx+ i,r y + j)) (4.13)

The standard CC is too sensitive to noise and is normally replaced by the normalised

cross-correlation (NCC) (equation (4.14)) or even mean normalised cross-correlation

(MNCC)(equation (4.15)) [27] where the mean value of the intensity of pixels from

the correlation window is taken into consideration.

NCC =

α∑
i=−α

α∑
j=−α

(Ic(cx+i,cy+j)(Ir(rx+i,ry+j))

√
α∑

i=−α

α∑
j=−α

Ic(cx+i,cy+j)2
α∑

i=−α

α∑
j=−α

Ir(rx+i,ry+j)2
(4.14)

MNCC =

α∑
i=−α

α∑
j=−α

(Ic(cx+i,cy+j)−Ic(cx,cy))(Ir(rx+i,ry+j)−Ir(rx,ry))

√
α∑

i=−α

α∑
j=−α

(Ic(cx+i,cy+j)2−Ic(cx,cy))
α∑

i=−α

α∑
j=−α

(Ir(rx+i,ry+j)2−Ir(rx,ry))
(4.15)

where Ic(xc, yc) and Ir(xr, yr) are the average intensity of Ic(xc, yc) and Ir(xr, yr),
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respectively.

From equations (4.14) and (4.15) we can observe that the normalised cross-

correlation between two points is defined as the covariance between the grey levels of

correlation windows characterising a point in Ic and its candidate from Ir, normalised

by the product of the standard deviation of these regions. The variance is written

as shown in equation (4.16):

σ2(I) =

α∑
i=−α

α∑
j=−α

(I(x+ i, y + j)2

(2α + 1)2
− I(x, y)

2
(4.16)

where:

I(x, y) =

α∑
i=−α

α∑
j=−α

(I(x+ i, y + j)

(2α + 1)2
(4.17)

The correlation score (4.15) then becomes:

C =

α∑
i=−α

α∑
j=−α

(Ic(cx+i,cy+j)−Ic(cx,cy))(Ir(rx+i,ry+j)−Ir(rx,ry))

(2α+1)2
√

σ2(Ic)·σ2(Ir)

(4.18)

Four correlation criteria: SAD, SSD, CC and MNCC were applied to several pair

of images selected from 7 sequences of underwater images. Average percentage of

good correspondences (called “inliers”) corresponding to each method is shown in

figure 4.8. From this analysis we can conclude that MNCC provide much better

results than the other three measurements in case of the underwater images. A

comparative result of applying these measurements to underwater image samples

characterised by nonuniform illumination, is shown in figure 4.9.

4.4 Textural characterisation

Although the local grey level correlation technique provides good results in standard

images [27], it may lead to the detection of incorrect correspondences in underwater

sequences. Automatic detection of unreliable matchings can be achieved by means

of outliers rejection techniques, such as LMedS [77] or RANSAC [8]. However, these

probabilistic algorithms are based on random sampling and robust regression. Due

to their probabilistic nature, they may produce incorrect results, although with a



CHAPTER 4. VISION BASED MOTION ESTIMATION 61

SAD SSD CC MNCC
0

10

20

30

40

50

60

70

80

90

100

Methods

P
er

ce
nt

ag
e

Inliers representation

Figure 4.8: Average percentage of inliers obtained by applying four correlation mea-
surements to several pairs of underwater images.

bounded error probability, but their main problem is the high computational cost

associated with searching the area of possible estimates generated from the data. In

all cases, the aim is to find a set of point pairs which minimise the square sum over

the residuals. Given a set of point correspondences, a M-estimators robust technique

could also be applied [101]. The M-estimators are based on replacing the residual

squares with a weighted function of residuals to make the estimation less sensitive

to outliers. Some authors have reported robust behaviour of M-estimators in the

presence of bad correspondence localisations but not to false matchings [95]. More-

over, an M-estimator is an iterative algorithm with a considerable computational

cost.

The idea of applying texture operators in matching problem was first introduced

by Garcia et al. [24]. In this proposal texture operators are used to choose the

best correspondence from a set of candidates. In our new approach, the outlier

rejection process is independent of the matching problem. It uses intensity-based

techniques to detect pairs of point-matching, and texture information to eliminate

possible outliers. In this new approach we take advantage of previous results to try

out a different method for outlier rejection. These techniques provide the basis for a

new methodology to improve point correspondences with a reduced computational

burden. Different techniques for solving the matching ambiguities can be found in

the literature [100, 8].

The present approach uses texture information to characterise bad correspon-

dences among a set of point pairs in two images. Laws’s texture energy filters [59],
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Figure 4.9: Solving correspondence problem in underwater imaging using: a) SAD cri-
teria; b) SSD criteria; c) CC criteria and d) MNCC criteria applied to the same pair of
images.

have been tested and proved to provide far more good results than other texture

operators such as co-occurrence matrix [33] and Local Binary Patterns [67]. Energy

filters come from a computation of different statistical measures Absolute mean,

Standard Deviation, Positive Mean and Negative Mean over a pre-filtered image.

Filters are based on 1 × 3 (see equation 4.19) or 1 × 5 (see equation 4.20) vectors,

namely Level, Edge and Spot.

L3 = [ 1 2 1 ]

E3 = [ −1 0 1 ]

S3 = [ −1 2 −1 ]

(4.19)

and:
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L5 = [ 1 4 6 4 1 ]

E5 = [ −1 −2 0 2 1 ]

S5 = [ −1 0 2 0 −1 ]

(4.20)

Consider P interest points kp1, and k = 1..P , defined in I1. Texture-based charac-

terisation is performed by considering an m × m window in their neighbourhood.

For every kth point, a texture operator is then computed in its neighbourhood. The

same operation is performed for its corresponding matching kp2 in I2. In this way,

two characterisation vectors kv1 and kv2 of the kth interest point and its matching

are obtained:
kv1 = [kv11,

k v12, ...,
k v1N ] (4.21)

kv2 = [kv21,
k v22, ...,

k v2N ] (4.22)

where N = (m−1
s

+1)× (m−1
s

+1) is the size of the characterisation vector, and s is

the value of the subsampling of the characterisation window.

The characterisation vector of every point is compared with the characterisation

vector of its correspondence point in the second image. Thus, we are searching

for similarities in terms of texture. Normalised correlation was used to measure

similarity between these vectors, kv1 and kv2:

C(kv1,
kv2) =

N∑
i=1

(kv1i − kv1) · (kv2i − kv2)

N ·
√
σ2(kv1) · σ2(kv2)

(4.23)

where kv1 and kv2 are the average value of vectors kv1,
kv2, respectively, and σ2(·)

defines the variance.

This similarity measure can be used to detect bad correspondences. A set of

experiments has been carried out in order to select the best texture operators to be

applied for outlier rejection in underwater images.

4.4.1 Experimental methodology

Our experimental methodology is in two stages. The first part consists of selecting

the best texture operators from a list of 20 energy filters. The second step is to
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apply every operator and a combination of them to different underwater sequences

and compare the results with robust methods.

Consider a pair of underwater images, a set of point-matchings was obtained

through a normalised correlation algorithm, as defined in equation (4.18). As part

of our experimental methodology, we marked all the visually incorrect matches,

thus providing a list of bad correspondences. Human experts selected the incorrect

matchings from the set of pair point-matching. Since the presence of the human

factor may introduce errors, five different people performed this operation. When

the pairs of points are represented like in Figure 4.12, by drawing the motion vector,

incorrect matchings can be easily detected being the vectors whose orientation is

different from the dominant one. In some cases, exceptions appear due to underwater

conditions such as presence of moving objects (fishes, algae) or a non-uniform see

floor (3D aspects), etc. The motion vector of some points can have a different

orientation from the dominant one but the correspondence between points may be

correct. Every pair of points and their corresponding matchings were textural-

characterised. The similarity value between texture characterisation vectors for

every point and its matching is analysed. We chose the highest value corresponding

to a manually-detected badly correlated point as the threshold. This means that,

when sorting all the points according to the similarity value, all the outliers lay on

the right side of the threshold. On the left side we could guarantee a total absence

of bad correspondences, as can be seen in figure 4.11.

The threshold should ensure the rejection of bad correspondences while maintain-

ing a high number of good correspondences. This threshold is used to automatically

reject all the outliers at the price of losing a number of correct matchings. This

proposed technique looks for the texture characterisation methods which provide a

higher separation between correct and false correspondences. Several experiments

were carried out to find the best texture operator.

In the second stage of our experiment the pairs of point-matching from several

sequences, the majority differing from those used in the first part of the experiment,

were characterised using the best texture operator. In this experiment the false

correspondences were unknown. We assumed that the whole sequence could have a

fraction ε of possible outliers.
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Figure 4.10: Threshold for rejecting the outliers.
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Figure 4.11: Outliers distribution when computing the similarity measure between char-
acterisation vectors for all 150 interest points corresponding to the images from figure 4.12,
left side. (a),(c),(e): sorted and (b),(d),(f): unsorted according to their correlation score.
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The new threshold was computed like in the figure 4.10 and applied to the

sequences under test. This threshold is a function of ε and the mean value of

the similarity measure between texture characterisation vectors. As we can see in

the figure, even if the number of outliers is greater than the estimated ε the new

threshold eliminate them all. The new threshold was computed by finding a mean

value between the average error measurements and the one corresponding to ε.

4.4.2 Experimental results

The proposed approach was tested with fifteen underwater image sequences. These

images were selected because they provided a good representation of the possible

conditions found in underwater environments, such as blurring, lack of well-defined

contours, bad visibility, low contrast, scattering effects, non-uniform illumination,

lighting artifacts generated by waves, etc. Moreover, different scenarios have been

selected: rocky seafloor, sand and algae seafloor, moving fishes, as well as some

man-made objects like an old submerged chain, etc.

Two of the sequences used in our experiments are available at the Underwater

Vision Lab web site:1. The first sequence of images (figure 4.12 (a) and (b)) was

acquired using a colour camera at Costa Brava (Spain), near Palamos. The sequence

from figure 4.12 (c) and (d)) includes 997 images which were taken by the URIS

underwater robot close to the place where the previous sequence was taken. The

robot was navigating at a depth of two metres, and its altitude was approximately

three metres above the sea floor. The last pair of images presented in this thesis

is part of a sequence of images acquired at Platja d’Aro (Costa Brava). These are

colour images from a sequence where the robot was following a submerged chain.

Some other images used in these experiments were acquired at Nice (France)2 in

September 2000 at a depth of six metres using a PAL camera.

For every image sequence, a set of pairs of point-matching was obtained as de-

scribed in section 4.3.2, considering a correlation window size of 25×25 and a search

window of 61 × 61, according to the possible displacement between two frames.

Figure 4.12 (left) shows three of the tested underwater sequences and the point-

matching obtained through region-based correlation.

1http : //mosaic.udg.es/pgENG/indexE.html
2The copyright is owned by ISR-IST.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12: Selected image samples from the 15 tested sequences: (a) strong shading
effects produced by the waves; (c) rotation; (e) scattering produces blurring in the image.
Detection of correspondences in two consecutive images using intensity-based techniques.
(b), (d), (f) corresponding pairs of points after outlier rejection using texture characteri-
sation.

Since texture is a property of regions, the textural characterisation of the in-

terest points depends on the size of the neighbourhood under consideration. For

every texture operator, four different neighbourhoods of size m × m were consid-
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ered: 11×11, 15×15, 19×19 and 25×25. The neighbourhoods size does not depend

on the image resolution. Moreover, within a neighbourhood there is a high degree

of redundancy when texture characterisation is applied to every pixel. By choosing

different subsampling strategies, our approach will verify whether redundancy in-

troduces robustness in the system. Three significative subsampling modalities were

selected: considering every point: s = 1, every two points: s = 2 or only nine

points of the neighbourhood: N = 9. Table 4.2 shows the corresponding size of the

characterisation vector depending on both the selected neighbourhood and its sub-

sampling strategy. For every pair of images, we tested 20 texture operators, every

operator in four different modalities depending on the size of the characterisation

window, and every window having three different subsamplings. The following Laws

filters, resulting from combinations of basic vectors from equations 4.19 and 4.20,

were applied to the image: L3L3, E3E3, L5S5, E5S5, E5L5. Figure 4.13 shows the

resulting images after applying L5S5 to underwater image samples. These filters

are detailed below (4.24).

L3L3 =
[

1 4 6 4 1

]

E3E3 =
[

1 0 −2 0 1

]

L5S5 =




−1 0 2 0 −1
−4 0 8 0 −4
−6 0 12 0 −6
−4 0 8 0 −4
−1 0 2 0 −1




(4.24)

E5S5 =




−1 0 2 0 −1
−2 0 4 0 −2
0 0 0 0 0

2 0 −4 0 2

1 0 −2 0 1




E5L5 =




−1 −4 −6 −4 −1
−2 −8 −12 −8 −2
0 0 0 0 0

2 8 12 8 2

1 4 6 4 1
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13: L5S5 energy operator applied to samples of underwater images. (a), (c), (e):
underwater image samples. (b), (d), (f): images after applying the L5S5 energy filter

Four statistical measures were considered: Absolute Mean, Standard Deviation,

Positive Mean and Negative Mean. The goal was to find the most adequate tex-

tural operators to solve the correspondence problem. Operators were compared in

terms of number of rejected outliers and number of surviving good correspondences.

By observing the distribution of outliers when representing the similarity measure

between characterisation vectors, we could select the highest value giving rise to

a bad correspondence as a threshold. By rejecting all the points with a similarity

value lower than this threshold, we could analyse the number of remaining points in

order to see the efficiency of this method, see figure 4.11: (a), (c), (e). In order to
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evaluate the results, all pairs of point-matching obtained using normalised correla-

tion were visually verified and classified into good and bad correspondences. Even

if an error is present in the analysis provided by the human experts, there is only a

small probability that this error coincides with the ”worst case” which determines

the threshold.

Fifteen sequences were tested. For every sequence, 20 texture operators were

applied using 4 window sizes and 3 subsamplings. Figure 4.14 shows, for every

window size, the average percentage of good correspondences after rejecting the

outliers using the texture information.

As we expected, the best percentage of correct correspondences after eliminating

the outliers corresponds to the 19× 19 and 25× 25 neighbourhood size. It can also

be observed that a moderate subsampling (considering every two points) provides

similar results to processing every point. On the other hand, higher subsampling

drastically decreases performance. Six texture operators providing the best perfor-

mance can be selected according to figure 4.14.

1. mask=L5S5, Absolute Mean

2. mask=E3E3, Absolute Mean

3. mask=E3E3, Positive Mean

4. mask=L5S5, Negative Mean

5. mask=L5S5, Positive Mean

6. mask=E5S5, Negative Mean
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Figure 4.14: Average percentage of remaining correct correspondences after eliminating
all the outliers using the proposed texture based method. Neighbourhood size: a) 11×11.
b) 15× 15. c) 19× 19. d) 25× 25.

Looking for the possibility of improving the results, we also tested combinations

of these six operators and compared them with single operator performance. Differ-

ent ways of combining texture characterisation were tested: summing the similarity

measure obtained using two texture operators or applying their minimum value.

Fifteen combinations were tested using a 25× 25 window sampled every two pixels.

The results are shown in table 4.3: data below the diagonal are the average percent-

age when the texture operators were combined by summing the similarity values;

the diagonal contains the results in the case of applying a single operator and above

the diagonal, the minimum similarity value to reject the outliers. It can be observed

that better results were obtained following the summing approach. However, the

differences between these three approaches are quite small, and so only one textural

operator will be considered to reduce computation time.

The second step in our experimental methodology was to apply the best textural
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Window size
Sampl. 11× 11 15× 15 19× 19 25× 25

1. 121 225 361 625
2. 36 64 81 169
3. 9 9 9 9

Table 4.2: Size of the characterisation vector according to different neighbourhood
sizes and their subsampling.

Op. L5S5 Am E3E3 Am E3E3 Pm L5S5 Nm L5S5 Pm E5S5 Nm
L5S5 Am 96.0722 95.3538 96.1968 96.2814 95.2629 93.4897
E3E3 Am 96.0989 95.5880 96.3751 96.0911 95.2749 93.2692
E3E3 Pm 96.6912 96.3472 95.3515 95.3277 96.0041 94.8135
L5S5 Nm 96.4366 96.5661 95.7628 94.2817 96.0194 94.4341
L5S5 Pm 95.8195 95.6658 96.4316 96.1840 93.4180 92.9625
E5S5 Nm 95.9136 95.5415 95.9599 96.3436 95.1490 93.0360

Table 4.3: Average percentage of correct correspondences after eliminating all the outliers
using the six proposed texture operators and their combination. 25× 25 characterisation
window and every two pixel subsampling were applied. Below diagonal-sum of cor-
respondence measures between characterisation vectors; Above diagonal-minimum of
correspondence measures between characterisation vectors; Diagonal- apply single tex-
tural operator.

operators for outlier rejection and comparing the results with robust methods. One

important issue is to find a threshold to ensure the rejection of all outliers. In this

experiment we observed that by sorting the pairs of point-matching according to

the value of their correlation measurement between texture characterisation vectors

and applying the threshold proposed in subsection 4.4.1 we obtained satisfactory

results. This strategy was applied to fifteen other sequences, different from those

used in the first experiment. Figure 4.12: (b), (d), (f) shows the results in the case

of applying texture based strategy. Due to space limitation only three sequences are

illustrated in this thesis. Results from all the sequences are available on the web1.

Tests on real underwater images show an adequate characterisation of the incor-

rect correspondences. We selected different sequences of underwater images in order

to test how the algorithm can tackle underwater imaging problems. Texture provides

a rich source of information for feature characterisation, this being essential when

difficulties arise with the use of standard techniques. The robustness of the proposed

1http : //eia.udg.es/ ∼ viorela/image texture chr.htm
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technique is based on the exploitation of gray level information complemented by

texture cues. In terms of computational cost, this new approach outperforms ran-

dom sampling techniques such as LMedS or RANSAC. On the other hand, due

to their probabilistic nature, random sampling methods may produce incorrect re-

sults. An important observation is that LMedS or RANSAC methods eliminate all

the points with differentf displacement comparing to the majority of points, while

texture-based techniques eliminate only bad correspondences. While robust these

need a priori estimation of either fundamental matrix, in case of 3D scene, or ho-

mography in case of planar scene, the presented new texture-based approach does

not require any a priori information. When considering hardware implementation

of a registration algorithm, this new approach can be helpful due to its ease of

parallelization.

4.5 Parameters and assumptions

In a real application, the image signal is acquired by a down-looking camera mounted

on a underwater vehicle. From that signal, the computer vision algorithms can ex-

tract useful information to be sent to the control unit of the robot. Based on this

information from the vision system together with information provided by other

sensors, the control unit generates the commands to be sent to the actuators. These

are the basic steps the robot’s system might perform for an autonomous navigation.

As we can see, the process is complex and requires a high amount of operations.

Therefore, accelerating some parts of computer vision algorithm by mean of hard-

ware implementation can be a useful technique. As it is shown in figur 4.5, feature

detection is the first step of the algorithm. Afterwards, correspondence problem

must be solve.

The feature detection algorithm proposed by Benedetti et al. [4] was chosen

to be implemented in hardware. In this method, the computation is simplified and

avoid floating-point operations. The parameter Ns is set to 9 in the further hardware

implementation. Motion estimation algorithms need a minimum of N = 4 correlated

points to compute the homography matrix. In order to obtain a robust estimation

this number should be increased to 100 or 200 points [26]. Table 4.5 shows the

parameter’s values used in corner detection algorithm.
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Modified Tomasi-Kanade Algorithm
Parameter Value/range

Ns 9 . . . 25
λt 1000
N 100 . . . 200

Table 4.4: Parameter’s values for feature detection algorithm.

MNCC criteria
Parameter Range

correlation window 7× 7 . . . 15× 15
search window 15× 15 . . . 30× 30

Table 4.5: Parameter’s values for correlation algorithm.

In section 4.3.2 we showed that the Mean Normalised Cross-Correlation (MNCC)

works far better than other correlation criteria in underwater imaging. Key param-

eters for the good performance of this algorithm are the correlation window and

search window size. Typical values for the correlation window lay in a range be-

tween 7× 7 and 15× 15. The search window size depends on the apparent motion

between frames influenced by how fast the vehicle moves. When the sequence of

images is processed at frame-rate, small inter-frame displacement appears. For this

reason, small search windows should be considered. Taking into account the navi-

gation altitude of the robot, i.e. the distance from the camera to the sea floor, and

the vehicle maximum speed a search window of 30× 30 in the worst-case scenario.

Table 4.5 shows the search window and the correlation window sizes.

Outlier rejection and the mosaic controller are aimed to be implemented on the

host computer while more complex operations must be performed. The hardware

accelerator might provide pairs of correlated points to the host. The host processes

them and takes the pertinent decisions. It actualises the mosaic image when nec-

essary and extracts the reference image to be sent to the hardware accelerator. A

threshold is used by the mosaic controller to decide whether the reference image

may be actualised or not. This threshold defines the degree of overlapping between

the current image and the reference image.



Chapter 5

Parallel Approaches for Motion

Estimation Algorithms

5.1 Introduction

Motion estimation requires a huge amount of computation. A lot of research has

been carried out to develop efficient architectures to make possible real-time execu-

tion and single chip integration of these algorithms. In motion estimation, points

from current image and points from reference image need to be correlated. Cor-

relation algorithms have important properties such as regularity and modularity.

Therefore, they can be broken down into computational blocks which can be pro-

cessed in parallel. As we showed in chapter 4 different correlation methods can be

applied to find pairs of matched points. The Sum of Absolute Differences (SAD)

from equation (5.1), is the most extensively used matching criteria in VLSI imple-

mentation due to its simplicity and the fact that it provides good results in motion

estimation. In this approach, simple operations like multiplication and accumulation

are applied to multiple data. SAD criteria is normally used in motion compensation

for many multimedia standards, including MPEG-1 and MPEG-2 and other non-

standard video coding in application areas like video conferences, digital television,

etc. Block Matching Algorithms (BMA) are used for motion estimation in this type

of applications. In these algorithms the current frame is divided into blocks of pixels,

and for each block the algorithm searches for similar reference blocks within a search

area in the previous frame. When this algorithm considers all the blocks from the

75
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search area for the comparison, it is called Full Search Block Matching Algorithms

(FSBMA). The BMAs give non-optimum solutions but are less computationally in-

tensive than FSBMA [3]. While BMAs are suitable for software implementation,

FSBMA can be easily mapped in SIMD parallel architectures in order to decrease

their computation time. In a full search, the algorithm has a very regular data-flow

for the search area. These are often repeatedly used in the computation for different

candidates. In FSBMA the motion is estimated using SAD criteria which can be

computed as shown in equation (5.1):

SAD(u, v) =
n∑

i=1

n∑

j=1

| S(i+ u, j + v)−R(i, j) | (5.1)

where n is the block size, R(i, j) are the pixels of the reference block, and S(i+u, j+

v) are the pixels of the search area corresponding to the displacement (u, v) with

respect to the reference block. The best match for the reference block is associated

with the smallest SAD within the search area, as in equation (5.2).

m = min
(u,v)

(
n∑

i=1

n∑

j=1

| S(i+ u, j + v)−R(i, j) |) (5.2)

The cost of any correlation algorithm depends on the block size and the search

area. For a FSBMA, in the case of an image size of (N ×M) pixels where p is the

maximum displacement of a pixel, the search area becomes (n+ 2p)× (n+ 2p) and

the computational complexity is shown in equation 6.8:

(
N

n
× M

n
× (2p+ 1)2 × n2) (5.3)

Parallel implementation of these algorithms aims to reduce this complexity.

5.2 Overview of parallel implementations for

FSBMA

An extensive literature exists about array architectures for Full Search Block Match-

ing Algorithms applied to motion estimation [3, 4, 55, 84]. In general, proposed the

VLSI architectures for FSBMA are based on three parts: an array of Processing
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Elements (PE), address generators and memories. The array of PEs performs the

operation matching (eg. SAD), the address generator generates the addresses for

reading the memory according to the data flow required by the array of PEs and

the memory stores the reference and the search area.

The computation core is normally based on systolic arrays. A systolic array

(by analogy with the regular pumping of blood by the heart) is a network of pro-

cessors which rhythmically compute and pass data through a system. Kung and

Leiserson [56] published the first paper describing systolic arrays in 1978. Each

processor at each step takes in data from one or more neighbours (e.g. North and

West), processes it and, in the next step, outputs the results in the opposite direc-

tion (South and East). Modularity, regularity, local interconnection, high degree

of pipelining, synchronised processors are important characteristics of systolic ar-

rays. Arrays of processors are connected to a small number of nearest neighbours

in a mesh-like topology. These processors perform a sequence of operations on data

that flow between them. Generally these operations are the same in each processor.

Each processor performs an operation on a data item and then passes it on to its

neighbour.

The address generator generates the addresses for the data which will be needed

in the next computation step. The data can be read from the external memories and

fed to an array of multiple processors. In this case a very large bandwidth is required.

Based on the fact that in matching algorithms a large amount of search window

data is reused in the computation of the matching criteria for nearest candidates,

the number of read/write operations from the memory can be reduced by using

internal buffers and/or registers. The current frame can be preloaded in the array

architecture in order to reduce the external memory accesses. In this case, n×n array

of Processing Elements (PE) are used. Due to the advances made in technology over

the last years, large on-chip memory is now available. This permits storage of high

amount of data in a so called internal “cache” memory, either in a line buffer [92]

structure or macroblock buffers [3].

Baglietto et. al [3] proposed mesh based processor and a register array which

permit the parallelism to be exploited both at the frame and block level reducing

the computation complexity. A (2p + 1)2 core of Processing Elements (PEs) is

surrounded by a mesh of Memory Elements (ME). Each PE computes the SAD

associated with a candidate block while the MEs store the pixels of the search area.
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Each ME can exchange data with the four neighbours and the size of ME array

depends on the size of the search area. Therefore, this mesh type storage array is

suitable for applications where the search area is small.

Vos [92] proposed two possible storage approaches: passive elements and line

buffers. Passive elements play the same role as in the memory elements, but the

architecture needs less of them. The quadratic array of MEs is replaced by lines of

passive elements placed above and below the PE array. Roma et al. [76], making

minor changes in the data-flow control, remove the lines of passive elements placed

below the array of PEs. This approach is very appropriated if the data is supplied

by a memory. On the other hand, a linear buffer is used to delay the incoming pixel.

Linear buffers are preferable when the data are coming directly from the camera.

This type of storage minimises the on-chip address calculation, while each pixel has

to be read only once and delayed for the next time it is used.

Memory bandwidth problems can be solved by carefully scheduling the input data

or optimally setting up the on chip memory. These two approaches were adopted

with minor changes in many VLSI architectures for FSBMA [92, 75, 97]. Depending

on the application and also depending on the resources, the main objectives are to

reduce the memory bandwidth requirement [97], control the dataflow through the

array of processors [3] and the number of registers [75].

5.2.1 Mapping an algorithm onto an array of processors

In order to be mapped onto an array of processors, an algorithm is broken down

into its basic operations and converted into a form where each result is assigned to

a single variable. This defines the Single Assignment (SA) principle. The algorithm

can be applied over an n-dimensional space and the SA principle can be represented

by an n-D dependence graph (DG). In a DG the nodes represent the basic operations

and the direction of the edges denotes the operations sequence. The time scheduling

and the projection of multiple nodes over one processing element can be represented

in a data flow graph (DFG). Kung [57] compared different mapping methodologies

for systolic architectures. He defined three stages for deriving a VLSI architecture

for a given algorithm:

• Representing the algorithm using a DG which specify the data dependencies
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of the algorithm.

• Mapping the DG into a DFG by projection and scheduling.

• Transforming the DFG into a VLSI array which can be: a Single Instruc-

tion Multiple Data (SIMD), a Multiple Instruction Multiple Data (MIMD)

architecture, a systolic array or a wavefront, the term Kung uses in his classi-

fication [57].

Komarek and Pirsch [55] used index projection, time scheduling and graph fold-

ing techniques to analyse four types of systolic arrays for FSBMA mapping. Two

possible directions of the dependence arcs from DG comes out from the property of

associativity of the operations in the algorithm. One dimensional (1D) and two di-

mensional (2D) projection were analysed. Some authors refer to linear and quadratic

arrays for 1D and 2D structures, respectively. The 2D arrays are obtained by pro-

jecting the initial DG once. The 1D array of PEs can be seen as the projection of a

column from the 2D array. The four resulting array structures are denominated as:

AB1, AS1 for 1D array and AB2, AS2 for 2D arrays. These architectures exploit

concurrency using different structures and numbers of PEs.

5.2.2 Systolic arrays for block matching algorithms

In an exhaustive search the algorithm looks for the best match between all possible

candidates inside a search area. For a better understanding of the steps that are

performed for mapping the algorithm into a VLSI architecture let us consider a 3×3

reference block like in figure 5.1 and a displacement p = 2 inside the searching area.

Considering a FSBMA, the algorithm’s DG can be represented like in figure 5.2 over

a four dimensional index space due to its four indexes: (i, j, u, v). Every (AD) node

performs an Absolute Difference, the (A) nodes accumulate the differences as in

equation (5.1) and the (M) nodes compare the result in order to decide the best

match, (see equation (5.2)). One and two dimensional projections are appropriate

for a hardware implementation. In the following sections, four basic structures

are analysed considering their processing time, hardware utilisation and memory

accesses.

AB1 Projecting on the i-axis results in a one-dimensional DFG and an n-size

architecture. Consecutive computation of (2p+ 1)2 candidates is completed in n×
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Figure 5.1: Reference Block and Search Window.

(2p+ 1)2 time cycles. Replacing of one input data column with another introduces

additional n−1 meaningless time cycles. The number of time cycles can be computed

as shown in equation (5.4) and the architecture is illustrated in figure 5.3.

tAB1 = n× (2p+ 1)× (2p+ 1 + n− 1) = n× (2p+ 1)× (2p+ n) (5.4)

AB2 Projecting on the i, j-plane results into a two-dimensional DFG. The num-

bers of PE is equal to the size of the reference block: n×n. In this case, the reference

block data R(i, j) remains fixed in the PEs and the search area S(i + u, j + v) are

fed into a 2D array of PEs. See the total time cycles in equation (5.5) and the n×n

array of PEs in figure 5.4.

tAB2 = (2p+ 1)× (2p+ n) (5.5)

AS1 Projecting on the j-axis results into a simple one-dimensional architecture

which require only sequential input of the reference and search frame. As in the

first case (AB1) some dummy data must be inserted into the data input stream to

ensure regular dataflow. Equation (5.6) shows the time cycles corresponding to the

array structure of figure 5.5

tAS1 = n× (2p+ 1)× (2p+ n) (5.6)

AS2 Projecting onto the i, u provides a systolic array like in figure 5.6. In this

case the structure has n×(2p+1)PEs which in fact is equal with one line of possible

matches. A different value of the reference block term corresponds to every column
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Figure 5.2: Dependence graph for FSBMA.

in this structure. The number of time-cycles needed to perform the whole search

corresponds to equation (5.7):

tAS2 = n× (2p+ 1) (5.7)

5.2.3 Proposed architectures

Different proposals for reducing memory access, execution time and increasing hard-

ware efficiency were derived based on the four structures presented above.

Architectures proposed Vos

Vos and Stegherr [92] proposed some efficient architectures for solving the input

data bandwidth problems and reducing the control complexity. Their approach

included on-chip line buffers and additional registers thoroughly optimising the PE
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structure.“Time sharing”, in the case of low pixel-rate was also analysed. New

classifications were introduced in relation to Type I vs. Type II architectures and

linear vs. block scan. Type I structure refers to AB2 architecture. In Type II

structure the execution order of the loops are inverted, so that the size of the array

of PSs depends on the search area (2p+1)×(2p+1) which differs from the n×(2p+1)

size of the AS2 structure. While in linear-scan, the search area data are fed into the

PE array line after line as they come from the camera, in block-scan pixels within

the search area are traversed column by column.

For the AB2 architecture, each PE contains an arithmetic unit and registers for

previous and the current frame. Reference frame data is fed into the array of PEs

though the reference data input and the previous frame through the search area

data1 and search area data2 inputs as in figure 5.7. Additional 2p rows of registers
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Figure 5.6: AS2 quadratic structure.

were added on the upper and lower sides of the array of PEs. This permits moving

the previous frame data upwards, downwards and to the left until the whole search

is performed. For a proper data flow through the array structure, “cut sets” are

introduced in the structure of each passive or active processing elements. These are

registers to delay the data being sent to the next processor.

For the AB1 structure, the distributed registers for data exchange between PEs

are replaced by a compact memory block. The advantage of linear array structures

is mainly their low hardware occupancy and reduced memory access: only about

half of the total number of transistors are needed. One memory block with n rows

and (n + p) columns is required for storing the previous frame and two (n × n)

memory blocks are needed for the reference block. Pointer control for read and
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write operations are necessary. The transport and accumulation along the rows

is simplified in this case but all of these sums must be further accumulated (Acc)

during n cycles as can be seen in figure 5.8.

Hsieh’s flexible array

Hsieh [40] proposed an AB2 type architecture which permits a flexible adaptation

to the dimensional change of the search area and reduces memory throughput. Each

PE stores the reference pixel, and shifts the search area pixel to the right neighbour

and the absolute difference result to the PE below. Figure 5.9 illustrates the data

flow through the array. One search area pixel datum is input at each instant, into

the array, thus shift registers are used to delay the data to feed the other PEs. If the

search area changes, the structure simply can be adapted by changing the number

of shift registers. Compared to Vos quadratic architecture, it reduces the number of

registers from (4× n× p) to (2p− 1)× (n− 1).

Roma and Sousa contribution

Roma and Sousa [75, 76] improved the Vos quadratic architecture by reducing the

number of additional register rows. They also performed an extensive efficiency and
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performance analysis of different systolic architecture. They compared eight systolic

structures proposed in the literature by analysing the number of PEs and the time

cycles.

The main differences between the architecture proposed by Roma and Sousa and

the one proposed by Vos can be understood better by picturing the structure of the

array of PEs and the rearrangement of the register rows like in figure 5.10. The pla-

nar processor that Vos proposed is disposed over a cylindrical structure, doing that,
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the pair of passive registers are superimposed, so that one of two can be eliminated.

This new proposal improves the search area data transfer and avoids dummy clock

cycles between two adjacent rows while reducing the number of registers.

Yang’s linear arrays

When mapping an algorithm into an array of processors, the problem is to access

multiple data to feed all the PEs at the same time. Yang et al. [84, 98] proposed

a solution which consists of local data exchange between PEs. It has two parallel

memory accesses (s1, s2) for the search area and one for the current block (c), see

figure 5.11. Once the data are read from the memory, they are broadcasted to

every PE. Buffers are used to delay data and multiplexors to switch between the

data. For the architecture to be used more efficiently, the size of the search window

must be defined according to the size of the correlation window. Two different

architectures were proposed. The difference between them consists in the way the

data is broadcasted to every PE. In one of them at each step, an exchange of

reference block data between PEs is performed while the search data are fed from

external registers. In the second proposed architecture the search data are exchanged

between PEs while the current block comes from external registers. While in the

first architecture the new result of every accumulation is available at every clock
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cycle, in the second proposed architecture all the results are available at the same

time. The architectures were firstly described for a fixed block size n = 16 resulting

in a search area of 32 × 32 pixels. They are based on 16 PE linear array and can

process one line of candidates in 255 clock cycles. 16 additional time cycles are used

to feed the array. Flexibility consists in the fact that the same hardware containing

16 PEs can be configured by a very simple control signal to process different block

sizes (8 × 8, 16 × 16, 32 × 32) as long as the tracking range is fixed to 16 searches

in one coordinate.

Table 5.1 summarises all the proposed architectures. We can conclude saying

that in the AB1 and AB2 structures the number of PEs depends on the search win-

dow size, making them suitable for applications with small motion between frames.

On the other hand in AS1, AS2 and type 2 it depends on the block size and are

advantageous when larger search areas are required. In most of the architectures

the processing time increases with the search window size, sometimes depending on

the block size, too. We may notice that in the type 2 structure the processing time

only depends on the block size, this makes it appropriate for applications where

time is critical. Figure 5.12 shows a visual comparison in terms of performance by

plotting the processing time and the number of PE corresponding to every structure

analysed above. The work in this thesis focuses on linear array, as these structures

are more appropriate for our application.
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Architecture No. of PEs Time Cycles

Single PE 1 n2 × (2p+ 1)2

AB1 n n× (2p+ 1)× (2p+ n)

AB2 n× n (2p+ 1)× (2p+ n)

AS1 (2p+ 1) n× (2p+ 1)× (2p+ n)

AS2 n× (2p+ 1) n× (2p+ 1)

Vos n× n (2p+ 1)2

Roma n× n (2p+ 1)2

Hsieh n× n (2p+ n)2

TypeII (2p+ 1)× (2p+ 1) n2

Yang 2p+ 1 n× (2p+ 1)2

Table 5.1: Performance and resources corresponding to the proposed linear and quadratic
arrays for FSBMA.
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Figure 5.12: Comparison of the performance of linear and quadratic architectures for
motion estimation based on FSBMA. a)Circuit Area. b)Processing Time.

5.3 Choosing an appropriate architecture when

the complexity of the matching criteria in-

creases

The complexity of the motion estimation algorithm presented in chapter 4 results in

some restriction for choosing the most appropriate array architecture. For instance,

a quadratic array is suitable only in the case of a simple PE architecture. When a

lot of computation must be done in parallel it can use up a lot of resources, which

are sometimes not available. This is the reason why we restrict our analysis to lin-

ear arrays. One solution for reducing the latency introduced by both AB1 and AS1

structures is to increase the memory bandwidth. When every PE is supplied with

data coming from an external memory, idle cycles can be avoided. However, when

accessing external memory is a constraint, the latency can also be reduced by con-

trolling the data-flow through the array using registers and multiplexors. Vos [92],

Roma [76] and Hsieh [40] applied this strategy in order to make the AB2 quadratic

architecture more efficient and Yang [97] applied it to improve the performance of

linear arrays.

Our approach estimates the motion of certain point from the image, this reduces

the number of operations but increases the complexity of memory addressing. The

complexity of the chosen motion estimation algorithm determine the restriction of
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Architecture Time Cycles No. of PE No. of Mem. Access

AB1 n× (2p+ 1)× (2p+ n) n 2

AB1 reduced n× (2p+ 1)2 n n+ 1

AS1 n× (2p+ 1)× (2p+ n) 2p+ 1 2

AS reduced n2 × (2p+ 1) 2p+ 1 (2p+ 1) + 1

Yang arch. n× (2p+ 1)2 (2p+ 1) 3

Table 5.2: Linear arrays: performance and resources.

the output bandwidth, while a post processing calculus must be performed. The aim

is to design a motion estimation architecture that reduces the input/output band-

width, maintains the hardware efficiency and reduces the execution time. Reducing

the memory throughput can be solved by adding many registers for the search area

and also for reference block. Vos proposed a solution to reduce the space occupied

in the device by replacing the registers with memory blocks, this reduces half of

the silicon occupancy. In the new FPGA technology the available embedded mem-

ory blocks can save a lot of logic elements. A part from low memory bandwidth,

the solution proposed by Yang [97] also reduces the latency, being the most effi-

cient out of the proposed linear arrays. But as any other solution, it also has some

small inconveniences. One is that, for intensive hardware utilisation the restriction

(2p + 1) = n must be fulfilled. Appendix A shows the data-flow of a linear array

based on Yang’s proposal.

Table 5.2 analyses the proposed structures for performance vs. resources point

of view. AB1 reduced and AS1 reduced correspond to structures similar to AB1

and AS1 but in this case each PE is fed from a separate memory source, therefore

reducing the number of time cycles but increasing the memory throughput. In

chapter 6 the motion estimation algorithm based on normalised correlation will be

mapped into a linear array of PEs. Three linear structured presented above will be

analysed in the context of our algorithm.



Chapter 6

Proposal of a VLSI Architecture

for Motion Estimation Based on

MNCC Correlation Criteria

6.1 Introduction

Our aim in the present work is to develop efficient hardware implementations, start-

ing from a high-level description and analysis of the matching algorithm. In order to

enable hardware implementation, a number of transformations must be performed

in the algorithms. The matching algorithm involves applying region operators over

a whole image. These types of algorithm display data-parallelism which are well

suited to implementation in a regular architecture. The implementation aims to

detect pairs of point-matchings at video rate. Parallel execution of tasks can be

used in order to achieve such performance.

Computational complexity affects the level of parallelism, while several multipli-

cations and accumulations must be performed at the same time. When considering

the MNCC correlation criteria from chapter 4, square root and division operations

may also be performed. This is also an influential factor when choosing the adequate

architecture.

Silicon area must be used optimally to implement the computation so that data

storage and control parts are minimised. For data storage internal or external mem-

91
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ory can be used. In FPGA devices, embedded memory blocks can be used for the

storage of structures such as FIFOs. An image consists of a large amount of data,

therefore it is adequate to store it in an external memory. The frequency used for in-

terfacing with the external memory has an important impact on the total execution

time of the algorithm. Therefore architecture must be carefully chosen to reduce the

memory throughput. Savings of circuit area can also be achieved by using external

controllers to communicate with the host computer.

Flexibility needs to be an important characteristic of our implementation, when

some parameters of the algorithm are changed, the newly generated hardware must

be valid. The architecture must be designed in such a way to permit changing of

these parameters. Flexibility can refer either to the architecture or to the imple-

mentation. The architecture must be able to support variation of the algorithm’s

parameters such as image size, number of corners, correlation and search window

size, etc. Indeed, it implies parametrisation of the implementation. Choosing an

adequate description language allows migration of the design to different hardware

platforms.

Complexity reduction refers to avoiding floating-point units which are area ex-

pensive. Both corner detection and matching algorithms make use of the division

operation. Transformation of these algorithms must be performed in such a way

that the computation involves only fixed-point arithmetic.

As we see in chapter 4, motion estimation is just an initial step in building an

underwater photo-mosaic which will be further used in a robot localisation system.

By partitioning the motion estimation algorithm, computational-intensive parts can

be accelerated by means of hardware implementation, while decision tasks can be

executed on the host processor.

6.2 Proposal of hardware implementation of the

matching algorithm

The goal of the algorithm is to detect point correspondences between the current

image acquired by the camera and a previous reference image. Underwater images

are difficult to process due to the medium transmission properties and non-uniform

illumination [25]. These aspects can provoke undesirable bad correspondences (out-
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Figure 6.1: Matching algorithm: block diagram.

liers) that can introduce errors in the motion estimation process. For this reason

MNCC correlation proved to be a very suitable method reducing the influence of

non-uniform illumination [100, 11]. Priori to a full hardware realisation, the algo-

rithm was analysed and discussed in chapter 4 of this thesis.

In order to compute the correspondences between the current image and the

reference image the following steps are performed:

1. Store the current image into an external memory;

2. Receive the reference image from the host and store it into an external memory;

3. Detect corners as the incoming pixels are input from the camera;

4. Address the data-pixel corresponding to every selected corner;

5. Find correspondences of points from the current image in the reference image;

6. Send the correspondences and the current image to the host.

Figure 6.1 shows the block diagram of the implementation of the algorithm.

6.2.1 Corner detector: implementation details

The first step in solving the correspondence problem is the detection of a set of

well-contrasted points in the current image. The incoming pixel is stored in an
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external memory so that a memory address is associated to every pixel. The goal

of the real-time corner detector is to provide the memory address corresponding

to N interest points from the image. The corner detector algorithm proposed by

Benedetti et al. [4] is chosen for the computation of the “cornerness” value. The

steps of the algorithm are the following:

• Compute the image gradient components Ix and Iy by convolving the current

image with the 3× 3 Prewitt masks from equation (6.1).

H =



−1 0 1

−1 0 1

−1 0 1


V =



−1 −1 −1
0 0 0

1 1 1


 (6.1)

• Compute a, b and c from matrix G (see equation (4.8) from chapter 4, for

every pixel in an m × m window. The window size was experimentally set

up to 3× 3 pixels, as shown in equation (6.2). MATLABr tests showed that

larger windows provide quite similar results.

a =
m∑
k=1

(Ikx)
2

b =
m∑
k=1

(Ikx · Iky )

c =
m∑
k=1

(Iky )
2

(6.2)

• Compute Pλt from equation (6.3).

Pλt(i, j) = (a− λt)(c− λt)− b2 (6.3)

• Select every pixel that satisfies the condition from equation (6.4)

Pλt(i, j) > 0 and a(i, j) > λt (6.4)

where λt has been experimentally chosen to be equal to 1000.

• Perform non-maximal suppression to replace each pixel with the maximum

value within a 3× 3 window.
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Figure 6.2: Corner detector: Data-flow.
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Figure 6.3: Window generator.

Figure 6.2 shows the data-flow corresponding to every step in the computation

of Pλt . The window generator delays the incoming pixels and has as a result a 3× 3

size image patch. Two FIFOs and nine buffers are used to delay the pixels as shown

in figure 6.3. This method has often been used in the implementation of image

convolution [5].

In order to retain the pixels with N maximum values for Pλt , a pipeline of N

Sort-Processing Elements (SPE) is proposed. Every SPE compares the input pixel

value with the one stored in its register and retains the biggest one (see figure 6.4).

An external signal can empty the SPEs buffers at the end of each frame. For large

bit representation of Pλt value, the array of processing elements can “eat up” a large

amount of resources.

A compromise must be established between the number of interest points to

be retained and the logic to be used up. Even in software, sorting algorithms are

one of the most time and resource-consuming algorithms. While every incoming
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Figure 6.4: Sorting Processing Element: internal structure.

pixel must be compared with the N previous pixels, many comparisons and re-

allocation operations must be performed in one cycle. One solution is to set up an

off-line threshold and perform the matching algorithm for an unknown number of

corners. The drawback of this method is that we cannot determine the complexity

of the matching algorithm as we do not know the exact number of operations to be

performed.

Another solution can be to reduce the number of comparisons. This new strategy

is based on a time-sharing procedure. Two comparisons could be performed in one

cycle. Thus, one SPE must store the two previous pixel values. The data must be

stored in additional registers in such way that when an insertion is performed, the

replaced datum will not be lost. This approach reduces the number of SPEs to N/2

but increases the complexity of the data-flow control.

Figure 6.5 shows the block diagram corresponding to each step in the corner

detection.

Number of bits analysis

Fine-grained implementation offers us the possibility of number of bits optimisation.

If the input image signal is sampled using “signal width” number of bits, table 6.1

shows the bit-representation of the result corresponding to each step. The typical

A/D conversion corresponds to an 8 bit representation of the pixel intensity value.

This is the common bit-representation for gray-scale images. The maximum number

of bits of the cornerness value corresponding to this pixel codification, is 48 bits. Of

course, this size is invariant to image size and number of corners to be detected and

only depends on the bit-representation of the pixel intensity value.
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Figure 6.5: Corner detector: block diagram.

Steps Number of bits Signal width= 8
Prewitt 2× signal width+ 4 20
Sum (2× signal width+ 4) + 4 24
Pλt 2× ((2× signal width+ 4) + 4) 48

Table 6.1: Bit Size depending on the input signal size.

MATLABr tests performed using either synthetic image or several underwater

images, proved that the maximum value for number of bits of the cornerness value

lies between 24 and 34 bits (see table 6.2). Reducing the number of bits from 48 to

34 saves a considerable amount of resources (about 3000 LEs).

6.2.2 MNCC correlation criteria: implementation details

Once interest points are detected in the current image, the algorithm searches for

correspondences in the reference image. The local gray-level correlation algorithm

provides, for each interest point from the current image, its correspondent match

in the reference image. The correlation score is defined as the covariance between

the grey levels of a region defined by the correlation window in the current image

and the same region defined in the reference image. The algorithm searches for all
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Image Max. value of C Max. number of bits

11414000000 34 bits

272192706 29 bits

641717010 30 bits

15100401 24 bits

926914406 30 bits

314415171 29 bits

Table 6.2: Bit size corresponding to maximum cornerness value for different image sam-
ples: synthetic, indoor and underwater images.

candidate windows inside the correspondent search window. The MNCC criteria C,

which ensures that the result is not altered in presence of non-uniform illumination

is recalled in equation (6.5).

C =

α∑
i=−α

α∑
j=−α

(Ic(xc + i, yc + j)− Ic(xc, yc))(Ir(xr + i, yr + j)− Ir(xr, yr))

(2α + 1)2
√
σ2(Ic) · σ2(Ir)

(6.5)

where α = (n − 1)/2; n × n is the size of the correlation window. Ic(xc, yc) and

Ir(xr, yr) are the average intensity and σ2(·) defines the variance of both correlation

windows. The algorithm compares the correlation score of each pixel within the

search window and selects the highest one.
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FSBMA’s survey Our approach
SAD criteria MNCC criteria

Reference block Correlation window
Search area Search window

Reference block size= n× n Correlation window size= (2α+ 1)× (2α+ 1)
Search area size= (2p+ n)× (2p+ n) Search window size= (2p+ 1)× (2p+ 1)

Table 6.3: Corresponding notation and window sizes for our approach.

In chapter 4 we analysed a number of specialised architectures for motion esti-

mation. For the sake of clarity, table 6.3 shows the corresponding terminology and

parameter values used in our approach.

The first step in deriving a VLSI architecture for the given algorithm is to break

down the C criteria from equation (6.5) into simple operations which can be executed

in parallel. We can observe that there are five sums to be computed in equation (6.5):

sum1, sum2, sum3, sum4 and sum5.

sum1 =
α∑

i=−α

α∑
j=−α

Ic(xc + i, yc + j)

sum2 =
α∑

i=−α

α∑
j=−α

Ic(xc + i, yc + j)2

sum3 =
α∑

i=−α

α∑
j=−α

Ic(xc + i, yc + j) · Ir(xr + i, yr + j)

sum4 =
α∑

i=−α

α∑
j=−α

Ir(xr + i, yr + j)2

sum5 =
α∑

i=−α

α∑
j=−α

Ir(xr + i, yr + j)

(6.6)

Then, equation (6.5) becomes:

C =
sum3 − 1

(2α+1)2
· sum1 · sum5

1
(2α+1)2

·
√

[(2α + 1)2 · sum2 − sum2
1] · [(2α + 1)2 · sum4 − sum2

5]
(6.7)

This breaking down simplifies the parallel implementation while each Processing

Element (PE) of the architecture can execute in parallel the computation of these

five sums. A Post Processing Element (PPE) performs the remaining computation.

Finding correspondences is the most time consuming part of our algorithm. Let

us consider N interest points detected in the current image. For every interest point,

we are searching for [(2p+ 1)− 2α]2 possible correspondences, where p = (q − 1)/2
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and q × q is the size of the search window. Considering the breaking down of the

correlation criteria into five sums as described in equation (6.6), two accumulations

and three multiplication-accumulations have to be computed for every pixel from

the correlation window. Grouping these sums by means of correlation criteria from

equation (6.5), twelve additional computation steps for every candidate block are

required. For a frame-rate fr, the complexity of the correspondence problem be-

comes:

Op = [(3 ∗ 2 + 2)× (2α + 1)2 + 12]× [(2p+ 1)− 2α]2 ×Np × fr (6.8)

Therefore, for Np = 100, α = 7, p = 14, at a frame-rate of 25 frames per second we

have Op ' 2036 GOPS (Giga Operations Per Second). Our approach tries to speed

up the execution by means of a parallelization of the correspondence problem.

6.2.3 Array of processing elements

VLSI architectures for motion estimation presented in chapter 5 can be adapted

easily to our algorithm. The complexity of the processing element made us decide

to set apart the quadratic arrays, so that only linear arrays are analysed in this

proposal. Both AB1 and AS1 structures are analysed. Figure 6.6 represents the

AB1-type and AS1-type architectures adapted to our design. The architectures

correspond to the experimental correlation window size of 3× 3 and search window

size of 7× 7. When comparing them, it can be stated that AS1 strategy reduces the

number of time cycles but increases the number of processing elements. On the other

hand, AB1-type architecture is suitable for applications where large motion vectors

must be estimated, implying large search areas. When the application requires a

faster processing speed, AS1-type architecture can achieve higher performance than

AB1-type for small search window sizes.

Our approach is based on the idea introduced by Yang et al. [98] which provides

an important contribution towards reducing the memory throughput compared with

both AB1 and AS1 array structures. Figure 6.7 shows this strategy applied to our

algorithm. Another advantage of this architecture is that it also reduces the number

of time-cycles necessary for the computation of the correlation criteria. There is only

a one cycle delay between the results corresponding to each candidate in a line, while

in an AB1 structure there is a delay of (n−1) cycles. The drawback of this approach
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Figure 6.6: Linear architectures to implement normalised correlation algorithm. a) AB1-
type; b) AS1-type.

is that it processes one column less than the others, so that “dummy” data should

be input into the array. This can be easily understood by drawing the data-flow.

For the maximum efficiency of the architecture, the size of the search window must

depend on the size of the correlation window by the relation p = 2α. Table 6.4

shows the data-flow corresponding to one line of candidates for the experimental

window sizes: 3 × 3 correlation window and 7 × 7 search window. This proposal

is an efficient architecture, due to its low memory throughput, small delay and the

fact that the result of the PE’s array can easily be pipelined into a PPE without

extra control requirements. Therefore, we have chosen this array structure for our

further implementation.

6.2.4 Processing element

A processing element may execute two accumulations and three multiply accumula-

tions in parallel. Figure 6.8 presents the internal structure of one PE in both cases:

AB1-type and AS1-type (Yang’s architecture). In AB1 structure the PE performs

three multiplications and five additions as the accumulation is done in a separate

block at the end of the PE’s array. On the other hand, in AS1 structure the accu-

mulations are done in the PE. This increases the size of the PE but simplifies the

control, while each PE has the same structure.
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Figure 6.7: Proposal of a VLSI architecture to implement normalised cross-correlation.
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Figure 6.8: Processing element: internal structure. a) AB1-type; b) AS1-type(Yang).

It is obvious that a single AB1-type PE requires less silicon area than AS1-type

PE, where several multiply-accumulations must be performed in parallel, at the

price of increasing the control complexity and the memory throughput. This helps

the designer to choose between a solution to saves hardware and a second choice to

reduce memory access.

PE: analysis of the number of bits

Every PE has five outputs corresponding to sum1, sum2, sum3, sum4 and sum5.

The number of bits of sum1 is equal to the number of bits of sum5 and the number



CHAPTER 6. VLSI ARCHITECTURE FOR MOTION ESTIMATION 103

��� ��� ���
	 ��� ��� ����� ��� �����
��� ��� � �
	���� ��� ������ ��� ���
	���� ��� ������ ��� ����
��� ��� � �
	���� ��� ������ ��� � �
	���� ��� ������ ��� ���
	���� ��� ������ � � ������ ��� ������ ��� ����
��� � � ���
	���� � � ����� ��� � �
	���� ��� � ���� ��� � �
	���� ��� � ���� � � ����� ��� � ���� ��� � ��
��� � � � �
	���� � � ������ � � ���
	���� � � ������ ��� � �
	���� ��� � ���� � � ������ ��� � ���� ��� � ��
��� � � � �
	���� � � ������ � � � �
	���� � � ������ � � ���
	���� � � ������ � � ������ � � ������ � � ����

��� � � ���
	���� � � ����� � � � �
	���� � � � ���� � � � �
	���� � � � ���� � � ����� � � � ���� � � � �

��� � � � �
	���� � � ������ � � ���
	���� � � ������ � � � �
	���� � � � ���� � � ������ � � � ���� � � � ��

��� � � � �
	���� � � ������ � � � �
	���� � � ������ � � ���
	���� � � ������ � � ������ � � ����

��� � � � �
	���� � � � ���� � � � �
	���� � � � ���� � � � ���� � � � ��
��� � � � �
	���� � � � ���� � � � ���� � � � ��

��� ���� ���� ��
�� ��� �  "!

Correlation window data flow

Dummy dada

Multiplexer switched to r2��� ��� ���

��� � � ���

��� ��� ���
	 ��� ��� ����� ��� �����
��� ��� � �
	���� ��� ������ ��� ���
	���� ��� ������ ��� ����
��� ��� � �
	���� ��� ������ ��� � �
	���� ��� ������ ��� ���
	���� ��� ������ � � ������ ��� ������ ��� ����
��� � � ���
	���� � � ����� ��� � �
	���� ��� � ���� ��� � �
	���� ��� � ���� � � ����� ��� � ���� ��� � ��
��� � � � �
	���� � � ������ � � ���
	���� � � ������ ��� � �
	���� ��� � ���� � � ������ ��� � ���� ��� � ��
��� � � � �
	���� � � ������ � � � �
	���� � � ������ � � ���
	���� � � ������ � � ������ � � ������ � � ����

��� � � ���
	���� � � ����� � � � �
	���� � � � ���� � � � �
	���� � � � ���� � � ����� � � � ���� � � � �

��� � � � �
	���� � � ������ � � ���
	���� � � ������ � � � �
	���� � � � ���� � � ������ � � � ���� � � � ��

��� � � � �
	���� � � ������ � � � �
	���� � � ������ � � ���
	���� � � ������ � � ������ � � ����

��� � � � �
	���� � � � ���� � � � �
	���� � � � ���� � � � ���� � � � ��
��� � � � �
	���� � � � ���� � � � ���� � � � ��

��� ���� ���� ��
�� ��� �  "!

Correlation window data flow

Dummy dada

Multiplexer switched to r2��� ��� ���

��� � � ���

Table 6.4: Data-flow for the proposed architecture.

of bits of sum2 is equal to the number of bits of sum3 and sum4. In the case

of AB1, one PE applies the arithmetic operators to the outputs of the previous

PE, therefore the number of bits of the inputs and the outputs of each PE vary

through the array of the processing elements. On the other hand, in AS1-type

every PE has the same structure and therefore, the corresponding results have the

same number of bits. While three accumulation of pixels from an image patch is

performed by every PE, the resulting number of bits depends on the correlation

window size ((2α+ 1)× (2α+ 1)) and the bit-representation of the data-pixel. The

way to compute the number of bits in the case of accumulation (bacc) and multiply-

accumulation (bmacc) when the data-pixel is represented using 8 bits, is by applying

the log2 function and rounding the value to the nearest integer towards infinity

(see equation (6.10). Table 6.5 shows, for several correlation window sizes, the

corresponding number of bits.

bacc = dlog2(255× (2α + 1)× (2α + 1))e
bm acc = dlog2(255× 255× (2α + 1)× (2α + 1))e

(6.9)



104 CHAPTER 6. VLSI ARCHITECTURE FOR MOTION ESTIMATION

Correlation window sum1, sum5 sum2, sum3, sum4

7× 7 14 bits 22 bits
9× 9 15 bits 23 bits

11× 11 15 bits 23 bits
13× 13 16 bits 24 bits
15× 15 16 bits 24 bits

Table 6.5: Number of bits corresponding to different correlation windows.
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Figure 6.9: PPE: internal structure.

6.2.5 Post processing element

The Post Processing Element (PPE) is one of the critical parts of our design. The

results from the array of PEs are pipelined into the PPE. The PPE computes the

correlation criteria defined in equation (6.7). Seven multiplications, three substrac-

tion, one 64-bit square root and one 32-bit division have to be implemented in

hardware. Parallel implementation of these operations is performed. The internal

structure of the PPE is shown in figure 6.9. Square root (SQRT) is the most time

and silicon consuming operation. This arithmetic operation is important in many

image processing applications. Solutions such as Look Up Tables tried to replace

this operation in some early image processing applications [30]. However, the flexi-

bility and the performance of recent reconfigurable devices allow the implementation

of efficient arithmetic operations for individual applications. In general, to calculate

Q =
√
D, an approximate value can be obtained through iteration. Methods like

Newton-Raphson and a non-restoring square root algorithms were adopted by many

authors for VLSI implementation of SQRT [60, 61, 83, 58]. Our implementation is
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based on the non-restoring algorithm proposed by Li [60]. The advantage of this

method is the area and time efficiency of the implementation which uses only a sin-

gle adder and subtracter for the iterative operations and generates an exact result

value.

Let us assume that we want to compute a square root of 64 bits unsigned rad-

icand D = D63D62D61...D1D0. The resulting quotient can be represented using 32

bits: Q = Q31Q30Q29...Q1Q0 and the reminder will be R = R32R31R30...R1R0. 32

iterations should be performed. The steps of the non-restoring SQRT algorithm are

as follows:

1. Set Q31 = 0, R32 = 0 and then iterate from k = 31 to 0

2. If rk+1 ≥ 0 then rk = rk+1D2k+1D2k − qk+101

else rk = rk+1D2k+1D2k + qk+111

3. If rk+1 ≥ 0 then qk = qk+11(i.e., Qk = 1)

else qk = qk+10(i.e., Qk = 0)

4. Repeat steps 2 and 3 until k = 0.

If rk+1 < 0 then r0 = r0 + q01

The result of the non-restoring algorithm is given by the integer values of the quo-

tient Q and the reminder R. Tests using MATLABr proved that neglecting the

remainder, the results are similar.

Division is the last operation performed by the PPE computational block. As in

the square root algorithm, the hardware implementation of the division provides a

quotient and a remainder. The floating point division gives values between [−1, 1].
In order to simplify the implementation, the numerator is shifted 20 bits to the

left and the remainder of the division is ignored. Tests with real underwater image

sequences proved that this transformation guarantees the right precision for the

good functionality of the matching algorithm. Of course it affects the cost of the

implementation, doubling the circuit area used by this operator.

The quotient of the division operation is correlation measurement (C). Maximi-

sation of the C corresponding to each candidate is performed in the last block (M

from figures 6.6 and 6.7). The “good match” corresponds to the candidate with the



106 CHAPTER 6. VLSI ARCHITECTURE FOR MOTION ESTIMATION

Correlation window bM1
bM2

bM3
bSQRT bDIV

7× 7 28 bits 28 bits 56 bits 28 bits 48 bits
9× 9 29 bits 29 bits 58 bits 29 bits 49 bits

11× 11 30 bits 30 bits 60 bits 30 bits 50 bits
13× 13 31 bits 31 bits 62 bits 31 bits 51 bits
15× 15 32 bits 32 bits 64 bits 32 bits 52 bits

Table 6.6: Number of bits corresponding to the result of the arithmetic operations applied
to different correlation window sizes.

maximum value of C. The result of the algorithm is the address of the pixel from

the reference image characterised by the maximum value for the correlation score.

PPE: analysis of the number of bits

The number of bits in PPE depends on the results of the array of PEs. Depending

on the number of bits three types of multiplication can be considered: M1, M2 and

M3, one square root (SQRT) operation and one division (DIV):

bM1
= dlog2((255× (2α + 1)× (2α + 1)× (255× (2α + 1)× (2α + 1))e

bM2
= dlog2((255× 255× (2α + 1)× (2α + 1))× ((2α + 1)× (2α + 1))e

bM3
= bM1

+ bM2

bSQRT = bM1
/2

bDIV = bSQRT + 20

(6.10)

Table 6.5 shows, for several correlation window sizes, the number of bits correspond-

ing to every operation in PPE.

6.2.6 Memory access

Our approach uses two external memories for storing the current frame and the

previous frame. While the incoming pixel is stored in one memory, the data corre-

sponding to the previous frame is processed by the array of PEs. In this way the

system can process every frame. In order to be accessed at the same time as the

current image, the reference image is stored in a separate external memory.

The corner detector provides the memory addresses corresponding to N interest
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Figure 6.10: Data-flow: current and reference image.

points. The matching algorithm requires image patches surrounding every interest

point. The correlation window characterises the point from the current image and

the search window is a searching area from the reference image. The addresses

corresponding to the data-pixel from both, correlation window and search window

can be easily computed from the memory address of the interest point. Let us

consider point P selected as a corner. cAP is the corresponding address from the

memory storing the current image and rAP is the corresponding address from the

memory storing the reference image. If the correlation window has a size of (2α +

1) × (2α + 1), the search window size is (2p + 1) × (2p + 1) and line size is the

number of pixels of an image-line, then the memory address corresponding to an

arbitrary point AM can be obtained as shown in equation (6.11).

cAM =c AP ∓ k(cline size+ 1), where k ∈ [−α, α]
rAM =r AP ∓ j(rline size+ 1), where r ∈ [−p, p]

(6.11)

In our proposed structure for the array of PEs, data-pixel flows into the array in a

line-scan mode as it is shown in table 6.4. Line-scan mode makes addressing control

easier, because consecutive locations are read in a line. Two reference data-pixels

must be accessed in parallel, therefore a second external memory is used to store

the reference image. Figure 6.10 represents the corresponding data-flow to feed the

array of PEs.
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6.3 Results

6.3.1 Prototyping platforms and CAD tools

Testing and validation of the design proposed in this chapter were carried out

through the implementation of the proposed methods for motion estimation on a

target reconfigurable platform based on FPGA device. This was accomplished by

describing the algorithm in VHDL and then synthesising it for the FPGA device.

Prior to any hardware design we implemented a MATLABr software version

corresponding to every step of the algorithm. MATLABr is a tool which facili-

tates procedural routines to operate on images represented as a matrix data. The

software implementation of the algorithms has two important roles: to choose the

most adequate algorithm for our application and to provide benchmark results for

hardware implementation.

The application was targeted for FPGA devices for many reasons. One of the

goals of this thesis is to propose a systolic architecture for motion estimation using

matching criteria more robust than SAD criteria. FPGAs can be considered for

high performance DSP systems. On the other hand, nowadays FPGA devices offer

very attractive hardware facilities: great I/O pin-count, embedded memory blocks,

large logic area, high clock speed and software and hardware embedded processors.

Advanced software CAD tools are available for assisting every design stage.

The VHDL language was chosen for hardware design, foremost because of famil-

iarity but also due to its wide supporting range. Parameterisable VHDL blocks were

implemented allowing the application parameters to be changed. Modularity of the

design makes possible the reuse of parts of it for other applications. The ModelSimr

simulation tool was used for design verification together with Altera’s QUARTUSr

II design software. QUARTUSr II is a CAD design tool which can assist each step in

the design-flow and provide an extensive analysis of timing and resources utilisation

(embedded memory blocks, logic elements and dedicated multipliers).

Altera’s Statix family was chosen as hardware target, mostly because its acces-

sibility and low cost. Important characteristics such as embedded multipliers and

memory blocks were also an influential factor. We benefit from the Nios Devel-

opment Kit Stratix 10K Edition (figure 6.11 (a)) and MJL Nios Development Kit

Stratix 25K (figure 6.11 (b)) hardware platforms to synthesise and test the algo-
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(a) (b)

Figure 6.11: (a) Altera Nios Development Kit Stratix 10k edition (b) MJL Nios Devel-
opment Kit Stratix 25K

.

rithm.

6.3.2 Practical considerations for the video signal

In image processing we think of an image as a two-dimensional array of intensity or

colour data. A PAL camera, however, outputs a one-dimensional stream of analog

data. The purpose of an analogue-to-digital (A/D) converter is to convert the video

analogue signal into digital one using a certain sampling frequency. In order to be

able to process image information, we need to know the structure of the video signal

being acquired. An analog video signal consists of a low-voltage signal containing

the intensity information for each line in combination with timing information used

for synchronisation: horizontal and vertical synchronism. Figure 6.12 shows the

characteristics of an analogue video line. The 82% of the analog line signal, equiva-

lent to 52, 48µs, represents active video while rest is used for the synchronism and

other signal information.

When converting to digital signal, the number of pixels in a line is defined by

the sampling frequency. In a PAL standard video system, one frame is composed

by 625 lines. The lines of one frame are distributed into two fields: “odd” and

“even”, which means 312, 5 lines per field. Subtracting the vertical synchronism

length, equivalent to 25, 5 lines, 288 active video lines remain. Depending on the

application, the image can be either processed for every frame (odd and even fields)
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64 µs

active videosync.
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52,48 µs

64 µs

active videosync.

Figure 6.12: Analogue video line.

Image Size Sampling Comments

630× 288 12 MHz Large amount of data to be processed.

524× 288 10 MHz Enlarge Image, Distortion.

420× 288 8 MHz Good image size. Close to the 4 : 3 ratio.

210× 144 4 MHz Reduced image size if the application requires.

Table 6.7: Sampling frequencies and corresponding image size processing one field of a
standard interlaced PAL camera.

or we can only process one of the two fields. In the case of underwater mosaicking,

the robot is moving at slow speed therefore, the necessity of processing every field

is not justified.

Sampling at a frequency of 8 MHz we obtain 512 samples per line, 420 active

pixels. Choosing another sampling frequency we can change the number of sampled

pixels per line. Table 6.7 presents some of the possible image sizes. Different image

sizes can be used, depending on the requirements of the application.

From the point of view of hardware implementation, we have two types of con-

straints imposed by the execution time and circuit area. In most of the cases, when

increasing the computation speed, more parallelism is required, that means more

circuit area to be used. When the real-time requirements allow more time to be

spent in solving the computation, silicon can be saved. The figure 6.15 shows how

tasks execution must be distributed along one frame. There is no need for high

parallelism, when available time is not entirely spent.

In our approach we consider an 8 MHz sampling frequency and the corresponding

420× 288 image size. The frame rate of 25 frames per second is equivalent to 0.04
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Figure 6.13: Correct distribution of tasks at frame-rate execution.

Parameters Value
Sampling Frequency 8 MHz
Image Size 420× 288 pixels
Bit-representation 8 bits
Frame-rate 0.04s
Bit-representation 8 bits

Table 6.8: Video signal parameters.

seconds, the time between the acquisition of the first and the last pixel of the frame.

Changing the sampling time or reducing the image size can be carried out when

processing requires more time. Concerning the analogue-to-digital signal conversion,

an 8-bit sampling will be used in our application.

6.3.3 Timing and resources analysis

Timing and resources analysis are important issues when designing the architecture.

Both, the corner detection and matching algorithms were implemented in param-

eterisable VHDL code. VHDL implementation functionality can be tested using

compilation, synthesis and simulation tools for hardware design. Simulation offers

the possibility of off-line testing and validation of the implementation. An efficient

and common method for simulating VHDL code can be done through the use of test

bench code. In our application it consists of simulating the image, the horizontal and

vertical synchronism and the clock signals. The QUARTUSr II tool provides the

possibility of simulating a RAM memory and loading the pixel values of real image

data. The MATLABr was used to generate the image data file. The horizontal and

vertical synchronism were used as control signals to check the end of the line or the

end of the frame.
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Stage Time Accumulated time
Corner Detector 0.170 s
Matching Algorithm 0.370 s 0.540s
Outlier Rejection 0.340 s 0.880 s
Motion Estimation 0.060 s 0.940 s
Mosaic Construction 0.210 s 1.150 s

Table 6.9: Time corresponding to different stages of the mosaicking algorithm performed
off-line using an AMD-K7 1300 MHz processor.

The goal of this work is to accelerate the execution of low-level image processing

tasks of the motion estimation algorithms in order to use them on-line. Table 6.9

shows the timing corresponding to an off-line execution of the algorithm on a gen-

eral purpose processor platform. Our new strategy imposes frame-rate performance

(0.04s) for the execution of the first two stages of the algorithm as described in

table 6.9. In this way, the performance is increased more than 10 times.

Corner detectorion: timing analysis

The delay introduced by the corner detector is very important, since the matching

algorithm needs the memory address of all selected corner instead of their value of

cornerness. Every 3× 3 window generator introduces a latency of two lines and two

pixels. The delay introduced by the computation of the cornerness value is shown in

equation (6.12) and being a function of the image size (Mi×Ni), pixel sampling time

(ts) and the number of time-cycles necessary for the computational blocks illustrated

in figure 6.2: Prewitt (tPr), Sum (tSum), Compute Pλt (tP ) , comparison element

(tCE) and Maximum Suppresion(tMS).

TPλ = [3 · (2 ·Mi + 3) + tPr + tSum + tP + tCE + tMs] · ts (6.12)

Many operations can be done in a single clock cycle while the clock-cycle is

high enough, being equal to the image sampling frequency (4, 8, 10 or 12 MHz).

Synthesising the design for our test device, showed that the internal maximum

frequency which can be used to clock the computations is 87.07 MHz. The dashed

line from figure 6.2 represents the operations that can be executed in a single clock

cycle. Thus, the time spent for computation of the cornerness value corresponding
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Image Size Sampling TPλ Total

629× 288 12 MHz 383.62 µs 396.12 µs

524× 288 10 MHz 308.60 µs 321.10 µs

420× 288 8 MHz 316.75 µs 329.75 µs

210× 144 4 MHz 317.00 µs 330.25 µs

Table 6.10: Cornerness computation time corresponding to different image sizes and
sampling frequencies.

to every pixel becomes:

TPλ = [3 · (2 ·Mi + 3) + 5] · ts (6.13)

The delay introduced by the computation of the cornerness corresponding to

different image sizes is shown in table 6.10. Considering that N additional time-

cycles are introduced by the array of SPEs, the delay introduced by the detection

of N corners is shown in the last column of the table.

Corner detection: analysis of resources

Computation of the cornerness value represented by Pλt from equation (6.4) uses

multiplication, addition and subtraction operations. Every incoming pixel is stored

in a FIFO structure which is implemented using internal memory. The QUARTUSr

II design tool offers us the possibility to synthesise the design for a special device

and analyse the resource requirements. Table 6.11 presents the results of our design

synthesis.

The critical part in the implementation of the corner detection hardware is the

array of SPEs. There are two main factors which affect the cost of the sorting

algorithm: number of corners and number of bits of Pλt . A number of N ∈ [100, 200]

corners can assure an accurate motion estimation. But sorting 200 corners requires

approximately 18000 LEs which is about 72% of the Stratix EP1S25F672FPGA

device used in our experiments. On the other hand when sorting 100 corners the

SPE array occupies approximately 9000 LEs out of 25000 available on our testing

device. An important fraction of the FPGA’s resources is gained by reducing Pλt

bit-representation from 48 to 34 (see table 6.12). The worse case is represented by

the synthetic image from table 6.2 which corresponds to a size of 34 bits. Therefore,
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Resources LE DSP blocks Memory bits

Cornerness computation 1658 22 9352

Total available (EP1S25F672) 25660 80 1944576

Table 6.11: Resources analysis for the computation of Pλt .

Number of bits Nr.of LE
48 9700
45 9100
34 6900
30 6100

Table 6.12: Resources used by the array of SPE corresponding to different bit represen-
tation of the Pλt when selecting 100 corners.

we choose 34 bits to represent the value of Pλt . Our solution propose the selection

of 100 corners represented using 34 bits.

Matching algorithm: timing analysis

The delay introduced by the matching algorithm depends on the correlation window

size ((2α+1)×(2α+1)) and search window size ((2p+1)×(2p+1)). Given N interest

points detected in the current image, the algorithm is searching among [(2p+1)−2α]2
possible correspondences. Figure 6.14 shows the time cycles necessary to search for

the matching of one interest point. When searching for the correct match of one

interest point the accumulated delay depends on the delay introduced by the array

of PEs (TPE) and the delay introduced by the post processing (TPPE). The delay

introduced by the array of PEs is shown in equation (6.14):

TPE = (((2α + 1)(p+ 1)× (2p+ 1− 2α)) + 2α)× fc (6.14)

where fc is the computation frequency. Twelve additional arithmetic operations are

necessary to compute the correlation measurement (see equation (6.7)). Multipli-

cations can be computed in parallel. The square root algorithm requires as many

time-cycles as half of the radicand’s number of bits. The division can also be done

in one cycle, so that the time introduced by the PPE mainly depends on the square

root algorithm. The computation frequency is restricted by the internal maximum
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Figure 6.14: Time-cycles necessary to search for the matching of one interest point.

Corr. window Search window TPE TPPE Total

7× 7 13× 13 23.24 µs 2.05 µs 27.29 µs

9× 9 17× 17 48.64 µs 2.11 µs 50.75 µs

11× 11 21× 21 88.50 µs 2.18 µs 90.97 µs

13× 13 25× 25 145.79 µs 2.24 µs 148.03 µs

15× 15 29× 29 223.67 µs 2.31 µs 225.95 µs

Table 6.13: Delay introduced by the matching algorithm for a clock frequency fc = 15
MHz.

frequency at which the design can be clocked (19.47 MHz). Table 6.13 shows the

corresponding time cycles for different correlation and search window sizes.

Matching algorithm: analysis of resources

Many high cost arithmetic operations, such as multiplication, division or square

root, must be performed. The circuit area used by the implementation of the array

of PEs and the PPE element depends on the correlation window size as it is shown

in table 6.14. Even if the operation are the same, by increasing the correlation

window, more elements have to be accumulated. It increases the bit representation

of the operands, in consequence, the size of the operator.
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Corr. window PE: LE PE: DSP bl. PPE: LE PPE: DSP bl.

7× 7 1032 21 1735 14

9× 9 1243 27 1896 14

11× 11 1461 33 1947 14

13× 13 1815 36 2068 14

15× 15 2454 42 2125 14

Table 6.14: Resource analysis: array of PEs and PPE.

Stage LE DSP blocks Memory bits Time

Corner detection 1658 22 9352 316.75 µs

Array of SPE 6900 0 0 12.50 µs

Array of PE 2454 42 0 223.67 µs

PPE 2125 14 0 2.31 µs

Total 100 points 51.2% 13138 87.5% 78 0.48% 9352 64.9% 25.96 ms

Total available 25660 80 1944576 40.00ms ms

Table 6.15: Resources and timing analysis for our proposal: Image size = 420 × 288;
Number of corners: 100; Correlation window = 15 × 15; Search window = 29 × 29;
Computation frequency fc = 15 MHz.

6.3.4 Resource and timing analysis for our proposed archi-

tecture

Let us consider an image size of 420 × 288. When the sampling frequency is 25

frames per second, the time available for detecting the correspondences between

two images is 40 ms. The goal of our design is to obtain frame-rate performance

while restricting the implementation to the available resources. Table 6.15 shows the

results for every stage of the implementation. The algorithm performs the matching

of 100 points characterised by correlation windows of 15× 15 pixels and looking for

candidates in a search area of 29 × 29 pixels. The device used in our experimental

tests is an FPGA from the Altera’s Stratix family (EP1S25F672).

As the matching algorithm is the most time consuming part, its computation

frequency is the main parameter influencing the final time. The available time is

40ms and, by clocking the computation at 30 MHz, only a third part of this time

is spent for solving the correspondence problem. The rest of the time is spent

establishing communication with the host. It implies getting the reference image

and storing it into the external memories and sending, the pair of point-matching
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Figure 6.15: Task scheduling for solving the correspondence problem.

and the current image. If the system is based on a PCI communication, an image

(120960data − pixels) needs about 3.66 ms when considering PCI frequency of 33

MHz. The system needs to receive the reference image from the host computer and

send the pairs of point-matching and the current image. The available time for these

operations (about 14 ms) is enough to establish the right communication with the

host.

6.4 Summary

This chapter proposes an architecture to accelerate tasks in the vision-based motion

estimation algorithm. The two main parts of the algorithm are: the corner detector

and the matching procedure.

• A real-time implementation for selecting N high-contrasted points from an

image is proposed. As the data enters into the system, it computes the corre-

sponding cornerness value and, at the end of each frame, provides the memory

addresses of the N corners.

• A parallel implementation for the matching algorithm is also proposed. The

algorithm is broken down into parts which can be computed in parallel in an

array of complex processing elements. The array’s structure is chosen in such
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way as to reduces both the memory throughput and the execution time and

to facilitate the post-processing of the data.

• An analysis of the algorithm’s implementation including tests using real un-

derwater images has been performed to select the optimal design.



Chapter 7

Conclusions and Future Work

7.1 Summary

The position and orientation of an underwater robot can be calculated by integrating

the apparent motion of the images acquired by a down-looking camera carried by

the robot. To estimate this motion, the images taken by the camera are processed,

and a new composite image –known as photo-mosaic– can be created.

We have presented an approach for solving the correspondence problem in un-

derwater imaging. The solution allows real-time computation of matched pairs of

points between images.

The apparent motion of a camera mounted on an underwater vehicle can be esti-

mated by describing the differences between successive frames of an image sequence.

These differences can be found by correlating features extracted from the image.

Matching algorithms are used to correlate these features. However, searching for

correspondences is a time-consuming and error-prone process. Lack of well-defined

contours caused by blurring of the elements of the image, as well as non-uniform il-

lumination when using artificial light make underwater scenes much more difficult to

be processed than normal images. Therefore, methods frequently used in standard

image processing must be modified and adapted to these particular conditions.

The correspondence problem is one of these problems we analysed in this thesis.

Intensity-based criteria such as sum of absolute differences (SAD) or sum of squared

differences (SSD) have often been used to solve the correspondence problem. Exper-

119
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iments using real underwater image sequences proved that more complex methods

such as mean normalised cross-correlation (MNCC) provide much better results.

Even so, when dealing with more difficult conditions such as rotation or scaling mo-

tions or moving objects (fishes, algaes, etc.) the presence of “bad-correlated” points

(known as outliers) was detected. Texture information proved to be a rich source

of information for features characterisation.

In this thesis we proposed a technique based on the exploitation of gray level

information complemented with texture cues to eliminate bad-correlated points from

the matching algorithm presented in chapter ??. This has proved to be a robust

method which can easily be applied to reject outliers. When compared to the the

existing probabilistic methods, such as LMedS or RANSAC, our new approach does

not need any forehand estimation of either fundamental matrix, in the case of a 3D

scene, or homography in the case of a planar scene.

Finding matching points from a pair of images involves low-level and intermediate-

level image processing tasks such as feature detection and correlation algorithms.

These tasks are characterised by quite simple and repetitive operations applied to a

large amount of data. In order to cope with the needs of a real application, powerful

systems are required to perform this data-intensive operations in real-time. Con-

sidering their very attractive performance combined with a high-level of flexibility,

reconfigurable devices, including Field Programmable Gate Arrays (FPGA), bring

a new dimension to real-time image processing. A review of several existing FPGA-

based image processing systems has been performed in chapter 3. Characteristics of

FPGA devices such as reconfigurability, high input/output throughput or possibil-

ity of low-level configuration opened many perspectives to the research community.

The state of the art in this field includes multiple FPGA systems, FPGA and mi-

croprocessor architectures, run-time reconfigurable systems, co-design approach and

evolvable hardware. Advances in VLSI technology and design tools have had a great

impact on the rapid evolution of reconfigurable devices based systems. Applications

which required several FPGAs few years ago, may occupy only a small circuit area

in the new devices. Integration of embedded multipliers, memory blocks and even

processors offers new possibilities for algorithm’s implementation.

A great research effort has been carried out to develop efficient architectures to

make possible real-time execution and single chip implementation to solve the cor-

respondence problem. Chapter 5 carries out an analysis and comparison of systolic
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architecture for matching algorithms. These architectures have been widely applied

in video coding applications. Applying concepts from this field, this thesis proposed

a new specialised architecture for a matching algorithm taking into consideration a

more complex criteria which proved to give satisfactory results in underwater imag-

ing. The architecture has been tested on reconfigurable platforms (see chapter 6).

Available design tools made possible an extensive analysis of resources and perfor-

mance of our design. A parameterisable implementation of the algorithm allows the

same architecture model to be applied to different image sizes, number of features

to be selected and different parameters of correlation algorithm.

7.2 Contribution of this research

Two different research directions can be distinguished in this thesis, both with the

same goal: to improve methods for motion estimation in the difficult conditions we

face in underwater imaging. One contribution has been done in the algorithmic part

and another one in the implementation of the algorithm:

a) We have proposed a method based on texture characterisation of points to reject

outliers to solve the image correspondence problem;

b) A comparative study of the state-of-the-art of VLSI architectures for matching

algorithms has been carried out;

c) We have proposed a VLSI architecture for the implementation of a feature-based

matching algorithm. The mean absolute cross-correlation is used to correspon-

dence problem while it has been proved it works much better than the other

criteria in underwater imaging.

7.3 Future work

Since the use of underwater robots for the exploration of the submerged environment,

underwater imaging is a relatively new subject. This thesis has opened several

possible new areas for further investigation and research. The main topics for future

work are described below.
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• One of the possible further works is the realisation in hardware of the proposed

texture based algorithm. Applying texture operator is a relatively easy task to

be implemented in hardware. While these operators are applied over a large

amount of image-data, parallel execution of the operations can speed up the

computation time. The only limitation till now was the size of available recon-

figurable platforms, but rapidly evolution of VLSI technology and design tools

allows higher and higher integration of algorithms in reconfigurable devices.

• Concerning the integration of the proposed architecture in a real robot system,

an optimal communication with the host processor is a must. It should allow

the host to send the reference image to the hardware accelerator and the

hardware system to send the data (pairs of point-matching) and the current

image to the host. The host may actualise the mosaic image and extract the

reference image to be send to the accelerator.

• A new trend in partitioning an algorithm over hardware an software platforms

is the hardware/software codesign. This concept can be applied at a higher ab-

straction level. A great amount of research is carrying on to develop tools and

concepts to make easier this process. One possible future work consist in ap-

plying such tools for the partitioning the mosaicking algorithm over hardware

and software platforms.
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no. 2652, pp. 255-262, Eds. Springer-Verlag, 2003.
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a Motion Detection Algorithm”, International Conference on Pattern Recog-

nition (ICPR2004), Camridge, UK, August 2004.

• V. Ila, R.Garcia, F.Charot and J. Batlle “FPGA Implementation of a Vision-

Based Motion Estimation Algorithm for an Underwater Robot”, Field Pro-

grammable Logic and its Applications (FPL2004), Antwerp, Belgium, August

2004.

• V. Ila, R. Garcia, J. Batlle “Reconfigurable Architecture to Estimate the Mo-

tion of an Underwater Vehicle” Control Engineering and Applied Informatics
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for Rejection of Bad Correspondences”, Accepted to the Pattern Recognition

Letters, April 2005.





Appendix A

Linear Array for Motion

Estimation

The proposed linear architecture for the hardware implementation of the motion

estimation algorithm is based on the system introduced by Yang et. al [84] and

adapted to our application. In order to easily understand how the data flow through

the array of processing elements, figure A.2 shows the data corresponding to each

register from the architecture. For the sake of representation, the example considered

in this figures corresponds to a correlation window size of 3×3 and a search window

size of 5× 5 (see figure A.1 (b)).
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Figure A.1: (a) Array architecture for motion estimation algorithm. (b) Correlation and
search windows

Ref. Wind. PE1 1r PE2 2r PE3 1A
11 r11 s11-r11
12 r12 s12-r12 r11 s12-r11 s11-r11
13 r13 s13-r13 r12 s13-r12 r11 s13-r11 s11-r11+s12-r12 s12-r11
21 14 r21 s21-r21 r13 s14-r13 r12 s14-r12 s11-r11+s12-r12+s13-r13 s12-r11+s13-r12 s13-r11
22 15 r22 s22-r22 r21 s22-r21 r13 s15-r13 s11-r11+s12-r12+s13-r13+s21-r21 s12-r11+s13-r12+s14-r13 s13-r11+s14-r12
23 16 r23 s23-r23 r22 s23-r22 r21 s23-r21 s11-r11+s12-r12+s13-r13+s21-r21+s22-r22 s12-r11+s13-r12+s14-r13+s22-r21 s13-r11+s14-r12+s15-r13
31 24 r31 s31-r31 r23 s24-r23 r22 s24-r22 s11-r11+s12-r12+s13-r13+s21-r21+s22-r22+s23-r23 s12-r11+s13-r12+s14-r13+s22-r21+s23-r22 s13-r11
32 25 r32 s32-r32 r31 s32-r31 r23 s25-r23 s11-r11+s12-r12+s13-r13+s21-r21+s22-r22+s23-r23+s31-r31 s12-r11+s13-r12+s14-r13+s22-r21+s23-r2
33 26 r33 s33-r33 r32 s33-r32 r31 s33-r31 s11-r11+s12-r12+s13-r13+s21-r21+s22-r22+s23-r23+s31-r31+s32-r32 s12-r11+s13-r12+s14-r13+s22-r2
21 34 r11 s21-r11 r33 s34-r33 r32 s34-r32 s11-r11+s12-r12+s13-r13+s21-r21+s22-r22+s23-r23+s31-r31+s32-r32+s33-r33 s12-r11+s13-r12+s14-r1
22 35 r12 s22-r12 r11 s22-r11 r33 s35-r33 s21-r11
23 36 r13 s23-r13 r12 s23-r12 r11 s23-r11 s21-r11+s22-r12 s22-r11
31 24 r21 s31-r21 r13 s24-r13 r12 s24-r12 s21-r11+s22-r12+s23-r13 s22-r11+s23-r12 s23-r11
32 25 r22 s32-r22 r21 s32-r21 r13 s25-r13 s21-r11+s22-r12+s23-r13+s31-r21 s22-r11+s23-r12+s24-r13 s23-r11+s24-r12
33 26 r23 s33-r23 r22 s33-r22 r21 s33-r21 s21-r11+s22-r12+s23-r13+s31-r21+s32-r22 s22-r11+s23-r12+s24-r13+s32-r21 s23-r11+s24-r12+s25-r13
41 34 r31 s41-r31 r23 s34-r23 r22 s34-r22 s21-r11+s22-r12+s23-r13+s31-r21+s32-r22+s33-r23 s22-r11+s23-r12+s24-r13+s32-r21+s33-r22 s23-r11
42 35 r32 s42-r32 r31 s42-r31 r23 s35-r23 s21-r11+s22-r12+s23-r13+s31-r21+s32-r22+s33-r23+s41-r31 s22-r11+s23-r12+s24-r13+s32-r21+s33-r2
43 36 r33 s43-r33 r32 s43-r32 r31 s43-r31 s21-r11+s22-r12+s23-r13+s31-r21+s32-r22+s33-r23+s41-r31+s42-r32 s22-r11+s23-r12+s24-r13+s32-r2
31 44 r11 s31-r11 r33 s44-r33 r32 s44-r32 s21-r11+s22-r12+s23-r13+s31-r21+s32-r22+s33-r23+s41-r31+s42-r32+s43-r33 s22-r11+s23-r12+s24-r1
32 45 r12 s32-r12 r11 s32-r11 r33 s45-r33 s31-r11
33 46 r13 s33-r13 r12 s33-r12 r11 s33-r11 s31-r11+s32-r12 s32-r11
41 34 r21 s41-r21 r13 s34-r13 r12 s34-r12 s31-r11+s32-r12+s33-r13 s32-r11+s33-r12 s33-r11
42 35 r22 s42-r22 r21 s42-r21 r13 s35-r13 s31-r11+s32-r12+s33-r13+s41-r21 s32-r11+s33-r12+s34-r13 s33-r11+s34-r12
43 36 r23 s43-r23 r22 s43-r22 r21 s43-r21 s31-r11+s32-r12+s33-r13+s41-r21+s42-r22 s32-r11+s33-r12+s34-r13+s42-r21 s33-r11+s34-r12+s35-r13
51 44 r31 s51-r31 r23 s44-r23 r22 s44-r22 s31-r11+s32-r12+s33-r13+s41-r21+s42-r22+s43-r23 s32-r11+s33-r12+s34-r13+s42-r21+s43-r22 s33-r11
52 45 r32 s52-r32 r31 s52-r31 r23 s45-r23 s31-r11+s32-r12+s33-r13+s41-r21+s42-r22+s43-r23+s51-r31 s32-r11+s33-r12+s34-r13+s42-r21+s43-r2
53 46 r33 s53-r33 r32 s53-r32 r31 s53-r31 s31-r11+s32-r12+s33-r13+s41-r21+s42-r22+s43-r23+s51-r31+s52-r32 s32-r11+s33-r12+s34-r13+s42-r2

54 r33 s54-r33 r32 s54-r32 s31-r11+s32-r12+s33-r13+s41-r21+s42-r22+s43-r23+s51-r31+s52-r32+s53-r33 s32-r11+s33-r12+s34-r13+s42-r21+s4
55 r33 s55-r33
56

Search Window 1M 2M 3M

s34-r32 F1
s13-r11+s14-r12+s15-r13+s23-r21+s24-r22+s25-r23+s33-r31+s34-r32+s35-r33 min(F1,F2)

min(F1,F2,F3)

s44-r32 min(F1,F2,F3,F4)
s23-r11+s24-r12+s25-r13+s33-r21+s34-r22+s35-r23+s43-r31+s44-r32+s45-r33 min(F1,F2,F3,F4,F5)

min(F1,F2,F3,F4,F5,F6)

s54-r32 min(F1,F2,F3,F4,F5,F6,F7)
s33-r11+s34-r12+s35-r13+s43-r21+s44-r22+s45-r23+s53-r31+s54-r32+s55-r33 min(F1,F2,F3,F4,F5,F6,F7,F8)

min(F1,F2,F3,F4,F5,F6,F7,F8,F9)

PE3 1AA 2AA 3AA 1M 2M 3M

12 r12 s12-r12 r11 s12-r11 s11-r11
13 r13 s13-r13 r12 s13-r12 r11 s13-r11 s11-r11+s12-r12 s12-r11
21 14 r21 s21-r21 r13 s14-r13 r12 s14-r12 s11-r11+s12-r12+s13-r13 s12-r11+s13-r12 s13-r11
22 15 r22 s22-r22 r21 s22-r21 r13 s15-r13 s11-r11+s12-r12+s13-r13+s21-r21 s12-r11+s13-r12+s14-r13 s13-r11+s14-r12
23 16 r23 s23-r23 r22 s23-r22 r21 s23-r21 s11-r11+s12-r12+s13-r13+s21-r21+s22-r22 s12-r11+s13-r12+s14-r13+s22-r21 s13-r11+s14-r12+s15-r13
31 24 r31 s31-r31 r23 s24-r23 r22 s24-r22 s11-r11+s12-r12+s13-r13+s21-r21+s22-r22+s23-r23 s12-r11+s13-r12+s14-r13+s22-r21+s23-r22 s13-r11+s14-r12+s15-r13+s23-r21
32 25 r32 s32-r32 r31 s32-r31 r23 s25-r23 s11-r11+s12-r12+s13-r13+s21-r21+s22-r22+s23-r23+s31-r31 s12-r11+s13-r12+s14-r13+s22-r21+s23-r22+s24-r23 s13-r11+s14-r12+s15-r13+s23-r21+s24-r22
33 26 r33 s33-r33 r32 s33-r32 r31 s33-r31 s11-r11+s12-r12+s13-r13+s21-r21+s22-r22+s23-r23+s31-r31+s32-r32 s12-r11+s13-r12+s14-r13+s22-r21+s23-r22+s24-r23+s32-r31 s13-r11+s14-r12+s15-r13+s23-r21+s24-r22+s25-r23
21 34 r11 s21-r11 r33 s34-r33 r32 s34-r32 s11-r11+s12-r12+s13-r13+s21-r21+s22-r22+s23-r23+s31-r31+s32-r32+s33-r33 s12-r11+s13-r12+s14-r13+s22-r21+s23-r22+s24-r23+s32-r31+s33-r32 s13-r11+s14-r12+s15-r13+s23-r21+s24-r22+s25-r23+s33-r31
22 35 r12 s22-r12 r11 s22-r11 r33 s35-r33 s21-r11 s12-r11+s13-r12+s14-r13+s22-r21+s23-r22+s24-r23+s32-r31+s33-r32+s34-r33 s13-r11+s14-r12+s15-r13+s23-r21+s24-r22+s25-r23+s33-r31+s34-r32 F1
23 36 r13 s23-r13 r12 s23-r12 r11 s23-r11 s21-r11+s22-r12 s22-r11 s13-r11+s14-r12+s15-r13+s23-r21+s24-r22+s25-r23+s33-r31+s34-r32+s35-r33 min(F1,F2)
31 24 r21 s31-r21 r13 s24-r13 r12 s24-r12 s21-r11+s22-r12+s23-r13 s22-r11+s23-r12 s23-r11
32 25 r22 s32-r22 r21 s32-r21 r13 s25-r13 s21-r11+s22-r12+s23-r13+s31-r21 s22-r11+s23-r12+s24-r13 s23-r11+s24-r12
33 26 r23 s33-r23 r22 s33-r22 r21 s33-r21 s21-r11+s22-r12+s23-r13+s31-r21+s32-r22 s22-r11+s23-r12+s24-r13+s32-r21 s23-r11+s24-r12+s25-r13
41 34 r31 s41-r31 r23 s34-r23 r22 s34-r22 s21-r11+s22-r12+s23-r13+s31-r21+s32-r22+s33-r23 s22-r11+s23-r12+s24-r13+s32-r21+s33-r22 s23-r11+s24-r12+s25-r13+s33-r21
42 35 r32 s42-r32 r31 s42-r31 r23 s35-r23 s21-r11+s22-r12+s23-r13+s31-r21+s32-r22+s33-r23+s41-r31 s22-r11+s23-r12+s24-r13+s32-r21+s33-r22+s34-r23 s23-r11+s24-r12+s25-r13+s33-r21+s34-r22
43 36 r33 s43-r33 r32 s43-r32 r31 s43-r31 s21-r11+s22-r12+s23-r13+s31-r21+s32-r22+s33-r23+s41-r31+s42-r32 s22-r11+s23-r12+s24-r13+s32-r21+s33-r22+s34-r23+s42-r31 s23-r11+s24-r12+s25-r13+s33-r21+s34-r22+s35-r23
31 44 r11 s31-r11 r33 s44-r33 r32 s44-r32 s21-r11+s22-r12+s23-r13+s31-r21+s32-r22+s33-r23+s41-r31+s42-r32+s43-r33 s22-r11+s23-r12+s24-r13+s32-r21+s33-r22+s34-r23+s42-r31+s43-r32 s23-r11+s24-r12+s25-r13+s33-r21+s34-r22+s35-r23+s43-r31
32 45 r12 s32-r12 r11 s32-r11 r33 s45-r33 s31-r11 s22-r11+s23-r12+s24-r13+s32-r21+s33-r22+s34-r23+s42-r31+s43-r32+s44-r33 s23-r11+s24-r12+s25-r13+s33-r21+s34-r22+s35-r23+s43-r31+s44-r32 min(F1,F2,F3,F4)
33 46 r13 s33-r13 r12 s33-r12 r11 s33-r11 s31-r11+s32-r12 s32-r11 s23-r11+s24-r12+s25-r13+s33-r21+s34-r22+s35-r23+s43-r31+s44-r32+s45-r33 min(F1,F2,F3,F4,F5)
41 34 r21 s41-r21 r13 s34-r13 r12 s34-r12 s31-r11+s32-r12+s33-r13 s32-r11+s33-r12 s33-r11
42 35 r22 s42-r22 r21 s42-r21 r13 s35-r13 s31-r11+s32-r12+s33-r13+s41-r21 s32-r11+s33-r12+s34-r13 s33-r11+s34-r12
43 36 r23 s43-r23 r22 s43-r22 r21 s43-r21 s31-r11+s32-r12+s33-r13+s41-r21+s42-r22 s32-r11+s33-r12+s34-r13+s42-r21 s33-r11+s34-r12+s35-r13
51 44 r31 s51-r31 r23 s44-r23 r22 s44-r22 s31-r11+s32-r12+s33-r13+s41-r21+s42-r22+s43-r23 s32-r11+s33-r12+s34-r13+s42-r21+s43-r22 s33-r11+s34-r12+s35-r13+s43-r21
52 45 r32 s52-r32 r31 s52-r31 r23 s45-r23 s31-r11+s32-r12+s33-r13+s41-r21+s42-r22+s43-r23+s51-r31 s32-r11+s33-r12+s34-r13+s42-r21+s43-r22+s44-r23 s33-r11+s34-r12+s35-r13+s43-r21+s44-r22
53 46 r33 s53-r33 r32 s53-r32 r31 s53-r31 s31-r11+s32-r12+s33-r13+s41-r21+s42-r22+s43-r23+s51-r31+s52-r32 s32-r11+s33-r12+s34-r13+s42-r21+s43-r22+s44-r23+s52-r31 s33-r11+s34-r12+s35-r13+s43-r21+s44-r22+s45-r23

54 r33 s54-r33 r32 s54-r32 s31-r11+s32-r12+s33-r13+s41-r21+s42-r22+s43-r23+s51-r31+s52-r32+s53-r33 s32-r11+s33-r12+s34-r13+s42-r21+s43-r22+s44-r23+s52-r31+s53-r32 s33-r11+s34-r12+s35-r13+s43-r21+s44-r22+s45-r23+s53-r31
55 r33 s55-r33 s32-r11+s33-r12+s34-r13+s42-r21+s43-r22+s44-r23+s52-r31+s53-r32+s54-r33 s33-r11+s34-r12+s35-r13+s43-r21+s44-r22+s45-r23+s53-r31+s54-r32 min(F1,F2,F3,F4,F5,F6,F7)

s33-r11+s34-r12+s35-r13+s43-r21+s44-r22+s45-r23+s53-r31+s54-r32+s55-r33 min(F1,F2,F3,F4,F5,F6,F7,F8)

Figure A.2: Data flow corresponding to an experimental correlation window size of 3× 3
and a search window size of 5×5. The columns represent the registers from figure A.1 (a)
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[87] A. Tchernykh, A. Stepanov, A. Rodŕıguez, and I. Scherson. Parallel compu-

tation in abstract network machine. Revista Iberoamericana de Investigación,

Computación y Sistemas, IV(4):143–157, 2000.

[88] R. Tessier and W. Burleson. Reconfigurable computing for digital signal pro-

cessing: A survey. Programmable Digital Signal Processors, October 2000.

[89] C. Tomasi and T. Kanade. Detection and tracking of point features. CMU-

CS-91-123, Carnegie Mellon University, April 1991.

[90] A.M. Tyrrell. The third NASA/DoD workshop on evolvable hardware. In

IEEE Transactions on Evolutionary Computation, pages 631–633, December

2001.

[91] R. R. Vemuri and R. E. Harr. Configurable computing: technology and appli-

cations. Computer, 33:39–40, April 2000.

[92] L. Vos and M. Stegherr. Parameterizable VLSI architectures for the full-search

block-matching algorithm. In IEEE Transactions on Circuits and Systems,

pages 1309–1316, October 1999.

[93] J. E. Vuillemin, P. Bertin, D. Roncin, M. Shand, H.H. Touati, and P. Boucard.

Programmable active memories: reconfigurable systems come of age. In IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, volume 4, pages

56–69, March 1996.

[94] J. Woodfill and B. Von Herzen. Real-time stereo vision on the PARTS reconfig-

urable computer. In The 5th Annual IEEE Symposium on Field-Programmable

Custom Computing Machines, pages 201–210, 1997.

[95] G. Xu and Z. Zhang. Epipolar geometry in stereo, motion and object recog-

nition: A unified approach. In Springer, editor, Computational Imaging and

Vision, volume 6. 1996.



136 BIBLIOGRAPHY

[96] X. Xu and S. Negahdaripour. Vision-based motion sensing from underwa-

ter navigation and mosaicing of ocean floor images. In Proceedings of the

MTS/IEEE OCEANS, volume 2, pages 1412–1417, 1997.

[97] K.-M. Yang, H. Fujiwara, Y. Ishida, M. Maruyama, T. Sakaguchi, and

H. Uwabu. A flexible motion-vector estimation chip for real-time video codecs.

In Proceedings of the IEEE Custom Integrated Circuits Conference, pages

17.5/1–17.5/4, 13-16 May 1990.

[98] K.-M. Yang, M.-T. Sun, and L. Wu. A family of VLSI designs for the motion

compensation block-matching algorithm. IEEE Transactions on Circuits and

Systems, pages 1317–1325, October 1989.

[99] R. Zabih, J. Woodfill, and M. Withgott. A real-time system for automatically

annotating unstructured image sequences. In International Conference on

Systems, Man and Cybernetics, volume 2, pages 345–350, 1993.

[100] Z. Zhang, R. Deriche, O. D. Faugeras, and Q.-T. Luong. A robust technique

for matching two uncalibrated images through the recovery of the unknown

epipolar geometry. Artificial Intelligence, 78(1-2):87–119, 1995.

[101] Z. Zhang. Determining the epipolar geometry and its uncertainty: A review.

International Journal of Computer Vision, 27(2):161–198, 1998.


	Acknowledgements
	Resum
	Contents
	List of figures
	List of tables
	1. Introduction
	1.1 Systems for underwater environment exploration
	1.2 Computer vision
	1.3 Motivation
	1.4 The objectives of this thesis
	1.5 Organisation of the thesis

	2. Parallel image processing: concepts and solutions
	2.1 Introduction
	2.2 Parallel image processing
	2.3 Reconfigurable computing
	2.4 Field programmable gate arrays

	3. Image processing algorithms on reconfigurable devices
	3.1 Introduction
	3.2 Review of FPGA-based solutons for image processing
	3.3 Commercial FPGA based platforms for image processing

	4. Vision-based motion estimation as a tool to localise an underwater vehicle
	4.1 Introduction
	4.2 Overview of the mosaicking algorithm
	4.3 Solving the correspondence problem
	4.4 Textural characterisation
	4.5 Parameters and assumptions

	5. Parallel approaches for motion estimation algorithms
	5.1 Introduction
	5.2 Overview of parallel implementations for FSBMS
	5.3 Choosing an appropiate architecture when the complexity of the matching criteria increases

	6. Proposal of a VLSI architecture for motion estimation based on MNCC correlation criteria
	6.1 Introduction
	6.2 Proposal of hardware implementation of the matching algorithm
	6.3 Results
	6.4 Summary

	7. Conclusions and future work
	7.1 Summary
	7.2 Contribution of this research
	7.3 Future work
	7.4 Related publications

	Appendix A. Linear array for motion estimation
	Bibliography

