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l’esforç que han fet durant aquests anys per dirigir-me. En Joan va ser qui em

va donar l’oportunitat d’incorporar-me dins l’equip del Grup de Robòtica i Visió
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tard. Jordi, gràcies per tot el que has fet per mi. Per cert, sempre t’has defensat bé
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per fer-me de guia a Londres.

Ep! Encara no us he parlat del meu amic i company inseparable, en Xevi (perdò,
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Texture Recognition Under
Varying Imaging Geometries

Resum Executiu

La visió és probablement el nostre sentit més dominant a partir del qual derivem la

majoria d’informació del món que ens envolta. A través de la visió podem percebre

com són les coses, on són i com es mouen. En les imatges que percebem amb el

nostre sistema de visió podem extreure’n caracteŕıstiques com el color, la textura

i la forma, i gràcies a aquesta informació som capaços de reconèixer objectes fins

i tot quan s’observen sota unes condicions totalment diferents. Per exemple, som

capaços de distingir un mateix objecte si l’observem des de diferents punts de vista,

distància, condicions d’il·luminació, etc.

La Visió per Computador intenta emular el sistema de visió humà mitjançant un

sistema de captura d’imatges, un ordinador, i un conjunt de programes. L’objectiu

desitjat no és altre que desenvolupar un sistema que pugui entendre una imatge

d’una manera similar com ho realitzaria una persona.

Aquesta tesi es centra en l’anàlisi de la textura per tal de realitzar el reconeix-

ement de superf́ıcies. La motivació principal és resoldre el problema de la clas-

sificació de superf́ıcies texturades quan han estat capturades sota diferents condi-

cions, com ara distància de la càmera o direcció de la il·luminació. D’aquesta forma

s’aconsegueix reduir els errors de classificació provocats per aquests canvis en les

condicions de captura.

En aquest treball es presenta detalladament un sistema de reconeixement de
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textures que ens permet classificar imatges de diferents superf́ıcies capturades en

diferents condicions. El sistema proposat es basa en un model 3D de la superf́ıcie

(que inclou informació de color i forma) obtingut mitjançant la tècnica coneguda

com a 4-Source Colour Photometric Stereo (CPS). Aquesta informació és utilitzada

posteriorment per un mètode de predicció de textures amb l’objectiu de generar

noves imatges 2D de les textures sota unes noves condicions. Aquestes imatges

virtuals que es generen seran la base del nostre sistema de reconeixement, ja que

seran utilitzades com a models de referència per al nostre classificador de textures.

El sistema de reconeixement proposat combina les Matrius de Co-ocurrència

per a l’extracció de caracteŕıstiques de textura, amb la utilització del Classificador

del véı més proper. Aquest classificador ens permet al mateix temps aproximar la

direcció d’il·luminació present en les imatges que s’utilitzen per testejar el sistema

de reconeixement. És a dir, serem capaços de predir l’angle d’il·luminació sota el

qual han estat capturades les imatges de test.

Els resultats obtinguts en els diferents experiments que s’han realitzat demostren

la viabilitat del sistema de predicció de textures, aix́ı com del sistema de reconeixe-

ment.
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Chapter 1

Introduction

1.1 Motivation

Vision is our most dominant sense, from which we derive most of our information

about the world around us. From images which enter the eyes and passthrough the

processing in the brain, we learn where things are, how they move and what they

are. In the perceived images our visual system can separate elements such as colour,

texture and shape, elements, which allow our brain to recognise objects even when

they are observed under totally different conditions.

It is not surprising that our visual system allows us to recognise objects seen from

different viewpoints, and distances as well as under different illumination conditions.

For instance, it is an easy matter for us to recognise a field of sunflowers when

observed from a close distance. Colour, texture, and shape are used for recognition.

However, we are also capable of recognising a field of sunflowers even when observed

from other viewpoints and distances. Think, for example, of an ariel view of the

same field. In this case, although the visual perception is very different, our visual

system allows us to recognise it for what it is. Similarly, we are able to recognise

this field when seen under different illumination conditions. We recognise it as such

at midday when the sun is shining as well as in moonlight.

Computer vision tries to emulate the human vision system by means of an imag-

ing system, a computer and a set of algotithms. The desired goal is to develop

1
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a system which can understand an image in a way similar to a human observer.

Among other research topics, texture analysis plays an important role in computer

vision and pattern recognition since most real world objects consist of different kinds

of surface textures. Texture is a characteristic which surrounds us constantly and

refers to the way things feel or would feel if touched. For example, sandpaper looks

and feels rough and a cotton ball looks and feels soft.

This thesis is concerned with the application of texture analysis to discriminate

between textured surfaces. The main motivation is the problem of classifying tex-

tured surfaces imaged under varying geometries, i.e. distance from the sensor and

illumination direction, as well as the necessity of finding reliable methods of reducing

classification errors caused by changes in the geometry’s properties.

In texture analysis one must distinguish between image texture and surface tex-

ture. Image texture is what appears in the 2D image of a physical object, while

surface texture refers to the variation of the physical and geometric properties of

the imaged surface which give rise to the image texture. Changes in the imaging

geometry can significantly alter the appearance of the surface, implying significant

variations in the image texture [22]. And one still has to perform the task of recog-

nition from the image texture.

Recognition of 3-dimensional surface textures from 2-dimensional images is not

an easy task. The 2-dimensional texture in the image (the image texture) is produced

by variation in both surface reflectance and surface relief. While the reflectance

properties are intrinsic to a surface and could be dealt with by means of conventional

2D texture classifiers, the surface relief produces a pattern of shadings which depends

strongly on the direction of the illumination. Thus, the image texture created by

a 3D surface texture changes drastically with the illumination, and a conventional

classifier may not cope with such changes even for uniformly coloured surfaces [112].

The effect of varying lighting conditions on supervised texture classification was

first investigated by Chantler [21]. It was observed that the direction of the illumina-

tion affects the directionality of an image obtained from a given surface and modifies

its appearance. Nevertheless, most of the classification approaches proposed in the
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literature do not take into account the effect of light on the imaged scene, thus tac-

itly assume that the illumination direction is constant. This constraint may induce

critical misclassification rates when the illumination is altered between training and

classification. Moreover, there is a wide range of applications in which texture clas-

sification may have to be performed under varying lighting conditions. For instance,

close proximity point lighting, often used for industrial inspection purposes, provides

illumination at varying angles throughout the scene. Remote sensing systems which

provide their own artificial “light” such as active sonar or radar are non-stationary,

hence the “illuminant” direction is dependent on the orientation of the survey plat-

form itself. Other remote sensing devices using natural light are also affected by

changes in the illuminant vector according to the time of day, etc.

In order to illustrate the problem, let us consider a simple example. Figure 1.1

shows three images of the same texture illuminated from two different tilt angles with

the same slant angle, and obtained from two different distances. The direction of the

illuminant with respect to a texture is commonly defined by two polar coordiantes:

tilt and slant. If we define our camera axis parallel to the z-axis, the tilt is the angle

the illuminant vector makes with the x-axis when it is projected onto the x, y plane.

On the other hand, the illuminant slant is the angle the illuminant vector makes

with the camera axis. Both angles are illustrated in Figure 1.1. Observe how a shift

in the tilt angle is clearly manifested in the perceived images (see Figure 1.1.(a)

and Figure 1.1.(b)). Illumination variation attenuates or accentuates the directional

information of the image texture. Moreover, changes in camera distance provoke

significant variations in the image texture. This is illustrated in Figure 1.1.(c). It

should then not be surprising that a classifier would have difficulty in recognising

these images as produced from the same textured surface.
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(a)

(b)

(c)

Figure 1.1: Three images of the same surface texture captured using different illu-
minant tilt angles, (a) and (b), and different camera distance, (b) and (c).
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1.2 Scope of the Research

In computer vision, there is an important number of works which propose rotation

and scale invariant texture classification [29, 109, 96, 59, 133, 108, 137, 91, 92], as well

as similar works on topics like multiscale and scale-space texture analysis [29, 17].

Almost all the work published in the past is on texture features invariant to rotation

and scale treated texture as an innate property of a flat surface which remained

unchanged when the camera was moved or the illumination changed. I wish to stress

that the surface texture which interests us here is distinct from image texture. Image

texture is the result of surface relief and surface colour, and if one wishes to avoid

its dependence on imaging geometry, we have to go through the fundamentals of

image formation and discuss the way surface texture will appear when the imaging

geometry changes. So, unless one considers texture as a pattern painted on a smooth

surface, it is incorrect to deal with it ignoring the imaging geometry and using the

Brodatz album [18] to evaluate the methodology used. The exception to this are

the works of Lazebnik et al. [91, 92] for example, who acknowledging that image

texture may change significantly with imaging geometry, evaluate their algorithm

using recaptured images. These methods assume that under “mild” changes of

imaging geometry, the transformation of image texture will be affine. This is true

up to an extent. However, depending on how rough a surface is, mild changes in

imaging geometry, when referring to the imaged surface as a whole, may be strong

changes locally. Under those circumstances, we cannot avoid addressing the issue of

texture recognition in conjunction with the process of image formation.

As will be seen in this thesis, texture changes by itself and appears different

depending on distance and lighting conditions. Very few works have been published

on the topic of texture classification independent from the direction of illumination.

However, there are different ways of dealing with this problem:

• The first approach consists of extracting and using explicit separate 3D shape

and surface reflectance information. The reflectance property (also known as

albedo) and the gradient vector of every visible surface patch describe the

surface in a way independent from illumination and the classification can be



6 Chapter 1. Introduction

done directly on the basis of this explicit information. This was done by

McGunnigle and Chantler [113], and Barsky and Petrou [6].

• Another approach is to study the immediate effects produced by illumination

direction on the observed 2D texture. Recently, Chantler et al. [23] presented

a formal theory which demonstrates that changes in the tilt of the illumi-

nation direction make texture features follow super-elliptical trajectories in

multi-dimensional feature spaces. Based on their work, Penirschke et al. [125]

developed an illuminant rotation invariant classification scheme.

• Finally, one can train a classifier on a wide selection of images of the same

surface, obtained from various viewpoints and under various illumination con-

ditions (see the works [33, 36, 32, 56]). Thus, information on changes in surface

appearance is explicitly built in the classifier, using both the reflectance and

the 3D relief information, which allows it to recognise a surface correctly under

novel viewing and lighting conditions [98, 99, 164].

1.3 Original Work

In this thesis, after analysing the three strategies, we integrate the surface texture

information derived by colour photometric stereo (CPS) into a complete model-

based texture classification system. Photometric stereo [170, 171] is the technique

which allows us to obtain surface texture information from a few images of the

same surface imaged under various illumination directions. Hence, the photometric

technique seems ideally suited to our purposes since the problem itself is caused by

variations in the imaging geometry. Basically, the main idea of our strategy consists

of creating, by means of the surface texture information, a “virtual” database of

image textures against which we compare unknown test images in order to classify

them. Note that we do not use the surface texture information directly to perform

classification (as in the first strategy), but we use it to create new images which are

the references for our training and classification process (see Figure 1.2). Note that

this strategy corresponds to the third one of those described in the previous section.
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Figure 1.2: Strategy of our texture classification proposal. The surface texture
information is not used to perform classification, but to generate new images which
are the references for the training and classification process of the system presented
in this thesis.

Furthermore, the classification system allows us to guess the approximate direction

of the illumination used to capture the test images.

There are various alternative techniques which allow us to obtain 3D information

about surfaces, like stereo vision [48], optical flow [5] and various Shape from X

methods. These Shape from X methods allow the recovery of the local shape and

reflectance properties of the surface which are used in different works to predict

the surface appearance as a function of illumination and also to reconstruct 3D

shape information [162, 176, 100]. Over all these techniques, the photometric stereo

technique was chosen because of its various advantages: it does not suffer from

the correspondence problem [177] like conventional stereo does; it does not make

strong assumptions about the underlying surface structure like some Shape from

X techniques do, and it allows us to recover both local colour and local gradient

while flagging the places where some of its assumptions break down and recovery is

impossible.



8 Chapter 1. Introduction

The approach in this thesis uses colour photometric stereo to extract surface

information from which a “virtual” database of reference textures is created, com-

patible with the imaging geometry of the test images, and used to classify the test

images. The virtual database creation comes in two “flavours”: creation of the vir-

tual database for test images seen from the same distance as the training images,

and creation of the virtual database for test images seen from a longer distance than

that of the training images. When the test images are known to have been captured

from the same distance as the training images, the creation of the virtual database

is straightforward: the use of surface texture information extracted by photometric

stereo allows us to obtain a rendering of the surface texture directly. Things are less

straightforward when the test images have been captured from a longer (but known

or hypothesised) distance than the training images. In this case, in order to create

the virtual database, we propose a new method which allows us to predict the ap-

pearance of a surface texture at a longer distance and for various directions of light.

Hence, we deal with the problem of texture recognition under varying geometries

such as distance from the camera and light direction.

1.3.1 Objectives

Taking into account the considerations we mentioned above, the main objectives of

this thesis are defined as:

To propose a texture prediction framework which allows us to

predict the appearance of a surface texture when seen from different

imaging geometries, i.e. distance from the camera, sensor sensitivity,

directions of illumination, and spectral characteristics of the light source.

To propose a model-based texture classification system

which enables the classification of textured surfaces imaged under

varying geometries such as distance from the camera and illumination

direction. The system also allows one to guess the approximate direction

of the illumination used to capture the test images.
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Alongside these objectives, there are some points which need to be considered:

• Prior knowledge (Image database). There is one important aspect to

mention related to the prior knowledge used in this thesis. Before starting

the prediction and classification processes, a fundamental knowledge of each

surface texture has to be known. This implies that for each texture a database

of images should be available with the aim of recovering the surface texture

information. This database should contain the required images to which one

can apply the colour photometric stereo technique, as well as those images

which should be used as training and test images.

It is well-known that there are many databases of texture images from which

it is possible to evaluate a texture recognition system. However, there is no

database of images on the topic of texture classificaton invariant to distance

from the camera and direction of illumination. For example, the well-known

“Columbia-Utrecht database” established by Dana et al. [35] is not suitable for

our purposes because the illumination was held constant while the viewpoint

and orientation of the samples were varied during data capture. The “Photo-

metric Image Databases” of the Texture lab from Heriot-Watt University [2],

do not meet our requirements because they did not provide photometric sets of

images captured at different distances. Therefore, we opt in this thesis to build

our own image database which provides us with all the information needed to

achieve the desired purposes.

• Robustness. The proposed classification system should show a robust be-

haviour and obtain correct classification rates for a large set of textures. Thus,

the system will be tested over globally flat surfaces and very rough surfaces,

including also directional and isotropic surfaces.

Along with this point, we will assess the accuracy of the prediction method,

evaluating the performance for a wide range of real textures at different dis-

tances and under varying lighting conditions. We should investigate a possible

relationship between prediction inaccuracy and classification errors.
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• Flexibility. The proposed classification strategy should be easily extensible.

That means the different processes of the classification system may be ex-

tended or replaced by other techniques. For instance, it should not be difficult

to add/change the feature extraction process, the feature selection process,

the classifier, etc. In this sense, the object-oriented approach ensures this

flexibility.

1.4 Thesis Organisation

The structure of this thesis is a step by step explanation of the methodology used to

carry the work out. Chapter 2 introduces theoretical concepts on image formation

and surface description. Next, Chapter 3 reviews the recovering of surface infor-

mation, detailing the colour photometric stereo technique used in this thesis. The

prediction framework which allows us to predict surface information of the same

texture seen from different distances is proposed in Chapter 4. In Chapter 5 we

propose a strategy which deals with the problem of texture classification seen from

different distances and under varying illumination directions. Chapter 6 shows an

evaluation of our prediction proposals and an assessment of our model-based clas-

sification system. Finally, conclusions and future work are discussed in Chapter 7.

Figure 1.3 traces the progression of the investigation from the initial theory and the

proposed solutions to the subsequent evaluation and analysis of results.

Chapter 2

Chapter 2 is concerned with the image acquisition process. That is, given a scene

description consisting of surface shape and reflectance information, lighting and

imaging device, this process describes the formation of an image from the surface.

This chapter introduces important concepts such as the Bidirectional reflectance

distribution function (BRDF), Gradient space, and the Lambertian model. It also

introduces two levels of surface description: single parameter description and his-

togram representation techniques.
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Figure 1.3: Structure of the thesis. Each number indicates the chapter in which
each topic can be found.

Chapter 3

This chapter links the learning in Chapter 2 with surface recovery. Main approaches

for recovering surface information are reviewed, describing their philosophy. Shape

from X techniques are analysed in greater detail, focusing on the photometric stereo

techniques. Finally, this chapter suggests colour photometric stereo as a good option

to recover surface texture information, describing in depth the colour photometric

stereo technique proposed by Barsky and Petrou [8] and the corresponding texture

rendering process.

Chapter 4

In Chapter 4 a methodology is proposed to predict how a surface texture will appear

if seen from a longer distance. Specifically, two different prediction methods are

proposed:
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• One which allows us to predict the image intensities under different resolutions

directly (direct image prediction).

• Another which allows us to predict first the surface shape information and

then the image intensities (image prediction via surface prediction).

The final goal of this prediction process is the generation of a set of textured

images for each surface under different imaging geometries. These images are used

in our recognition system as models in the training phase of the classification process.

That allows us to deal with the problem of distance invariant texture recognition,

since we have textured images of the same surface texture at a longer distance and

with various light directions.

Summarising, the contributions of this chapter are two prediction techniques

which allow us to predict the surface texture information seen under different imag-

ing geometries.

Chapter 5

This Chapter explains the fundamentals of classification, focusing on the principal

stages: feature extraction, feature selection and evaluation and also the classifica-

tion process. After reviewing the theoretical background, we state the problems of

texture recognition under varying imaging properties. The described theory and

previous work are used to propose a model-based solution which integrates the pho-

tometric technique into a complete classification system. This chapter details every

stage of the system.

Main contributions of Chapter 5 are:

• The proposal of a model-based strategy to overcome the problem of classi-

fier failure induced by varying imaging properties such as light direction and

camera distance.

• The integration of the prediction framework proposed in Chapter 4 into the

recognition scheme.
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• The capability of the recognition scheme to guess the approximate direction

of the illumination used to capture the test images.

Chapter 6

Chapter 6 assesses the performance of our proposals. First, our image database of

textured surfaces used as experimental data is presented. Afterwards, an exhaustive

evaluation of our prediction methods is performed on these experimental data. Dif-

ferent experiments and error measures are carried out in order to be able to extract

and discuss significant conclusions. Next, the proposed model-based classification

system is evaluated. Results on estimation of the direction of the illumination are

then provided and discussed.

Chapter 6 can be summarised as:

• Presentation of the image database of textured surfaces (experimental data)

used in this thesis.

• Evaluation and comparative study of results achieved by the two prediction

methods.

• Evaluation of the results obtained on texture classification under varying ge-

ometries such as light direction and camera distance.

Chapter 7

Relevant conclusions reached in this thesis work are given in Chapter 7 and future

directions are proposed.
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Chapter 2

Image Formation

In the last few years some researchers have begun to distinguish between image tex-

ture and surface texture. Image texture is what appears in the 2D image of a physi-

cal object, while surface texture refers to the variation of the physical and geometric

properties of the imaged surface which define the texture in the image. The main

objective of this chapter is to describe the transition from physical surface to im-

age texture, taking into account (i) the surface properties of the imaged object, (ii)

the illumination arrangement, and (iii) the imaging geometry. Different ways of

providing surface roughness description are also presented.

2.1 Introduction

In the past, texture recognition and discrimination has been posed primarily as a 2D

problem, assuming that viewpoint and illumination are constant. For instance, some

representative techniques are Markov random fields [25, 109] and filter responses [74,

106]. In all of these works, surface normal variations were ignored. Nevertheless,

nature shows an abundance of such relief textures and variations produced by the

surface relief which cannot be dealt with using a simple brightness normalization

or intensity transforms such as histrogram matching. For example, if the surface

structure is a ridge, a dark-light transition in one image under one illumination will

become a light-dark transition when the light source is moved to the other side

of the ridge. Shadows also cause significant problems: two regions will have the

15
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same brightness under one illumination; while the shadowed region will be darker

in another.

The complexity in the relationship between the image intensity values to the

viewing and lighting settings and the properties of 3D textures led to recent interest

in building explict models for 3D textures [33, 34, 85, 97].

In the literature it is often said that texture cannot be defined in a single way [90].

Despite the lack of a universal definition, all researchers agree on two points. First,

there is significant variation in intensity levels between nearby pixels; that is, there

is non-homogeneity. Second, texture is a homogeneous property at some spatial

scale larger than the resolution of the image. Jain et al. [76] proposed the following

texture defition: “Texture is repeating patterns of local variations in image intensity

which are too fine to be distinguished as separate objects at the observed resolution”.

While Petrou et al. [130] defined texture as: “a variation in the data at scales smaller

than the scales of the objects we wish to identify”. Therefore, it is clear that texture

is present in images and, depending on the problem we are trying to solve and the

approach we take, it may either be a nuisance or a great help. Texture arises in two

ways: due to variation of the reflectance properties of the material of the surface,

which could be completely smooth, and due to surface roughness which results in

an interplay of shadows and bright patches across the imaged surface.

In realistic situations, both of these factors are usually present. However, in

most current texture research studies, texture is treated as an image property and

not a property of the imaged surface. In other words, image texture is treated

as if it were intrinsic to the imaged scene, and therefore repeatable, and not as

something which is the result of the particular combination of the imaged scene

and the imaging conditions. As a result, algorithms developed to cope with texture

variations usually treat an image as if it has an existence of its own, and in order to

develop rotation-invariant texture descriptors, for example, people often rotate the

image to check whether the descriptor changes value or not [58, 59, 133, 109, 29].

Figure 2.1 illustrates this fact with a simple example of a texture extracted from

the Brodatz album [18].
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(a) (b)

(c) (d)

Figure 2.1: Rotation-invariant texture descriptors treat an image as if it has an ex-
istence of its own. Therefore, (a)-(d) are considered four different textures although
they are the same image rotated in steps of 30◦.

In recent years, more researchers have begun to distinguish image texture from

surface texture and to realise that the observed image texture is the result of:

• The surface properties of the imaged object. These properties can be

divided into reflectance properties and surface orientation. The reflectance

properties describe how the surface itself reflects incident light. For instance,

some surfaces, called specular surfaces, have a mirror-like behaviour because

the light they reflect depends solely on the angle of the incident light (see

figure 2.2.(a)). Alternatively, matte surfaces, called diffuse surfaces, reflect

light equally in all directions with an intensity which depends on the angle of

incident light (see figure 2.2.(b)).

On the other hand, surface orientation also has an important influence on the

image formation. It is obvious that inclining a surface will usually alter the
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(a) (b)

Figure 2.2: Specular and diffuse surfaces. (a) A specular surface reflects all the
incident light depending solely on the angle of the incident light. (b) A diffuse
surface reflects light equally in all directions.

light reflected towards an observer. Therefore, different intensity values will

be captured by the imaging device.

• The lighting arrangement. As well as the surface properties of the object,

an imaged texture depends on the lighting conditions which affect the anal-

ysed surface. For instance, a reduction or an increase in the light intensity

may affect the resultant imaged texture. Changes in the direction of the light

combined with the surface relief may also modify texture perception. More-

over, other properties such as the spectral distribution of the incident light

also contribute to the image formation process.

• The imaging geometry. The position of the imaging device with respect

to the surface is another factor which plays an important role in the imaged

texture formation. For example, an inclination of the camera or a change in

distance from the surface imply a different perception of the texture.

In this thesis, we will assume that the surface’s plane always has the same

inclination, and specifically will be held perpendicular to the imaging device.

See figure 2.3. However, in order to perform texture classification invariant to

distance from the camera, we will allow a variation in camera distance.
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Figure 2.3: Scenario of image acquisition of an illuminated physical surface.

Other mechanisms such as the sensitivity of the acquisition sensor, system

optics, and the frame store, have associated problems of a different nature

which affect the quality of the final image. Although it is not our intention to

investigate the effects of this process in depth, we must take into consideration

the image formation process.

It is obvious then that, in order to be able to use texture as a cue to recognition,

we must be able to use image texture to extract information about the surface

texture irrespective of the lighting and imaging conditions. Two broad approaches

may be used for this purpose:

• We may try to identify image statistics invariant to the direction of the light

and imaging conditions directly and, therefore, they can be used for surface

classification.

• Otherwise, we may try to reconstruct the surface in full detail, and

– Use this information to compute the statistical properties which can be

used directly as cues for classification.

– Or use the surface information to produce new images under novel con-

ditions and use them as models for the classification system.
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In Chapter 3 we will discuss different approaches which allow us to reconstruct

surface information from different imaged textures of the same surface.

2.2 Characterisation of the Incident Image

The nature of the process from physical surface to digitised image1 is illustrated in

figure 2.3. This task is defined as follows: given the scene description composed of (1)

the surface texture and its topology (the term used to refer to the three-dimensional

variation or relief of the physical surface), (2) the surface reflectance function and

(3) the light source characteristics and its position, determine the incident image.

In other words, how the surface appears to the viewer. Finally, given the imaging

device, (4) position and other parameters determine the captured image.

Before we start discussing how an incident image is formed, let us introduce some

useful terminology.

2.2.1 Terminology

In this section we briefly summarise the basic terms and notations needed to under-

stand the image formation process. Burke presented a survey of all these aspects of

image acquisition and image formation in [19].

2.2.1.1 Radiosity Terminology

• Radiant flux is the time-rate flow of photons (light energy) from or through a

specified location of space, independent of direction.

• Radiant intensity is the measure of a source’s ability to illuminate an object

from a distance. It is defined as the flux through a volume of space, specified

as a solid angle, in a specified direction.

1The digitised image is the final result of the entire acquisition process, thus this image may
be interpreted as a degraded version of the incident image which has been affected by the imaging
device. It is important to note that this image forms the basis of all subsequent processes and,
therefore, is often referred to as the captured image.
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• Radiance is the radiant intensity divided by the area of the emitting surface.

The radiance of a point source is equal to its radiant intensity.

• Radiant incidence or irradiance is the total photon flux within a patch divided

by the area of the patch. Irradiance describes the flux per unit area which is

perpendicularly incident (normal) to a surface.

• Albedo, or surface reflection coefficient, is the average ratio between the re-

flected and incident flux, independent of angles.

2.2.1.2 Geometry of the Imaging Setup

In most applications which try to recover surface texture properties, two assumptions

are usually made for the imaging setup: first, the surface is lit by a single distant

point of light and second, the surface is viewed from a distance. Thus, the light

and viewing directions are constant over the whole surface. Moreover, the surface is

expected to be small, relative to the distance between the camera and the physical

sample, assuming that the image texture contains the three-dimensional variation or

relief of the surface. Orthogonal viewing is also often assumed: that is, the principal

surface normal coincides with the z axis, which is the viewing direction R (boldface

font will denote vectors). Thus, the coordinates (x, y) on the surface and imaging

planes are the same.

It is sometimes convenient to think of a surface as a collection of planar facets,

where each one has its own surface orientation N, as shown in Figure 2.4. Let S(x, y)

be the functional form of the surface and let us assume that the surface is globally

horizontal or flat. In other words, the mean value of S(x, y) (its partial derivative

fields) equals approximately 0. The local surface normal N could be expressed in

terms of the gradient (p, q),

N =
1√

p2 + q2 + 1
(p, q,−1)T (2.1)

where
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Height

Figure 2.4: A surface observed as a collection of planar facets where each one has
its own surface orientation N.

p(x, y) =
∂S(x, y)

∂x
and q(x, y) =

∂S(x, y)

∂y
(2.2)

2.2.1.3 Reflectance Maps and BRDF

The intensity of an image at position (x, y) is given by a reflectance map introduced

by Horn [66]. The reflectance map combines information about surface material,

scene illumination and viewing geometry into a single representation which deter-

mines image brightness as a function of surface orientation. Reflectance maps could

be derived from formal reflectance models or measured empirically. Thus, for any

particular surface and imaging setup, there is a unique reflectance map which is a

function of a surface gradient.

The reflectance and geometric information combined in a reflectance map, can

be separated into an orientation term and a surface reflectance factor ρ (albedo).

The geometric dependence is expressed by introducing the bidirectional reflectance

distribution function (BRDF) of the surface. The BRDF is a function which charac-

terises the material properties of a surface and depends on the incident and viewing

directions. It is defined as the ratio of the radiance of reflected light in the receiving

direction to the irradiance of the incident light.
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2.2.1.4 Reflectance Models

As we know from everyday experience, different real materials reflect light differently

and there is a variety of reflectance models designed to capture the main charac-

teristics of light reflection. Chen et al. [26] presented a comprehensive review of

reflectance models.

The simplest form of reflection is the ideal specular reflection (mirror-like re-

flectance), when all incident light is reflected depending solely on the angle of the

incident light. However, one of the most important and widely used reflectance

models is the Lambertian model, introduced as early as the 17th century. The Lam-

bertian surface reflects light equally in all directions and the amount of reflected

light depends on the angle at which the light falls on the surface. The generalisation

of this model is reported by Oren and Nayar in [122].

Reflectance models could be roughly classified into two classes: those based on

physical optics and those based on geometrical optics. The models of the first group

are based directly on electromagnetic wave theory, whereas the geometrical approach

uses the assumption that the characteristic surface roughness is much larger than the

wavelength of the incident light and, therefore, light travels in a straight line. This

simplification yields a simple and more compact functional form of the reflectance

model.

2.2.2 From Physical Surface to Incident Image

The objective of this section is to model the transition from physical surface to

incident image. As described in section 2.1, the intensity of a point (or pixel) in a

2D projection of a physical surface depends on surface properties and the lighting

and imaging geometries.

Nevertheless, one of the most important terms in the formation of the incident

image is the surface reflectance function. Roughly speaking, it describes how an

elementary surface patch reflects incident light. This is expressed in terms of the

bidirectional reflectance distribution function (BRDF) which is constructed from
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the ratio of the patch radiance to its irradiance.

The BRDF is spectral-dependent (i.e. it depends on the wavelength λ of the

electromagnetic spectrum), but in practice it is often approximated by independent

BRDFs, one per colour channel for an RGB image. For grey-level images, there is

no need to take into account more than one BRDF since only one channel is used.

The phenomenon of reflection can be produced by one or more different physical

processes. These underlying processes, which are beyond the scope of this thesis,

lead to various generic behaviours, depending on how a surface reflects the incident

light. It is interesting to mention again the two particular cases which illustrate

extreme behaviours. First, a perfect mirror or a completely specular material which

has a reflectance function equal to 1 in one direction and 0 in all others. Second,

a perfect matte or Lambertian surface which reflects equally in all directions with

the amount of reflected light depending only on the incident light. Many surfaces

with more complex behaviour can have their reflectance described as having both

Lambertian and specular reflectance properties, and are commonly known as hybrid

surfaces.

As it has been previously mentioned, the surface reflectance measures the fraction

of emitted light in the observer’s direction. However, all surface facets reflect the

incident light not only towards the viewer but in other directions as well, including

those towards other surface facets. Thus, the light reflected on each facet represents

a possible source of secondary illumination for other facets. The effects of illumi-

nating a given surface facet with light reflected from other surface facets is called

interreflection [121] and corresponds to the situation in which the tight connections

between local surface properties interplay: a pixel value contains some contribution

driven by properties from other surface facets. This was analysed in depth by He

et al. [62], who proposed a classification of the reflection from an arbitrary surface

consisting of first-surface reflections and multiple surface and/or subsurface reflec-

tions (see figure 2.5). The first-surface reflection process is described by physical

optics and is strongly directional, while the multiple surface (light bouncing several

times off different facets) and subsurface reflections (light penetrating the surface
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Figure 2.5: Reflection process at a surface [62]. The first-surface reflection process
is strongly directional. Multiple surface reflection occurs when the light bounces
several times off different facets. Subsurface reflection occurs when light penetrates
the surface and is reflected from inner material non-homogeneities.

and reflected from inner material non-homogeneities) are geometrically complex but

may be expected to be less strongly directional than the first-surface reflected light.

Fortunately, interreflections do not usually affect a pixel value significantly and, in

almost all applications, they are assumed not to exist at all. The consequences re-

sulting from this fact depend on the technique used and the desired accuracy of the

task, but, at any rate, this assumption always entails some errors.

2.2.3 Dichromatic Reflection Model

In many computer vision and graphics applications, reflectance models are repre-

sented by linear combinations of two reflectance components: the diffuse component

and the specular component, normally called diffuse reflection and specular reflec-

tion respectively.

Consider, for example, a dielectric opaque object which is illuminated by one

light source. Some of the incident light is reflected from the surface of the object in

a mirror like manner and some enters the object’s material body where it is partly

absorbed, partly transmitted, and partly reflected from nonhomogeneities inside
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the matter. Thus, some of the light which has entered the material body of the

object is reflected back and exits from the surface. If the nonhomogeneities inside

the object’s body have a random nature, there is no preferred direction and the

exiting light has a diffuse nature. Therefore, we can talk about the surface and body

reflection components. The theory developed to describe the spectral distribution

of reflected light for such surfaces is called the dichromatic reflection model [84]

formally introduced by Shafer [144]. We find this reflection model in a number of

works and applications, such as the development of the photometric stereo method

for non-Lambertian surfaces using colour information [143].

Let us denote the reflectance function of the surface by R. It describes the

fraction of light reflected towards the camera depending on spectral and geometric

scene parameters: R(λ,N,L).

It could be separated in the material body (diffuse-like) reflectance component

and the material surface (mirror-like) reflectance component:

R(λ,N,L) = RB(λ,N,L) +RS(λ,N,L) (2.3)

The spectral reflectance properties of each of the components can be separated

from their geometric reflectance properties. The dichromatic reflection model de-

scribes each component as the product of a spectral power distribution cβ(λ), and

a geometric scale factor, mβ(N,L), which determines the intensity of the reflected

light, where (β = S,B), so that equation 2.3 becomes:

R(λ,N,L) = mS(N,L)cS(λ) +mB(N,L)cB(λ) (2.4)

The matte (body) geometric scaling factor mS could be successfully modeled by

the Lambertian cosine law:

mB(N,L) = N · L (2.5)

The glossy (surface) geometric scaling factor could be modeled by a number of

available reflectance models, e.g. the Torrance-Sparrow model [158] and the Phong
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model [131], often used in computer graphics, and different generalisations of known

models, e.g. Nayar et al. [118], Tagare and deFigueiredo [156], etc.

The intensity of light registered by a sensor (or by an array of sensors) depends

on both the intensity and spectral distribution of the reflected light and the spectral

sensitivity function of the sensor. If the sensitivity function of the sensor is S(λ),

the reflectance function of the surface is R(λ,N,L), and the spectral distribution

of the incident light is L(λ), the intensity value registered by the sensor is:

I =
∫
S(λ)L(λ)R(λ,N,L)dλ (2.6)

Using equation 2.4 the above becomes:

I =
∫
S(λ)L(λ)[mS(N,L)cS(λ) +mB(N,L)cB(λ)]dλ =

= mS(N,L)
∫
S(λ)L(λ)cS(λ)dλ+mB(N,L)

∫
S(λ)L(λ)cB(λ)dλ (2.7)

If we denote the surface spectral response by Dβ, where (β = S,B):

Dβ ≡
∫
S(λ)L(λ)cβ(λ)dλ (2.8)

Then the pixel value I can be represented by the following sum:

I = mS(N,L)DS +mB(N,L)DB (2.9)

The spectral response values depend on the reflectance properties of the surface

and the spectral properties of the illumination and the camera. If the illumination

and the sensor sensitivity are constant, then DS and DB depend only on the reflec-

tivity of the surface and they could be considered as colour. This notion of colour

incorporates the spectral properties of the illuminant, the camera and the surface

and is the maximum pixel intensity this particular surface patch may produce for

this particular camera and this light arrangement. This colour would have been the



28 Chapter 2. Image Formation

intrinsic colour of the surface if the light were white (i.e. L(λ) were a constant) and

the sensitivity of the sensor were a delta function (S(λ) = δ(λ)).

On the other hand, the scalar functions mS(N,L) and mB(N,L) show how the

pixel intensity depends on the geometrical properties of the scene only and are in

fact shading parameters.

If one camera cell consists of more than one sensor (i.e. K sensors), we can con-

sider a pixel as a K-dimensional vector. In this case, the spectral surface responses

are also K-dimensional vectors:

CB = (Dβ1, . . . ,DβK) (2.10)

where (β = S,B) and the second subscript identifies the spectral band associated

with each of the different sensors.

Consider a situation when the same surface patch is imaged under different light

directions and/or different orientation with respect to the camera. Then, since we

change only the geometry of the scene, and keep its spectral properties the same,

all possible pixel vectors form a dichromatic plane [84] in the K-dimensional colour

space which is spanned by vectors CB and CS.

A simple application of the above ideas was the work on Shape from shading,

which may be considered as the precursor to photometric stereo: an image irradi-

ance equation is developed to determine image irradiance as a function of surface

orientation. For example, for a Lambertian surface mS = 0 and mB is given by

equation 2.5 and, for the case of a single sensor, this equation takes the familiar

form

I =
pLx + qLy + Lz√

p2 + q2 + 1
ρ (2.11)

where ρ stands for DB and corresponds to the surface albedo, (Lx, Ly, Lz) is the

illuminant vector L, while p and q define the gradient components for every point

on the surface.

This equation cannot be inverted locally because image brightness provides only
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(a) (b)

Figure 2.6: Cast and self shadowing. (a) A cast shadow occurs where one part
of the surface prevents another from being illuminated by blocking the direct path
between light source and shadowed area. (b) A self shadowing occurs when a facet
is oriented so that it does not present an area on which light is incident.

one measurement, whereas surface orientation has two degrees of freedom. Bright-

ness values obtained from the same viewpoint, but under different conditions of

illumination, allow one to obtain local estimates of surface orientation without re-

quiring additional a priori information such as global smoothness assumptions or

prior image segmentation. This is the basic principle of Shape from shading tech-

niques.

The Lambertian model, which is often used for its simplicity and linearity, states

that the radiance of a point on a surface falls with the cosine between the surface

normal and the viewer direction. Consequently, the camera pixel brightness value

is dependent only on the relative relation between the surface normal N and the

light source L. Therefore, assuming that the surface has a Lambertian reflectance

function, which is homogeneous over the entire surface, and assuming that the sur-

face is not significantly affected by cast or self shadowing, the pixel intensities of the

so-called Lambertian image are obtained by means of equation 2.11.

Figure 2.6 illustrates the concepts of cast and self shadowing. For simplicity’s

sake, both terms are not often encountered, assuming that they do not affect the

analysed surface to any great extent.



30 Chapter 2. Image Formation

2.3 Surface Information

In the context of this thesis, the fact of identifying surface properties and under-

standing how they affect the image in the presence of light is relevant to the following

points.

• First, understanding the mechanism of light reflection is an important issue

for many computer vision algorithms. In particular, for photometric based

methods which extract differential shape parameters (gradient vectors) and

reflectance properties (albedo) from the intensity of reflected light.

• Second, extraction of surface geometry and reflectance properties is crucial for

the success of surface modelling. The next chapter will describe how these

surface properties can be extracted by means of photometric stereo and used

as input data for creating virtual images of the surface texture. These virtual

images will be the basis of the texture classification approach proposed in

Chapter 5.

• Third, recognising surface characteristics such as roughness, isotropy or di-

rectionality may be used to group each surface texture into its corresponding

type of surface. This may help us to present the experimental results for each

group of surface texture separately, showing, for example, which textures are

more difficult to classify.

In what follows we introduce different ways of describing a surface, starting with

the concept of gradient space.

2.3.1 Gradient Space

Every surface facet has a single normal vector, which can be described by vector

N = (nx, ny, nz). If only the orientation of the surface is considered, the normal

vector can be represented by
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(
nx
nz
,
ny
nz

)
= (p, q) (2.12)

where the pair (p, q) is the two-dimensional gradient representation of the orienta-

tion. Interpreting the image plane as z = 0, the origin of gradient space corresponds

to the vector (0, 0, 1), normal to the image, implying a surface parallel to the image

plane.

In essence, the concept of gradient space facilitates the mapping of an array of

surface normals to a series of coordinate points (p,q) within the two-dimensional

(2D) gradient domain, where p and q describe the local surface slope or gradient

in two orthogonal directions at a given location. By mapping such an array of

surface normals into gradient space, an indication of the global surface distribution

and, hence, a description or signature of the total observed surface shape can be

obtained. This is a concept of general use in many analytical problems.

For example, if the topography of the surface can be estimated, it may be pos-

sible to improve the performance of an intensity classifier by classifying the surface

derivatives instead. This was done by McGunnigle et al. [113], who proposed a sur-

face classification scheme using the gradient information obtained with photometric

stereo. In their approach, a local estimate of the bivariate gradient distribution at

each point on the surface was calculated. The eigenvalues of this distribution were

then computed and used as the basis for classification.

On the other hand, some works [151, 152, 150, 102] used this surface information

as a powerful tool in systems devoted to quality control using image processing and

computer vision techniques. The mapping of surface normal data to the gradient

space domain offers a mechanism for the representation of global surface shape.

This information is used to detect surface irregularities such as bumps, scratches,

tooling marks and other blemishes. Let us illustrate this by means of a simple

example. Consider a planar surface arranged in a specific viewing direction, as

shown figure 2.7.(a). In the case of an idealised flat surface, all surface normals

will be parallel to the viewing direction. Hence, when plotted in 2D gradient space,

and assuming orthogonal projection, all mapped normals will appear as a cluster of
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(a) (b)

(c) (d)

Figure 2.7: Examples of surface gradient distributions.

points located precisely at the origin. Using this representation, we may consider

such a grouping as an impulsive distribution, as figure 2.7.(b) illustrates. If we

now consider the presence of a local discontinuity, as depicted by the depression in

figure 2.7.(c), then the corresponding gradient space will be altered accordingly, and

appear as shown in figure 2.7.(d). It is the character of this gradient distribution

which provides an indication of the nature of the observed surface and allows us to

detect surface defects in industrial processes, for example.

2.3.2 Surface Roughness Description

As it has been described, the way in which light is reflected by a surface is dependent

on the shape characteristics of the surface, among other factors. A smooth surface,

for instance, may reflect incident light in a single direction, while a rough surface

will tend to scatter light in various directions, maybe more in some directions than

others. In many computer vision techniques, such as Shape from shading, it is often
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assumed that the surface has to be globally flat. When this assumption is omitted,

and the technique is applied to other types of surface, such as very rough surfaces,

the algorithm fails. Therefore, it would be interesting to find a way of characterising

and describing a surface in order to distinguish it from different types of surface.

A description of a surface can be made on several levels. For instance, a single

parameter may be sufficient to characterise a surface for some purposes, whereas

in other cases a much greater degree of description is required. The descriptors

introduced in this section will form the basis for modelling all the surface textures

used throughout this thesis.

Surfaces can be modelled by their height distribution or their slope distribu-

tion [118]. Our work focuses on real surface textures and implicit in this fact is the

necessity of knowing or experimentally calculating the surface height map, S(x, y).

See equation 2.2 on page 22. This is a complicated task with some associated

problems, as the measures of these parameters depend on the instrument and the

separation of sampling points [13], or, in contrast, on the reconstruction technique

used to recover the height information. As the final goal of this thesis is not in the

direction of 3D reconstruction but the classification of surface textures, we basically

focus on surface descriptors which use gradient information to characterise a surface.

Three different levels can be used in order to characterise a surface [111]. A

first level of description seeks to estimate some property of the surface, i.e. height

or gradient, with a single paramenter (first order statistics). On a second level,

a statistical model, such as the histogram, is applied to the variation of height or

gradient, providing a more visual comprehension of the surface’s characteristics. At

a third level, there are those techniques which incorporate spatial interaction, such

as the Power Spectral Density (PSD) or the Autocorrelation Function (ACF). In

this sense, the statistical parameters of the height distribution have been exploited

in conjunction with some spatial information. For example, the two point height

probability density function, analogous to the co-occurrence matrices used in texture

analysis, allows the description of correlation and structure within the surface. This

third level of representation will not be considered here.



34 Chapter 2. Image Formation

x

he
ig

ht

(a) (b)

Figure 2.8: Surface profile. (a) Surface height map of a surface. (b) Corresponding
profile of a vertical cross section.

2.3.2.1 First Order Statistics

Historically, a common method of surface measurement has been to mechanically

measure the height of the surface along a line across the surface. The resulting

series of values are collectively known as the surface profile (see figure 2.8). Given

a surface profile, the most basic descriptor requires the use of only one parameter.

Two of the most common measures of roughness are the root mean square roughness

(RMS) and the centre line average or average roughness (Rave). Both are defined

with respect to surface profile on either the x or the y axis.

RMS =

√√√√ 1

N

N−1∑

x=0

[
s(x)− s(x)

]
2 (2.13)

Rave =
1

N

N−1∑

x=0

|s(x)| (2.14)

where s(x) represents the height of the surface at point x along the profile, s(x)

is the average height of the surface profile and N is the number of columns of the

surface height map.

However, as it has been explained in the context of this thesis, it is more suitable

to use parameters which concentrate on the slope of the facets (gradient vectors)

rather than their height. Therefore, the parameter known as absolute average slope
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ratio (ASSR), which provides an easy way to evaluate the level of irregularities of

a certain surface is of particular interest. Assuming that we have a method which

enables us to estimate the derivative fields of the surface, AASR may be calculated

as

AASR =
1

2NM

N−1∑

x

M−1∑

y

|p(x, y)|+ |q(x, y)| (2.15)

where N ×M is the number of samples contained in each partial derivative. This

parameter is used in Chapter 6 to characterise the degree of roughness of a given

surface texture providing discrimination between relatively smooth surfaces and very

rough ones.

2.3.2.2 Histograms

The histogram description, which can be applied to the variation of height or gradi-

ent, can be thought of as an extension of the single parameter descriptor. While the

parameters of section 2.3.2.1 concentrate on estimating the standard deviation or

mean of the heights of the surface, for example, the histogram represents a statistical

model of the surface.

If the gradient components are used to compute the histogram of the surface,

since there is a linear relationship between surface gradient and surface height, the

characteristics observed in the histogram are also valid for describing the surface

height map. Therefore, the use of histogram description not only implies a new

degree of visual descrimination between surfaces, but also a certain degree of mod-

elling.

For example, the estimated probability density functions (PDFs) for the surface

partial derivatives p and q (i.e. the normalised histograms of these quantities) may

be used to characterise the surface shape and roughness of each surface texture.

Moreover, this allows us to group the surface textures according to their roughness

(relatively smooth and very rough surfaces) and topology (isotropic and directional

surfaces).
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Table 2.1: Important types of surface.

Diffuse surface; Lamber-
tian surface

A surface which reflects
light equally in all direc-
tions.

Cotton cloth; many
paints and papers; un-
finished wood, brick,
etc. Surfaces whose
apparent brightness does
not change with viewing
direction.

Specular surface A surface which reflects
all incident light, de-
pending solely on the in-
cident angle (mirror-like
behaviour).

Mirrors; polished and
bright metals such as
chromium and alu-
minium.

Hybrid surfaces A surface which has both
Lambertian and specular
behaviour.

Many diffuse surfaces
which have small bright
patches (specularities).

2.4 Summary

The aim of this section is to briefly summarise the more important concepts intro-

duced in this chapter. It is important to state that this chapter has presented terms

and notations which are basic to understanding the following Chapters of this thesis

correctly.

We have seen that in the past few years more researchers have begun to distin-

guish between image texture and surface texture. However, in many texture studies,

texture is treated as an image property and not as something which is the result

of the particular combination of the imaged scene and the imaging conditions. In

this thesis we use image texture to extract information about the surface texture,

irrespective of the lighting and imaging conditions. This surface information will

allow us to render new images under novel conditions and use these as models for

the texture classification system.

We have explained that an image texture is the result of the surface properties

of the imaged object, the lighting arrangement and the imaging geometry. The
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surface properties can be divided into reflectance properties which describe how the

surface itself reflects incident light and surface orientation. Table 2.1 summarises

the different types of surface depending on how they reflect the incident light. The

basic terms and notations needed to understand the image formation process have

also been defined. For instance, we have introduced the concept of a reflectance

map and the bidirectional reflectance distribution function (BRDF). Since

real materials reflect light differently, there is a wide variety of reflectance models

designed to capture the main characteristics of light reflection. The dichromatic

reflection model has been described, detailing how an intensity value is formed.

From this model we also describe how the intensities for a Lambertian surface can

be obtained.

We have also analysed in this chapter different ways of obtaining a surface rough-

ness description. Basically, two different approaches can be used for this purpose:

one based on height distribution, and another based on gradient distribution. As in

our work we will focus on real surface textures and, implicit in this fact, there are

some associated problems such as correctly calculating the surface height map, we

propose to focus on surface descriptors based on gradient information. It is impor-

tant to remember that the final goal of our work is not 3D reconstruction but the

classification of surface textures.

From gradient information, a surface roughness description can be made by us-

ing a single parameter such as the absolute average slope ratio (ASSR) or a

statistical model applied to the variation of gradient such as the estimated proba-

bility density functions (PDFs) for the surface partial derivatives p and q. These

two descriptors will allow us to discriminate between relatively smooth surfaces and

very rough surfaces as well as to classify them according to their topology such as

directionality or isotropy.
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Chapter 3

Recovering Surface Information

There are several methods which attempt to determine surface information by mea-

suring parameters calculated from images of the illuminated object. These methods

are reviewed in this chapter, focusing especially on photometric stereo approaches.

Among these, the 4-source colour photometric stereo technique, which allows us to

recover the normal vectors and the reflectance properties for every point of the sur-

face, is described in depth. Although the aim of this technique is to recover surface

information, our final goal is focused on reversing the process of surface recovery

towards image prediction: to use the recovered surface information to render images

of that surface under novel lighting conditions and imaging geometries.

3.1 Introduction

There are many techniques which allow us to obtain 3D information about surfaces.

These methods are available in what Woodham [170] refers to as direct methods and

indirect methods. Direct methods are those which try to measure distance ranges

directly as in pulsed laser based systems, for example, where depth information is the

only information available. Indirect methods are those which attempt to determine

distance by measuring parameters calculated from images of the illuminated object.

Several indirect methods have been developed; for example, stereo vision [48]

uses triangulation to compute distance. By using optical flow [5], one can compute

the relative distance to points on the surface of an object. Therefore, surface vectors

39
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(a) (b) (c)

Figure 3.1: Indirect methods. (a) Based on stereo vision which uses triangulation to
compute distance. (b) Based on optical flow which computes the relative distance
to points on the surface of an object. (c) Based on Shape from X which obtains
surface shape by analysis of the radiometry of image formation.

can be constructed based on how image points flow from one time to the next. Stereo

vision and some optical flow techniques require a relationship between surface points

in one frame and the same points in another frame, taking us to the well known

correspondence problem [177]. Another indirect method for obtaining surface shape

is by analysis of the radiometry of image formation. Commonly known as shape

from shading (although, we should refer to it as Shape from X, where X is one of a

number of options considering the spread of such technologies in the last few years),

this technique can be applied wherever the direction of incident light is known and/or

can be controlled. Figure 3.1 illustrates these groups of indirect methods proposed

by Woodham [170].

As our main objective is to recover surface texture information (surface shape

and surface reflectance properties), it seems more suitable to use a Shape from

X technique which allows us to recover both information. Moreover, the other

techniques such as stereo vision and optical flow, suffer from the correspondence

problem [177] like conventional stereo.

The recovery of shape and material information from images is extremely chal-

lenging and is far from being solved in complete generality. A number of approaches

which promise to be useful, although not completely general, have been pursued over

a long period of time. A well-known objective in computer vision has been to develop

lighting models and rendering procedures to produce synthetic images which are vi-
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sually and measurably indistinguishable from real-world images. Computer models

of architectural scenes have been especially popular subjects and have proven to

be entertaining virtual environments as well as valuable visualization tools. While

computer vision usually aims to derive a 3D scene description from its 2D images,

it is important to clarify that the objective of our approach is not in that direction.

Certainly, it is aimed at reversing the process of surface recovery towards image

prediction, i.e. using a surface model to render textured images of that surface

under novel lighting conditions and imaging geometries; afterwards, these images

will become the models of the classifier and, if accurate enough, will provide better

classification results.

3.2 Shape from X

Over the last three decades, different methods to extract important information from

images have been largely studied for surface recovery purposes. Such techniques,

commonly referred to as Shape from X, have been developed where X is one of a

number of options. This family of techniques includes methods such as shape from

stereo, shape from motion, shape from focus/defocus, shape from zoom and shape

from intensity. All these methods can be simultaneously itemized into the following

groups:

• Techniques based on multiple views, such as shape from stereo and shape from

motion. Shape from stereo is based on solving the correspondence problem

between two or more views of a given surface taken from different locations,

while shape from motion exploits the relative motion between camera and

scene.

• Techniques based on modifying the intrinsic camera parameters, i.e. shape

from focus/defocus and shape from zooming. In shape from focus/defocus,

the images are obtained by changing the camera parameters (usually the focal

setting or the image plane axial position), and taken from the same point of

view. The difference between shape from focus and shape from defocus is that,
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in the first case, it is possible to dynamically change the camera parameters

during the surface estimation process, while in the second case, this is not

allowed [49]. Besides, shape from zoom considers the use of multiple images

taken by a single camera coupled with a motorized zoom.

• Techniques based on extracting shape information from a series of intensity

images, assuming each is generated by a single light source. These techniques

are commonly known as shape from intensity and can be further divided into

three subcategories: shape from shading, shape from photometric stereo and

shape from photometric sampling. Basically, the differences between them are

in the number of images and arrangement of light sources.

The last of these groups of thecniques is particularly appealing since it does not

require additional hardware beyond that used for classification. In the following, we

focus on shape from intensity techniques.

Shape from shading uses a single light source, i.e. one image as input, to recover

the shape information [65]. It has the advantage of requiring the least amount of

input. However, it also introduces evident disadvantages. Since there is less image

information available, the method is less accurate: at each pixel, intensity provides

only one constraint, whereas the description of surface shape (surface gradient or

surface normal) requires at least two parameters. Therefore, many shape from

shading techniques introduce constraints, such as smoothness of the surface as well

as using optimisation methods to estimate shape [126, 63, 94, 80]. Shape from

shading is often not as reliable as other Shape from X techniques since it is very

easy to be confused by reflections or for it to fail through poorly modelled reflectance

functions.

To overcome some of these problems, shape from photometric stereo was intro-

duced by Woodham [170, 171]. Photometric stereo is based on the fact that image

intensities depend on the surface orientation and its reflectance. Hence, if several

images are taken from the same viewing position but with different lighting direc-

tions, variation of pixel intensities in these images will be due to changes in the

relative positions of the light and the surface [172]. This is shown in Figure 3.2,
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(a) (b) (c)

Figure 3.2: Different images of a surface captured from the same viewing position
but with different lighting directions. Variation of pixel intensities in these images
(a)-(c) are due to changes in the relative positions of the light and the surface.

where each image of the scene provides one constraint on the surface shape. Hence,

multiple images of the same scene create an overconstrainted system which is solved

for the surface shape in order to minimise the total cost. Therefore, these constraints

permit us to calculate the normal vectors which represent the surface orientation of

any point on the surface and the reflectance factor or albedo which describes the

reflection properties of the surface.

Another technique similar to photometric stereo is shape from photometric sam-

pling [142, 120]. It usually uses many light sources instead of a few, and a sequence

of images corresponding to each light source. The use of extra light sources elimi-

nates the inaccurate results caused by improper choices of light position in classical

photometric stereo. However, it shares so many similarities with photometric stereo

that both techniques are commonly considered as the same in the literature.

Over all these Shape from X techniques, the photometric stereo has been chosen

in this thesis as a method to recover surface information. It has various advantages

over all other methods as it does not require additional hardware beyond that used

for classification, it does not make strong assumptions about the underlying surface

structure like shape from shading does, for example, and it allows one to recover both

local colour and local gradient, which permit us to render new images of the same

surface texture under different lighting directions. Moreover, photometric stereo

allows us to flag the places where some of its assumptions break down and the
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recovery is impossible. As we will see in the next chapter, this is another important

factor to consider in our prediction proposals and classification approach.

3.3 Photometric Stereo: Related Work

Shape from photometric stereo was conceived by Woodham in the early eighties and

has received an extensive theoretical and experimental treatment [171]. Initially,

the method was based on the use of the so called reflectance maps (introduced in

Section 2.2.1) in the form of look-up tables. These tables were calculated beforehand

by means of a calibrating sphere. This was the most common way of empirically

measuring the reflectance maps, which determine image brightness as a function of

surface orientation. Therefore, if the reflectance factor or albedo at each surface

point is known, the surface gradient can be solved by using two input images. In

case the albedo is not known, both gradient and reflectance factors are solved for

by using an additional image. This method is simple, sensitive to noise and efficient

only for Lambertian surfaces.

All approaches published since then can be classified according to the assump-

tions the authors make about the surface they are dealing with and the type of

problem they want to solve [8]. For example, one may assume that a rough surface

is Lambertian, or, alternatively, its reflectance is of a more general nature. The

reflectance can be constant or varied over the surface. Furthermore, we then may

try to recover the surface characteristics using either greyscale or colour images.

Although we may think the use of greyscale images is adequate for surfaces with

uniform reflectance, it turns out that, unless the surface is Lambertian, the use of

colour images has something to offer, even in this case, for dealing with highlights,

for example. The photometric stereo technique for greyscale images has been well-

researched over the last 20 years [148, 69, 30, 127, 120, 79, 156, 122, 119, 111].

The use of colour, on the other hand, had not been investigated properly until the

nineties [42, 43, 87, 27, 44, 45, 7].

In what follows we review the photometric stereo approaches taking into account

the above described critera (see table 3.1) and grouping them into techniques which
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Table 3.1: Taxonomy of photometric stereo problems proposed by Barsky and
Petrou [8].

Method Type of surface reflectance
Lambertian General

Greyscale uniform albedo variable albedo uniform albedo variable albedo
Images (I) (II) (III) (IV)
Colour uniform albedo variable albedo uniform albedo variable albedo
Images (V) (VI) (VII) (VIII)

use greyscale and colour images.

3.3.1 Greyscale Images

Basically, the major part of existing work in the photometric stereo field deals with

greyscale images. For Lambertian surfaces (with uniform and variable albedo, cases

I and II) the photometric equations are linear. This allows us to formulate the

problem in matrix form. Inverting a system of linear equations makes it possible

to recover the unknown albedo as well as the gradient from three image intensities

for every surface patch. Therefore, by using three images of a rough Lambertian

surface in the absence of shadows, one can successfully separate the surface shape

from the pattern on the surface produced by varying albedo. In the case of uniform

Lambertian surfaces, the system of photometric equations becomes overconditioned

and the surplus information may be used in a variety of ways: for example, to find

outliers [172] or reconstruct unknown illumination directions and strengths of the

light sources [173].

Traditionally, much work on photometric stereo has assumed that light comes

from a single source, generally a point source or a controlled diffused source of light.

However, recent aproaches, such as the work of Basri and Jacobs [9], analyse the

problem when more general lighting conditions are presented. Their objective was to

reconstruct shapes under everyday lighting. For some applications, such as modeling

large outdoor structures, it may be impossible to completely control the lighting.

Therefore, they proposed a photometric stereo method, applicable to Lambertian
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objects, in which the light in each image may be an unknown and an arbitrary

combination of diffuse, point and extended sources.

3.3.1.1 General Type of Surface Reflectance

For surfaces with a constant arbitrary reflectance (case III), the original method by

Woodham [171] works sucessfully, as long as the inspected surface and the calibrat-

ing sphere are of the same material. A variation for this method, using extended

light sources and specular surfaces, was presented by Ikeuchi [69]. He was the first

to obtain the shape of a specular surface employing a photometric stereo technique.

In his research, he used a distributed light source obtained by uneven illumination

of a diffusely reflecting planar surface and three input images. His solution involved

solving a set of non-linear equations and using a look-up table, made from the re-

flectance map, to perform the numerical inversion of the three reflectance maps.

This method assumed a known object position and required accurate measurements

of reflected brightness. In a later work, Ikeuchi [70] proposed a dual photomet-

ric stereo system in order to determine a depth map from the surface orientation

recovered.

Recently, Iwahori et al. [72, 71] proposed a novel approach of photometric stereo

for a rotational object with a non-uniform reflectance factor (case IV). Their ap-

proach was empirical without requiring a separate object calibration to estimate the

associated reflectance maps and, therefore, eliminating the need of making any spe-

cific assumptions about the surface reflectance. Their technique exploited the ability

of neural networks to perform non-parametric functional approximation instead of

using the classical look-up tables.

Furthermore, a large amount of research has been devoted to the recovery of re-

flectance parameters (of a particular reflectance model) alongside the local gradient.

Estimation of the reflectance parameters can be performed locally, provided a suffi-

cent number of images are available, and, therefore, such algorithms are suitable for

surfaces with variable arbitrary reflectance (case IV). Nayar et al. [120] applied pho-

tometric stereo to a so called hybrid reflectance model which is a linear combination
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of Lambertian and specular components. They presented a method for determining

the shape of hybrid surfaces without prior knowledge of the relative strengths of

the Lambertian and specular components of reflection. It is also a common practice

to avoid interreflections, i.e. the mutual illumination between surface facets. The

same authors in [121] challenged the interreflection problem applying photometric

stereo to Lambertian surfaces. They observed that erroneous shape in the presence

of interreflections was a little shallower than the real shape and, therefore, could be

iteratively refined.

Tagare and deFigueiredo [156] developed the theory of photometric stereo, in-

troducing a generalisation of reflectance models which they called m-lobe reflectance

maps. The main question they addressed was the number of images necessary to

invert the image formation process for unique reconstruction of surface normals. In

a later work they investigated the problem of simultaneous estimation of the shape

and reflectance properties for the same class of surface reflectances [157]. An en-

ergy function was minimised with respect to the surface normal and the weights of

the Lamberitan and specular components. They proved that ten light sources were

needed to get a unique solution. This method was based on the assumption that

the Lambertian and specular components could be preseparated. Their research

was continued by Kay and Caelly [77] who investigated the problem of simultaneous

estimation of surface normals and surface reflectance parameters from a practical

point of view applying non-linear regression to a large number of input images. Lee

and Kuo [93] introduced the concepts of parallel and cascade photometric stereo. In

their work, the authors argued that the accuracy of shape from shading algorithms

was related to the slope of the reflectance map defined on the gradient space. They

suggested two different photometric approaches: first, parallel photometric stereo

would take all the images together to produce the best estimation of the surface and

second, cascade photometric stereo would take the images one after the other, and

the estimated shape from the previous image, computed using a triangular element

surface approximation, was used as input for the initial estimate of the next image.

They used a two source photometric stereo and concluded that the best results could

be obtained with orthogonal light sources.
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Another photometric stereo approach for general modelling of reflectance prop-

erties was proposed by Clark [28]. His approach, called active photometric stereo,

modelled the motion of the light source in infinitesimal steps. He was the first to use

perspective instead of orthographic projection, thus removing the necessity of assum-

ing that the light comes from infinity. The computation was local, non-interative,

and directly solved for depth by a closed form solution. In order to measure the

infinitesimal image gradient with respect to change in lighting, seven images were

required to provide an acceptable discrete approximation.

Some of the methods described above solve the problem of recovering the local

gradients for surfaces with variable arbitrary reflectance fully, but they are generally

fairly complicated. A simple approach to deal with this problem is to ignore the

reflectance model. Since many non-Lambertian surfaces exhibit near Lambertian

behaviour outside their regions of specularity, it is a very attractive option to apply

the linear algorithm, developed for Lambertian surfaces, to surfaces with arbitrary

reflectance, and treat highlights as deviations from the Lambertian law. This was

done by Coleman and Jain [30] who proposed the 4-source photometric stereo tech-

nique. This technique was based on the assumption that only one of the light sources

caused specular reflection. Therefore, they used relative deviation to determine the

specular source. Basically, the conventional photometric stereo technique is applied

for the four triplets obtained combining the four input intensities, giving as a result

of each triplet the albedo and gradient of the corresponding pixel. If the surface is

Lambertian, the recovered albedos have a small variance. However, if the variance

is large, in the absence of shadows, one may assume that highlights are present.

The smallest recovered albedo is taken as the true albedo and the corresponding

gradient as the true gradient. Further development of this technique was made by

Solomon and Ikeuchi [153] who took self-shadowing regions into consideration. They

extended Coleman’s solution by dividing the surface into different areas, depending

on the number of light sources illuminating them.

Observing all the methods described in this section, we notice another important

aspect that has to be considered: the number of images used to solve the problem.

Table 3.2 presents a classification of the greyscale photometric approaches taking
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Table 3.2: Greyscale photometric stereo approaches classified according to the re-
quired number of images.

Approaches which use Approaches which use
4 or fewer images more than 4 images

Woodham [171] Tagare and deFigueiredo [156, 157]
Ikeuchi [69, 70] Kay and Caelly [77]

Iwahori et al. [72, 71] Lee and Kuo [93]
Nayar et al. [120] Clark [28]

Coleman and Jain [30]
Solomon and Ikeuchi [153]

into account the number of images they require. We classified them into those which

use a small set of images (4 or fewer images) and those which use a large set of images

(more than 4 images). We considered the limit of 4 images since it is the minimum

number from which it is possible to deal with shadows and highlights.

3.3.2 Colour Images

Up to the preent, not much work has been done in the field of colour photometric

stereo. Information on the colour image of a Lambertian surface illuminated by

a single light source is redundant since the photometric equations for individual

colour bands are linearly dependent. An efficient way to use this redundancy is to

perform a conventional photometric stereo method using a single colour image of a

Lambertian surface under complex lighting conditions rather than three greyscale

images [42, 45]. The surface should be illuminated by several light sources which are

spectrally distinct and their directions do not lie in the same plane. This method

is called Shape from Colour. Finlayson et al. [50] applied it to the task of face

recognition. Kontsevich et al. [87] considered a similar approach.

Christensen and Shapiro [27] introduced the method of colour photometric stereo

for surfaces with an arbitrary reflectance (case VII). This method uses the notion of

the shading function, which maps surface normals under a given illumination to the

colour space (much in the manner of a reflectance map in the greyscale method where
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surface normals are mapped to image intensities). This method was implemented

by means of look-up tables representing the inverse shading functions for a given

imaging configuration which were built using a calibrating sphere. The disadvantage

of this method is that the surface should either be uniformly coloured or its colours

should form distinct separable clusters in the colour space which severely restricts

the choice of acceptable surfaces. Therefore, this method should be classified as

the case of uniform albedo (case VII) rather than variable (case VIII). Another

disadvantage of this method is the need for preliminary calibration.

As explained in Chapter 2, a general reflectance function can be modelled as a

sum of a matte (Lambertian) and a specular component (the latter includes both the

diffuse specularity and the specular spike). It is a well-known fact that the colour

of highlights resembles the colour of the illuminant. This observation leads to the

dichromatic reflection model [84]. Incorporating spectral information into conven-

tional shape from shading techniques gives a welcome advantage. See, for example,

the work of Lee and Bajcsy [95] which used a spectral differencing algorithm to

detect specularities from multiple images. In their work, the position of the object

was varied rather than the direction of illumination.

Schluns and Witting [143] also used colour information to develop a colour photo-

metric stereo technique for non-Lambertian surfaces without precalibration. They

attempted to recover the surface parameters directly from the three input colour

images using colour histograms. They worked out the lighting and surface chro-

maticities directly from the histogram and then broke down the image pixels into

linear combinations of matte and specular components. This method was not tried

on real surfaces. In an ideal case all image pixels lie on a plane spanned by the chro-

maticity vectors of the surface and the illumination colours. Such pixels are easy to

break down into linear combinations according to the dichromatic reflectance theory.

If, however, histograms are not planar, the break down coefficients are not reliable.

In real surfaces there are always variations in colour and there are always errors,

so histograms are rarely planar. Another difficulty is presented by the saturated

pixels. Saturated pixels appear when the irradiance of a surface facet exceeds the

capacity of image sensors and the pixel is white. Trying to break down a saturated
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Figure 3.3: A review of photometric stereo techniques depending on the use of
greyscale or colour images.

pixel leads to incorrect recovery of the components. There are other considerations

which make this method impractical.

Recently, Barsky and Petrou [7, 8] proposed a method which deals with sur-

faces of arbitrary variable reflectance (case VIII). They do not assume any prior

knowledge about the imaged surface so they do not use any preliminary calibra-

tion. Moreover, they proposed using colour rather than greyscale images because,

for non-Lambertian surfaces, the spectral content of the images gives an additional

cue for the detection of specularities. Their photometric method was based on the

4-source photometric stereo method proposed by Coleman and Jain [30]. Instead of

comparing recovered albedos, they compared chromaticities of input pixels. Usually,

some global technique, which often involves building colour histograms of the input

images (which was done, for example, by Sanderson et al. [143]), is employed to

detect highlights in colour images by spectral difference. Barsky and Petrou, on the

other hand, compared colour pixels locally for each surface facet individually. This
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allowed them to consider surfaces with variable arbitrary reflectance. However, for

certain surfaces, the spectral difference method does not work. For these surfaces,

they proposed an alternative method consisting of comparing the recovered nor-

mals with specular directions [129]. This method was less reliable than the spectral

difference method but it provided reasonable results.

Figure 3.3 summarises the photometric stereo methods described in Sections 3.3.1

and 3.3.2, classifying them according to the use of greyscale or colour images. Note

that much work has been done effectively in the field of greyscale photometric stereo,

and since the mid-nineties the researchers have started to work with colour photo-

metric stereo.

3.3.3 Applications

In the last few years many of these photometric techniques have been used in a

large number of applications which can be grouped in the following categories (see

Figure 3.4):

• To perform surface texture, shape and roughness analysis. There

are many works which use a photometric technique to perform classification

of 3D textures. For example, McGunnigle and Chantler [113] used the dis-

tribution of surface gradients obtained by means of photometric stereo as a

cue for surface texture classification. Other works use photometric stereo to

develop classification systems invariant to the rotation of the light direction.

For instance, Chantler et al. [24] proposed a classification scheme focused on

rotation invariant texture recognition. On the other hand, Kee et al. [78] sug-

gested a photometric-based face recognition system. Their basic idea is to

describe each face model using illumination invariant primitives: the surface

normal and the albedo recovered from different images of the face captured

under different lighting conditions.

• To develop industrial vision-based inspection systems. Smith et al. [151]

applied photometric stereo to the task of unsupervised industrial inspection
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(a) (b)

(c) (d)

Figure 3.4: Applications of photometric stereo techniques: (a) to perform surface
texture, shape and roughness analysis, (b) to develop industrial vision inspection
systems, (c) to perform 3D reconstruction and (d) to produce synthetic images
indistinguishable from real-world images.

of Lambertian surfaces. They used photometric stereo to separate the surface

shape from the surface albedo and then analysed the variance in the surface

normals to detect defects. Moreover, the recovered surface shape was used

to render a synthetic image lit in the best way to show defects. As well as

detecting defects, other works proposed by Smith [152, 150] include a global

quantification of the surface quality in the inspection system.

• To reconstruct 3D information. 3D surface reconstruction is one of the

major research areas in computer vision. Several methods in the field of shape

reconstruction use the gradient data obtained by photometric stereo techniques

to transform it into height or depth maps, or into surface data useful for many

applications [53, 67].
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• To render realistic images. Some works use the surface information ex-

tracted by the photometric techniques with the aim of producing synthetic im-

ages visually and measurably indistinguishable from real-world images. This

implies potential applications in computer graphics and virtual reality such as

entertaining virtual environments and valuable visualization tools for medical

applications, among others.

3.4 Use of 4-Source Colour Photometric Stereo

It is important to remember that the aim of this chapter is to choose an appropriate

technique which allows us to recover surface information. In previous sections we

reviewed different approaches to perform this task. Now we will point out the

essential features and advantages of the photometric approach we have selected for

our purpose.

Note that our goal is to use this surface information towards image prediction,

i.e. use the surface information to render textured images of that surface under novel

lighting conditions and imaging geometries. These predicted images will become the

basis of our model-based classification system.

After analysing the different photometric approaches and taking into account

the main objective of this thesis, the classification of colour textures, the 4-source

colour photometric technique proposed by Barsky and Petrou [8] was chosen to

recover surface information. The main reasons for this decision are the following:

• Colour instead of greyscale images. Since we want to perform the classi-

fication of colour textures, a virtual database of colour textured images under

different geometries will be necessary. So, it is of extreme importance to re-

cover the surface information which allows us to render such colour images.

Therefore, we decided to use a colour photometric stereo technique instead of

a greyscale approach.

• Without any preliminary calibration. As it has been explained, photo-

metric stereo techniques allow us to recover both local reflectance and local
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gradient information. There are some techniques which need an initial calibra-

tion process for each object. However, the chosen 4-source colour photometric

technique permits us to recover both a reflectance map (called colour map

in the case of colour photometric stereo) and shape information without any

preliminary calibration.

• Lambertian/Specular surfaces. The 4-source colour photometric stereo

technique does not make strong assumptions about the underlying surface

structure as other techniques do. Therefore, it can be applied to a general

type of surface with a variable albedo.

• Small set of images. 4 images of the same surface captured under different

directions of illumination are needed to apply the 4-source colour photometric

stereo. This is the minimum number of images necessary to deal with surfaces

with general reflectance properties. Other techniques such as those proposed

by Tagare and deFigueiredo [156, 157], Kay and Caelly [77], and Clark [28]

require more images to recover the surface information correctly. Moreover,

the selected technique does not present any restriction concerning the direction

of the light sources used in the photometric stereo images as other techniques

do.

• Simplicity. Another important feature of the selected technique is its sim-

plicity. This photometric method is based on the 4-source photometric stereo

method proposed by Coleman and Jain [30]. They worked on the fact that

many non-Lambertian surfaces exhibit near Lambertian behaviour outside

their regions of specularity. Therefore, it is a very attractive option to apply

the linear algorithm developed for Lambertian surfaces to surfaces with arbi-

trary reflectance and treat the specular reflections (highlights) as deviations

from the Lambertian law. Note that this is a much simpler solution compared

with other algorithms which need to solve a set of non-linear equations.

In the next section we describe the basic terms and notations of the 4-source

colour photometric stereo we used, detailing the complete process from which we
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obtained the surface description.

3.5 Photometric Stereo: Terms and Notations

Two assumptions are usually made in photometric stereo. The surface is generally

flat, parallel to the image plane of the camera, and is lit by a single light source.

Moreover, the camera and light are far away from the surface so the viewing direction

and light direction are the same for every point on the surface. Usually, most authors

choose the coordinate system so that the image plane coincides with the xy plane and

the z-axis coincides with the viewing direction. Then the surface can be described

by a 2D height funcion z = S(x, y) and we can define the gradient components for

every point on the surface as

p(x, y) =
∂S(x, y)

∂x
q(x, y) =

∂S(x, y)

∂y
(3.1)

and the normal unit vector N as

N =
1√

p2 + q2 + 1
(p, q,−1)T (3.2)

It is often assumed that all surface facets are visible, i.e. at every point the angle

between the local normal N and the negative direction of the z-axis is less than π/2.

The surface photometric function for a single source can be defined in terms of

three angles called the incident angle (i), the emittance angle (e) and the phase angle

(g) as shown in Figure 3.5. These angles quantify the relationship between the light

source vector L, the viewer vector R, and the surface normal vector N. All these

angles are used to obtain the reflectivity function which measures the reflectance of

the surface. In Lambertian surfaces, the reflectivity function is proportional only

to the cosine of the incident angle. Under uniform light, these surfaces have the

property of looking equally bright from all directions. In contrast, specular surfaces,

which have a mirror-like behaviour, appear when the angle between the viewer and

the light source is bisected by the surface normal.
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Figure 3.5: Definition of the important vectors and reflectance angles: R, viewer
vector; L, illuminant vector; N, normal vector; i, incident angle; e, emittance angle;
g, phase angle.

We define a unit illumination vector as L = (Lx, Ly, Lz)
T which points from the

surface towards the light source. If we have several light sources, we denote them

by using a superscript L1, . . . ,Ll where l is the number of light sources. A pixel,

obtained by a camera with K sensors in each cell, is a vector in a K-dimensional

colour space. A colour pixel, obtained by the jth lighting, is denoted by Ij =

(Ij1 , . . . , I
j
K) where superscripts refer to the lighting and subscripts to the colour

component. A greyscale pixel, obtained under the jth lighting, is denoted by I j0 .

In all the experimental trials presented in this thesis, a colour photometric stereo

set is available for each physical texture. Each photometric set is composed of 4

images under the following conditions: (i) the surface is lit by 4 distant point light

sources, (ii) the lights are placed in a cross-like manner, all four having the same

elevation angle (see Figure 3.6). Thus, the elevation angle (we shall refer to it as

θ) is a single parameter which describes a particular lighting configuration. The

positions of the lights have been chosen so that the light vectors are:

L1 = (0, cosθ,−sinθ)T L2 = (cosθ, 0,−sinθ)T
L3 = (0,−cosθ,−sinθ)T L4 = (−cosθ, 0,−sinθ)T (3.3)
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(a) (b)

Figure 3.6: Lighting configuration. (a) The lights are placed in a cross-like manner
(camera view). (b) All four lights have the same elevation angle θ.

In what follows, we detail the colour photometric stereo proposed by Barsky and

Petrou [8]. We first explain the greyscale photometric stereo and then the extension

to colour images.

3.5.1 Greyscale Photometric Stereo

Let us consider a Lambertian surface patch with albedo ρ and normal N, lit with

only three light sources with directions L1, L2, and L3. In this case, the intensities

of the obtained (greyscale) pixels can be expressed as

Ik0 = ρ(Lk ·N) (3.4)

where k = 1, 2, 3, and (·) represents the scalar product of two vectors.

The pixel intensities can be stacked to obtain the pixel intensity vector I0 =

(I1
0 , I

2
0 , I

3
0 )T . The light vectors can also be stacked row-wise to form the illumination

matrix [L] = (L1,L2,L3)T , (square brackets are used to denote matrices). Then,

equation 3.4 could be rewritten in matrix form:

I0 = ρ[L]N (3.5)
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If the three light directions Lk do not lie on the same plane, matrix [L] is non-singular

and it can be inverted, giving:

[L]−1I0 = ρN (3.6)

Since N has unit length, both the normal (as the direction of the obtained vector)

and albedo (as its length) can be recovered.

If we have more than three input images, it is possible to add robustness to the

scheme as was done by Coleman and Jain [30]. First of all, for every surface patch we

can make up a set of all possible intensity triplets, each triplet having an illumination

matrix associated with it. Applying the corresponding inverse illumination matrix

to each intensity triplet, we obtain a set of recovered vectors. All these vectors are

used to estimate the normal vector of the surface patch. More specifically, these

vectors are averaged to produce the final one. The albedo is obtained computing

the length of the final vector. Figure 3.7 shows an illustrative example in which 4

images (4 pixel intensities) are available. Note that in this case, 4 intensity triplets

are used to recover the normal vector and the albedo.

3.5.2 4-Source Colour Photometric Stereo

Let us assume that we have 3 colour images of the same Lambertian surface taken

under 3 distinct light sources whose directions are described by the illumination

matrix [L]. The intensity triplets I1, I2, and I3, produced by a surface patch for

each of the 3 lighting arrangements, are described by:

Ik = (Ik1 , I
k
2 , I

k
3 )T = (Lk ·N)C (3.7)

where vector C is the colour of the surface patch C = (Cr, Cg, Cb).

Let us denote the scalar product (Lk ·N) by s, so we can form a shading vector

S = (s1, s2, s3)T . Note that S = [L]N.

If we stack the pixel vectors row-wise to obtain the intensity matrix [I] =

(I1, I2, I3)T , we can write:
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Figure 3.7: Example of how photometric stereo can be computed if more than 3
images are available. By applying photometric stereo to each intensity triplet, a set
of recovered vectors is obtained.

[I] =



I1

1 I1
2 I1

3

I2
1 I2

2 I2
3

I3
1 I3

2 I3
3


 =



s1Cr s1Cg s1Cb
s2Cr s2Cg s2Cb
s3Cr s3Cg s3Cb


 = S⊗CT (3.8)

where ⊗ represents the Kronecker product.

Note that while the kth row of matrix [I] is the kth input pixel Ik, its lth column

is the intensity vector Il for the lth colour band. Equation 3.8 describes the intensity

matrix in the ideal noiseless case. However, in real data there is always a certain

degree of noise, and the “observed” intensity matrix differs from the “ideal” matrix.

Barsky and Petrou proposed to find such estimates of N and C, minimising the

error between both matrices. This can be done by applying the Least Square Error

technique which results in the desired estimates for colour and shading vectors being

the principal eigenvectors of matrices [I]T [I] and [I][I]T respectively.

Intuitively, this method can be interpreted as follows. Given a Lambertian sur-

face patch, the three colour pixels corresponding to it are collinear in the RGB
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Figure 3.8: Intuitive interpretation of the colour photometric stereo. By computing
the chromaticity of each surface patch and projecting all input pixels on the principal
colour line, the problem is reduced to the greyscale case.

space and differ only by a scalar factor (the shading of the patch under a particular

illumination). Introduced errors may disturb the collinearity, therefore, Principal

Component Analysis is used to find their principal direction. The principal direc-

tion gives the optimal chromaticity of the surface colour in the Least Square Error

sense. By determining the chromaticity of the surface patch and projecting all colour

input pixels on the principal colour line, the problem is reduced to the greyscale case

where the projections play the role of greyscale intensities. Figure 3.8 illustrates this

methodolgy. By applying the above described greyscale photometric algorithm to

this intensity vector, we get the optimal estimation of the gradient and the albedo.

Note that the colour of the surface is the vector in colour space oriented along the

principal colour and has a length equal to the calculated albedo.

This method can be easily extended to more than 3 input images, let us say to

M images. It is possible to estimate surface chromaticity using all M colour pixels

by finding the principal eigenvector of the corresponding colour correlation matrix.

Using this chromaticity, M “intensities” can be produced by projecting all the pixels

on the principal colour line. Afterward, these intensities are used as input for the

appropriate greyscale method to recover the normal and albedo.
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Figure 3.9: 4-source colour photometric scheme. As a result to apply the photomet-
ric technique, the colour map and the surface shape information are recovered.

Figure 3.9 summarises the structure of this 4-source colour photometric stereo

based virtual image generation approach. Given a photometric set composed of

4 images, this photometric technique allows us to recover the colour information

as well as the gradient vector for each point on the surface. Note that for a given

particular direction of light and by using the gradient information, the corresponding

surface shading can be generated. Note also that the colour information is expressed

in terms of the colour map. All of this information is indispensable to the process

of rendering new images under different lighting conditions.

3.5.3 The Problem of Highlights and Shadows

Now, since the colour photometric stereo technique has been described, we will

analyse what happens with this technique if it is applied to images affected by

highlights and shadows.

Basically, if the method described in 3.5.2 is applied to a triplet which has a
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highlight or a shadow, the recovery of colour and gradient information is affected.

For example, the recovered colour will appear lighter than the true colour if a high-

light is present, while the change of colour due to a shadow will depend on the

lighting set-up. Moreover, the recovered normal will lean more towards the light

source which produced the highlight or away from it accordingly. In what follows,

we briefly review some approaches which have studied these problems.

3.5.3.1 Related Work

Coleman and Jain [30] proposed a method using 4 images of the same surface to

detect highlights in the absence of shadows. Their basic idea was to compare the

albedos recovered from all four possible triplets of pixels under the assumption that

the specularity regions do not intersect. It is this redundancy of using four triplets of

pixels which allowed them to tag and remove the specular source. To illustrate how

this is accomplished, assume that we are given four measured intensity values at a

point (x, y) on a surface, one intensity from each image under its corresponding light

source. From this quadruple of pixels, we form 4 triplets. We reconstruct the local

normal and colour for each of the triplets, thus having 4 normals and 4 albedos. If

none of the intensities has a specular component, that is to say the quadruple does

not contain a highlighted pixel, the deviation of the recovered values from the four

different triplets is insignificant and they will appear as shown in Figure 3.10.(a).

However, suppose the intensity value from one image contains a specular component

elevating its value. The resulting four normals will be similar to those illustrated in

Figure 3.10.(b). It is easy to see that there is a greater deviation in both direction

and magnitude of the vectors. Coleman and Jain argued that if the albedos differ

significantly, it should be due to a highlight. The three largest albedos must be

affected by the highlight, therefore the triplet producing the smallest albedo contains

only the Lambertian component and is used for recovery.

Nevertheless, many natural surfaces produce cast and self-shadows when lit by

directional light. A variation of the above method, proposed by Solomon and

Ikeuchi [153], takes self-shadows into consideration. Solomon and Ikeuchi considered

a unit hemisphere of surface normals, simultaneously lit by all four lights at once.
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(a) (b)

Figure 3.10: Example of computed normals affected by a highlight [30]. (a) Com-
puted normals at a single point on the surface when no specular component is
present. The deviation among normals is small. (b) Computed normals at a single
point with a source exhibiting specularity. The intensity value from this source is
elevated causing a high deviation among these normals.

The hemisphere was divided into regions: those lit by all four lights, by three lights,

and by only two lights. Different strategies were suggested for detecting specularities

and local surface recovery for each of the regions. This method has several serious

shortfalls. First of all, it excludes cast shadows and that can imply an incorrect

gradient reconstruction. Moreover, there is no indication of how to detect shadows.

In real images, shadows are rarely perfectly black. They may be brightened by

secondary reflection, backlight, etc. There is always a range of shadow values even

for uniformly coloured surfaces and to detect a shadow we must use some sort of a

thresholding algorithm. For arbitrarily textured surfaces the uncertaintly in shadow

detection is even greater: shadow values in a brightly coloured area are higher than

shadow values in darker areas. See, for example, the variety of shadows presented

in the images in Figure 3.11.

As we have seen above, the method proposed by Coleman and Jain assumed that

there are no shadows in the input images. If, however, there are shadows, either

cast or self-shadows, highlight detection becomes more difficult, as the same spread

in the values of the recovered normals and albedos can be caused by shadows as well

as highlights.
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(a) (b) (c)

Figure 3.11: Three image samples which present a great variety of shadows.

Recently, Petrou and Barsky [129] proposed a new method aimed at reducing the

distortion caused by misinterpretation of highlights and shadows. First, they pro-

posed a technique for detecting the “problematic” quadruples (quadruples of pixels

containing highlights or shadows) using only pixel values without any information

about the surface or the lighting configuration. Their technique works for greyscale

and colour images without the need of recovering first the normals and albedos,

therefore it is quick. After detecting a problematic quadruple, they decided whether

it contained a highlighted pixel or a shadow, using colour information. Finally,

having ruled out highlights, they concluded that the remaining problematic quadru-

ples contained shadows. Summarising, for a highlighted quadruple the true normal

vector and colour are recovered using the three darkest values and, for a shadowed

quadruple the restoration is done using the three brightest values.

3.5.3.2 Methodology for the 4-Source Colour Photometric Stereo

As explained in previous sections, in order to recover the local normal and colour of

a surface patch, 4 colour images of the same surface taken from the same viewpoint

under light with different directions Lk, k = 1, 2, 3, 4, are used. In 3D space, any 4

vectors are linearly dependent, so the 4 light vectors Lk are also linearly dependent

and there is a linear equation expressing the relationship between them:

a1L
1 + a2L

2 + a3L
3 + a4L

4 = 0 (3.9)
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Multiplying this equation by the albedo ρ and the local surface normal N, the

following equation can be obtained:

a1ρ(L1 ·N) + a2ρ(L2 ·N) + a3ρ(L3 ·N) + a4ρ(L4 ·N) = 0 (3.10)

Note that this equation is equivalent to:

a1I
1 + a2I

2 + a3I
3 + a4I

4 = 0 (3.11)

In other words, linear dependence of the light vectors leads to the same linear equa-

tion for the corresponding pixel intensities if the Lambertian assumption holds.

Equation 3.11 can be rewritten in vector form:

(A · I) = 0 (3.12)

where A = (a1, a2, a3, a4)T . This means that any non-shadowed Lambertian quadru-

ple of pixel intensities is perpendicular to A, i.e. for a specific lighting configuration,

all non-shadowed Lambertian quadruples form a hyperplane in the 4-dimensional in-

tensity space, no matter what albedo and normal the corresponding surface facets

have. Therefore, all non-shadowed Lambertian quadruples of intensities in the in-

put images should satisfy Equation 3.12. The parameters of this equation can be

estimated even without knowing the lighting configuration by means of the Least

Squares technique. Barsky and Petrou proposed that by thresholding the square

error with which Equation 3.12 is satisfied, it is possible to separate the problematic

pixel quadruples from non-shadowed Lambertian ones. In the case of colour images,

they proposed comparing the values of projections of the input colour pixels along

the principal colour line rather than using the actual values in each colour band

separately. This is because they concluded that, for different surfaces, they could

use images with weaker and stronger colour bands, preventing cases in which the

method fails if each colour band is analysed separately.

Their method allows us to rule out the majority of purely non-shadowed Lam-

bertian quadruples. It is fast and it does not require any information about the
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orientation or the colour of a surface facet. The colour photometric stereo method

can be applied to these quadruples without any modification, much in the manner

done by Coleman and Jain [30].

Having detected a problematic quadruple, the next step is to decide whether

it is a highlight or not. Barsky and Petrou proposed doing that by using colour

information. The colour of a highlighted pixel is the combination of “matte” surface

colour, and the colour of the light. The more mirror-like the reflectivity of the surface

material, the closer the highlight colour is to the light colour. Thus, for white light

we can compare the chromaticity of the brightest pixel with the chromaticity of

darker pixels (which is the chromaticity of the “matte” surface colour) and, if the

difference exceeds a certain threshold, the pixel can be labelled as a highlight.

Nevertheless, this method of detecting highlights fails if the chromaticity of the

underlying surface colour is close to the chromaticity of the incident light. That is to

say, the variation in pixel colour due to highlighting becomes indistinguishable from

the variation due to the imaging process. In this case, they proposed the following

technique; the brightest value is disregarded and the normal and surface colour are

reconstructed using the three darkest values. If the recovered normal is close to

the specular direction of the corresponding imaging configuration and the brightest

value is higher than that predicted by the recovered normal and albedo, that value

is assumed to be due to a highlight.

In the rest of the problematic quadruples, the darkest value is considered to

be due to a shadow and the colour and normal can be recovered using the three

brightest values.

3.5.3.3 Example: Highlights and Shadows Correction

In what follows, we present an example to illustrate the performance of the 4-source

colour photometric stereo in the presence of highlights and shadows.

We have selected a surface which has highlights and shadows as well as a number

of other imperfections, such as interreflection and over-saturation of highlights.
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Figure 3.12: Input photometric set for the “tomatoes” surface.

Figure 3.12 shows the four images of the photometric set. The first row in

Figure 3.13 shows the output of the 4-source colour photometric stereo without doing

highlights and shadows correction. The first image shows the recovered colour map,

while the second image shows a shading of the surface lit from a certain direction.

Note that both colour and normals are recovered incorrectly in the presence of

shadows and highlights producing false highlights and shadows. The third image

in this row shows a final reconstruction of the surface under a certain direction of

light.

The second row in Figure 3.13 shows the detected “problematic” quadruples. The

white areas in the images correspond to both highlights and shadows in all 4 images.

These images are obtained by thresholding the error in the linear equation 3.12. The

next two images in this row present the highlights and shadows detected by using

the methodology described in the previous section. Note that different colours are

used to indicate highlights produced by different lights.

When the non-shadowed Lambertian points are detected and labelled, the recov-

ering of the surface normals and albedos is done by using the other 3 values. The
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Figure 3.13: Example of reconstruction with highlights and shadows correction
(taken from [129]). The first row shows the colour map, a shading of the surface
and a surface reconstruction without highlights and shadows correction. The second
row shows the “problematic” quadruples, the highlights and shadows detected on
the surface. The third row shows the colour map, a shading of the surface and a
surface reconstruction with highlights and shadows correction.

third row in Figure 3.13 shows again the colour map, a shading of the surface and also

a final reconstruction under a particular light. Note that a number of pronounced

highlights and some shadows have been successfully detected and corrected.

However, it is important to observe that from these images another problem

arises: when multiple imperfections are present in the same quadruple (for exam-

ple, shadows from two or more light sources), the method does not have enough

information for adequate reconstruction.
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3.5.4 Texture Rendering

Rendering is the process of generating an image of a 3D scene using colour and

shading to make the object or objects appear solid and three-dimensional. Basically,

the rendering processes can be classified into two general approaches: model-based

and image-based. The difference between them is easy. In traditional model-based

rendering, a geometric model of a scene together with surface reflectance properties

and lighting parameters are used to generate an image of the scene from a desired

light point. While in image-based rendering, a set of images taken from known

viewpoints are directly processed to create new images.

It must be clarified that we understand the rendering process in a simpler manner.

Precisely, we refer to the rendering process as a relighting algorithm which uses as

inputs a surface model and a desired light direction and returns the corresponding

output image. Note that this rendering method is clearly model-based as a surface

model is needed to generate new images.

In a recent work [41], Dong and Chantler discussed three different ways in which

the texture may be rendered given the photometric information and lighting condi-

tions. Figure 3.14 illustrates these approaches. The image-based relighting method

uses a simple linear combination of images which assumes a Lambertian reflectance

law in order to relight under a novel direction of light. In contrast, the gradient-

based relighting uses the surface gradients and the reflectance properties, while the

height-based relighting uses height-maps instead of using surface gradients. Note

that the last two are model-based approaches.

A gradient-based approach will be used in this thesis to render images under

novel lighting conditions. Dong and Chantler [41] argued in their work that the

three approaches produce very similar results. Therefore, it seems more suitable

to our purposes to use a gradient-based approach since both information (gradient

vectors and colour) are directly provided by photometric stereo.
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Figure 3.14: Different ways of relighting surface textures.

3.5.4.1 Gradient-based Rendering

We have seen that a surface can be defined as a set of facets which are normal to the

gradient vectors of the surface. Using these facets and given a light vector, rendering

of the surface shape can be done by showing the shading of a facet calculated by

taking the dot product of the light vector with the gradient vector.

Moreover, by using the surface shape information and applying the colour map,

a rendering of the surface texture can be obtained by multiplying, at every pixel, its

colour map with its shading factor. Hence, the image texture is finally generated.

Figure 3.15 summarises this image texture rendering process. First, 4-source

colour photometric stereo is applied to recover the surface and colour information.

Afterwards, given a light vector and using the recovered gradient vectors, a surface

shape rendering is made. Finally, by using the colour map information and the

surface shape rendering, the image texture rendereding is obtained. Note that when

surface texture information is available, it is possible to render output image textures
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Figure 3.15: Image rendering process.

for every input light vector.

3.6 3D Surface Reconstruction

3D surface reconstruction is one of the major research areas in computer vision.

Nowadays, there are many methods which allow us to achieve a 3D reconstruction.

For instance, those based on stereo vision [48] which use two images of the same

scene captured under the same lighting conditions. Moreover, those based on coded

structured light [141, 124] which use a single camera and assume that one image

of the scene is lit by multiple and spectrally distinct lights. And among others,

those based on photometric stereo using a single camera to obtain several images of

the scene captured under different lighting conditions; i.e. lights placed at different

positions with respect to the scene and the camera.

The aim of this section is not to describe all of these reconstruction methods. We

will be more specific and only focus on those techniques which allow us to obtain a 3D
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reconstruction by using the surface gradient information extracted from photometric

stereo.

3.6.1 Integration Techniques

Several methods in the field of shape reconstruction lead to gradient data which

still have to be transformed into height or depth maps or into surface data for many

applications. Thus, reconstruction accuracy also depends upon the performance of

these methods which enable the transformation of gradient vectors into height maps.

Essentially, there are two types of known approaches in the literature [83], local

integration along paths [30, 64, 174] and global integration techniques [68, 53, 67].

Figure 3.16 shows the basic idea of both integration approaches.

Path integration techniques are based on local calculations of height increments

by curve integrals. The main idea is to use the gradient vectors which give the

change in surface height with a small step in either the x or the y direction, to

recover a height map of the surface by summing these changes in height along some

path. These techniques differ in the way they specify an integration path and in the

special procedures (local neighborhood) used to compute the local approximations

of height increments. For example, Coleman and Jain [30] start in the middle of

the gradient field. Their initial path forms a cross in the array. The integration is

then performed in all four quadrants in the column direction. For two points in the

sequence the averaged surface normal is calculated defining a surface tangent from

the previous point to the next location. Their technique is known as the two-point

method in the computer vision literature. Healey and Jain [64] have extended this

technique to an eight-point method. Wu and Li [174] also suggested paths parellel

to the x-axis or the y-axis, but averaging gradient values for obtaining increments

in height. Moreover, a technique using four different scans through the gradient

field starting at the four corners is presented by Rodehorst [140]. This is based on

the assumption that the same initial height value is valid in all four corners of the

gradient data array. Therefore, by averaging the results of all four scans the final

height is obtained.
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Figure 3.16: Classification of integration techniques: local and global integration
techniques.

Summarising, these local integration techniques are easy to implement and very

efficient in computing speed. However, the locality of calculations causes a high

dependency on data accuracy and the propagation of height increments along paths

also means the propagation of errors.

In global techniques, surface integration is treated as an optimisation problem. In

other words, surface integration can be considered to be a variational problem where

a certain function has to be minimised [68, 67]. Usually, a certain representation of

the unknown surface: e.g. in terms of Fourier basis functions and the integrability

condition are used to constrain the global optimisation process [53]. Two different

global techniques are well-known in the literature: the method suggested by Horn

and Brooks [68] and the method proposed by Frankot and Chellappa [53]. The first

is directed on minimising the error function

f(p̃, q̃) =
∫ ∫
|p(x, y)− p̃(x, y)|2 + |q(x, y)− q̃(x, y)|2dxdy (3.13)
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where p, q denote the given gradient field components and

p̃(x, y) =
∂S̃(x, y)

∂x
, q̃(x, y) =

∂S̃(x, y)

∂y
(3.14)

denote the unknown (ideal) gradient field components which have to be recon-

structed. A surface is calculated by the minimisation of f which ensures a maximum

consistency of the reconstructed surface with the given data array. The difficulty

with this method consists in selecting proper initial values at the boundary of the

integration process. To solve this, Horn [67] suggested some boundary conditions in

his work.

On the other hand, Frankot and Chellappa [53] assume that the unknown sur-

face function S satisfies the integrability condition, which is to say the surface is

continuous at any point. A surface S satisfies the integrability condition when the

following equation is valid at all surface points.

∂2S(x, y)

∂x∂y
=
∂2S(x, y)

∂y∂x
(3.15)

Furthermore, Frankot and Chellappa assumed a Fourier coefficient representation

S(x, y) =
1

2π

+∞∫

−∞

+∞∫

−∞
S(f)(u, v)e−j(ux+vy)dudv (3.16)

of this function, where

S(f)(x, y) =
1

2π

+∞∫

−∞

+∞∫

−∞
S(x, y)ej(ux+vy)dxdy (3.17)

denotes the Fourier coefficients of S. Based on these assumptions, they could prove a

theorem allowing the reconstruction of function S in the Fourier space. Afterwards,

an inverse Fourier transform leads to the desired surface height data.

In general, it is expected that global techniques such as the above described

should be more robust to noise in contrast to local path integration because the

surface gradient has a global impact on the solution process. Table 3.3 briefly
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Table 3.3: Integration techniques: advantages and disadvantages.

Integration technique Advantages Disadvantages

Local integration Easy to implement. High dependency on
data accuracy.

Efficient in computing
speed.

Propagation of errors.

Global integration Robust against noise. Computation time.

summarises the main advantages and disadvantages of local and global integration

techniques.

As it will be seen in the next chapter, a local integration technique will allow us

to recover the surface height information. This information will be used in order to

predict the surface shape information when it is viewed from a longer distance.

3.7 Summary

We have seen in this chapter that there are many techniques which allow us to obtain

surface texture information. Our objective has focused on reversing the process of

surface recovery towards image prediction. In other words, to use a surface texture

model to render textured images of that surface under novel lighting conditions and

imaging geometries.

Several methods which attempt to determine surface characteristics by mea-

suring parameters calculated from images of the lit object have been presented.

Moreover, the photometric stereo approaches have been reviewed, dividing them

into those which use greyscale and colour images. Among all these photometric

stereo techniques, the 4-source colour photometric stereo proposed by Barsky

and Petrou [8] was chosen as the best way to recover surface texture information.

This technique allows us to recover the gradient vectors and the reflectance

properties for every point on the surface.
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Main advantages of this photometric approach are the following:

• It uses colour instead of greyscale images.

• It can be applied to a general type of surface (Lambertian or specular).

• It requires a small set of images.

• There is no need to do any preliminary calibration.

We have also seen that this technique can deal with reconstruction problems

produced by the presence of highlights and shadows in the original images. This

problem has been analysed and reviewed. Furthermore, the solution adopted by the

4-source colour photometric stereo has been described.

The rendering process was introduced, classifying such processes into two

broad approaches: model-based and image-based. A gradient-based approach, which

is clearly a model-based approach since a surface model (obtained by means of 4-

source colour photometric stereo) is needed to generate new images, was chosen to

perform our image texture rendering.

We have also focused on those techniques which allow us to obtain a 3D recon-

struction by using the surface gradient information extracted from photometric

stereo. Essentially, two broad approaches were found in the literature, local integra-

tion along paths and global integration techniques. Path integration techniques use

the gradient vectors which give the change in surface height in very small steps in

either the x or the y direction to recover a height map of the surface by summing

these changes in height along a chosen path. In contrast, global techniques treat

surface integration as an optimisation problem. Main advantages and disadvantages

of both approaches were discussed.
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Chapter 4

Texture Prediction Seen under
Different Imaging Conditions

A methodology for predicting how a surface texture will appear if seen from different

imaging geometries (e.g. distance from the camera, and direction of the light) and

even under different spectral characteristics of the incident light and sensitivity of

the sensor is presented in this chapter. The 4-source colour photometric stereo is

used to extract the surface shape and the reflectance properties of the surface from

a certain distance. From this information, a general texture prediction framework

composed of two methods is proposed: one which allows us to predict the image

intensities directly (direct image prediction) and another which allows us to predict

first the surface shape information and then the image intensities (image prediction

via surface prediction).

4.1 Introduction

In the last chapter, the main techniques used to recover surface information were

presented. Among them, 4-source colour photometric stereo which allows us to

recover surface texture information as well as to render images under novel lighting

conditions was detailed. It is important to remember that our objective is to use

this surface texture information for image prediction.

We have explained in depth how photometric stereo can be used to render new

79
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images of a surface under novel light directions. In this chapter we go further and a

prediction framework which allows us to predict how a surface texture will appear if

seen from different imaging geometries and different sensor sensitivity and spectral

characteristics of the incident light, is proposed.

This chapter is structured in the following way: Section 4.2 describes our first

approach to surface texture prediction. In Section 4.3 a more formal approach

based on the 4-source colour photometric stereo is proposed. More specifically,

two methods for predicting how a surface texture appears when seen from longer

distances are presented. The first one analyses the direct relationship between image

texture information (image intensities) under two different resolutions. This leads

to direct image prediction. The second predicts first how the surface itself would be

approximated in a lower resolution from the original one and then, from this lower

resolution, it predicts the image it would create. This leads to image prediction via

surface prediction. Finally, some conclusions are presented in Section 4.4.

4.2 Initial Prediction Approach

In 2000 we proposed a first method [101] to predict how a surface texture appears if

seen from different distances. In this approach, two important parts were analysed:

in the first, the relationship between the surface information under different reso-

lutions and, in the second, the relationship between the colour information under

different resolutions. As a result of that study, a method which allows us to generate

colour images of a surface under varying geometries such as lighting conditions and

distance from the camera1 was presented.

Basically, the idea of our first approach was to formulate the corresponding set of

greyscale photometric equations theoretically and analyse them in order to find the

relationship between the surface information in the fine resolution and the surface

information in the coarse resolution (see Figure 4.1). Note that for the sake of

simplicity we decided to focus on the greyscale case first. This initial approach was

based on the intuitive fact that the intensity of a pixel is proportional to the amount

1A change in camera distance only implies a change in the z-axis.
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Figure 4.1: Example of a surface seen in a fine and coarse resolution.

of light reflected by the surface patch projected onto the pixel. Moreover, in our

case it was assumed that the geometry of the surface and the light source did not

vary if the distance of the camera was changed. Hence, the pixel intensity in another

resolution was the result of the amount of light received by the new surface patch

projected onto the pixel. From this basic principle, the photometric expressions

describing the desired relationship were obtained. Furthermore, this approach was

extended to colour information applying greyscale photometric stereo for each colour

band separately.

4.2.1 Normal Vectors under Different Resolutions

In order to predict how a surface texture looks when seen from different distances, it

is necessary to understand what happens with the surface shape information if the

distance of the camera is changed. Figure 4.2 illustrates this problem and allows us

to formulate the following question: what will the normal vectors be if the camera

distance is changed leading to a new image in which every pixel is the union of several

old pixels? This is the question we answer in this section, deriving the relationship
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x

h

N? N? N?

Figure 4.2: A surface is approximated by many flat facets in fine resolution. In
coarse resolution these are replaced by large flat facets. What is the gradient vector
of a large facet as a function of the gradient vectors of the small facets it replaces?

between the normal vectors when they are calculated in different image resolutions.

To answer this question we must first set up a consistent notation. Let us indi-

cate by indices ij a pixel at location (i, j) in the coarse grid. This pixel is made up of

several pixels from the fine resolution grid, some of which contribute only partially.

Let us aslo, for the moment, ignore how much each pixel in the fine resolution con-

tributes to pixel ij in the coarse resolution, and let us simply say that “superpixel”

ij corresponds to a tile of size K × L of the fine resolution pixels. We shall refer to

the pixels in the coarse resolution as “superpixels” and the term “pixel” will be used

only for the fine resolution pixels. Let us now indicate, by indices mn, the position

of the pixels in the fine resolution grid. Each superpixel has the intensity value I uij

in image u of the photometric stereo set. Remember that a greyscale photometric

stereo consists of three images, u = 1, 2 or 3. Each superpixel also has two values for

the components of its gradient vector. Let us call them pij and qij. Each superpixel

corresponds to a tile of pixels. We want to keep track of the superpixel to which

a pixel contributes, so we shall give every pixel three sets of indices: one to tell us

to which tile it belongs, one to tell us where in the tile it is, and one set to tell us

its location in the fine resolution grid. So, any pixel contributing to superpixel ij

will have indices ij; kl and mn, where k = 1, 2, ..., K and l = 1, 2, ..., L. Any other

quantity associated with pixel ij; kl and mn will be indicated by the same notation
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Figure 4.3: Example: prediction of the surface information for superpixel ij, which
corresponds to a tile of size 2 × 2. Indices kl: pixel position inside the superpixel;
indices mn: pixel position in the fine resolution grid; indices ij: pixel position in
the coarse grid.

as for superpixel ij. That is, pixel ij; kl and mn has the intensity value Iu;mn
ij;kl in

image u and the components of its gradient vector are pmnij;kl and qmnij;kl. Therefore, we

can define our problem as

Predict the intensity value of superpixel Iuij for a given direction of illumi-

nation u and its gradient components pij and qij, given the intensity and

the gradient components Iu;mn
ij;kl , pmnij;kl and qmnij;kl of all the pixels in the fine

resolution.

To deal with this problem, and also to illustrate the use of this notation, let

us consider a simple example. Suppose that superpixel ij corresponds to a tile of

2× 2 pixels as shown in Figure 4.3. Using this notation and applying Equations 3.4

and 3.6, the following set of equations can be written.
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(4.1)

in which, for this particular example, m and n can be expressed as

m = (i− 1)K + k

n = (j − 1)L+ l
(4.2)

with K = L = 2.

Let us indicate with I0 the vector of the greyscale intensities corresponding to the

same position but in the three different images used in the photometric stereo. So,

pixel intensities I1;mn
ij;kl , I2;mn

ij;kl and I3;mn
ij;kl can be expressed as Imn0;ij;kl and the intensities

of superpixel ij can be expressed as I0;ij. In what follows, we shall continue using

bold face to indicate vectors. Matrices will be indicated by square brackets, while

the rest of the quantities will be scalars. Hence, for a tile of size 2× 2, the following

set of equations can be written.

Imn0;ij;11 = ρmnij;11 [L] Nmn
ij;11 ⇒ ρmnij;11N

mn
ij;11 = [L]−1 Imn0;ij;11

Imn0;ij;21 = ρmnij;21 [L] Nmn
ij;21 ⇒ ρmnij;21N

mn
ij;21 = [L]−1 Imn0;ij;21

Imn0;ij;12 = ρmnij;12 [L] Nmn
ij;12 ⇒ ρmnij;12N

mn
ij;12 = [L]−1 Imn0;ij;12

Imn0;ij;22 = ρmnij;22 [L] Nmn
ij;22 ⇒ ρmnij;22N

mn
ij;22 = [L]−1 Imn0;ij;22

(4.3)

The albedos ρmnij;kl, and the normal vectors Nmn
ij;kl can be directly obtained by

applying photometric stereo. A similar equation can be written for superpixel ij;

I0;ij = ρij [L] Nij ⇒ ρijNij = [L]−1 I0;ij (4.4)
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However, in this case it is not possible to recover the surface information (ρij,Nij)

because the intensities of superpixel I0;ij are unknown. It is at this point where

we want to find the relationship between the surface information of the four pixels

forming the tile and that of superpixel ij.

As seen in Chapter 2, the intensity of a pixel depends on the surface properties (its

reflectance function and topology), the light source (its characteristics and position)

and the geometry of the imaging device (its position and other parameters). In an

intuitive way, and without considering aspects such as the spectral dependence of

the surface reflectance, the spectral characteristics of the light source, etc, we can

say that the intensity of a pixel is proportionate to the amount of light reflected by

the surface patch projected onto the pixel. Thus, if we change the camera distance,

the surface patch projecting its light onto one superpixel will be different and the

amount of light received by the sensor will also be different (see Figure 4.4).

In our case, the geometry of the surface and the light source do not vary if the

camera distance is changed. Hence, the pixel intensity at a longer distance is the

result of the amount of light received by the new patch. Therefore, in this simple

example, in which the four initial patches form superpixel ij, superpixel ij will have

the following intensity vector,

I0;ij =
1

KL

k<K+1∑

k=1

l<L+1∑

l=1

Imn0;ij;kl (4.5)

because the amount of light received by superpixel ij is the sum of the light projected

by the four patches. Note that the amount of light is proportionate to the area of the

patches. Therefore, by substituting I0;ij in Equation 4.4 and using expression 4.3,

the following two expressions can be obtained.

ρijNij = [L]−1 I0;ij =
1

KL
[L]−1

k<K+1∑

k=1

l<L+1∑

l=1

Imn0;ij;kl (4.6)

and
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Figure 4.4: The intensity of a pixel is proportionate to the amount of light reflected
by the surface patch projected onto the pixel.

1

KL

k<K+1∑

k=1

l<L+1∑

l=1

[L]−1 Imn0;ij;kl =
1

KL

k<K+1∑

k=1

l<L+1∑

l=1

ρmnij;klN
mn
ij;kl (4.7)

These expressions allow us to obtain the relationship between the surface infor-

mation of the four pixels forming the tile and superpixel ij, and allow to solve the

proposed problem.

1

KL

k<K+1∑

k=1

l<L+1∑

l=1

ρmnij;klN
mn
ij;kl = ρijNij (4.8)

4.2.1.1 General case

We have seen by means of a simple example how to obtain the relationship between

the surface information in a fine resolution and the surface information in a coarse

resolution. Nevertheless, we have analysed the theoretical case in which a superpixel

is made up of several complete pixels from the fine resolution grid. The next step is

to analyse the general case in which a superpixel is made up of several pixels, some



4.2 Initial Prediction Approach 87

a1

a3 a4

a2

i

j
n

m

dx1 dx2

dy1

dy2

Figure 4.5: General case of image resolution change.

of which contribute only partially (see Figure 4.5). In this situation, it is necessary

to know by how much each pixel in the fine resolution contributes to superpixel ij

in the coarse resolution. So, the intensity vector of superpixel ij can be expressed

as

I0;ij = a11I
mn
0;ij;11 + a21I

mn
0;ij;21 + ...+ aklI

mn
0;ij;kl (4.9)

in which akl is the area of patch kl which projects an amount of light which forms

the intensity vector Imn0;ij;kl.

Note that indices mn can not now be calculated by expression 4.2 because the

number of pixels forming the superpixel is not an integer. Therefore, new expressions

which allow us to obtain these indices have to be extracted. In order to do that we

have assumed the interpixel distances (dm, dn) in the fine resolution grid and (di, dj)

in the coarse grid are known. Hence, using these distances, areas akl of the pixels

which contribute to superpixel ij can be calculated. When the desired areas are

known, the normal vector of superpixel ij and, consequently, the two values pij and

qij of its gradient vector can be recovered as follows
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ρijNij =
k<K+1∑

k=1

l<L+1∑

l=1

akl ρ
mn
ij;klN

mn
ij;kl (4.10)

To sum up, in order to predict the normal vectors in subsequent resolutions, it will

be necessary to know the relationship between the pixels in these resolutions. Then,

knowing the areas of the pixels forming the superpixel, surface shape information

can be predicted.

4.2.2 Colour Information under Different Resolutions

In order to achieve our goal, which is to predict a surface texture when seen from a

longer distance, as well as to know what happens with the shape information, it is

also necessary to understand what happens with the colour information. This is the

problem we want to discuss in this section, explaining how the surface information

can be used to predict colour information in different image resolutions. To perform

this task, we propose applying the greyscale photometric stereo for each colour band

separately.

As defined in Section 4.2.1, each superpixel has the intensity value Iuij in image

u of the photometric stereo set and the set of intensities corresponding to the three

images u have been called I0;ij. Subscript 0 was used to indicate the monochromatic

case. We shall continue with the same notation as in the monochromatic case but

we shall replace subscript 0 with subscript v to indicate one of the three colour

bands, v = 1, 2 or 3 for Red, Green and Blue respectively. So, each superpixel has

the intensity value Iuv;ij in image u at band v and each pixel in the fine resolution

grid has the intensity Iu;mn
v;ij;kl. Therefore, we can indicate the intensities vector of

superpixel ij as Iv;ij at band v and the intensities vector of pixel ij; kl and mn

as Imnv;ij;kl at band v. The use of photometric stereo for every colour band implies

that three albedos and three normal vectors are obtained. So, we shall use index

v with the albedos and normal vectors to tell us from which colour band they

were computed. By using this notation along with the general case illustrated in

Figure 4.5, the followings equations, one for each colour band (v = 1, 2 or 3), can

be written.
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Iv;ij =
k<K+1∑

k=1

l<L+1∑

l=1

akl I
mn
v;ij;kl (4.11)

Therefore, using definition 4.1 in this equation, the following expression can be

obtained.

Iv;ij =
k<K+1∑

k=1

l<L+1∑

l=1

akl ρ
mn
v;ij;kl [L] Nmn

v;ij;kl (4.12)

This equation can also be expressed as

[L]−1 Iv;ij =
k<K+1∑

k=1

l<L+1∑

l=1

akl ρ
mn
v;ij;klN

mn
v;ij;kl (4.13)

As explained in section 3.5.1, the reflectance factor can be calculated by taking

the magnitude of the left hand side of Equation 4.13. Therefore, the three albedos

ρ1;ij , ρ2;ij, and ρ3;ij can be obtained using the following equation:

ρv;ij =

∣∣∣∣∣
k<K+1∑

k=1

l<L+1∑

l=1

akl ρ
mn
v;ij;klN

mn
v;ij;kl

∣∣∣∣∣ (4.14)

When the reflectance factors are known, the normal vectors N1;ij, N2;ij, and N3;ij

can be calculated as

Nv;ij =
1

ρv;ij

k<K+1∑

k=1

l<L+1∑

l=1

akl ρ
mn
v;ij;klN

mn
v;ij;kl (4.15)

Finally, normal vector Nij can be obtained by taking the mean of the normal vectors

for each colour band. So, for every superpixel ij the components of its gradient

vector pij and qij can also be calculated.

Nij =
N1;ij + N2;ij + N3;ij

3
(4.16)
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As well as surface shape, colour information for superpixel ij is obtained. We

shall indicate this colour information by vector Cij which allows us to represent the

colour map in another resolution.

Cij = (ρ1;ij , ρ2;ij, ρ3;ij) (4.17)

Figure 4.6 illustrates the scheme of this strategy to predict surface information

when seen from a longer distance. Note that by predicting the normal vectors and

the colour map information, a rendering of the surface texture can be achieved in the

same way we presented in Section 3.5.4.1. A gradient-based method, based on the

notion of the shading of a facet and the predicted gradient and colour information, is

used to obtain renderings of a surface when seen from different distances and under

different directions of light.

4.2.3 Discussion

We have seen that the basic idea of this approach is to deduce the relationship

between the surface information from two different resolutions intuitively. For sim-

plicity’s sake, the greyscale photometric stereo was used to formulate the problem

theoretically. After obtaining the desired relationship, the method was extended to

colour images applying greyscale photometric stereo for each colour band separately.

This way to perform colour photometric stereo, commonly known as separate

colour photometric stereo, has been analysed in various works [27, 143, 7]. In general,

the main conclusion provided by the authors is that the method works well for nearly

all Lambertian surfaces although there are some cases in which it fails. For example,

it can fail if the colour bands have different strengths. Suppose a blue surface in

which the blue component is very strong, whereas the red and green components are

weak and much more prone to noise corruption. The gradients recovered from the

“weak” colour bands may be severely affected by the noise and the averaging over

all three bands adds error to the correctly recovered “blue” gradient. Moreover, the

algorithm also fails if the surface is not Lambertian or if it is not perfectly opaque
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Figure 4.6: Scheme of our first prediction approach. As a result of applying the
greyscale photometric technique to each colour band separately, the colour map and
the surface shape information are predicted.

and there is a certain degree of translucency.

These problems, which are not directly related to the prediction but to the way

of performing the photometric stereo, clearly affect this prediction approach. Note

that the errors produced by the photometric stereo are propagated in the surface

prediction process. Therefore the predicted images will also contain errors.

This prediction approach, as with all first approaches, also suffers from other

important deficiencies: it does not account for the inverse square law of light propa-

gation; it does not permit change in the sensor spectral sensitivity; it does not allow

change in the illumination spectrum; it does not allow change in the direction of
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illumination. With the idea of correcting these weak points and proposing a more

formal theory, a new prediction approach is described in the next section.

4.3 New Prediction Approach

In Chapter 3 a survey of photometric stereo techniques was presented. Moreover,

the 4-source colour photometric stereo was analysed in depth. This photometric

technique plays an important role in the novel prediction approach, since it is used

to recover the optimal gradient and colour estimates instead of using greyscale pho-

tometric applied to each colour band separately, as we did in our first prediction

approach.

Furthermore, in Chapter 2, some important processes which affect the image

formation process were explained. From these, some parameters and definitions

were included in our study to deduce a formal theory which allows us to achieve the

desired surface prediction under varying imaging conditions. More specifically, we

describe two different prediction methods.

• Direct image prediction. This prediction method analyses the direct re-

lationship between image texture information (image intensities) under two

different resolutions. This leads us to direct image prediction. It takes into con-

sideration parameters such as the sensitivity of the sensor, the spectral char-

acteristics of the incident light, the illumination direction, etc. This method

provides the possibility of rendering images of a surface under novel imaging

geometries. However, it does not predict the surface shape information.

• Surface prediction. This second method predicts first how the surface itself

would be approximated at a lower resolution from the original one and then

predicts the image it would create. Height information is used to deduce the

gradient vectors of the surface when seen from different distances. After using

this predicted information and that extracted from the original distance, the

predicted image would recreate the surface as seen from a longer distance. This
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method leads to image prediction via surface prediction, but we shall refer to

it as surface prediction for short.

Both methods were designed with the initial purpose of predicting the surface

texture information when seen under different imaging conditions. The first at-

tempts to predict the pixel intensities, while the second is focused on the prediction

of gradient vectors. However, as it will be seen in the following sections, both meth-

ods allow us to render new images of a surface. A comparision between them will

be carried out in the experimental section in order to discuss their performance. We

will see how the direct image prediction produces, in general, smaller errors in the

images while the surface prediction method produces the best shape predictions.

Summarising, we can define the main contributions of this new texture prediction

framework in the following points:

• Better surface recovery. The 4-source colour photometric stereo is used to

recover the optimal gradient and colour estimates instead of using greyscale

photometric stereo applied to each colour band separately. This will allow us

to achieve better results from the photometric stereo and, consequently, better

predictions.

• Better modelling. More aspects and parameters have been included in this

prediction proposal. Hence, a general method which allows us to predict the

image texture information when seen in a different imaging setup is presented.

• New shape prediction. A new method based on the prediction of the planar

patches of a surface when seen from a longer distance is proposed to obtain

the desired surface shape information.

In what follows, both image and surface prediction methods are described.

4.3.1 Direct Image Prediction

Following the procedure in the previous section, we begin by considering two grids

referring to the pixels of two images of the same surface captured from two different
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distances. One corresponds to the higher resolution image and is finer than the

other. We continue to refer to the pixels of the coarse resolution as “superpixels”

and the term “pixel” is used only for fine resolution pixels. Each superpixel is made

up of several pixels. Let us, for the moment, ignore by how much each pixel of

the fine resolution contributes to the superpixel of the coarse resolution, and let

us simply say that it corresponds to a tile of size K × L of fine resolution pixels.

Some of the fine resolution pixels are only partially inside a superpixel, so we do not

assume that the two different resolutions are such that a superpixel is replaced by

an exact and integer number of fine resolution pixels of that tile. In this case, we

define our problem as

Predict the intensity value of a superpixel Iu for a given direction of il-

lumination u, given ρ(λ), p and q for all the pixels of the fine resolution.

The values of ρ(λ), p and q have been computed by using 4-source colour photo-

metric stereo. Note that we have added the wavelength λ in the reflectance property

(albedo). Although the colour photometric stereo scheme we use can deal with non-

Lambertian surfaces [8], we assume here that the surface we are dealing with is

Lambertian.

Let us begin by considering a facet of the surface of size RA × RA centred at

position (α0, β0) and a sensor cell of size X × Y centred at position (x0, y0). Let us

define the following quantities:

• LA(λ): The energy per unit time per unit area reaching the imaged surface

from a point illuminating source in a certain imaging setup denoted by A.

• Nαβ: Normal vector to the imaged surface at point (α, β).

• G(Nαβ,uA)dαdβ: Geometric factor determining the amount of incident radi-

ation from the light source at direction uA, received by an infinitesimal tile of

size dαdβ.
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• ραβ(λ): The fraction of the incident radiation reflected by infinitesimal tile

dαdβ at wavelength λ.

• G(Nαβ,SA(x, y))dxdy: Geometric factor affecting the fraction of reflected ra-

diation reaching the area of the sensor element dxdy centred at (x, y) from

surface point (α, β) with the direction of the particular sensor element defined

by unit vector SA(x, y).

• 1
2πdA

2 : Fraction of the reflected radiation reaching a unit area at distance dA.

The quantity 2πdA
2 is the area of the hemisphere over which the opaque point

(α, β) is expected to reflect radiation.

• S(x, y, λ): Sensitivity of sensor element (x, y).

• ∆tA: Time interval during which the aperture of the sensor was open when

the image at imaging setup A was being captured.

• kA: A factor encompassing all photomultiplier and quantization processes used

to convert the recorded energy into grey values.

• rec(x − x0, y − y0): A rectangular of size X × Y of sensor surface centred at

sensor point (x0, y0).

• rec(α − α0, β − β0): A rectangular of size RA × RA of the imaged surface

centred at point (α0, β0).

Then the grey level recorded by sensor X × Y centred at (x0, y0) is:

IA(x0, y0) =
∆tAkA

2π

∫

x

∫

y

∫

α

∫

β

rec(x− x0, y − y0)rec(α− α0, β − β0)

G(Nαβ,SA(x, y))G(Nαβ,uA)
1

dA
2(α, β, x, y)∫

λ

S(x, y, λ)ραβ(λ)LA(λ)dλ dx dy dα dβ (4.18)

Let us assume that over rectangle rec(x−x0, y− y0) the properties of the sensor

are uniform, i.e. S(x, y, λ) = S(x0, y0, λ), that over rectangle rec(α−α0, β−β0) the
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properties of the surface are uniform, i.e. ραβ(λ) = ρα0β0 , Nαβ = Nα0β0 and that all

points of the surface and all points of the sensor are effectively in the same relative

orientation defined by unit vector SA(x, y) = SA(x0, y0) and at the same relative

distance2 dA(α, β, x, y) = dA(α0, β0, x0, y0). We may also assume that SA(x0, y0)

and dA(α0, β0, x0, y0) are virtually the same for all surface patches and all sensor

elements so we can drop the dependence on (x0, y0) and (α0, β0). Then we can

write:

IA(x0, y0) =
∆tAkA

2πdA
2 RA

2XY G(Nα0β0 ,SA))G(Nα0β0,uA)
∫

λ

S(λ)ρα0β0(λ)LA(λ)dλ

(4.19)

For a Lambertian surface

G(Nα0β0 ,SA) = 1 (4.20)

and

G(Nα0β0 ,uA) =
Nα0β0 · uA
|Nα0β0 ||uA|

=
Nα0β0 · uA
|Nα0β0 |

(4.21)

Let us now assume a different imaging setup, call it B, for which the light

which reaches sensor (x0, y0) comes from an extended rectangle of size RB ×RB. If

rec(α−α0, β−β0) is rather extended, with variable shape and reflectance properties,

we must use the following equation for the recorded brightness by sensor (x0, y0):

IB(x0, y0) =
∆tBkBXY

2π

∫

α

∫

β

rec(α− α0, β − β0)G(Nα0β0 ,SB)G(Nα0β0,uB)

1

dB
2(α, β)

∫

λ

S(λ)ραβ(λ)LB(λ) dλ dα dβ (4.22)

We can still assume that no matter how extended rectangle rec(α−α0, β−β0) is,

all of its parts are at the same distance from the sensor, and therefore dB(α, β) = dB.

2This is equivalent to assuming that the sensor is at infinity with respect to the imaged surface.
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Further, we can still assume Lambertianity, so the two geometric factors again take

the form of equations 4.20 and 4.21. Then:

IB(x0, y0) =
∆tBkBXY

2πdB
2

∫

α

∫

β

rec(α− α0, β − β0)
Nα0β0 · uB
|Nα0β0|

∫

λ

S(λ)ραβ(λ)LB(λ) dλ dα dβ (4.23)

Let us assume that this big rectangle of size RB × RB can be analysed as a su-

perposition of smaller rectangles each of uniform properties for which Equation 4.19

can be written. Then the integral over α and β in Equation 4.23 may be replaced

by one sum over all these facets:

IB(x0, y0) =
∆tBkBXY

2πdB
2

K∑

k=1

L∑

l=1

Nkl · uB
|Nkl|

Akl

∫

λ

S(λ)ρkl(λ)LB(λ) dλ (4.24)

where Akl is the area of facet (k, l) inside rectangle RB ×RB.

Note that this formula is very general: it allows us to predict the intensity

value of a superpixel from the information we have on its constituent pixels of the

fine resolution, even when seen under a different imaging setup, i.e. a different

sensor, under lights with different spectral characteristics and different orientation

than those under which the original images from which the surface information was

extracted, were captured.

If we assume that the spectral properties of the sensor and the light remain

constant then we can redefine the reflectance function of the surface as

ρ̃kl ≡
∫

λ

S(λ)ρkl(λ)LB(λ) dλ (4.25)

At the same time, we can assume that the calibration constant kB is chosen so

that all constant factors cancel out. Then, equation 4.24 is simplified to:
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Figure 4.7: Scheme of the direct image prediction approach. As a result of applying
the colour photometric technique and the prediction method, novel images under
different imaging conditions can be predicted.

IB(x0, y0) =
K∑
k=1

L∑
l=1

Akl
Nkl·uB
|Nkl| ρ̃kl (4.26)

This is the equation we used for our experiments.

Figure 4.7 illustrates the scheme of this prediction approach. First, 4-source

colour photometric stereo is applied to the original set of images with the aim of

recovering the colour map and the gradient vectors of the surface. Afterwards, this

information is used as input for our image prediction method. The result of this

prediction process is a new image of the surface seen from a longer distance and

under the desired imaging conditions.
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4.3.2 Surface Prediction

In contrast to the direct image prediction method described above, we propose, in

this section, a new method which tries to predict first how the surface itself would

be approximated in a different resolution from the original one, and then predict

the image it would create when seen from the new distance. Our intention is to

analyse what happens with the surface shape information when the camera distance

changes. As in our first approach, we try to answer the following question: What

will the normal vectors be if the distance of the camera is changed leading to a new

image in which every pixel is the union of several old pixels?

In this proposal we focus on the prediction of the facet by which the surface

is approximated locally in the coarse resolution. In other words, assuming that a

surface is a collection of planar facets, where each one has its own surface orientation

N, we propose to predict the planar facet of the superpixel by computing the average

plane in the least square error sense passing through the facets of the fine resolution.

Therefore, we first perform a surface integration in the fine resolution using the

gradient vectors recovered by photometric stereo. Next, we reconstruct the facet of

the superpixel by using the information recovered in the fine resolution. Finally, the

normal vector of the recovered facet is the normal vector of the superpixel.

Note that surface integration is necessary in order to compute the height z =

S(x, y) at each point on the surface in the fine resolution (height map). By using

the height information, and knowing the facets which contribute to a superpixel, the

planar facet can be computed. Consequently, the recovered normal vector will be

the normal vector of the superpixel. Fig. 4.8 illustrates this idea when a superpixel

is formed from a tile of 2× 2.

If we define a surface as (x, y, S(x, y)) where S(x, y) is the height at point (x, y),

the normal as a function of (x, y) is

N(x, y) =
1√

p2 + q2 + 1
(p, q,−1)T (4.27)

where the partial derivatives of S(x, y) give us the values of the gradient vector

p = ∂S(x,y)
∂x

and q = ∂S(x,y)
∂y

.
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Figure 4.8: Normal vector of the superpixel obtanined by fitting the plane in the
LSE sense.

In Section 3.6.1 different integration approaches which allow us to recover the

height map of a surface by using the gradient vectors were presented. Basically,

there are two types of surface integration approaches [51], local integration along

paths and global integration techniques. Path integration techniques use local calcu-

lations of height increments by curve integrals. The main idea is to use the gradient

vectors, which give the change in surface height in very small steps in either the x or

the y direction, to recover a height map of the surface by summing these changes in

height along a chosen path. In global techniques, the surface integration is treated

as an optimisation problem. In other words, surface integration is considered as a

variational problem where a certain function has to be minimised. Usually, some

representation of the unknown surface, e.g. in terms of the Fourier basis functions,

and the integrability condition [53, 176], is used to constrain the global optimisa-

tion process. For instance, Frankot and Chellappa [53] assume that the unknown

surface function S satisfies the integrability condition: that is to say, the surface

is continuous at any point. Obviously, this global integration technique works well

if the surface is continuous. When the surface presents discontinuities, i.e. places

where its derivatives do not exist, it is not integrable.

The photometric stereo surface reconstruction also yields a set of points where

the recovery of the gradient vectors is impossible. In general, these are places which

are in shadow in more than one of the four images used in the photometric stereo set.

Such points are likely to occur at places where the surface has deep “ravines” and
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can be associated with places where the surface is not differentiable and continuous.

Therefore, as we need to preserve the surface roughness as much as possible and

we want to perform the surface integration for these points where the gradient

information is available, we apply a local integration technique which uses different

paths to obtain the final surface reconstruction. Thus, when we reconstruct the

surface, we stop the piecewise integration at these boundaries where the surface is

not differentiable and continuous. Note that we only predict the normal vectors

of the superpixels for which the surface integration in the fine resolution is done.

Therefore, the surface shape we reconstruct and, consequenlty, the image intensity

we will predict consist of image patches and not full images. This point will be

analysed in depth in the experimental section.

As stated before, when using this surface prediction method, only the surface

gradient vectors are directly predicted and not the image intensities. We generate

these images by using the predicted gradient vectors and the average reflectance

function for each surface tile, assuming that our sensor and illumination source do

not change spectrally.

Figure 4.9 illustrates the scheme of this surface prediction approach. First, 4-

source colour photometric stereo is applied to the original set of images, recovering

the colour map and the gradient vectors of the surface. These gradient vectors are

then used as input for the surface prediction process, achieving the corresponding

gradient vectors in the coarse resolution. Moreover, by using the colour map ex-

tracted by photometric stereo and knowing the facets in the fine resolution which

contribute to each superpixel, a new image of the surface seen from a longer distance

is generated.

4.4 Summary

A methodology which allows us to predict how a surface texture will appear if seen

from different distances and under different imaging conditions has been proposed.

This chapter was structured in two blocks. In the first, our first approach to sur-
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Figure 4.9: Scheme of the surface prediction approach.

face texture prediction was described. This approach applies greyscale photometric

stereo to each colour band separately to recover surface information. Using this

information, the method predicts how that surface appears as seen from a longer

distance. The prediction method has been extended to the general case in which a

pixel of the coarse resolution is made up of several pixels of the fine resolution, some

of which contribute only partially. We have found that this first approach presents

some weak points such as errors related to the way we perform the photometric

stereo and the non-inclusion in the prediction process of important aspects in the

image formation process. In the second block, a new prediction framework has been

detailed. Basically, it presents a more accurate modelling of the image formation

process which allows the prediction of image intensities as well as surface shape
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information. This modelling was based on the 4-source colour photometric

stereo. Two methods called direct image prediction and surface prediction

were proposed for predicting how a surface texture appears from longer distances.

The first method analyses the direct relationship between image texture information

(image intensities) under two different resolutions. The other predicts how the sur-

face shape itself would be approximated in a resolution lower than the original one.

This information can then be used to predict the image the surface would create.

These prediction approaches have to be tested and evaluated over a large number

of surface textures in order to demonstrate the ability of predicting the image texture

a particular surface texture will create when seen from a distance longer than the

original one. This will be discussed in the experimental section. We will also analyse

the role of surface properties such as roughness, directionality and specularity in our

image and shape predictions.



104 Chapter 4. Texture Prediction



Chapter 5

Texture Recognition

A model-based texture recognition system which classifies image textures seen from

different distances and under different light directions is presented in this chapter.

This system works on the basis of a surface model obtained by means of 4-source

Colour Photometric Stereo (CPS) used to generate 2D image textures as they would

have appeared if imaged under different imaging geometries. The proposed recog-

nition system combines co-ocurrence matrices for feature extraction with a Nearest

Neighbour classifier. Moreover, the recognition process allows one to guess the ap-

proximate direction of the light used to capture the test image.

5.1 Introduction

In its simplest form, image classification is the process of assigning similar images

or regions of an image to the class to which they belong. It is well-known that there

are two types of classification, namely supervised and unsupervised. In supervised

classification, classes are specified a priori by an analyst, whereas in unsupervised

classification, classes are automatically clustered into sets of prototype classes where

in some cases a user specifies the number of desired categories. The recognition

problem here is being posed as a classification or categorisation task where the

classes are either defined by the analyst or are learned based on the similarity of

patterns.

Many recognition/classification systems require a previous learning or modeling

105
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task to obtain the feature vectors (represented by a set of d features) which charac-

terise the objects of interest. Before classification can take place, some homogeneity

or similarity criteria must be defined. These criteria are normally specified in terms

of a set of feature measures, with each one providing a quantitative measure of a

certain characteristic. The process which allows us to compute these features, called

feature extraction, is concerned with the detection and localisation of particular im-

age patterns which represent significant features in the image. These features are

dependent on the application and are generally of two different origins: a global

image property or a region of the image with a relevant measurable property.

While a global property tries to describe an image by extracting a single feature

over the whole image (see Figure 5.1.(a) and Figure 5.1.(c)), a region property tries

to describe the different regions of the image individually. Figure 5.1.(b) shows

an example in which the main regions of the original image, such as road, sky,

trees, and ground, are charactarised by a set of relevant measurable properties in

order to perform their recognition (see Figure 5.1.(d)). This was done by Mart́ı et

al. [10, 110], proposing an object recognition system for outdoor scenes. Their work

is based on a top-down strategy which segmented the main objects in the image,

taking colour and texture features into account.

Texture is a fundamental characteristic of natural images which, in addition to

colour, plays an important role in image understanding and scene interpretation.

There are many researchers in image processing and computer vision areas who

have considered the concept of feature vectors to cope with texture classification.

In the area of database retrieval for instance, texture features are used to search an

image database to find images similar to the image submitted by the user [128, 20].

In texture segmentation, many algorithms partition the image into a set of regions

which are visually distinct and uniform with respect to textural properties [74, 107,

116]. In remote sensing and radar applications, texture features have been used

to identify forest regions and their boundaries and to identify and analyse various

crops [54, 166]. In industrial vision inspection, texture features have been used

to perform the classification of different surface materials [105]. Obviously, there

are many other applications in which texture is used to carry out a recognition or
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(a) (b)

(c) (d)

Figure 5.1: Example of global and local image properties. In (a) and (c) a global
image property is extracted in order to distinguish between the two images. In
(b) each region of interest illustrated in (d) is characterised by a set of relevant
measurable properties in order to perform object recognition.

classification task.

The aim of this chapter is to present a novel proposal of performing texture

classification under varying imaging geometries. It will focus on the use of textu-

ral feature vectors computed over the global image to characterise the textures of

interest. Note that texture features seem ideally suited to our purposes since the

problem analysed is itself caused by variations in texture perception. Furthermore,

this will be a supervised classification approach since prior knowledge about the

analysed texture classes would be needed to perform their recognition.

Summarising, the main contributions of this chapter are:

• To propose a texture classification system to overcome the problem of classi-

fier failure induced by varying imaging properties such as light direction and
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camera distance.

• To integrate the prediction framework proposed in Chapter 4 into a texture

classification system.

• To provide the capability of guessing an approximate direction of the light

used to capture the test images.

The remainder of this chapter has been structured in the following way. In the

next section we review the most important work on the topic of texture classification

under varying imaging geometries. In Section 5.3, our model-based approach for

texture classification is presented, describing first the general scheme then detailing

the steps individually. Finally, some conclusions are presented in Section 5.4.

5.2 Texture Classification System

As illustrated in the introduction of this thesis (see Section 1.1), changes in the

imaging geometry can significantly alter the appearance of the surface, implying

significant variations in the image texture. These variations in the image may

introduce critical misclassification rates in a typical texture classification system.

Therefore, our main challenge is the problem of classification of textured surfaces

imaged under varying geometries as well as the necessity of finding reliable methods

of reducing classification errors caused by these changes in the geometry.

5.2.1 Related Work

Studying the dependence of texture on viewing and light directions is fairly new in

texture research, therefore, there is only a limited amount of related work.

In computer graphics, traditional methods of 2D texture synthesis and texture

mapping make no provision for the change in texture appearance with viewing and

light directions. For example, in 2D texture mapping, when a single digital image

of a rough surface is mapped onto a 3D object, the appearance of roughness is usu-

ally lost or distorted. Bump mapping [11, 14, 15] preserves some of the appearance
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of roughness, but knowledge of the surface shape is required. Many of the prob-

lems associated with traditional texture mapping and bump mapping techniques are

described by Koenderink and Van Doorn in [85].

In computer vision, very little work has been published on the topic of texture

classification independent from the direction of the light. On the other hand, there

are a great number of works which propose rotation and scale invariant texture

classification [29, 52, 133, 108, 137, 91], as well as similar works on topics like multi-

scale and scale-space texture analysis [29, 17]. All these methods tend to take a

texture obtained from a single view and change it for various scales and different

angles, performing multiscale texture classification. In general, they assume the

imaged texture is the same for all scales and rotations and, therefore, they do not

consider that seeing a texture from a different physical distance and under different

lighting conditions may change it entirely.

While analysing the published work on the topic of texture classification inde-

pendent from the direction of light, we observed three different ways of dealing with

this problem:

• The first strategy consists of extracting and using explicit separate 3D shape

and surface albedo information. The colour and gradient vector of every vis-

ible surface patch describe the surface in a way independent from the light,

and the classification can be done directly on the basis of this explicit informa-

tion. For example, Barsky and Petrou [6] proposed an illumination-invariant

classification scheme based on 5 descriptors for each surface patch obtained

by means of colour photometric stereo: two gradient components and three

colour components.

McGunnigle and Chantler [113] proposed a rough surface classification scheme

which extracts rotation invariant statistics from photometric estimates of the

surface derivatives. Their method assumes that the surface is uniformly col-

oured. On the other hand, Chantler and Wu [24] proposed a novel classification

scheme which is surface rotation invariant. They based it on the magnitude

spectra of the surface derivatives extracted from photometric stereo.
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• Another strategy to solve this problem is to study the immediate effects intro-

duced by light direction to the observed 2D texture. Chantler [22] has shown

that this effect can be described as a directional filter and, in principle, could

be inverted. Recently, Chantler et al. [23] presented a formal theory demon-

strating that changes in the tilt of the light direction make texture features

follow super-elliptical trajectories in multi-dimensional feature spaces. Based

on this work, Penirschke et al. [125] developed an illuminant rotation invariant

classification scheme which uses photometric stereo for the detection of surface

relief and Gabor features for feature extraction.

In Appendix A, a study analysing the immediate effect of light direction over

features extracted from the co-occurrence matrix is presented. This is used

to perform a simultaneous surface texture classification and illumination tilt

angle prediction.

• Finally, we can train a classifier on a wide selection of images of the same

surface, obtained from various viewpoints and under various lighting condi-

tions [33, 36, 32, 56]. Thus, the information on changes in surface appearance

is explicitly built in the classifier using both the reflectance and the 3D relief

information which allows it to recognise a surface correctly under novel view-

ing and lighting conditions. Leung and Malik [98, 99], following this strategy,

developed a texture classification scheme which identifies 3D “textons” in the

Columbia-Utrecht database for the purpose of light and viewpoint invariant

classification. Basically, a 3D texton is an item in a vocabulary of prototypes

of tiny surface patches with associated local geometric and photometric prop-

erties. More recently, Varma and Zisserman [164] proposed a new classification

system which uses a distribution over textons obtained from training images

as a texture model. On the other hand, Gonzalez [56] proposed a supervised

statistical classification scheme which combines a bank of Gabor filters for fea-

ture extraction with a linear Bayes classifier to deal with changes in the light

direction.

Figure 5.2 summarises these three different ways of dealing with the problem of
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Figure 5.2: Strategies of light invariant texture classification.

classifying textures imaged with different light directions.

5.2.2 Discussion

We reviewed three different ways of dealing with the problem of texture classification

independent from the direction of light. The first strategy uses the 3D shape and

surface albedo information to characterise a surface texture. Although we saw that

this strategy can be used to perform surface classification, it always requires the

recovering of surface information. Therefore, we can not directly classify an unknown

imaged texture since surface information is needed. That can be solved by using

the second strategy which tries to study the immediate effects introduced by light

direction over texture features. This approach requires one to work out theoretically

the relationship between changes in the light direction and the values of the texture

features used.

In this thesis, we have opted to follow the third strategy based on a set of training

images. Roughly, we train a classifier on a selection of images. The main reason
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of choosing this strategy in lieu of the others is to exploit the capability of colour

photometric stereo to render images of a surface under novel lighting conditions as

well as the capability of the prediction method proposed in Section 4.3.1 to create

images of a surface texture under novel imaging geometries (e.g. camera distance).

The ability of performing the classification using a set of texture images is very

important. Clearly, the quality of the classifier depends on the quality and size

of the training set which is always finite. It is obvious that we can not think of

using all the images corresponding to every single light direction in order to design

a classifier.

In general, the process of designing a classifier must be inductive in the sense that

the information obtained from the elements of the training set must be generalised

to cover the whole feature space, implying that the classifier should be near optimal

for all feasible textures, even for those it had never seen before. When tackling clas-

sification under varying lighting conditions, the problem is considerably increased.

Not only should the classifier be able to discern different textures, it should also

be able to perform robustly when faced with changes in the appearance of identical

textures. In that case, it is not viable to train on every single light direction and

store up an infinite number of training statistics to secure a more successful classi-

fication. One potential solution is a model-based approach. This takes advantage of

the fact that it is not based on the actual surface but on various images obtained

from its model. Therefore, it is a much more reasonable approach because it merely

requires a finite and rather small data set to model the surface. Essentially, this

strategy aims at modelling the texture variability in the feature space by means of

a primary training stage.

Therefore, following this idea, we design a supervised model-based texture clas-

sification system in which a set of images under a variety of imaging configurations

is used as a prior knowledge. In the next section this proposal is exhaustively de-

scribed.
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5.3 Model-Based Texture Classification

My approach is to integrate the surface texture information derived by colour pho-

tometric stereo, as described in Section 3.5.2, into a complete model-based texture

classification system. Basically, the main idea consists of creating, by means of this

surface texture information, a “virtual” database of image textures against which

we compare the unknown test images in order to classify them.

In Chapter 3, we saw that photometric stereo is the technique which allows us

to obtain surface texture information from only a few images of the same surface

imaged under various light directions. Moreover, we have analysed various alterna-

tive techniques which also allow us to obtain 3D information about surfaces [170]:

stereo vision [48], optical flow [5] and various Shape from X methods [65]. Over

all these techniques, the photometric stereo technique was chosen because it has

various advantages over all other methods. We have seen that it does not suffer

from the correspondence problem like conventional stereo does, it does not make

strong assumptions about the underlying surface structure like some Shape from

X techniques do, and it allows us to recover both local colour and local gradient

while flagging the places where some of its assumptions break down and recovery is

impossible.

In supervised classification systems, a previous learning or modeling task is usu-

ally required to obtain the feature vectors which characterise the objects of interest.

In our case, we use a virtual database of images as the input of this learning process

in which the goal is simple: to extract those texture feature vectors which should

be used as models in the classification process. It is important to note that surface

information plays an important role in our proposal since it is used in a preliminary

step to create image textures compatible with the imaging geometry of the test

images.

Figure 5.3 illustrates the whole procedure of the proposed model-based texture

classification system. Note that it is divided into two main phases:

• Virtual database creation. The process in which different images of each
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Figure 5.3: Recognition scheme. It is divided into two main phases: virtual database
creation and recognition.

texture are created to be used as references in the classification process.

• Recognition procedure. Initially, each texture class in a learning process

is modelled by a feature vector. Afterwards, in the classification process, an

unknown test image is classified into the texture class to which it belongs.

We will also show how the proposed recognition procedure allows us to guess the

approximate direction of the light used to capture the test images.

5.3.1 Virtual Database Creation

The virtual database creation comes in two “flavours”: creation of the virtual

database for test images seen from the same distance as the original images and

creation of the virtual database for test images seen from a longer distance than that

of the original images. When the test images are known to have been captured at
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Figure 5.4: Virtual database creation. This can be performed in two different ways:
creation of the virtual database for test images seen from the same distance as the
training images and creation of the virtual database for test images seen from a
longer distance than that of the original images.

the same distance as the originals, the creation of the virtual database is straightfor-

ward: the use of surface texture information extracted by photometric stereo allows

us to directly obtain a rendering of the surface texture (see Section 3.5.4.1). How-

ever, things are less straightforward when the test images have been captured from a

longer (but known or hypothesised) distance than the originals. In this case, in order

to create the virtual database, we use the method presented in Section 4.3.1, which

allows us to predict the appearance of a surface texture as seen from a longer dis-

tance and for various directions of light. Hence, we deal with the problem of texture

recognition under varying geometries such as camera distance and light direction.

Figure 5.4 shows these two ways of performing the virtual database creation.

Note that in both cases, 4-source colour photometric stereo is used to compute the

detailed shape and colour of a surface which is used to create the desired images.
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All the photometric stereo sets are constructed from 4 images illuminated at a fixed

elevation angle and with 4 different tilt angles, 0◦, 90◦, 180◦ and 270◦. This is the

original database illustrated in Figure 5.4. Note that in the first case, the virtual

database is created directly from the photometric information, while in the second

case, the prediction method is needed. In that case, the virtual database contains a

set of texture images imaged from a longer distance and under different directions

of light. This will be the basis of dealing with the recognition of textures seen from

a longer and known or hypothesised distance.

As it will be explained in more detail in the experimental section, the virtual

database will contain 4 representative images for each texture class. Each image will

correspond to a different direction of light from that used for training and testing.

Note that reference and training images could be the same, however we want to

add robustness to the features we will extract, on the basis that the test images

are bound to be of different illumination than the reference images. It is important

to remember that another objective of my work, apart from performing texture

classification, is to provide an estimation of the light direction used to capture the

test images. Specifically, we focus on the tilt angle estimation, assuming that all

the images have been captured with the same elevation angle. With the idea of

performing an accurate evaluation of the illuminant tilt angle estimation, we will

create the images of the virtual database under 4 illuminant tilt angles which will be

different from those used for the training and test images. This way, we will ensure

that there is no correspondence between the light directions in the images in the

virtual databases and the training and test images. Figure 5.5 shows the 4 images

created in the virtual database for one texture.

5.3.2 Recognition Procedure

This section details each step in the recognition procedure. Basically, as it is shown in

Figure 5.6, our recognition procedure is divided into two main phases: the learning

process and the classification process. In the learning process, each texture class

presented in the virtual database is modelled by a texture feature vector. In order
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(a) (b)

(c) (d)

Figure 5.5: Example of images created in the virtual database. 4 images corre-
sponding to 4 different illuminant tilt angles: 10◦, 100◦, 190◦ and 280◦, (a)-(d)
respectively.

to carry out this learning task, it is necessary to perform first a feature extraction

process in which different texture features are computed for each image texture.

Afterwards, a feature selection and evaluation process will allow us to choose from all

the computed features those which could discriminate between the different classes

best. When the learning process is finished, the classification process starts. This

extracts the feature vectors for the unknown image textures (test images) and assigns

them, by means of a classifier, to one of the classes in the virtual database, at the

same time estimating the light direction in the test images.

In the remainder of this section, we describe how feature extraction, feature

selection, feature evaluation and classification can be performed. Moreover, we

detail the solution adopted for each of these processes.
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Figure 5.6: Recognition procedure. This procedure is divided into two main phases:
learning process and classification process.

5.3.2.1 Texture Feature Extraction

Haralick provided a classic survey of texture measures [60]. Moreover, many types

of representations and texture features have been proposed in the past few decades.

Essentially, two major categories of texture measure methods have been identified:

structural and statistical. This same basic classification was later adopted by other

authors like Wechsler [168], Van Gool et al. [163], Grau [57], and Al-Janobi [4].

In structural methods, texture is considered as the repetition of some basic primi-

tive patterns with certain rules of placement which are formally defined by grammars

of various types. Nevertheless, since natural textures are not very regular, structural

techniques are not very popular as argued by Wang and Liu [165]. On the other

hand, statistical methods are based on the characterisation of the stochastic prop-

erties of the spatial distribution of grey levels in the image. Statistical approaches

include a wide number of methods to extract texture measures. For example:
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• Laws’s texture energy filters. With the main desire of producing a com-

putationally efficient method, Laws developed a coherent set of texture energy

masks [90]. These masks allow us to achieve texture characterisation in two

steps: first, the image is convolved with a set of small sized masks, second,

statistics are computed from the outputs of these convolutions.

• Random field models. It is well-known that a number of random field

models have been used for modelling and synthesising texture. If a model

proves to be capable of representing and synthesising a range of textures,

then its parameters may provide a suitable feature set for the classification of

textures. Popular random field models include fractals, autoregressive models

and Markov random fields. An extensive review of these approaches can be

found in [139].

• Frequency domain methods. Some authors argue that many naturally

occurring textures exhibit a combination of regularity such as approximate

periodicity and variation which is hard to model using straightforward repeti-

tion or traditional statistical techniques. Hence, features related to the local

spectrum have been proposed in the literature and used for the purpose of

texture classification and/or segmentation. In most of these studies the re-

lationship with the local spectrum is established through features obtained

by filtering with a set of the two-dimensional Gabor filters to highlight fre-

quency bands of two-dimensional spectra. This filter is linear and local and

is characterised by a preferred orientation and spatial frequency, which cover

the spatial frequency domain adequately. Roughly speaking, it acts as a local

band-pass filter with certain optimal joint localisation properties in both the

spatial domain and the spatial frequency domain [38].

• Co-occurrence matrix. The grey-level co-occurrence matrices (GLCM) are

essentially two-dimensional histograms of the occurrence of pairs of grey-levels

for a given displacement vector. Formally, the co-occurrence of grey levels can

be specified as a matrix of relative frequencies Pij, in which two pixels sepa-

rated by a distance d along direction θ are found in the image, one with gray
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level i and the other with gray level j. These GLCMs depend on the angular

relationship between neighbouring pixels as well as on the distance between

them. GLCMs are not generally used as features, rather a large number of

textural features derived from the matrix have been proposed starting with

the original fourteen features described by Haralick et al. [61].

Many researchers have attempted to carry out comparative studies to evaluate

the performance of textural features. Weszka et al. [169] compared features derived

from GLCMs on terrain images and found that co-occurrence features obtained the

best result. Moreover, a theoretical comparison of four types of texture measures

which Weszka et al. investigated was reported by Conners and Harlow [31]. They

measured the amount of texture context information contained in the intermediate

matrices of each algorithm and their conclusions were similar to those obtained by

Weszka et al. Focusing on frequency domain methods, Pichler et al. [132] compared

wavelet transforms with adaptive Gabor filtering feature extraction and reported

superior results using the Gabor technique, although its higher computational cost

was a drawback. Recently, Singh and Sharma [149] compared five different texture

analysis methods in terms of recognition ability. They performed the experiments on

the image benchmarks Meastex [1] and Vistex [3], concluding that features extracted

from co-occurrence matrices are the best.

Summarising, the results of comparing the relative merits of the different types

of features have been inconclusive and not a single method has emerged as being

acceptable in all cases [138]. Comparative works have resulted in different, and

sometimes contradictory, conclusions. The reason can be found in the use of different

test images and evaluation or classification methods as well as some aspects related

to code implementation.

It is important to note that in a previous work related to illuminant invariant

texture classification, Penirschke et al. [125] developed a classification scheme based

on the use of photometric stereo for the detection of surface relief and the use of

Gabor features as texture measures. The production of features by filtering, however,

requires the use of all points of the surface/image. The surface gradient of some of
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these points may have been wrongly calculated by the photometric stereo technique

and their inclusion in the feature extraction process may affect the performance of

the classifier. That is why in our approach, we do not use filtering but co-occurrence

matrices which allow us to work only with the pixels for which reliable information

is available. In addition to this advantage, the co-occurrence matrix is an intuitive

measure of texture and it is straightforward to compute. For all of these reasons it

has been chosen in our recognition system as a feature extraction method.

Co-occurrence Matrix

As noted above, the co-occurrence matrix can be described as a matrix conveniently

representing the occurrences of pairs of grey levels of pixels separated by a certain

distance d and lying in a certain direction (angle θ) in the image.

Suppose that two grey values are separated by distance d along angle θ in an

image which has m gray values. Typically, the angles are quantised in intervals of

45◦: horizontal, first diagonal, vertical, and second diagonal (0◦, 45◦, 90◦, and 135◦

respectively). Also, suppose that these grey values occur in this configuration of

d and θ, N times in the image. The co-occurrence matrix is therefore the m × m
matrix containing the number of occurrences N for each combination of grey values

in the image. Note that a new co-occurrence matrix can be created for each different

choice of d and θ.

Let us illustrate this with a simple example. Using the 4×4 image of Figure 5.7,

we compute the co-occurrence matrices P0◦,1 and P135◦,1. Note that the subscripts

indicate angle θ and distance d, respectively. As shown in the figure, the image

has only 4 distinct grey levels, so the co-occurrence matrix is 4 × 4. For every

horizontal grey level pair (horizontal in the first case in which we are computing

θ = 0) the number of instances of this pair in the entire image is counted up and

then recorded in the co-occurrence matrix at the index corresponding to the two

grey levels. Therefore, the number 6 at P0◦,1(2, 2) means that occurence (2, 2) is

found 6 times in the original image. The elements of the co-occurrence matrix are

usually normalised by dividing each entry by the total number of pixel pairs. This
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Figure 5.7: Example of co-occurrence matrix computation. The co-occurrence ma-
trices at distance 1 and angle 0◦ and 135◦ are computed over the original image.

way, all values are between 0 and 1 and may be thought of as probabilities.

In general, a smooth texture gives a co-occurrence matrix with high values along

the diagonals if d is small compared with the texture spatial variation (distance and

angle). This is because the pairs of points at distance d should have similar grey

levels. Conversely, if the texture is macrotexture and distance d is comparable to

the texture scale, then the grey levels of points separated by distance d should often

be quite different, so the values in the co-occurrence matrix should be spread out

relatively uniformly.

Many researchers used statistics based on the co-occurrence matrix proposed by

Haralick et al. [61] in their work [31, 46, 169]. In our approach, we will also use

three of these tipical texture features shown in Table 5.1.

The main drawback of the GLCM technique is the dependence on the parameters

used. The number of matrices needed to obtain good texture features is related to

the angle and distance used. This number can be potentially enormous. As it will be

seen in the experimental section, the co-ocurrence matrices will be used to extract

features as contrast, homogeneity and energy for 20 different values of distance d
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Table 5.1: Some of the most known texture measures computed from the co-
occurrence matrix. Pθ,d(i, j) is the probability that grey level j follows grey level i
at distance d and angle θ.

Contrast=
∑
i,j

(i− j)2Pθ,d(i, j)

This is the measure of the amount of lo-
cal variation in the image. A low value
results from uniform images whereas
images with greater variation produce
a high value.

Homogeneity=
∑
i,j

Pθ,d(i,j)

1+|i−j|

This is high when the GLCM concen-
trates along the diagonal. This occurs
when the image is locally homogeneous.

Energy=
∑
i,j

[Pθ,d(i, j)]
2

This is also known as Uniformity or An-
gular second moment. It is high when
the GLCM has few entries of large mag-
nitude and low when all entries are al-
most equal.

and for 4 different angles: 0◦, 45◦, 90◦, 135◦. This means that the co-ocurrence

matrices are implemented in an anisotropic way. Note also that we compute in all

240 texture features (3 features × 4 directions × 20 distances).

Obviously, this is a large number of features to be used for a classification process.

Moreover, some of these features can introduce redundant information, implying a

decrease in classification accuracy. Therefore, we propose from all of these features,

to select those which could best discriminate between the different classes.

5.3.2.2 Feature Selection

The aim of this section is to introduce the feature selection process as well as sum-

marise the most relevant methods.

The problem of choosing the best features to discriminate between the different

classes is known as feature selection. In the last few decades, this has been analysed

from various points of view: statistics [47, 115], pattern recognition [39, 82, 75]

and machine learning [16, 86]. These areas define the problem of feature selection

as follows: given a set of d features, select a subset of size m (where m < d)
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(a) (b)

Figure 5.8: Illustrative example of feature spaces. (a) Feature space in which the
samples of each class are clearly separate. (b) Feature space in which the samples
of each class overlap.

which obtains the highest value of a criterion function, assuming that a higher value

indicates a better feature subset. In other words, choosing those features which

allow feature vectors belonging to different classes to occupy compact and disjoint

regions in a d-dimensional feature space. Figure 5.8 shows two examples of feature

spaces. Note that the feature space in Figure 5.8.(a), composed of features f1 and f2,

is preferred over that in Figure 5.8.(b), composed of features f3 and f4. The reason

is simple: the first feature space has more discriminative power than the second in

which the samples of the two classes overlap.

The simplest way of finding the best feature set is to perform an exhaustive

search. However, this may be too costly and practically prohibitive even for a

medium sized-feature set size. In order to solve this problem, different methods have

been proposed in the literature in an attempt to reduce computational complexity by

compromising performance. Obviously, these methods affect how well the patterns

fit reality, and these become a central issue in the learning process. The importance

of feature selection in a broader sense is due to its potential for speeding up the

processes of learning and classifying objects, reducing the cost of recognition and,

in some cases, improving the quality of classification.

Many authors have proposed different classifications of feature selection methods.
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For instance, Siedlecki and Sklandsky [146] discussed the evolution of feature selec-

tion methods and grouped them into past, present, and future categories. Doak [40]

identified three categories of search algorithms: exponential, sequential and ran-

domised. Jain and Zongker [75] presented a taxonomy of available feature selection

algorithms, dividing them into those based on statistical pattern recognition tech-

niques and those using artificial neural networks. In a more recent survey, Kudo and

Sklansky [88] focused on a comparative study of algorithms for large scale feature

selection.

In what follows, we briefly review the best known feature selection methods,

classifying them into three broad categories according to the generation procedure:

those which perform a complete search, heuristic search, or a stochastic search.

• Complete search. The first algorithm which can be used to carry out a

complete search and find an optimal subset is the exhaustive search. This

consists of exploring all possible feature subsets (feature combinations) and

selecting the best one. However, it has exponential complexity in the number

of features and is frequently prohibitively expensive to use.

Some heuristic algorithms, which introduce backtracking in the search, are

used to reduce this exhaustive search without jeopardising the chances of find-

ing the optimal subset. For instance, the Branch and Bound (B&B) algorithm,

proposed by Narendra and Fukunaga [117], can be used to find the optimal

subset of features much more quickly than through an exhaustive search. How-

ever, the main drawback of this algorithm is the requirement of a criterion

function which has to be monotone. This means that the performance of a

feature subset should improve whenever a feature is added to it. Furthermore,

this algorithm is still impractical for problems with very large feature sets

because the worst case complexity of this algorithm is exponential.

• Heuristic search. In each iteration of this generation procedure, all re-

maining features yet to be selected or rejected are considered for selection or

rejection. There are many variations of this simple process and all of them
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find a suboptimal solution. The search space order is, in general, polynomial,

so these procedures are very simple to implement and very fast.

In this generation procedure we find popular methods such as Sequential For-

ward Selection (SFS) and Sequential Backward Selection (SBS) [81]. These

methods begin with a single solution and iteratively add or remove features

until some termination criterion is achieved. These are the most commonly

used methods for performing feature selection. SFS, also called the “bottom-

up” method, starts from the empty set and generates a new subset in each

iteration by adding the feature which best improve the quality of the selected

subset (that is measured by some evaluation function). SBS, also called the

“top-down” method, starts from the complete feature set and generates a new

subset in each iteration by discarding a feature selected by some evaluation

function. Both methods suffer from the so-called “nesting effect”. This means

that in the case of the “top-down” search, the discarded features can not be

reselected, while in the case of the “bottom-up” search, the features once se-

lected can not be later discarded. Note that since they do not examine all

possible subsets, these algorithms are not guaranteed to produce the optimal

result. With the aim of preventing this problem, Stearns [155] developed the

“Plus l-take away r” (PTA(l,r)) search method. This method goes forward l

stages by adding l features by SFS and goes backward r stages by deleting r

features by SBS and repeating this process. The main drawback of this method

is that there is no theoretical way of predicting the values of l and r to achieve

the best feature subset. Research in this direction was concluded by intro-

ducing the generalisation of SFS and SBS (GSFS/GSBS) and the GPTA(l-r)

algorithms proposed by Kittler [81]. Pudil et al. [134, 135] updated this study

by introducing the two “floating” selection methods, SFSS and SFBS. Besides

avoiding the nesting of features, one of their distinctive characteristics is that,

during the backtracking process, the values of the criterion function are always

compared only with those related to the same cardinality of the feature subset.

Somol et al. [154] presented a more sophisticated version of “classical” float-

ing search algorithms (adaptative floating methods) which attempt to remove
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some of their potential deficiencies and facilitate the finding of a solution even

closer to the optimal one. The adaptative floating search is called “adaptive”

because of its ability to adjust the limit under which the actual generalisation

level can be automatically set.

• Stochastic search. This search procedure is based on a random generation.

Although the search space is exponential, these methods typically search fewer

subsets by setting a maximum number of possible iterations.

The best known method is based on the use of a genetic algorithm (GA).

In 1989 Siedlecki and Sklansky introduced the use of GA for feature selec-

tion [147]. Since then, many works have used this strategy to perform feature

selection [160, 55, 175, 161, 145]. In GA, a feature subset is represented by

a binary string with length n, called a chromosome, with a zero or one in

position i denoting the absence or presence of feature i. Each chromosome is

evaluated for fitness through an optimisation function in order to survive to

the next generation. Unlike classical hill-climbers, it does not evaluate and

improve a single solution but, instead, analyses and modifies a “population”

of solutions at the same time. The optimisation process is carried out in cycles

called generations. During each generation, the population of chromosomes is

maintained and evolved by two operators: (i) crossover: where parts of two

different parent chromosomes are mixed to create an offspring, and (ii) mu-

tation: where the bits of a single parent are randomly perturbed to create a

child, increasing the variability of the population. In each generation only a

few of the best chromosomes survive to the next cycle of reproduction. When

the maximum number of cycles is achieved, a set of feature subsets is provided.

The main drawback of this feature selection method is that it needs a proper

assignment of values of different parameters: initial population size, crossover

rate and mutation rate.

We have seen that quite a few methods have been proposed for feature selection.

However, choosing the proper method for a particular problem is a difficult task, as

Pudil and Novovicová argued in [136]. The best choice depends on a large number of
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conditions related to the user’s knowledge of the problem. The following questions

describe perhaps the most important aspects we must keep in mind when choosing a

feature selection method: What exactly is your aim? What is the dimensionality of

your problem? What is your a priori knowledge? Do you have a criterion for subset

evaluation appropriate to your knowledge of the problem? In Table 5.2, we provide

recommendations for each feature selection method with the aim of facilitating the

election of one of them for a particular problem.

As it will be seen in the experimental section, we will use a heuristic search

algorithm in order to perform our feature selection process. Basically, the reason for

this choice can be found in the reduction of the search cost to that of polynomial

complexity. Moreover, the heuristic search implies a fast generation procedure and,

as it has been mentioned, a simple implementation.

5.3.2.3 Feature Evaluation

The process of choosing an appropriate criterion function is known as feature eval-

uation. The main goal of this process is to measure the “goodness” of a subset

produced by some generation procedure. In this context, goodness means the capa-

bility of a feature subset to distinguish the different class labels and the ability of

providing compact and maximally distinct descriptions for every class. Geometri-

cally, this constraint can be interpreted to mean that this feature takes on (i) nearly

identical values for all samples in the same class and (ii) different values for all

samples of the other classes. This is illustrated in Figure 5.8.

Feature evaluation has been studied for many years and different measures have

been proposed. Ben-Bassat [12] grouped the existing criterion functions up to 1982

into three categories: information measures, distance measures, and dependence

measures. Another viewpoint was introduced by Langley [123], who grouped differ-

ent feature selection methods into two broad groups, wrapper and filter, based on

their dependence on the feature evaluation used.
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Table 5.2: Feature selection methods.

Method Description Comments

Exhaustive Search Evaluates all possible subsets. Guaranteed to find the optimal subset;
not feasible for even moderately large
values of m and d.

Branch and Bound Search
(B&B)

Only a fraction of all possible feature
subsets need to be enumerated to find
the optimal subset.

Guaranteed to find the optimal subset
provided the criterion function satisfies
the monotonicity property; the worst
case complexity of this algorithm deci-
sion is exponential.

Sequential Forward Selec-
tion (SFS)

Selects the best single feature and then
add one feature at a time which in
combination with the selected features
maximizes the criterion function.

Once a feature is retained, it can not
be discarded; computationally attrac-
tive; it examines only (d − 1) possible
subsets.

Sequential Backward Selec-
tion (SBS)

Starts with all the d features and suc-
cessively deletes one feature at a time.

Once a feature is selected, it cannot
be brought back into the optimal sub-
set; requires more computations than
sequential forward selection.

“Plus l-take away r”
PTA(l,r) Selection

First enlarge the feature subset by l
features using forward selection and
then delete r features using backward
selection.

Avoids the problem of feature subset
“nesting” encountered in SFS and SBS
methods; need to select values of l and
r(l > r).

Generalized Sequential
Forward Selection (GSFS)
and Generalized Sequen-
tial Backward Selection
(GSBS)

SFS and SBS are generalized in such
a way that a number (n) of features
are evaluated at the same time and the
best n features subset is chosen for ad-
dition or deletion.

Their performance is a little better
than SFS and SBS; they are effective
when the number of features is very
small; they are very time consuming.

Sequential Forward Float-
ing Search (SFFS) and Se-
quential Backward Floating
Search (SBFS)

A generalization of “plus-l take away-
r” methods; the values of l and r are
determined automatically and updated
dynamically.

Provides close to optimal solution at
an affordable computational cost for
small-scale and medium-scale prob-
lems; in order to avoid excessive com-
putation, the maximum level of back-
tracking could be constrained.

Adaptive Sequential For-
ward Floating Search
(ASFFS) and Adaptive Se-
quential Backward Floating
Search (ASBFS)

They are called adaptive because of
their ability to adjust the limit under
which the actual generalization level
can be automatically set.

Adaptive Sequential Floating Search
yields better results than classical Se-
quential Floating Search; eliminates
the lack of an explicitly specified ter-
mination condition.

Genetic Algorithms (GA) A feature subset is represented by a
binary string with length n, called a
chromosome, with a zero or one in po-
sition i denoting the absence or pres-
ence of feature i; a population of chro-
mosomes is maintained and evolved by
two operators of crossover and muta-
tion.

It is very useful to find a compromise
between maximum criterion value and
minimum size subset in large scale;
Needs proper assignment of values to
different parameters: iterations, ini-
tial population size, crossover rate, and
mutation rate.

• The idea behind the wrapper approach is simple: a classifier is used as a crite-

rion function in order to obtain a metric (classification accuracy) for guiding

the feature subset selection.

• On the other hand, the filter approach attempts to assess the merits of fea-

tures from the data alone and the selection is performed independently of the

classifier.
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The filter approach normally uses a criterion function which is simple and fast

to compute, so it is generally computationally more efficient. Its major drawback is

that an optimal selection of features may not be independent of the classifier used.

Moreover, the wrapper approach provides a better estimate of accuracy for a feature

subset, but involves a computational overhead by executing the classifier.

A recent research made by Dash and Liu [37] considering the latest develop-

ments, divided the evaluation functions into five categories: distance, information

(or uncertainty), dependence, consistency and classifier error rate.

• The first category called distance, is also known as separability, divergence,

or discrimination measure, where, for a two class problem, a feature A is

preferred to another B if A induces a greater difference between both classes.

If the difference is zero, it is impossible to distinguish the two classes. An

example is the Euclidean distance measure.

• The information (or uncertainty) measures determine the information gained

from a feature. Therefore, one feature is preferred to another if the information

gain is greater. An example of this category is the entropy measure.

• The dependence measures or correlation measures qualify the ability of pre-

dicting the value of one variable from the value of another. The coefficient is a

classical dependence measure and can be used to find the correlation between

a feature and a class. If the correlation of feature A with a class is higher

than the correlation of feature B, then feature A is preferred to B. A slight

variation of this is to determine the dependence of a feature on other features.

This value indicates the degree of redundancy of the feature.

• The consistency measures find the smallest sized subset which satisfies the

acceptable inconsistency rate set by the user. This rate is usually calculated

as the sum of inconsistency counts, divided by the total number of samples.

Two samples are considered inconsistent if their attribute values are the same

(they match).
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Table 5.3: A comparison of evaluation functions provided by Dash and Liu [37].

Evaluation Generality Time Accuracy
function complexity

Distance measure Yes Low –
Information measure Yes Low –
Dependence measure Yes Low –
Consistency measure Yes Moderate –
Classifier error rate No High Very High

• The last category is the classifier error rate. This corresponds with the idea of

wrapper methods in which the accuracy of the classifier is used as an evaluation

measure.

Obviously, an optimal subset in feature selection is always relative to a certain

criterion function. Hence, choosing an optimal subset using one criterion function

may not be the same as using another one. Therefore, a good evaluation function is

a key factor in choosing the best feature subset for a recognition process. In their

work Dash and Liu compared the evaluation functions using different properties;

(i) generality: how suitable is the selected subset for different classifiers, (ii) time

complexity: time taken for selecting the subset of features, and (iii) accuracy: how

accurate is the prediction using the selected subset. Table 5.3 shows a comparison

of evaluation functions realised by Dash and Liu. The “–” in the last column means

that nothing can be concluded about the accuracy of the corresponding evaluation

function. In all of these cases, the accuracy of the evaluation functions depends

on the data set and the classifier used. They discovered an unsurprising trend, the

more time spent, the higher the accuracy. The table also shows us which measure

should be used under different circumstances such as with time constraints, when

given several classifiers to choose from, etc.

Classification error rate and distance measures are usually chosen as a criterion

function in many works. It is difficult to estimate the correct recognition rate of a

classifier on the basis of a limited number of training samples. This is one reason why

most comparative studies on feature selection used distance as a criterion function.
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Nevertheless, a recent study made by Kudo and Sklansky [88] compares feature

selection algorithms using a recognition rate measure. On the other hand, if it

is known which classifier will be used in the problem under consideration, the best

criterion is, in general, the classification error rate because it makes feature selection

procedures specific for the classifier and the sizes of the training and test sets used.

As it will be seen in the experimental section, the classification error rate will be

used as a feature evaluation in our feature selection process.

5.3.2.4 Classifiers

Up to now, we have described the learning process of our recognition system. We

have seen that each texture class presented in the virtual database is modelled by a

texture feature vector extracted from the co-occurrence matrices. The necessity of

performing feature selection/evaluation in order to choose the best feature subset

which distinguishes the different classes best has also been stated. At this point,

when the learning process is finished, the classification process proper begins. The

objective of this process is to assign, by means of a classifier, the feature vectors

of the unknown image textures (test images) into one of the classes of the virtual

database.

It is well-known that a classifier can be designed using a large variety of possible

approaches. In practice, the choice of a classifier is a difficult problem and is often

based on which classifier happens to be available or best known to the user. As Jain

et al. presented in [73], there are three different approaches to design a classifier.

• The simplest and most intuitive approach to classifier design is based on the

concept of similarity: patterns which are similar should be assigned to the

same class. Therefore, once a good metric has been established to define

similarity, patterns can be classified by template matching or the minimum

distance classifier using a few prototypes per class. The choice of metric and

prototypes is crucial to the success of this approach.

• The second main concept used for designing pattern classifiers is based on

the probabilistic approach. These classifiers are commonly known as Bayesian
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classifiers. They are based on probabilistic information on the populations

from which a sample of training data is to be randomly drawn. Randomness

in sampling is assumed and it is necessary for a better representation of the

sample of the underlying population probability function. There are different

approaches to Bayesian classifiers. See [114] for a survey of these classifiers.

Among them, the optimal Bayes decision rule, used in many works, assigns the

unknown patterns to the class with the maximum posterior probability, taking

the class conditional probabilities and the a priori probabilities into account.

• The third category of classifiers is to construct decision boundaries. A classical

example of this type of classifier is the linear discriminant analysis (LDA) [114]

which uses linear boundaries between data distributions to discriminate be-

tween samples. Another example is the single-layer perceptron where the

separating hyperplane is iteratively updated as a function of the distance of

the misclassified patterns from the hyperplane. It is important to note that

neural networks themselves can lead to many different classifiers depending on

how they are trained.

A decision tree is a special type of classifier which is trained by an iterative

selection of individual features which are most salient at each node of the tree.

The criteria for feature selection and tree generation include the information

content, the node purity or Fisher’s criterion (a linear discrimination which

minimises the MSE between the classifier output and the desired labels). Dur-

ing classification, only the features needed for the test pattern under consider-

ation are used, so feature selection is implicitly built-in. The main advantage

of the tree classifier, apart from its speed, is the possibility of interpreting the

decision rule in terms of individual features.

Nearest Neighbour Classifier

Considering the first approach described above, we use the Nearest Neighbour clas-

sifier (NN) to perform our texture classification.
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Figure 5.9: Example of K-nearest neighbour (K-NN) and mean nearest neighbour
(mean-NN) classifier. Note that the test sample is classified in both cases to the
same class.

Nearest neighbour methods have been used as an important pattern recognition

tool [47, 89, 114]. The one-nearest neighbor (1-NN) classifier is the most natural

classification method we can think of. It consists of comparing an unknown observa-

tion x with all the N cases in the training set. N distances between a pattern vector

x and all the training patterns are calculated and the label information contained in

the training set with which the minimum distance results is assigned to the incoming

pattern x. The K-nearest neighbour (K-NN) is the same as the 1-NN rule except

that the algorithm finds K nearest points within the points in the training set from

the unknown observation x and assigns the class of the unknown observation to the

majority class in the K points. Note that another criterion has to be defined in case

of a tie. Another common approach is the nearest mean classifier (mean-NN) in

which each class is represented by a single prototype (feature vector) which is the

mean vector of all the training samples in that class. Figure 5.9 intuitively illustrates

how the nearest neighbour classifiers (K-NN, Mean-NN) classify a test sample.
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The nearest neighbour classifiers are simple and robust. The most straightfor-

ward one-nearest neighbour decision rule (1-NN) is conveniently used in many works

as a benchmark for all the other classifiers since it appears to provide a reasonable

classification performance in most applications. The 1-NN classifier only has to de-

fine the distance metric used to find the nearest neighbour. In general, Manhatan

or Euclidian distance are commonly used. The main drawback of this classifier is

the high computational cost.

In terms of typical texture classification the different approaches of nearest neigh-

bour classifiers perform in a similar way. Nevertheless, when dealing with texture

classification independent from light direction, things are different. Changes in the

imaging geometry and lighting conditions can significantly alter the appearance of

the surface, implying significant variations in the image texture and, therefore, in

the feature vectors. This fact causes the data to suffer high intraclass variation. In

other words, the feature values for the same texture class are not stable. Hence,

the data distribution for each class does not make a compact cluster. It is this

intraclass variation which introduces critical misclassification rates in the texture

classification process. In that case, it is reasonable to think that the mean-NN is

not an adequate approach since the variation of a texture can provide mean values

which do not reflect the nature of the data (i.e. one texture with more than one

cluster). Analysing these facts, in our experimental results we use a 1-NN classifier

in which an unknown test image is compared with all the cases contained in the

virtual database and is classified with the one which has minimum distance. At the

same time it performs texture classification, this classifier allows us to provide an

estimation of the illumination direction of the test images directly. It is important

to remember that for each texture class, different images corresponding to different

light directions are available in the virtual database. Therefore, using the 1-NN clas-

sifier, as well as assigning the test image to the texture class to which it belongs, the

light direction of the unknown test image is approximated by one of those contained

in the virtual database. This will be specified in more detail in the experimental

section related to texture classification and light estimation.
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5.4 Summary

A novel methodology of texture classification under varying imaging geometries

(i.e. light direction and camera distance) was presented in this chapter. Basically,

the main contributions of this method are: (i) to overcome the problem of classifier

failure induced by varying imaging properties, (ii) to integrate the texture prediction

framework proposed in Chapter 4 into a texture classification system, and (iii) to

provide the capability of guessing an approximate direction of the light used to

capture the test images.

This chapter has been structured in two blocks. In the first, works on the topic of

texture classification under varying imaging geometries were reviewed. Moreover, we

discussed the different ways of realising this texture classification system, concluding

that a model-based approach is a potential solution to the problem. In the second

block, our model-based approach for texture classification was presented, describing

the general scheme and detailing each step individually.

Roughly speaking, the main purpose of our method has been to train a classifier

on a selection of images of the same surface obtained under different imaging geome-

tries. Hence, variability is modelled for each surface texture. The main reason for

this choice is our interest in exploiting the capability of colour photometric stereo to

render images of a surface under novel lighting conditions as well as the capability

of the image prediction method proposed in Section 4.3.1 of creating images of a

surface texture under novel imaging geometries such as camera distance.

The whole procedure of the proposed model-based texture classification

system was divided into two main phases:

• Virtual database creation. The aim of this phase is to create, by means of

the surface texture information and the image prediction method, a “virtual”

database of image textures against which we compare the unknown test images

in order to classify them.

• Recognition procedure. The recognition procedure was divided into two

steps: the learning process and the classification process.
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– The learning process has the goal of modelling each texture class by means

of a representative feature vector.

– The classification process has the goal of classifying an unknown test

image into the texture class it belongs.

In this chapter, we have seen how the learning process requires the application of

other processes. First, the feature extraction process is needed to extract different

texture features for each image in the virtual database. Different techniques to ex-

tract textural properties were reviewed and, from them, the co-occurrence matrix

was chosen to compute the texture features used in our classification system. We

also explained that it is very important to choose from all the computed features

those which can distinguish the different classes best. For this reason, we analysed

and discussed various methods which allow us to perform the feature selection and

feature evaluation process.

When the learning process is finished the classification process starts, extracting

first the feature vectors for the unknown image textures (test images) and assigning

them by means of a classifier into one of the classes of the virtual database. We

described how the Nearest Neighbour classifier is used to perform the texture

classification and, at the same time, to provide the approximate direction of the

light used to capture the test images.

In the next chapter, we will test and evaluate this texture classification approach

over a large set of surface textures with different properties (i.e. smooth surfaces,

rough surfaces and directional surfaces). Different experiments will be performed

and, after discussing them, we will extract the corresponding conclusions.
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Chapter 6

Experiments

The proposed prediction methods, as well as the model-based texture classification

system, are tested and evaluated in this chapter. A set of real surface textures con-

taining a wide variety of relatively smooth and very rough surfaces are used in this

thesis as our image database (experimental data). Different experiments and error

measures are used in order to carry out an exhaustive evaluation. The validity of the

texture classification system is demonstrated by classifying texture images captured

under imaging geometries different from the reference images in the database. The

process of recognition allows us also to guess the approximate direction of the light

used to capture the test images.

6.1 Introduction

The aim of this chapter is to assess the performance of the methodology presented in

this thesis. As it has been seen in previous chapters, there are certain properties of

the theory which must be accurately analysed. For instance, the ability of the colour

photometric stereo technique to use images captured with a certain light direction

in order to predict novel images referring to the same camera distance, but with

different light directions. It is also important to analyse the abilities of the prediction

methods presented in Section 4.3 in order to predict the surface/image information

when seen from a longer distance. An exhaustive evaluation of these prediction

methods is presented in this chapter. As it will be seen, different experiments and

139
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error measures are used to extract conclusions and discuss them.

On the other hand, we must also evaluate the model-based texture classification

system proposed in Section 5.3. Texture classification results obtained on a broad

set of real surface textures are presented and analysed. Moreover, results related to

the estimation of the direction of the light are also provided and discussed.

In order to obtain all these experimental results, it is necessary to define which

experimental data will be used. It is well-known that there are many texture image

databases available to perform and evaluate a typical texture classification system:

the Brodatz album [18], the Meastex database [1] and the Vistex database [3]. Al-

though there are various databases of images to test texture classificaton algorithms

invariant to the direction of illumination, there is no database of images to test

algorithms for changes of camera distance. For example, the “Photometric Image

Databases” from the Texture lab at Heriot-Watt University [2] are not suitable

to our purposes because they do not provide photometric sets of images captured

from different distances. Moreover, the “Columbia-Utrecht database” established

by Dana et al. [35] is also unsuitable because the light was held constant while the

viewpoint and orientation of the samples were varied during data capture. Obvi-

ously, in order to perform the set of experiments which allows us to evaluate and

extract conclusions for our proposals, an appropriate experimental data set is re-

quired. Therefore, acknowledging the lack of a texture database which accomplishes

our requirements, we opted to build our own image database which provided all the

information needed for our purposes.

The main contributions of this chapter can be summarised with the following

points:

• The presentation of the image database of textured surfaces used in this thesis.

This database contains the required images to apply the photometric stereo

technique correctly, as well as those images which should be used as training

and test images.

• The evaluation of results achieved by our prediction methods (direct image

prediction and surface prediction), providing a comparison between them.
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• The evaluation of results obtained on texture classification under varying ge-

ometries, such as light direction and camera distance.

The remainder of this chapter is structured in the following blocks. In the fol-

lowing section we describe the experimental data. In Section 6.3 and 6.4 all the

experimental trials are analysed and discussed individually. Finally, conclusions are

drawn in Section 6.5.

6.2 Experimental Data

Twenty five physical texture samples were used throughout the experimental trials

presented in this thesis. Basically, we used real textures commonly found in our

every day life. For example, simple textures based on different cloth, paper, etc,

and other textures formed by repeating primitives of foods such as beans, lentils,

spaghetti, chips, etc.

For each texture sample two photometric sets composed of 4 images each were

available. The two sets were captured at two different distances; distance A and

distance B (longer than A). All photometric stereo sets consisted of 4 images lit

at an elevation angle of 55◦ with 4 different tilt angles 0◦, 90◦, 180◦ and 270◦.

Figure 6.1 illustrates the scheme of the platform used to capture the experimental

data. In addition to the 4 images used in the photometric sets, different images for

each surface taken at the two distances were captured for testing. We call these

sets of images tA and tB. Thirteen surfaces were captured using 12 illuminant tilt

angles between 0◦ and 360◦ incremented by steps of 30◦. The remaining surfaces

were captured using 24 illuminant tilt angles between 0◦ and 360◦ incremented by

steps of 15◦. All surfaces were lit at an elevation angle of 55◦. It is important to

state that the lights or the object position were not changed when the distance of

the sensor was changed. For fifteen texture samples, in addition to these images,

another set of images including the photometric images and the test images were

captured at distance C (longer than B).

Virtual images constructed from photometric sets of the same distance are re-
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Figure 6.1: Scheme of the platform used to capture the experimental data. Different
images for each texture were captured under different illuminant tilt angles and a
fixed elevation angle of 55◦.

ferred to as images AA, BB and CC. Virtual images constructed from photometric

set A for distance B are referred to as predictions AB. In a similiar way, virtual

images constructed from photometric set A for distance C are referred to as pre-

dictions AC. In order to distinguish between the direct image prediction method

of Section 4.3.1 and the image prediction method via the surface prediction of Sec-

tion 4.3.2, we shall refer to them as prediction imaAB and surAB respectively.

Figure 6.2 summarises the notation described above.

Figure 6.3 shows one image for each surface texture captured from distance A and

one from distance B. These images include two major groups of surface textures:

• One group of surfaces consists of a wide variety of relatively smooth surfaces

which may be further divided into:

– Isotropic surfaces and

– Directional surfaces.
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Figure 6.2: Virtual images constructed at the same distance are referred to as images
AA and BB. Virtual images contructed from photometric set A with distance B
are referred to as predictions AB. Images captured for testing at distances A and
B are called tA and tB respectively.

• The other group of surfaces consist of a variety of very rough surfaces, for

which the assumption on which photometric stereo is based is violated, (i.e.

relatively smooth surface with low roughness). We do not expect CPS to work

well for such surfaces, but we included them in order to test the proposed

method to the extreme.

As it was seen in Section 2.3.2, the description of a surface can be stated in

different ways. For example, a single parameter may be sufficient to characterise

a surface for some purposes. This is the case of the absolute average slope ratio

(AASR) which provides an easy way to characterise the degree of roughness of a

given surface texture. Remember that AASR is calculated as

AASR =
1

2NM

N−1∑

x

M−1∑

y

|p(x, y)|+ |q(x, y)|

where N ×M is the number of points for which the (p, q) values are known. For



144 Chapter 6. Experiments

Pasta (T1) Chips (T2) Cloth (T3) Cloth (T4)

Sponge (T5) Sponge (T6) Brick (T7) Brick (T8)

Figure 6.3: One image from distance A and one from distance B of each of the
twenty five sample textures.
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Bread (T9) Rice (T10) Pasta (T11) Paper (T12)

Cloth (T13) Paper (T14) Chickpeas (T15) Cornflakes (T16)

Figure 6.3: (continued).
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Peanuts (T17) Sunflower seeds (T18) Paper (T19)

Pistachios (T20) Beans (T21) Beans (T22)

Lentils (T23) Beans (T24) Pasta (T25)

Figure 6.3: (continued).
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other purposes in which a more accurate description is required, statistical models

such as the histograms of the values of the components of the gradient vectors may

provide better descriptors. In this chapter we use both descriptors to characterise the

surface shape and roughness of each texture, namely the AASR parameter and the

estimated probability density functions (PDFs) for the surface partial derivatives

p and q (i.e. the normalised histograms of these quantities). The p-map and q-

maps of the surface textures are estimated using CPS. The histograms are 256

point discrete approximations of the PDFs in the range [−1, 1]. These histograms

represent statistical models of the surfaces. Moreover, as there is a linear relationship

between surface gradient and surface height, the characteristics observed here are

also valid for describing the surface height map.

After analysing all the PDFs, we identified three different types of gradient dis-

tribution corroborating the diversity of the dataset. For instance, consider three

textures (T5, T14, and T15) which provide representative examples of each texture

class defined above (see first column of Figure 6.4).

We observed that some surfaces, are essentially random textures as in the first

example (T5), which was formed by a fracture process. Note that the PDFs for this

texture could be modelled by Gaussian distributions (see first row of Figure 6.4).

Similiar behaviour has been observed, for instance, for textures T1, T6, and T10.

The second example, which corresponds to a directional texture, has one gradient

component close to a typical distribution of a surface with a sinusoidal height profile

(see the PDF of p in the second row of Figure 6.4). The q component concentrates all

its values close to 0 with a maximum probability density of 0.1148. This distribution

is shown out of scale in order to maintain the same scale for the y-axis so as to allow

comparison between histograms. We observed that all the directional surfaces, such

as textures T11, T12, and T13, show the same behaviour. Other textures (very

rough isotropic surfaces) do not generally fit any particular distribution. They

look like normal distributions which have been flattened out, presumably because

the estimation is affected by severe shadowing, as shown in the third example of

Figure 6.4. Other textures which follow this behaviour are textures T17, T18, T20,

and T21.
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Figure 6.4: One representative image of an isotropic (T5), a directional (T14) and
a very rough isotropic surface (T15). The second and third columns show the PDF
representations of the surface gradients p and q.

Moreover, by analysing the AASR parameter, we can also establish a simple

classification scheme of surfaces based on their degree of roughness. Relatively

smooth surfaces have small AASR values. For example, textures T1, T5, and T12

have AASR values of 0.0897, 0.1003, and 0.1129 respectively. On the other hand,

very rough surfaces have large AASR values. Textures T15, T20, and T22, have

AASR values of 0.3960, 0.3530, and 0.2470 respectively. Hence, this parameter

allows us to distinguish between a smooth and a rough surface in a simple way.
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Considering both surface descriptors, the AASR and the estimated PDFs, we

have classified our textures into one of the three groups described earlier: isotropic

surfaces (from texture T1 to texture T10), directional surfaces (from texture T11 to

texture T14), and very rough surfaces (from texture T15 to texture T25).

Another aspect we analysed is how chromatically distinct the surface textures are.

To quantify this we used the Euclidean metric in conjunction with the Luv colour

space. First, we calculate the average Luv colour value from each surface. Next,

using these values, we find the distance between all pairs of surface textures, choosing

the minimum value. This value indicates a measure of how distinct the surfaces are.

We find that the minimum distance is 14.3471, corresponding to textures T1 and

T11. We also observe that the texture most chromatically distinct from the others

is texture T5, with a minimum distance value of 1273.2258.

6.3 Texture Prediction Results

After describing the experimental data, this section will focus on different experimen-

tal trials related to the texture prediction described in Chapter 4. All experiments

performed have been to check various aspects of our methodology, namely:

1. To check the accuracy of the photometric stereo technique to use images cap-

tured with a certain light direction in order to predict images referring to

the same camera distance but with different light directions. The results of

this experiment allow us to demonstrate the validity of the photometric stereo

technique in order to create virtual images of the same surface seen under

different light directions.

2. To check the accuracy of image prediction using a photometric set captured

at distance A to predict images captured at distance B (> distance A). The

predictions will be compared with real images captured at distance B and

with images produced from a photometric set captured at the same distance

B. The results of this experiment allow us to evaluate how well an image can

be predicted from one resolution to another.
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3. To check the accuracy of surface shape prediction using a photometric set cap-

tured at distance A to predict the surface as it would appear at the resolution

of distance B and compare it with the surface reconstructed from a photomet-

ric set captured at distance B with the same light orientations as for the set

at distance A. The results of this experiment are to be used as a benchmark

of how well a surface can be predicted from one resolution to another under

ideal conditions where the lighting does not change in orientation.

4. To check the accuracy of image prediction using photometric sets captured

from distances A and B to predict images captured from distance C (A <

B < C). The results of this experiment allow us to analyse the effect of using

two different resolutions in the original sets to perform the same prediction

when seen from distance C.

5. To check the accuracy of surface shape prediction using photometric sets cap-

tured from distances A and B to predict the surface as it will appear from the

longer distance C. The results of this experiment are to be used as a bench-

mark of how well a surface shape can be predicted from different distances and

from original sets with different resolution.

6.3.1 Experiment 1: Accuracy of Photometric Stereo

This experiment analyses the accuracy of the photometric stereo technique for cre-

ating virtual images referring to the same camera distance but under different light

directions. In order to examine the performance of the photometric technique, we

have decided to compare the set of test images captured from distance B (tB) with

the corresponding images for the same lighting conditions created from photometric

stereo information (BB). Figure 6.5 shows one image of the set tB and the cor-

responding image generated from photometric stereo BB for textures T3 and T22.

Note that to evaluate the quality of the generated images visually is not an easy

task since the differences between the original and the generated images are difficult

to perceive.

In order to perform this evaluation, we propose to quantify the difference between
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(a) (b) (c) (d)

Figure 6.5: (a) and (c) Images captured with camera (tB). (b) and (d) Correspond-
ing images generated by photometric stereo (BB).

a captured colour image and a generated one using the mean square error of colour

differences computed over all the pixels. To compute the colour difference between

the predicted and true colour values for a pixel, we use the Euclidean metric in

conjunction with the Luv colour space [159]. This way the estimated error in colour

reflects the perceived difference in colour since the Luv space is assumed to be

perceptually uniform.

In the first row of Table 6.1 we give the average mean square error and its

standard deviation for each type of surface used and for all twenty-five textures

together for all the images captured for testing with different tilt angles (i.e. over 13

textures × 12 tilt angles + 12 textures × 24 tilt angles = 444 test images). From all

these tests we observed that, in general, the MSE is larger when the degree of surface

roughness increases. For example, rough surfaces such as textures T16, T20, and T21

had an average MSE for all tilt angles of 13.9003, 13.5633 and 12.7423 respectively,

while relatively smooth surfaces such as T3, T7 and T10 had an average MSE

of 5.7843, 4.1196 and 4.2268. We conclude that the photometric stereo technique

introduces errors and the generated images are not perfect. However, for many

textures we may consider these results as acceptable. We must remember that our

goal is to use generated images as models in the classification process, therefore, the

key question is whether the generated images are accurate enough to enhance the

classification performance with respect to a naive classification system in which the

same image texture captured under a particular light direction is always used as the

reference image. Figure 6.6 shows an illustrative example of the MSE obtained when
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Table 6.1: Quantitative assessment for each approach over all tilt angles. Average
MSE and its standard deviation for the colour difference between the predicted and
true values, using the Euclidean metric in conjunction with the Luv colour space.

Isotropic Directional Rough Overall
Approach Avg Std Avg Std Avg Std Avg Std

tB vs BB 7.2346 2.9259 6.7650 1.8441 11.9886 2.9665 9.2512 3.6690

tB vs imaAB 8.5669 3.5692 7.5840 3.0038 12.4888 2.5783 10.1352 3.6501

tB vs surAB 8.6240 3.6385 7.6447 3.0654 12.6897 2.5231 10.2526 3.7084

comparing the test images tB with the images generated by photometric stereo BB,

along with the MSE obtained in the naive case, in which only the captured image

under the tilt angle 0◦ is used as a model to perform the comparison with all tB

images. This testing was carried out on texture T21 which is one of the cases with

the least accurate generated images with an average MSE of 12.7424. This means

that is an example in which photometric stereo introduces a large error in image

generation. We observe that the average MSE for the naive case is much higher, i.e.

20.1357, with a maximum MSE of 29.0195.

Note that the result of this experiment allows us to show how the use of a single

image as the reference image produces a larger difference between images. This will

imply errors in the computation of features and, therefore, errors in classification.

Hence, we demonstrated that a model-based system using virtual images generated

by photometric stereo, even if they are not very accurate, would be preferable over

the use of a fixed reference image for the classification of textures under varying

lighting conditions.

6.3.2 Experiment 2: Accuracy of Image Prediction when
the Distance Changes

The purpose of this experiment is to evaluate the accuracy of image prediction using

a photometric set captured from distance A and to predict how an image will appear

from distance B. Using the image prediction method in Section 4.3.1, the image
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Figure 6.6: Mean square errors for texture T21 under varying tilt angles. MSE
for the evaluation tB vs BB and the naive case tB vs BB, in which the process
of surface recovery and rendering has been bypassed and the image at tilt=0◦ is
compared directly with images tB.

intensities are directly predicted from the photometric information extracted from

distance A. Therefore, we call these predicted images imaAB. However, using

the surface prediction method in Section 4.3.2, only the surface gradient vectors are

directly predicted but not the image intensities. As it was explained in Section 4.3.2,

we generate predicted images by using the predicted gradient vectors at distance B

and the average reflectance function for each surface tile assuming that our sensor

and light remain spectrally unchanged. We call these predicted images surAB.

Therefore, in this experiment we perform a comparison between the test images tB

and the predicted images imaAB and surAB.

Several results obtained over three textures are shown in Figure 6.7, where we

plot the MSE over all the tilt angles. Note that for each texture, three different

comparisons are shown: two curves show the results of comparing the predictions

imaAB and surAB with the test images tB captured with the camera at distance

B. The third curve shows the results of comparing the image created by using the

information extracted by photometric stereo for distance B and rendering, with

the test images tB. This curve presents the error produced exclusively by the

photometric stereo technique, as no change in distance is involved.
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Figure 6.7: Accuracy of image prediction for three surface textures under varying tilt
angles (textures T22, T14, and T10). The curve tB vs BB compares real images
captured from distance B with those created using the information extracted by
photometric stereo at distance B as well. The curves tB vs imaAB and tB vs surAB
compare predicted images with data from distance A with real images captured from
distance B.

Observing the results obtained over the twenty-five textures we conclude that in

almost all cases, the performance of both prediction AB methods is very similar,

producing very small differences. In Table 6.1 we give an overall quantitative assess-

ment for each method by computing the average MSE and its standard deviation

over all textures and tilt angles. The average MSE is similar for each prediction ap-
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proach, although the image prediction method, which predicts the pixel intensities

directly, gives, in general, smaller errors in the image. Note that most of the error

can be accounted for as being produced by the photometric stereo technique and

not by the step dealing with the distance change.

We also observe that surface roughness has an influence on the accuracy of the

image predictions. For rougher surfaces, the error of the prediction is increased

(see Table 6.1). Other surface properties, such as directionality or specularity, may

contribute to the errors as well. For example, in the directional texture T14 in

Figure 6.7, some orientations of the light source provoke more difficulties than others

and, therefore, the error of image prediction may vary significantly depending on

the light direction.

6.3.3 Experiment 3: Accuracy of Surface Shape Prediction

The goal of this experiment is to perform an evaluation of surface shape prediction,

comparing the predicted gradient vectors AB with those obtained using the original

photometric set for distance B.

Using the surface prediction method described in Section 4.3.2, the gradient vec-

tors are directly predicted from the photometric information extracted for distance

A. However, using the image prediction method (see Section 4.3.1), only the in-

tensity values can be predicted but not the gradient vectors. Therefore, to make

the surface shape evaluation possible, photometric stereo was applied to these pre-

dicted images (four images corresponding to four directions of the light) in order to

compute the gradient vectors.

The first column of Figure 6.8 shows three examples of image predictions imaAB

with a particular light direction. Note that the image intensity we predict consists

of image patches and not full images since there are points which photometric stereo

can not recover correctly. We flag these points with white values.
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Figure 6.8: Accuracy of the surface shape predictions for three surface textures
(T5, T14, and T15). Second and third column show the distributions of the surface
gradients p and q obtained by applying photometric stereo directly to the original
images for distance B, by applying photometric stereo to the images predicted by
the method in Section 4.3.1 (imaAB) and by applying the surface prediction method
in Section 4.3.2 (surAB).

Before we perform the evaluation, it is necessary to solve the problem of localising

which region of the original set of distance B corresponds exactly to the region of the

prediction AB. We do this by computing the correlation of surface shape (gradient

components p and q) between results obtained by applying photometric stereo to the

original set directly and results obtained with our prediction AB. When computing
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Figure 6.9: Correlation scheme. The correlation of surface shape (gradient compo-
nents p and q) between results obtained by applying photometric stereo directly to
the original set of distance B and results obtained with our prediction AB.

the correlation function, we exclude all points which are flagged as not reconstructed.

The correlation method is applied separately for the gradient components p and q,

obtaining a set of possible relative shifts between the corresponding images from p

and another set of possible relative shifts between the corresponding images from q.

Then, the common shifting which maximises both correlations of p and q is chosen,

localising the region of the original set exactly. Figure 6.9 summarises the scheme

of this correlation process. After that, the PDFs of p and q are used in order to

compare the surface shape information.

Each plot in Figure 6.8 shows the surface distributions obtained by the prediction

methods and those obtained by applying photometric stereo to the original images

captured from distance B.

Analysing the PDFs of this figure, we observe that the results obtained by the

surface prediction method fit the original PDF distributions better. On the other
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Table 6.2: Quantitative assessment of shape predictions imaAB and surAB. Two
quantitative measures are used: (1) the average MSE of the PDFs and their standard
deviation and (2) the average MSE per pixel of gradient components p and q and
their standard deviation.

Isotropic Directional Rough Overall
Prediction Avg Std Avg Std Avg Std Avg Std

imaAB p 0.0008 0.0002 0.0018 0.0008 0.0017 0.0016 0.0013 0.0011
PDF surAB p 0.0005 0.0001 0.0008 0.0003 0.0012 0.0017 0.0008 0.0011
error imaAB q 0.0009 0.0002 0.0023 0.0007 0.0017 0.0018 0.0014 0.0012

surAB q 0.0005 0.0001 0.0011 0.0003 0.0012 0.0018 0.0009 0.0011

imaAB p 0.0708 0.0592 0.0623 0.0699 0.0849 0.0371 0.0757 0.0507
Error surAB p 0.0620 0.0389 0.0627 0.0507 0.0914 0.0274 0.0751 0.0377

per pixel imaAB q 0.0679 0.0476 0.0507 0.0464 0.0998 0.0330 0.0792 0.0442
surAB q 0.0605 0.0384 0.0572 0.0491 0.0896 0.0268 0.0728 0.0373

hand, surface information extracted from the predicted images (imaAB) introduces

more error in the predicted gradient vectors. In general, the gradient values are

smaller than those obtained by the surface prediction method. That can be clearly

observed, for instance, in the q distribution of the second texture. In Table 6.2 we

confirm this conclusion providing an overall quantitative assesment over all these

histogram comparisons. We computed the average MSE of each histogram and its

standard deviation over all textures. We also included the average MSE per pixel

of the gradient components p and q. In both cases, better results are obtained

with the surface prediction approach. The reason for these results can be found in

the error introduced by the image prediction (imaAB), which is propagated when

photometric stereo is applied to the generated images in order to recover shape

information.

As mentioned earlier, the absolute average slope ratio (AASR) provides another

way of characterising the degree of roughness of a given surface texture with a sin-

gle parameter. We used this ratio as an alternative measure to evaluate our surface

shape predictions. We compared the AASR of our predictions AB with the esti-

mated values computed using the shape information extracted by the photometric

set captured from distance B. Table 6.3 gives an overall quantitative assessment

over all textures computing the average MSE of the AASR parameter obtained using
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Table 6.3: Quantitative assessment using the AASR parameter. Average MSE and
its standard deviation for each prediction approach (imaAB and surAB).

Isotropic Directional Rough Overall
Prediction Avg Std Avg Std Avg Std Avg Std

imaAB 0.0273 0.0095 0.0382 0.0257 0.0369 0.0170 0.0334 0.0161

surAB 0.0061 0.0035 0.0129 0.0125 0.0124 0.0097 0.0095 0.0085

both prediction approaches. Note that the values obtained by the surface prediction

method (surAB) are again better than those obtained by the photometric stereo

approach applied to the predicted images (imaAB).

From this experiment we conclude that the surface prediction method provides

the best shape estimation. Moreover, we observe that, in general, surface rough-

ness has a strong influence on the accuracy of the surface shape predictions. For

rougher surfaces the error of the predictions is increased (see Tables 6.2 and 6.3).

For instance, the MSE per pixel of the gradient components p and q for texture T15,

which is a surface with a high degree of roughness (AASR of 0.3960), are 0.1019

and 0.1573 respectively, while for texture T5, a relatively smooth surface (AASR of

0.1003), are 0.0470 and 0.0558, respectively.

6.3.4 Experiment 4: Accuracy of Image Prediction from
Different Distances

The purpose of this experiment is to evaluate the accuracy of the direct image

prediction method proposed in Section 4.3.1, using a photometric set captured at

distance A and another at distance B to predict images captured at the longer

distance C (A < B < C). The main goal of this experiment is to analyse the effect

of using two different resolutions in the original sets to perform the same prediction

when seen from distance C. Two different prediction distances (AC and BC) are

used in the image prediction method.

Note that now three different sets of images taken from distances A, B, and C

are used. In our image database we have fifteen textures which were captured for
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(a) (b) (c)

Figure 6.10: Three images of the same surface texture seen from distances A, B,
and C, (a), (b) and (c) respectively.

these three distances: textures T1, T2, T3, T4, T10, T11, T12, T13, T14, T15,

T16, T17, T18, T19 and T20. Figure 6.10 shows 3 images of texture T15 seen from

distances A, B and C. Over these fifteen textures, we have performed a comparasion

between the test images tC and the predicted images obtained from distances A and

B. To quantify the difference between a captured colour image (test image) and a

predicted colour image, we use again the mean square error of colour differences

computed over all pixels.

Observing the results obtained over the fifteen textures, we conclude that in

almost all cases, the performance of both predictions is similar, although the predic-

tions AC (those obtained from the information extracted at the closest distance A)

give, in general, smaller errors in the image. In Table 6.4 we give an overall quanti-

tative assessment for each prediction (AC and BC) by computing the average MSE

and its standard deviation over all textures and all tilt angles which confirm this

conclusion. The reason for these results can be found in the superior resolution of

the images from distance A and therefore in the superior amount of information

available to perform the predictions. In fact, with prediction AC, more surface

patches at distance A are used to compute the intensity value corresponding to a

surface path of distance C. On the other hand, there is less information available

from distance B to predict the corresponding value for distance C. Note that the

major error is again produced by the photometric stereo technique and not by the

inclusion of the distance prediction.
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Table 6.4: Overall quantitative assessment for each prediction over all 15 textures
and all tilt angles. Average MSE and its standard deviation for the colour difference
between the predicted and true values using the Euclidean metric in conjunction
with the Luv colour space.

Overall assessment Avg. Std

tC vs CC 10.4412 3.5115

tC vs AC 11.4239 3.3770

tC vs BC 13.2937 3.9568

6.3.5 Experiment 5: Accuracy of Surface Shape Prediction
from Different Distances

The goal of this experiment is to perform an evaluation of the surface shape pre-

diction method described in Section 4.3.2, comparing the predicted gradient vectors

AC and BC with those obtained using the original photometric set for distance C.

In this experiment, we have considered the same experimental setup as for previous

experiment. Therefore, we use the set of fifteen textures taken from distances A, B,

and C.

Before we perform the surface evaluation, we have seen that it is necessary to

solve the problem of localising which region of the original set of distance C cor-

responds exactly to the region of the predictions AC and BC. As explained in

experiment 3 in Section 6.3.3, we do this by computing the correlation of surface

shape (gradient components p and q) between results obtained by applying photo-

metric stereo to the original set directly and results obtained with our predictions.

By analysing the PDFs for all the predictions, we observed that results obtained

by prediction AC fit the original PDF distributions better. On the other hand,

surface shape information extracted from distance B introduces more error in the

predicted gradient vectors. In general, the gradient values are smaller than those

obtained from distance A. In Table 6.5 we confirm this conclusion by providing an

overall quantitative assesment over all these histogram comparisons. As in the third

experiment, we computed over all the textures the average MSE of each histogram

and its standard deviation. Moreover, we also included the average MSE per pixel
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Table 6.5: Overall quantitative assessment for all 15 textures of shape predictions
AC and BC. Two quantitative measures: (1) the average MSE of the PDFs and
their standard deviation and (2) the average MSE per pixel of gradient components
p and q and their standard deviation.

p q
Pre. Avg. std Avg. std

AC 0.0008 0.0005 0.0006 0.0002
PDF error BC 0.0010 0.0004 0.0011 0.0006

AC 0.0794 0.0525 0.0873 0.0449
Pixel error BC 0.1130 0.0606 0.1343 0.0638

of the gradient components p and q. In both cases, better results are achieved when

the prediction is carried out from the original distance A. This is due to the fact

that for prediction AC more surface patches are used to compute the desired normal

vector corresponding to the surface patch of distance C.

We also used the AASR ratio to evaluate the surface shape predictions. We

compared the AASR of our predictions AC and BC. Table 6.6 gives an overall

quantitative assessment for all the textures, computing the average MSE of the

AASR parameter obtained using both predictions. Note that the values obtained

by the surface predictions AC are again better than those obtained by the predictions

BC.

As a result of this experiment we conclude that prediction AC, which has a larger

distance prediction but also the most resolution among the original images, provides

better shape estimation than prediction BC. We demonstrated that the accuracy

of the original information used to perform the predictions has a strong influence

on the results of our predictions.

6.4 Texture Classification Results

After describing the experimental trials performed on texture prediction, we will

focus on the experimental trials related to the texture classification system proposed

in Chapter 5. All experiments performed have been for the purpose of checking
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Table 6.6: Overall quantitative assessment for all 15 textures of the AASR param-
eter. Average MSE and its standard deviation for prediction AC and BC.

Prediction Avg. std

AC 0.0091 0.0078

BC 0.0263 0.0114

various aspects of the theory, namely:

1. To check the accuracy of the classifier when photometric sets of distance B

are used to produce virtual model images for the same distance, in terms of

which images captured from distance B are to be classified. This experiment

provides a quantitative evaluation of our model-based texture classification

when we use model images and test images from the same distance B and

when the test images have been captured under different light directions from

those used by the photometric stereo.

2. To check the accuracy of the light direction estimation provided by our model-

based classification, giving a measure of how well the light direction in the test

images can be estimated when reference and test images have been captured

from the same distance.

3. To check the accuracy of the classifier when photometric sets from distance A

are used to produce virtual model images for distance B, in terms of which

images captured from distance B are to be classified. The results of this

experiment are to be used to show how well our system can classify test images

captured from the longer distance B and under different light directions.

4. To check the accuracy of the light direction estimation provided by our model-

based classification, giving a measure of how well the light direction in the test

images can be estimated when reference and test images have been captured

from different distances.
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(a) (b)

Figure 6.11: Illumination setup. (a) Illuminant tilt angles used to capture the test
images. (b) Illuminant tilt angles used to create the virtual database. The unknown
illuminant tilt angle of the test image has to be classified to the nearest one among
these four angles used for the creation of the virtual database.

6.4.1 Experiment 1: Accuracy of Classification when Pho-
tometric and Testing Images are Captured from the
Same Distance

This experiment analyses the accuracy of the texture classifier when photometric

sets from distance B are used to produce model images for the same distance B.

For this experiment, and all successive ones, we always use 25 texture classes in the

classification process. However, in order to show which textures are more difficult

to classify, we present the classification errors separately for each group of surface

textures (isotropic, directional, and rough surfaces).

For each surface texture, 4 images were rendered using an elevation angle of 55◦

and 4 illuminant tilt angles: 10◦, 100◦, 190◦ and 280◦ (see Figure 6.11.b). This is

the virtual database of images used as references for classification. It is composed

of 100 texture images (25 surfaces × 4 illuminant tilt angles). The four illumination

tilt angles used are different from those used for the test images. Therefore, when

classification is performed we do not have exact correspondence between the tilt

angles of the images in the virtual database and the test images.
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When the virtual database is created, the recognition procedure starts. This pro-

cedure is divided into two steps: the learning process and the classification process.

The goal of the learning process is to model each texture class of the virtual database

by means of a representative feature vector. The goal of the classification process is

to classify an unknown test image into the texture class to which it belongs.

The learning process starts by feature extraction, i.e. computing a representative

feature vector for each texture image in the virtual database. Co-ocurrence matri-

ces [61] are used to extract as features the contrast, homogeneity and energy for 20

different values of a distance d (distances between [1 . . . 55] incremented in steps of

3). The pixels labeled as un-reconstructed points (points the shape and colour of

which are unreliably calculated by photometric stereo) are not used in the computa-

tion of the co-ocurrence matrices. The co-ocurrence matrices are implemented in an

anisotropic way. We analyse 4 different directions: 0◦, 45◦, 90◦ and 135◦ so that we

have in all 240 texture features (3 features × 4 directions × 20 distances d). From

all the computed features, those which can distinguish best between the different

classes are chosen. We use the Sequential Forward Selection (SFS) algorithm [81]

and a set of training images in order to select the best feature set for discrimination.

The feature evaluation is performed by applying the Nearest Neighbour classifier

over the set of virtual training images. This training set is composed of 3 virtual

images for each surface texture and each illuminant tilt angle. We have in all 600

rendered images = 25 textures × 8 illuminations × 3 images.

When the learning is finished, the classification process starts by first extracting

the feature vectors for the unknown test (real) images and classifying them by means

of the Nearest Neighbour classifier into one of the classes in the virtual database.

At the same time, this classification process allows us to approximate the illuminant

tilt angle of the test image by identifying it with one of its nearest neighbours in

the virtual database.

Due to the large size of the captured images, we produced from each one dif-

ferent subimages of size 133 × 133 to be used for testing. The test set consists

of 9 real images for each surface texture and each illuminant tilt angle. We have
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Figure 6.12: Model-based, best case, and naive case approaches to texture classifi-
cation.

in all 2664 images (13 textures × 8 illuminations × 9 images + 12 textures × 16

illuminations × 9 images). Note that different tilt angles are used for training and

testing; as in a real situation we do not know the true tilt angle of the test image.

In this experiment, we compare the results of our model-based approach with the

results obtained by the “best” case in which the 4 reference images of each texture

are real images captured with a camera and not images rendered by photometric

stereo. We also compare the results with those obtained by the “naive” case in

which just a single captured image of one light direction (tilt angle 0◦) is used

to characterise each texture class. Figure 6.12 illustrates the classification system

configuration for these three different cases.

Using our model-based approach, the system obtained a 97.04% accuracy of

texture classification. However, in the “best” case in which original images were used

as references for the purpose of classification, the texture classification accuracy was

100%. For the “naive” case in which only one light direction was used for training,

the texture classification accuracy was 87.73% (see Table 6.7). Analysing the mis-
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Table 6.7: Texture and illuminant classification rates obtained for the best, model-
based and naive cases when photometric sets from distance B are used to create
images for distance B.

Experiments 1 and 2
Best case Model-based Naive case

Texture Texture Illuminant Texture Illuminant Texture

T1 100% 100% 100% 75.01% 46.67%
T2 100% 100% 100% 31.29% 100%
T3 100% 100% 100% 88.20% 100%
T4 100% 100% 100% 75.01% 73.33%
T5 100% 100% 100% 81.26% 64.44%
T6 100% 100% 100% 100% 76.29%
T7 100% 100% 100% 81.26% 100%
T8 100% 97.04% 100% 75.71% 46.67%
T9 100% 100% 88.89% 14.63% 73.33%
T10 100% 100% 100% 66.68% 97.04%
T11 100% 100% 100% 91.67% 46.67%
T12 100% 100% 100% 57.66% 100%
T13 100% 100% 100% 100% 100%
T14 100% 100% 100% 100% 100%
T15 100% 100% 100% 63.91% 100%
T16 100% 87.41% 91.85% 41.00% 100%
T17 100% 95.56% 99.56% 68.07% 100%
T18 100% 94.07% 59.70% 59.74% 100%
T19 100% 94.07% 100% 61.83% 100%
T20 100% 82.96% 85.93% 76.40% 100%
T21 100% 98.52% 100% 80.57% 93.33%
T22 100% 95.56% 100% 72.24% 100%
T23 100% 97.04% 100% 84.73% 100%
T24 100% 93.33% 100% 63.91% 75.56%
T25 100% 91.11% 100% 43.09% 100%

Overall 100% 97.06% 97.04% 70.15% 87.73%

classification error of the model-based approach (2.96%), we concluded that 84.98%

of this error was produced by the group of very rough surfaces, while the remaining

15.02% was produced by the isotropic surfaces. This indicates that the missclassifi-

cation errors of the model-based approach are mainly due to the image generation by

colour photometric stereo information. Moreover, the results demonstrate that the

model-based approach significantly reduces the texture classification errors caused

by changes in light direction compared with the “naive” case.
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6.4.2 Experiment 2: Accuracy of Illuminant Estimation when
Photometric and Testing Images are Captured from
the Same Distance

The purpose of this experiment is to evaluate the accuracy of the light direction

estimation provided by our model-based classification when reference and test images

have been captured from the same distance B.

As well as classifying the test images captured from distance B into the corre-

sponding texture class, we can also classify the illuminant tilt angle under which

they were captured, into one of the 4 illuminant tilt angles in the images in the

virtual database. Note that by using only 4 virtual images for each surface, we can

estimate the illuminant tilt angle with an accuracy of ±45◦ only.

With this in mind, in this experiment, the illuminant tilt angle could be estimated

corectly in 70.15% of the cases by the model-based approach. However, in the “best”

case, in which captured images are used as references, an accuracy of 97.06% was

obtained (see Table 6.7). So, the accuracy of the illuminant tilt angle classification

is considerably lower compared with the “best” case. This is presumably due to the

errors introduced by the process of virtual image generation. These errors have a

major influence on the illumination classification but less on texture classification

because the differences between features extracted from images of the same texture

under different tilt angles are smaller than the differences between features extracted

from different texture classes.

6.4.3 Experiment 3: Accuracy of Classification when Pho-
tometric and Testing Images are Captured from Dif-
ferent Distances

This experiment analyses the accuracy of the texture classifier when photometric

sets from distance A are used to produce model images for distance B.

Now, the virtual database of images corresponding to the longer distance B is

generated using the direct image prediction method described of Section 4.3.1. As

discussed in the experiment in Section 6.3.2, this image prediction method produces
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Figure 6.13: One image predicted for each of the twenty five textures. The points
flagged with white are those which cannot be correctly recovered by the photometric
stereo technique.

better results than those obtained by the image prediction via the surface prediction

method proposed in Section 4.3.2.

As for experiment 6.4.1, the virtual database is composed of 100 image textures

(25 surfaces × 4 illuminant tilt angles). Figure 6.13 shows a predicted image for

each of the 25 surface textures. In the experiment, 600 images are used for training,

while 2664 images are used for testing.

After applying the feature selection algorithm and choosing the appropriate fea-

ture set, we apply the classifier to the unknown test images. Using the model-based

approach, the system classified 89.57% of them into the correct texture class (see

Table 6.8). We had 100% correct texture classification in the “best” case when

reference and test images were captured from distance B (note that this case cor-
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responds exactly to the “best” case used in experiment 6.4.1). The “naive” case

here is the case when we use as the reference image one captured from a different

distance from that of the test image. In this case, the classifier achieved only an

accuracy of 34.35%.

Analysing the missclassification error of the model-based approach (10.43%), we

concluded that 92.61% of this error was produced by the group of very rough surfaces

while the isotropic surfaces contributed only 7.39% of this error.

Table 6.8 summarises the obtained texture classification rates using the model-

based approach, the “best” case and the “naive” case. Comparing these results with

those obtained in experiment 1 in Section 6.4.1, we conclude that the performance of

the classifier is decreased due to the error introduced by the image prediction method

in Section 4.3.1. However, we also demonstrate that the model-based approach

increases the accuracy of the texture classification significantly compared with the

“naive” case.

Note that results obtained with the “naive” case justify the creation of the virtual

database of images seen at the longer distance as well as the specific learning process

for these images. In [103] we presented similar experimental results related to the

naive texture classification. We tried to classify test images captured from distance

B using the features extracted from the virtual database of images from distance A.

In this “naive” case, we confirmed the conclusion stated above since we classified

correctly only 21.83% of the test images.

6.4.4 Experiment 4: Accuracy of Illuminant Estimation when
Photometric and Testing Images are Captured from
Different Distances

The goal of this experiment is to evaluate the accuracy of the light direction esti-

mation provided by the model-based classification when reference and test images

are from different distances.
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Table 6.8: Texture and illuminant classification rates obtained for the best, model-
based and naive cases when the direct image prediction method is used to generate
images for distance B from the photometric sets from distance A.

Experiments 3 and 4
Best case Model-based Naive case

Texture Texture Illuminant Texture Illuminant Texture

T1 100% 100% 100% 77.87% 0%
T2 100% 100% 100% 77.87% 35.55%
T3 100% 100% 100% 73.56% 0%
T4 100% 100% 93.33% 28.07% 0%
T5 100% 100% 100% 83.40% 53.33%
T6 100% 100% 100% 100% 0%
T7 100% 100% 87.41% 100% 85.76%
T8 100% 97.04% 100% 61.27% 100%
T9 100% 100% 100% 17.00% 46.67%
T10 100% 100% 100% 55.73% 100%
T11 100% 100% 100% 39.13% 0%
T12 100% 100% 100% 77.87% 23.61%
T13 100% 100% 100% 92.62% 40.40%
T14 100% 100% 100% 77.87% 5.92%
T15 100% 100% 100% 100% 26.67%
T16 100% 87.41% 95.56% 60.65% 65.93%
T17 100% 95.56% 87.41% 81.56% 44.44%
T18 100% 94.07% 48.15% 82.17% 73.11%
T19 100% 94.07% 100% 58.81% 85.67%
T20 100% 82.96% 9.63% 23.76% 0%
T21 100% 98.52% 23.70% 35.44% 0%
T22 100% 95.56% 100% 77.87% 71.84%
T23 100% 97.04% 94.07% 78.48% 0%
T24 100% 93.33% 100% 75.41% 0%
T25 100% 91.11% 100% 33.60% 0%

Overall 100% 97.06% 89.57% 66.80% 34.35%

We used the same experimental setup as that used in experiment 3 in Sec-

tion 6.4.3. Using the model-based approach, the system estimated the illuminant

tilt angle with an accuracy of 66.80% while the light classification accuracy of the

“best” case1 was 97.06% (see Table 6.8). Comparing the results of this experiment

with those obtained when the reference and testing images were captured from the

same distance, we conclude that the accuracy of the tilt angle classification is de-

1Note that for the “best” case, the texture and light classification rates are the same as those
obtained in experiment 1 of Section 6.4.1. In both experiments, we used the same reference and
test images from distance B.
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creased due to the error introduced by the step of the algorithm when dealing with

the change in distance.

6.5 Summary and Conclusions

The prediction methods presented in Section 4.3 and the model-based texture clas-

sification system proposed in Section 5.3 were tested and evaluated in this chapter.

After analysing different texture databases we observed the lack of a database

to accomplish our principal requirements: textures seen under various directions of

light and various distances from the camera. Due to this fact, we opted to build

our own image database to perform the experimental trials presented in this

thesis. The image database contains real surface textures which can be classified

into relatively smooth surfaces (which may be further divided into isotropic surfaces

and directional surfaces) and very rough surfaces. For each surface texture, as well

as the 4 required images to apply the photometric stereo technique, the images which

should be used as training and test images are available in our image database.

The experimental trials presented in this chapter are divided into two blocks:

one related to texture prediction, and the other to texture classification. In the

first block we performed different experimental trials in order to evaluate the two

prediction methods in Section 4.3:

• One which allows us to predict image intensities directly (direct image predic-

tion).

• Another which allows us to predict the surface shape information first and

then the image intensities (image prediction via surface prediction).

Both methods were tested and evaluated over a set of twenty-five surface textures,

demonstrating the ability to predict the image texture a particular surface texture

will create when seen from a distance longer than the original. The direct image

prediction method produces, in general, smaller errors. We also concluded that most

errors can be accounted for as being produced by the photometric stereo technique
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and not by the step dealing with distance change. On the other hand, the surface

prediction method produces the best shape predictions. Several error measures were

used in order to evaluate the surface shape predictions: the absolute average slope

ratio (AASR) which measures the degree of roughness of a surface, the MSE of the

estimated probability density functions for the surface partial derivatives p and q,

and the MSE per pixel of the gradient components p and q.

As a result of these experiments we concluded that surface roughness plays an

important role in the accuracy of image and shape prediction. The rougher the

surface, the larger the error of the prediction. Other surface properties, such as

directionality or specularity, may also contribute to errors.

Another set of experimental trials related to the texture classification system

were presented in the second block. We observed that even if the predicted images

are not perfect, they may still make a significant difference in the accuracy of a

texture classifier. We compared the results of our approach with those obtained

by the “best” case where the reference and test images of each texture were real

images captured under exactly the same imaging geometries and by the “naive”

case where only a single real image was used as reference. We saw how the results of

our texture classification approach were significantly better than those obtained by

the “naive” case, while the results were not much inferior to those obtained by the

“best” case. An improvement was also obtained in cases for which the assumptions

made by the photometric stereo technique were violated and the photometric stereo

results were not as accurate as we might have wished. In all cases, an estimate of

the unknown light orientation under which the test image was captured was also

obtained, although not with very high accuracy.

Although we presented results of our texture classification system when seen

from different distances and under different illuminant tilt angles, it is interesting to

mention that our approach could be used in other situations. For instance, changes

in the illuminant slant angle and in the camera direction. If we have information on

the surface relief and the surface albedo and we use the general equations derived in

Section 4.3, then we could render the surface to create model textures as required.
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Chapter 7

Conclusions

Conclusions extracted from this thesis work are presented. Moreover, possible further

work is analysed considering the different directions in which this research line could

go. Finally, publications related to this thesis are listed.

7.1 Contributions

In this thesis we have presented a model-based texture classification system able to

classify textures when seen from different imaging geometries such as the distance

from the camera and the direction of light. The main contributions of this thesis

work are summarised in the following points:

• Texture prediction framework. We presented a general framework for

describing textures when seen from different imaging geometries. The 4-source

colour photometric stereo was used in order to obtain the reflectance and

shape information of the surface from a close distance. From this surface

information, the proposed prediction framework allows us to predict how the

surface texture will look even when seen under different imaging conditions:

different sensor, distance from the sensor (the camera positioned at distances at

least as long as the distance used for capturing the training images), different

spectral characteristics of the light source, and different directions of light.

This is based on the assumption of Lambertian surfaces, but it can easily be
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generalised to other types of surface.

Two different prediction methods have been proposed, one which allows us to

predict image intensities directly (direct image prediction), and another which

allows us to predict the surface shape information first and then the image

intensities (image prediction via surface prediction). We observed that the

direct image prediction method produces, in general, smaller errors in the im-

ages while the surface prediction method produces the best shape predictions.

We extracted unsurprising conclusions: (i) a large amount of the error in the

predictions can be accounted for as being produced by the photometric stereo

technique, and (ii) surface roughness plays an important role in the accuracy

of image and shape prediction. The rougher the surface, the larger the error

of the prediction.

• Model-based texture classification system. A model-based classification

system able to classify textures when seen from different distances and un-

der different directions of lights was presented. The main motivation of this

methodology has been to overcome the problem of classifier failure induced by

varying these imaging properties. Moreover, we have exploited the capabil-

ity of the classification system to guess an approximate direction of the light

for the unkown test images. The whole procedure of the proposed texture

classification system was divided into two main phases. In the first phase,

“virtual” database creation, a virtual database of textured images under novel

imaging geometries was created by using the surface texture information and

the proposed texture prediction framework. The second phase, the recogni-

tion procedure, was divided into two steps: the learning process in which each

texture class of the virtual database is modelled by means of a representative

texture feature vector and the classification process in which an unknown test

image is classified into the texture class to which it belongs. In the learning

process, the images of the virtual database were used to extract texture fea-

tures derived from the co-occurrence matrices. Moreover, a feature selection

process was used to chose the best feature models for each texture class. On the

other hand, classification was achieved by determining the nearest neighbour
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in the feature space populated with feature vectors from the virtual database

computed during training.

We saw, in the experimental trials, how the texture classification results of our

approach are significantly better than those obtained with a typical texture

classification system in which the variability produced by changes in light

direction and camera distance are not considered.

• A novel texture database. Different databases were considered, for exam-

ple, the Brodatz album [18], the “Photometric Image Databases” from the Tex-

ture lab at Heriot-Watt University [2], and the “Columbia-Utrecht database”

established by Dana et al. [35]. None of them could fulfill all the require-

ments needed for our purposes. Therefore, we opted to build our own image

database, providing for each surface texture different sets of images captured

from different distances of the camera and under different directions of light.

This image database is of public domain and we think it can be useful for the

research community to check and test techniques related to scale invariant and

light invariant texture analysis and classification. It can be downloaded from

http://eia.udg.es/∼llado/database.html.

7.2 Future Work

The design of a texture classification system invariant to the imaging geometries

involves the consideration of a wide number of questions. In addition to the various

solutions which have been adopted and described in this thesis, different ideas and

different approaches have been dicussed throughout this thesis work. Moreover, a

large number of ideas have remained as undeveloped tasks which need to be further

analysed and worked on in depth and we therefore suggest them as future work.

Basically, we have divided this future work into two blocks. The first is composed

of ideas which can directly improve our texture classification approach. The second

suggests some ideas for further work to be considered as future research lines.



178 Chapter 7. Conclusions

Further Work on the Proposed Classification System

• Different sensors and light sources. We propose as further work to analyse

the effect of parameters such as the sensitivity of the sensor and the spectral

properties of the light source which have been assumed to be the same for all

the experimental trials presented in this thesis. Figure 7.1 illustrates the effect

of varying the spectral properties of the light source on two textures. Three

different colour filters (blue, yellow and red) have been used in order to obtain

these images.

• Changes in slant angles. Obviously, large slant angles will intensify the

level of shadowing, providing more information for the photometric stereo

technique but also deterioring the precision of the surface estimation. On the

other hand, low slant angles (close to a perpendicular to the surface plane)

will provide less information since the perceived image textures would be more

similar. It could be very interesting to analyse what happens in all of these

cases.

• Tolerance in the estimate of the guessed distance of the camera.

What if we do not known exactly the longer distance from which the test image

was captured? How accurately do we have to guess it for the performance of

the classifier not to deteriorate significantly? These are important aspects

which could be studied.

• Different texture features. As it has been noted, there are different texture

analysis techniques which allow the extraction of texture information from an

image. We propose a future project to consider different types of features and

compare them with those extracted from co-occurrence matrices.

• Extend our texture database. We also suggest, as further work, to extend

our texture database. We propose to include more surface textures captured

under different imaging geometries i.e. camera distance, light directions (in-

cluding different slant angles), different spectral properties of the light source

and using cameras with different sensitivity.
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(a) (b) (c) (d)

Figure 7.1: Images of two textures captured under varying the spectral properties of
the light source. (a) Images captured with the original light source, (b)-(d) images
captured using three different colour filters: blue, yellow, and red, respectively.

Further Work along this Research Line

• Analyse the texture features behaviour. In Appendix A we presented a

first step in order to deal with the illumination invariant classification analysing

the behaviour of the features extracted from the co-occurrence matrices. This

has been used to perform a simultaneous surface texture classification and

illumination tilt angle prediction. We think that this is an interesting idea to

continue this research line. This can provide important knowledge and open

new possibilities.

• Viewpoint independent texture classification. Recently, Lazebnik et

al. [91, 92] introduced a texture representation suitable for recognising images

of textured surfaces under a wide range of transformations, including view-

point changes and non-rigid deformations. Obviously, camera direction is an

important imaging parameter which has not been considered in this thesis.

We think this subject should be studied in depth and exploited, starting from

the work presented here.
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• Applications. Some of the ideas proposed in this thesis can be used in dif-

ferent Computer Vision applications. We would like to mention some possible

applications closely related to the research developed within the Computer Vi-

sion and Robotics group at the University of Girona. Considering two of the

basic research lines of this group, 3D perception and Underwater robotics, it

could be interesting to study the use of photometric stereo in order to achieve

3D reconstruction. Moreover, and more ambitiously, we could attempt to

work it into an underwater reconstruction basically focusing on the idea of

recovering distances and depth maps of the underwater floor.

7.3 Related Publications
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version presented in this thesis. The following publications are a direct consequence
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• X. Lladó, J. Mart́ı, J. Freixenet, and X. Muñoz. Feature selection using genetic

algorithms. In Catalonian Conference on Artificial Intelligence CCIA 2000,

pages 152-156, Vilanova i la Geltrú, Spain, October 2000.

• X. Lladó, J. Freixenet, J. Mart́ı, J. Forest, and J. Salvi. Object recognition

in outdoor scene using a bottom-up strategy. In Catalonian Conference on

Artificial Intelligence CCIA 1999, pages 299-307, Girona, Spain, October

1999.

Technical Reports
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Appendix A

Simultaneous Surface Texture
Classification and Illumination
Tilt Angle Prediction

In this Appendix we investigate the effect of the illuminant tilt rotation over surface

textures by analysing a set of image texture features extracted from the co-occurrence

matrix. From the behaviour of each texture feature, a simple method, able to predict

the illuminant tilt angle of test images, is developed. Moreover, the method is also

used to perform a texture classification invariant to the illuminant tilt angle rota-

tion. This study, and experimental results over different real textures, show that the

illumination tilt angle can be accurately predicted as part of the texture classification

process.

A.1 Introduction

Very little work has been published on the topic of illumination invariant texture

classification. One strategy to solve this problem is to study the immediate effects

introduced by light direction on the observed 2D texture. This was done recently

by Chantler et al. [23] who presented a formal theory which demonstrates that

changes in the tilt of the light direction make texture features follow super-elliptical

trajectories in multi-dimensional feature spaces. Based on this work, Penirschke

et al. [125] developed an illuminant rotation invariant classification scheme which
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uses photometric stereo for the detection of surface relief and Gabor features for

feature extraction. In other applications of Computer Vision, a correct estimation

of light can play an important role. For instance, light estimation is apparent in all

applications which use photometric measurements which obviously depend on light.

Weber and Cipolla [167] focus their attention on reconstruction problems and the

estimation of light-source.

In this Appendix, we investigate the effect of the illuminant tilt rotation over sur-

face textures by analysing a set of texture features extracted from the co-occurrence

matrix. From the behaviour of each texture feature, we develop a simple method

able to predict the illuminant tilt angle of unknown test images. Moreover, we

use this prediction method to perform the classification of textures under varying

illuminant tilt angles.

The remainder of this Appendix is organised as follows. In section A.2 we analyse

the behaviour of texture features in the feature space. The method to predict the

illuminant tilt angle is explained in section A.3. In section A.4 the performace of

the method is evaluated in two experimental trials: illuminant tilt angle prediction

and texture classification. Finally, the Appendix ends with conclusions and further

work.

A.2 Co-occurrence Matrix Behaviour

The co-occurrence matrix [61] is a well known method used to extract texture fea-

tures. In this work, the co-ocurrence matrices are implemented in an anisotropic

way. That is, we analyse 4 different directions: 0◦, 45◦, 90◦, and 135◦ computing for

each the contrast feature for a fixed distance 1.

A set of 15 different textures have been used throughout the experimental trials

presented in this work. Figure A.1 shows one image of each texture captured under a

specific direction of light. Note that almost all are isotropic textures (see the first 10

textures). Therefore, the only anisotropy in the image is induced by the anisotropic

light. It is this anisotropy we wish to detect in order to identify the light direction.
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T1 T2 T3

T4 T5 T6

T7 T8 T9

T10 T11 T12

T13 T14 T15

Figure A.1: One image of each of the fifteen sample textures.
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We have included in the database some anisotropic textures for comparison. In

order to detect anisotropy in an image we use the rotationally sensitive co-occurrence

matrix from which we construct features.

Figures A.2.(a), A.2.(c) and A.2.(e) illustrate the behaviour of these 4 features for

textures 1, 9, and 15 respectively. Each plot shows how one output of one contrast

feature varies when it is applied to the same texture sample, but under varying

illuminant tilt angles (we use steps of 30◦ degrees from 0◦ to 360◦).

Note that the graph of the anisotropic texture 15, which consists of long rough

structures (see figure A.1), shows some strange behaviour at first glance: three of

the features behave in a very similar way (i.e. note the three similar curves in

figure A.2.(e)) while one feature is totally constant. The catastrophic behaviour of

this feature is due to the fact that the direction used to compute the corresponding

co-occurence matrix coincides with the direction of the long structures which make

up the imaged surface. In this particular case, the images captured under all the

tilt angles have no significant intensity changes with respect to the axis of the local

structures. Therefore, we obtain constant feature values for all tilt angles. On the

other hand, when the long rough structures are lit from lateral directions, we expect

some invariant behaviour as one side of these structures remains lit through a broad

range of incident angles. This is the reason three of the features behave in a very

similar way.

Moreover, observing the feature behaviour for isotropic textures, we can see that

the contrast feature at distance 1 has a symmetric behaviour approximately between

ranges [0◦, 180◦], and [180◦, 360◦]. Therefore, it is difficult to distinguish whether

the illuminant tilt angle is in one or the other range. That is, by measuring one of

these features, which is tilt angle sensitive, we may be able to identify the illuminant

tilt angle only up to an ambiguity of ±180◦.
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(a) (b)

(c) (d)

(e) (f)

Figure A.2: Feature behaviour for isotropic textures 1 (first row), and 9 (second
row), and anisotropic texture 15 (third row). Each plot shows how one output of
one feature varies when it is applied to the same physical texture sample, but under
varying illuminant tilt angles. (a), (c), and (e) Co-ocurrence matrices computed
for 4 different directions. (b), (d), and (f) Co-ocurrence matrices computed for 8
different directions.
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A.2.1 Removing the Ambiguity from the Estimation of the
Tilt Angle

With the aim of improving the illuminant tilt angle prediction, allowing the estima-

tion over the whole tilt rotation of 360◦, we propose to introduce the use of 4 new

directions in the computation of the co-occurrence matrix. Therefore, we compute

the co-occurrence matrix using 8 different directions: 0◦, 45◦, 90◦, 135◦, 180◦, 225◦,

270◦ and 315◦ . Note that in this approach the co-occurrence matrix obtained for

180◦, 225◦, 270◦, and 315◦ are the transposed matrices of 0◦, 45◦, 90◦, and 135◦

respectively. Hence, computing the classical contrast feature for these 8 matrices we

only obtain 4 different values since the contrast feature gives us the same value for

a matrix and its transposed.

As our objective is to distinguish the sense of the directions used in the co-

occurence matrix, we propose to compute the contrast feature from the upper trian-

gular matrix only. We do that with the idea of counting the pairs of pixels in which

the intensity value increases (transitions of darker pixels to brighter pixels).

This can be seen in figures A.2.(b) and A.2.(d) where we plot the variation of

these 8 new features for the isotropic textures 1 and 9. Note that for each tilt angle,

the maximum value of the contrast feature is attained by the feature which has been

computed from the co-occurrence matrix with the same orientation angle as the tilt

angle. This is because we always find more transitions of darker pixels to brighter

pixels when the orientation of the light source “coincides” with the orientation of

the co-occurence matrix. It is important to clarify that we use the term “coincide”

when we refer to the same angle, but under two reference systems: one which defines

the direction used in the co-occurence matrix, and one which defines the direction

of the incident light.

In contrast, the anisotropic textures do not follow this behavior (see figure A.2.(f)),

although they still exhibit an approximately symmetric behaviour over the two

ranges of values: namely [0◦, 180◦], and [180◦, 360◦].

The feature behaviour described in this section will be used as a model to predict

the tilt angle of an unknown texture image. Each texture model is created using a
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Figure A.3: Prediction scheme. In a first step, we find the two feature vectors
(neighbour 1 and 2) closest to the analysed feature vector. Then, the tilt angle is
obtained in the current interval applying a linear interpolation individually for each
single feature.

small number of different tilt angles. Specifically, we have used 12 tilt angles 30◦

apart. Hence, a texture model is composed of 12 vectors of 8 features each (12 tilt

angles, 8 directional co-occurrence matrices for each).

A.3 Illuminant Tilt Angle Prediction

The process of predicting the illuminant tilt angle, given an unkown test image,

starts by extracting a representative feature vector for this image which implies the

computation of 8 texture features. Note that the model of each texture is composed

of 12 different feature vectors, one for each reference tilt angle.

When the feature vector for the unknown image is obtained, the prediction con-

sists of looking for the most similar feature vector among the model textures. Then,

a simple method of three steps is proposed:

• First, we obtain a first approximation of the predicted angle with one of the

known angles used to describe the model texture. The nearest neighbour
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classifier is used to find the closest feature vector.

• After that, we localise the angle interval which contains the test feature vector.

We use again the nearest neighbour classifier to find the second most similar

feature vector of the same model texture (see figure A.3). In this second step

we ensure that the angle interval is of 30◦. This means that the second known

angle is ±30◦ with respect to the first approximation.

• Next, the exact tilt angle is found in the current interval applying linear in-

terpolation for each single feature. The results are averaged to produce the

final predicted tilt angle. The tilt angles computed from individual features for

which the linear interpolation provides slopes close to zero are not considered

in the averaging process.

A.4 Experimental Trials

The proposed prediction method was tested with 15 different textures. The first

10 were isotropic textures, the remaining five were anisotropic. For each one, 4

complete sets of 24 images corresponding to the illuminant tilt angles between 0◦

and 360◦ incremented in steps of 15◦ are available. All these images are lit at an

elevation angle of 55◦. From these images we create 2 different sets: one used for

modeling the light behaviour, and another for testing the classification process.

The first set is composed of 15 textures×12 light directions = 180 images. The

12 illuminant tilt angles used for modeling are 0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦,

210◦, 240◦, 270◦, 300◦, and 330◦. On the other hand, the testing set is composed of

15 textures×12 light directions×3 images = 540 test images. The 12 illuminant tilt

angles used for testing are different from the reference tilt angles mentioned above.

Figure A.4 illustrates the configuration used in our experimental trials.
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Figure A.4: Experimental setup. Four different surface patches are available for
each texture. One is used for modelling the feature behaviour, the remaining ones
for testing.

A.4.1 Accuracy of Tilt Angle Prediction

The purpose of this experiment is to evaluate the accuracy of the illuminant tilt

angle prediction. After computing the model behaviour, we individually apply for

each texture, the prediction method for all the corresponding test images.

Figure A.5 shows the error distributions for textures 1, 9, and 15 of the absolute

tilt angle difference between our predictions and the correct values. Each plot has

been computed for the 36 test images available for each texture and shows the

percentage of times a particular error value was observed. Note that for isotropic

textures 1 and 9, we predict the tilt angle for almost all the test images with an

error of a few degrees. However, for texture 15, the errors are significantly larger.

From the error distributions of all 15 textures we conclude that for isotropic

textures the illuminant tilt angle may be predicted quite accurately. However, poor

results are obtained for anisotropric textures. We confirm this conclusion providing
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(a) (b)

(c)

Figure A.5: Error in the tilt angle prediction for textures 1, 9, and 15, (a), (b), and
(c) respectively.

an overall quantitative assessment over all these predictions (see table A.1). We

have computed over all the textures the average MSE of the tilt angle prediction

and its standard deviation. In the same table we present a quantitative assessment

for the isotropic and anisotropic textures separately. It is important to note that we

predict the tilt angle for isotropic textures with an average error of 6◦. Nevertheless,

the prediction error increases when anisotropic textures are considered. This is

because the anisotropy of the image cannot be solely attributed to the light direction

and, therefore, the detected anisotropy does not give us the clear and unambiguous

information which is needed by our prediction method.
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Table A.1: Overall quantitative assessment over all 15 textures of illuminant tilt an-
gle predictions. Average MSE and its standard deviation for the tilt angle difference
between the predicted and true values.

Isotropic Anisotropic Overall

Avg Std Avg Std Avg Std

5.96 1.85 59.61 22.57 23.84 28.86

A.4.2 Accuracy of Texture Classification

This experiment analyses the accuracy of the texture classification when our feature

behaviour models are used as references for classification.

The method described in section A.3 may be used not only to predict the illumi-

nant tilt angle of a test image, but also to classify the unkown test image into one of

the texture classes present in the database. Specifically, the first step in which the

nearest neighbour classifier is used to find the closest feature vector to the model,

allows us to perform texture classification as well.

Table A.2 summarises the obtained texture classification results when all fifteen

models are used in the classification process. The texture classification accuracy is

82.63%, while the illuminant tilt angle is predicted with an average MSE of 24.04◦

and standard deviation of 43.07◦. We have repeated the same experiment, but using

only the isotropic textures, achieving a texture classification accuracy of 79.09%. In

this case, the illuminant tilt angle is predicted with an average MSE of 5.88◦ and

standard deviation of 4.80◦. Note that when using all fifteen textures we obtain

better classification results than those using only isotropic textures. That is be-

cause isotropic textures have similar feature behaviour. For instance, test images of

textures 2 and 4 have been misclassified. In contrast, as is shown in figure A.2.(f),

anisotropic textures have different feature behaviour. This fact causes an improve-

ment in the classification rate, when anisotropic textures are included in the reported

results. However, it is important to notice that accurate tilt angle predictions are

only obtained for isotropic textures.
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Table A.2: Texture classification rates and MSE of the tilt angle prediction obtained
over the isotropic textures and over all fifteen textures.

Texture Tilt angle MSE
classification Avg Std

Isotropic textures 79.09% 5.85 4.80

All textures 82.63% 24.06 43.07

A.5 Conclusions

We presented a simple method able to predict the illuminant tilt angle of unknown

test images. This method is based on behaviour models of texture features ex-

tracted from the co-occurrence matrix. It works under the assumption that the

only anisotropy in the image is induced by the anisotropic light. The experimental

results over different real textures, including some anisotropic textures for compar-

ison, show that the illumination tilt angle can be accurately predicted. As well as

predicting the illuminant tilt angle, this method is used to perform texture classifi-

cation. The results show that anisotropic textures may be classified more accurately

but their illuminat tilt angle may not be predicted so well, while isotropic textures

cause more confusion to the classifier but allow us to predict the direction from

which the imaged surfaces were lit very accurately, as long as reference images for

12 different tilt angles of each surface are available. Such reference images may be

created either by direct image capture when creating the reference database, or from

surface and colour information recovered by 4 source colour photometric stereo [8]

and subsequent image rendering [104].
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[103] X. Lladó and M. Petrou. Classifying textures when seen from different dis-

tances. In IAPR International Conference on Pattern Recognition, pages 83–

86, August 2002.
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