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Abstract

Robust Control of Systems Subjected to
Uncertain Disturbances and Actuator Dynamics

by Rodolfo Villamizar Mej́ıa

Advisors: Dr. Josep Veh́ı and Dr. Ningsu Luo

January, 2005
Girona, Spain

This dissertation focuses on the design and validation of robust controllers that can effectively
reduce vibrations in structures due to external disturbances such as earthquakes, strong winds or
heavy dynamic loads. The design of the controllers is based on control theories traditionally used
in structural control: Lyapunov stability theory, Sliding Mode Control and Clipped-Optimal
Control, another recently introduced: Backstepping Control and one that had not been used
before in this control area: Quantitative Feedback Theory. The main advantage by using these
techniques is that some open structural problems such as actuator dynamics, uncertain distur-
bances, uncertain parameters, measurement limitation and dynamic coupling can be treated.
Numerical validation of the controllers proposed is performed on typical structural models. A
10-story base isolated structure, a truck-bridge structural platform and a two-span bridge are
used. Their control scheme contains inherit one o more open structural control problems. Three
experimental prototypes are used to implement the robust controllers proposed, in order to ex-
perimentally verify their viability and effectiveness. The main contribution of the present thesis
is obtaining robust structural controllers, numerically and experimentally verified, that account
structural control problems such as actuator dynamics, uncertain parameters, dynamic coupling,
measurement limitations and unknown disturbances and based on novel control techniques.
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Chapter 1

Introduction

1.1 Motivation

Several reasons to apply control on civil engineering structures can be found, however the most
important are: i). The protection of human beings and civil engineering structures when strong
external forces, such as earthquakes or heavy loads, are acting on the structures and ii). The
provision of human comfort when a moderate but uncomfortable external force, such as strong
winds, is acting on the structure. A meaningful reference of the practical effectiveness of a
structural control system was the significant improvement of the structural performance in a
real situation as like the Kobe earthquake of January 17, 1995. It caused the collapse of a
vast number of buildings together with a heavy toll of human lives. There were two buildings
equipped with seismic isolation systems and a certain response control effect against the major
earthquake was observed on these two buildings. However, several buildings in the adjacent
Osaka area equipped with active control systems, which were designed for control of wind-
induced vibrations, ceased to function when the earthquake struck. This situation warns that
oncoming seismic motions cannot be predicted and has demonstrated that the best way to ensure
the safety of the controlled civil engineering structures is to look for the best design strategies of
control systems which contemplate in all possible actions that could occur in them. However, the
improving of such control systems is a joint work, where control engineers play an important role
in the design of adequate control strategies and other aspects directly related with the control
area. This will be an important contribution to keep the structural integrity and consequently
to provide a structure protected from external excitations.

1.2 Problem Definition

Control of civil engineering structures is still an open field, and new theoretical and practical
developments must be obtained. Thanks to huge technological advances in areas such as sensing,
computation and control devices manufacturing, among others, important structural control
problems have been solved. Thus, structural control systems are becoming implementable,
mainly from the economy and reliability point of view. However, some problems still continue
open and some others appear with the introduction of innovative control systems. For example
the introduction of semiactive control technologies, have become in an important alternative to
solve problems such as limitation of external energy, slow actuator responses and maintenance
problems. Moreover, such devices include complex hysteretic dynamics, which implies that a
major effort is required to design a control law.

Thus, one of the challenges in structural control is that of finding adequate control laws that

1



2 1. Introduction

accomplish minimal design specifications such as robustness, reliability, stability, implementabil-
ity, minimum control effort, but additionally taking into account some particular conditions of
the structural systems, such as actuator dynamics, parametric uncertainties, resonance condi-
tions, nonlinearities, coupling and limited measurements.

1.3 Objective of the thesis

In this thesis the problem of designing control laws for civil engineering structures are investi-
gated. Some control methodologies that have been used in other control areas are introduced in
the structural control area in conjunction with those traditionally used. Control design prob-
lems are independently studied. Then, control laws are designed for different structural control
systems that contain one or more open control problems.
The main objective of the thesis is that of designing robust control laws for civil engineering
structures, which are effective and contribute to solve some of the open problems existed in this
kind of systems.
Control approaches are numerically and experimentally validated. Numerical models of typical
structures are studied, which contain one or more open problems. Similarly, the effectiveness
of the control approaches is experimentally verified by using laboratory structural prototypes,
which contain some of the open control problems.
The robust structural controllers designed contribute to obtain control systems that are effective
and closer to the real operation conditions. Such objective is achieved by considering control
techniques that have resulted effective in other areas and that are appropriated in this kind of
problems.

1.4 Structure of the thesis

The doctoral thesis is organized in six chapters. The present chapter that includes a introduc-
tion, a motivation and the main objective of the thesis. Chapter 2 presents a brief literature
review on structural control systems in order to see what has been developed until now and
which are the main open problems that exist in this control area. Chapter 3 presents the open
structural control problems considered in this thesis for designing robust control approaches.
The control problems studied are actuator dynamics, uncertain parameters, uncertain distur-
bances and uncertain temporary coupling. Each control problem is presented in someone of
the structural models studied in chapter 4. In this chapter, robust controllers are designed
and numerically verified. Chapter 5 is dedicated to the experimental validation of the robust
control approaches. Control system configuration is such that one ore more control problems
are presented. Finally, chapter 6 presents some conclusions derived from this thesis and future
work.



Chapter 2

Literature Review

2.1 Introduction

Structural control had its roots primarily in such aerospace related problems and in flexible space
structures. Then, quickly it was moved into civil engineering and infrastructure-related issues,
such as building and bridge protection against extreme loads such as earthquakes and providing
human comfort in the structure during noncritical times [40]. The first real implementations of
structural control, in the 70’s, were based on base isolation, viscoelastic dampers and tuned liquid
dampers. Many years later the active control concept appeared and its first real implementation
was made in the 11-story Kyobashi Seiwa building in Tokyo, Japan, to reduce the vibration of
the building under strong winds and moderated seismic excitations [86]. Recently, the techniques
of semiactive and hybrid control were proposed for structural control and their implementations
have been made successfully in Japan and USA. This chapter is devoted to present the main
topics contained in a structural control system. The most relevant developments and applications
on each topic and referenced in the literature are here summarized. The chapter is divided into
three parts: the first part highlights the typical structural control devices, while the second
part presents the most common structural control methodologies referenced in the literature
and finally the main control design open problems are presented.

2.2 Structural Control Devices

Different types of structural control devices have been developed and a possible classification is
done by its dissipative nature.
Passive devices: Their function is to dissipate vibratory energy by augmenting some structural
parametric values (stiffness and damping) of the structure without requiring external energy.
Active devices: They deliberate energy to the structure in a opposite sense to that deliberated
by the seismic force. Their nature is that of delivering energy to the system.
Semiactive devices: They dissipate energy such as a passive device, but the magnitude of the
energy dissipated can be controlled on-line. Properties of the device such as stiffness or damping
are controlled by means of a hydraulic, magnetic or electronic signal.

2.2.1 Passive Control Devices

Passive energy dissipation systems encompass a range of materials and devices for enhancing
damping, stiffness and strength. They can be used for both natural hazard mitigation and
rehabilitation of aging or deficient structures. These devices are characterized by their capability

3
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to enhance energy dissipation in the structural systems where they are installed. Two principles
are used to dissipate vibratory energy: conversion of kinetic energy to heat and transference
of energy among vibration modes. The devices that pertain to the first group are those that
can operate with principles such as frictional sliding, yielding of metals, phase transformation
in metals, deformation of viscoelastic solids or fluids. And those of the second group are fluid
orificing and supplemental oscillators, which act as dynamic vibration absorbers [10, 12, 11].

2.2.2 Active Control Devices

Active devices can provide better performance than passive strategies, by using information of
the global response and determining appropriate control forces. An active control strategy can
measure and estimate the response over the entire structure to determine appropriate control
forces. As a result, active control strategies are more complex than passive strategies, requiring
sensors and evaluator/controller equipments.

The merit of the active control systems is that they are effective for a wide-frequency range
and also for the transient vibration. However they are limited by the quantity and availability
of energy to develop the magnitude of forces required to control the civil infrastructure when
a external forces ia acting on the structure. Other disadvantage of active control is that be-
cause external energy is introduced, probability of unstable conditions is present by unexpected
dynamics changes in the structure or erroneous feedback information.

Active control strategies have been proposed and implemented in a number of civil struc-
tures [94]. There are currently nearly 40 buildings and towers implemented with active control
strategies. Additionally, 15 bridge towers have been implemented with active and hybrid control
devices during bridge erection. [101], provided detailed lists of these full-scale applications. Ta-
ble 2.1 provided by [95]) presents a list of the active control implementations on civil engineering
structures. Figure 2.1 shows one of the real structures actively controlled. The typical active
control systems are active base isolation, active bracing, tuned liquid column damping, impact
absorbers, multiple connected buildings and active mass driver [38, 39, 89, 76, 81, 95, 92, 74].

Figure 2.1: Actively controlled Kiobashi Seiwa building.

Active Mass Damper (AMD)

It consists of a mass attached to a structure such that it oscillates at the same frequency of the
structure but with a phase shift. A hydraulic actuator or an electric motor is used to provide
a control force u to counteract or to mitigate the motion of the structure. The Kyobashi Seiwa
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Building was the first full-scale implementation of active control technology, where the active
mass damper or active mass driver system was designed and installed.

Figure 2.2: AMD control device

Active Tuned-Liquid-Column Dampers

It is composed of two vertical columns connected by a horizontal section in the bottom and they
are partially filled with water or other fluid. Two propellers are installed inside and at the center
of Tuned-liquid-column (see figure 2.2). These two propellers are powered by a servomotor to
generate the control force. Analytical and experimental studies have been reported by [37, 87].
In hybrid systems this type of device have been used [35, 100]. In [38] the dynamic response of
of high-rise buildings equipped with this type of devices is studied.

Figure 2.3: Type of Active Tuned Liquid Column Damper (ATLCD)

2.2.3 Semi-active control devices

Semi-active control devices cannot inject mechanical energy into the controlled structural sys-
tem but some of its properties can be dynamically varied [94]. These devices are a promising
development tool in protection of civil engineering structures. They combine the best features
of both passive and active control systems and offer some adaptability, similar to active control
systems, but without requiring large power sources for their control action. This advantage is
fundamental in hazard situations like earthquake or strong winds, where the main power source
of the structure may fail during such situation. Its stability in a bounded-input bounded-output
sense is inherent, thus it is possible to implement high authority control strategies. This may
result in performances that can surpass that of comparable active systems [23]. A representative
full scale implementation of structural control in USA is that shown in figure 2.4. It consists of a
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Table 2.1: Full Scale Implementation of Active Structural Control before year 2000

Year No. of Control
Location Building Completed Building Use Stories Device*
Japan Kyobashi Seiwa Bldg, Tokyo 1989 Office 11 AMD

Kajima Research Lab. # 21, Tokyo 1990 Office 3 SAVS
Shimizu Tech. Lab., Tokyo 1991 Lab. 7 AMD
Sendagaya INTES Bldg., Tokyo 1992 Office 11 HMD
Elevator Tech. Lab. 1992 Lab. (60 m) AGS
Hankyu Chayamachi Bldg.,Osaka 1992 Hotel 34 HMD
Kansai Intl Airport, Osaka 1992 Control Tower (88 m) HMD
Land Mark Tower, Yokohama 1993 Hotel 70 HMD
Osaka Resort City 200, Osaka 1993 Hotel 50 HMD
Long Term Credit Bank, Tokyo 1993 Office 21 HMD
Ando Nishikicho Bldg., Tokyo 1993 Office 14 HMD
NTT Kur. Mot. Bldg., Hiroshima 1993 Office 35 HMD
Penta-Ocean Exp. Bldg., Tokyo 1994 Experimental 6 HMD
Shinjuku Park Tower, Tokyo 1994 Office 52 HMD
Dowa Fire Marine Ins., Osaka 1994 Office 29 HMD
Porte Kanazawa, Kanazawa 1994 Hotel 30 AMD
Mitsubishi Heavy Ind., Yokohama 1994 Office 34 HMD
ACT Tower, Hamamatsu 1994 Office (212 m) HMD
Riverside Sumida, Tokyo 1994 Office 33 AMD
Hotel Ocean 45, Miyazaki 1994 Hotel 43 HMD
RIHGA Royal Hotel, Hiroshima 1994 Hotel 35 HMD
Hikarigaoko J City Bldg., Tokyo 1994 Office 46 HMD
Osaka WTC Bldg., Osaka 1995 Office 52 HMD
Dowa Kasai Phoenix Tower, Osaka 1995 Office 28 HMD
Rinku Gate Tower Bldg., Osaka 1995 Office 56 HMD
Hirobe Miyake Bldg., Tokyo 1995 Office 9 HMD
Plaza Ichihara, Chiba 1995 Office 12 HMD
Herbis Osaka, Osaka 1997 Hotel 38 AMD
Nisseki Yokohama Bldg., Yokohama 1997 Office 30 HMD
Itoyama Tower, Tokyo 1997 Office 18 HMD
Otis Shibyama Test Tower, Chiba 1998 Lab. 39 HMD
Bunka Gakuen, Tokyo 1998 School 20 HMD
Daiichi Hotel Oasis Tower, Ohita 1998 Hotel 21 HMD
Odakyu Southern Tower, Tokyo 1998 Office 36 HMD
Kajima Shizuoka Bldg., Shizuoka 1998 Office 5 SAHD
Sotetsu Kyoto Bldg., Yokohama 1998 Hotel 27 HMD
Century Park Tower, Tokyo 1999 Resid. 54 HMD

USA Highway I-35 Bridge, OK 1997 Highway – SAHD
Taiwan TC Tower, Kaoshiung 1999 Office 85 HMD

Shin-Jei Bldg., Taipei 1999 Office 22 HMD
China Nanjing Communication Tower, 1999 Comm. (310 m) AMD
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bridge controlled by means of a semiactive variable-orifice damper installed at a frame subjected
to the deck. Some important survey on semiactive control systems found in the literature are
[99, 68, 40, 13].

Figure 2.4: Full-Scale Implementation of Structural Control in USA

The most common semiactive control devices are: variable-orifice fluid dampers, controllable
friction devices and controllable-fluid dampers.

Variable-orifice fluid dampers

It behaves as linear viscous dampers with adjustable damping coefficient [98]. Its operation
principle consists of controlling the damping coefficient by adjusting the opening of a valve in
order to alter the resistance to flow of a conventional hydraulic fluid damper. Thus, large forces
can be controlled with a low external power, (semiactive principle).

In [56] this type of devices have been implemented using different control strategies. In
[55] by using a semiactive oil damper it has been proved that this device can dissipate energy
twice more than a passive damper. Real implementations on high-rise buildings have been
accomplished. The most important ones are:
∗ [54] implemented this device on a 11-story building and the damping augmentation capacity
was ensured.
∗Real implementation made on the Shiodome Kejima Tower in Tokyo, recently finished.
∗Full-scale experiment with variable-orifice damper implemented by [48] at the Kobori research
complex.
∗Implementation made by [53] on the Kajima Shizuoka Building in Japan. ∗Experiments con-
ducted by [84] on a single-lane model bridge. ∗Full-scale experiment on a bridge on interstate
highway I-35 conducted by [78, 79, 51]. This experiment corresponds to the first full-scale
implementation in USA (see figure 2.4).

Controllable fluid dampers

In these devices some properties of their internal fluid can be modified by means of an elec-
trical/magnetic field, resulting a modification in the quantity of force absorbed. The principal
advantage of this type of devices is that the piston is the only moving part. Consequently, it
can change rapidly from a state to another (linear viscous fluid to a semi-solid in milliseconds)
when exposed to an electric/magnetic field. Two types of semiactive controllable fluid dampers
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are found: Electrorheological (ER) and Magnetorheological (MR) damper. Their difference is
the type of fluid used: Magnetorheological or Electrorheological fluid.

Several ER dampers have been developed and adapted to civil engineering structures. The
most important developments have been obtained by [31, 32, 30, 26, 69, 58, 59] among others.

The MR damper has become an alternative of ER damper. Its operation principle is similar
to ER damper, except that the external signal applied is a magnetic field, which becomes the
inside fluid from semisolid to viscous state and it exhibits a viscoplastic behavior similar to that
of an ER fluid. MR devices with a high bandwidth can be constructed and controlled with low
voltage (i.e. 12-24V) and low electrical currents about 1-2 amps. Batteries can supply this level
of power.

MR devices can operate at temperatures from -40C to 150C and slight variations occur in the
yield stress. The transition velocity of both MR and ER devices is too fast (a few of miliseconds).

A MR damper model was developed in [21], where a simple mechanical model is used to
describe its behavior. Numerical examples and implementations to demonstrate the effectiveness
of MR devices have been developed in [20, 23]. These developments have demonstrated that MR
dampers may be closed to the linear active control performance, while only a power fraction
of that required by the active controller is enough. Lord Corporation designed and built a
full-scale, 20-t MR damper, which could be the more biggest MR damper in structural control
implementations [96, 22]. A schematic diagram of this device is shown in figure 2.5.

Figure 2.5: Full-scale 20T MR Fluid Damper

Variable-Friction Damper

Its functioning principle consists in utilizing forces generated by surface friction to dissipate
vibratory energy. These forces can be varied by means of an electrical signal or a gas pressure,
which varies the friction coefficient of the device. In [15] the ability of these devices to reduce
the inter-story of a seismically excited structure was investigated. In [27, 28] these devices have
been used in parallel with a seismic isolation system. At the University of British Columbia a
friction device was developed, where the frictional interface is adjusted by allowing slippage in
controlled amounts, similar to the device proposed in [2, 77].

2.3 Structural Control Algorithms

During the last two decades, various types of structural control strategies have been applied
to the control of civil engineering structures. Depending on the available information for each
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controlled structure, mathematical model associated, types of measurements, actuators and
disturbances, each control solution can be suitable only for one specific type of structure and
not for all kinds. In this section, the most used structural control algorithms are grouped in 3
kinds and their more representative applications in civil engineering structures are presented

2.3.1 Optimal Control

The general optimal control problem may be stated as follows: given a system subjected to
external inputs, find the control which minimizes a certain measure of the performance of the
system [112]. Optimal control algorithms are based on the minimization of a performance index
that depends on the system variables, while maintain a desired system state and minimize
the control effort. According to classical performance criterion, the active control force u is
found by minimizing the performance index subject to a second order system. The performance
index can include a measure of operating error, a measure of control or any other variable
which is important for the user of the control system. There are two control design objectives:
Regulator problem, which consists in stabilizing the system so that its states and/or outputs
remain small, and Tracker or servomechanism problem which controls the system so certain
prescribed outputs follow the desired trajectories and all states remain bounded. The main
optimal control techniques derived are the Linear Quadratic Regulator (LQR), Linear Quadratic
Gaussian (LQG), Clipped Optimal Control and Bang-Bang Control.

LQR Control Algorithm

This technique is characterized by requiring that all the state variables are available. This
algorithm is the classical one used for active and semiactive control of structures. However it
is not always possible to use it for structural control due to the limitations such are number of
sensors that could be installed in the large structures or nonlinearities present in the structure
or actuator. The control input takes the form u = −Kx, where K is a n × n feedback matrix.
Then, the control design problem is to choose the m entries of the feedback matrix K to yield
a guaranteed desired behavior of the closed-loop system. The selection of such entries is made
by minimizing a linear quadratic index.

Several semiactive structural applications using LQR control technique have been achieved
in [52, 85, 28, 75, 1]. In [98] this algorithm was applied on a small scaled model with a semiactive
control system, where a fluid damper is used. A variation of LQR control is the Instantaneous
Optimal Control, which uses a performance index as control objective similar to LQR control
algorithm, but this does not need to solve the Riccatti equation.

LQG Control Algorithm

The LQG method for structural control was examined by Yang and Yao in 1974. It is based on
calculating the control gain k that minimizes the performance index with the difference that an
observer (i.e Kalman filter) is included in the design equations, such as:

ˆ̇x = Ax̂ + Bu + L(y − Cx̂); u = −Kx̂ + y (2.1)

Then the design problem here is to select K and L, to obtain good robustness and high perfor-
mance. Several applications of this theory have been made in civil engineering structures both
active and semiactive control [110, 111, 106, 4, 5].
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Clipped-Optimal Control

Clipped-control technique consists on designing a linear optimal controller K that calculates a
desired control forces vector f = [f1, f2, f3, .., fn]. The computation of this force is based on
the measured structural responses. The clipped optimal control can be considered as a practical
approximation of the LQR or LQG (depending which technique is used to compute the desired
force) controller when it is impossible to obtain the optimal control force value from the LQR
or LQG design. Thus, the control objective in clipped-optimal control is to keep the available
force f , that can be delivered by the device, as closed as possible to the optimal force fd.

This algorithm has been used in structural control problems, mainly in [20, 22, 23, 18, 19,
112, 46, 47, 107, 108, 24, 21, 17], where its efficiency has been demonstrated.

Bang-Bang Control

This strategy is useful in the case where the performance index is the pure minimum-time
objective of the form J(t0) =

∫ tf
t0 1dt = tf − t0. Then, the solution is to apply infinite control

energy over an infinitesimal time period. A Lyapunov function is established, (i.e. vibrational
energy of the structure) and a possible objective of the control strategy may be to reduce the
rate in which energy is transmitted to the structure. The control objective can be satisfied by
minimizing V̇ .

ER and MR dampers are well suited to bang-bang control applications due to their fast
response times and main applications can be found in [70, 17, 18, 46, 47, 36].

2.3.2 Robust Control

The principal objective of robust control is to develop feedback control laws that are robust
against plant model uncertainties and changes in dynamic conditions. A system is robustly
stable when the closed-loop is stable for any chosen plant within the specified uncertainty set and
a system has robust performance if the closed-loop system satisfies performance specifications
for any plant model within the specified uncertainty description.

The need of using robust control in structural control is because that the structure models
contain appreciable uncertainty. This uncertainty may be expressed as bounds on the variation
in frequency response or parametric variations of the plant. The mostly used robust control
approaches in control of structures are H∞ control theory, Lyapunov theory based control and
Sliding Mode Control.

H∞ Control

H∞ control algorithm is a design method, where the transfer function from excitation (u) to
controlled output (y)is designed to be lower than a prescribed small value. The goal is to find
a constant state-feedback matrix F to stabilize a matrix P , which is a combination of state
matrix, and to satisfy a given ∞-norm bound ||F1(P, F )||∞ < γ on the closed-loop response.
Because H∞ control algorithm designs the controller in frequency domain, the frequency shape
function can be used easily, it makes the control of specified frequency rang possible and the
spillover can be avoided. It is suitable for system subject to unmodelled dynamics or unknown
disturbances.

In [104] this method is used in seismically excited buildings. In [105] two H∞ controllers
with peak response constraints and energy-bounded or peak-bounded excitations are proposed.
A long-span cable-stayed benchmark bridge subject to earthquakes is used to illustrate the appli-



2.3. Structural Control Algorithms 11

cability of such controllers to practical problems and control performances. Others applications
of this method on civil structures have been developed by [3, 88, 45, 110, 111, 103, 50].

Control Based on Lyapunov Stability Theory

Control based on Lyapunov stability theory consists in selecting a positive definite function
denominated Lyapunov function. According to Lyapunov stability theory, if the rate of change
of the Lyapunov function is negative semi-definite, the closed-loop system is asymptotically
stable (in the sense of Lyapunov). The objective of the law is to select control inputs, which
make the derivative Lyapunov function as negative as be possible. The importance of this
function is that it may contain the any variable that interests to be minimized (i.e. system
states, control law error, control force, etc).

Lyapunov theory based control is one of the most commonly techniques used in the control
of structures. Several developments are found in [18, 46, 108, 30, 62, 47, 16, 36, 70, 73, 58, 83,
61, 57].

In [80] a control input function is assumed to be continuous in state variables and linear in
control action, but additionally admissible uncertainty is considered. Then, a practical stability,
the ultimate boundedness, of the system is demonstrated.

In [70] a Lyapunov function is used to represent the total vibratory energy in the structure
(kinetic plus potential energy). This approach is a decentralized control because only local
measurements of the absolute velocities are required.

Sliding Mode Control

The sliding model control was introduced by Utkin in 1977 to the Western world. Sliding mode
control is characterized by being a nonlinear (discontinuous) control, which restricts the state
of a system to a sliding surface by switching the control structure on both sides of a stable
hyperplane in the state-space. The method requires to design first a sliding surface that is
defined by σ = Sx = 0 and represents the closed-loop control performance. Then, the control
gain is calculated to make the state trajectory to reach the sliding surface and to maintain in
it afterwards until sliding to the origin. This technique can achieve excellent robustness of the
control system. In the sliding mode the system satisfies σ = 0 and σ̇ = 0. In order to find
the control law, a Lyapunov function is defined as V = 1

2σ2. Then, time derivative is given by
V̇ = σσ̇ = σSẋ = σS(Ax+Bu) whose negativeness is achieved by using some discontinuous
control law which can use only the information on the bounds of uncertain variables.

[61, 65, 63] use this control method on different structures, such as buildings and bridges. In
[49], this technique is used to control a seismic excited tall building, where dynamic interaction
between the structural components is taken into account and springs are installed between them
to produce appropriate control forces by utilizing the variable stiffness.

2.3.3 Predictive Control

The methodology of predictive control was introduced in 1974 by J.M Martin S. This principle
can be defined as: Based on a model of the process, predictive control is the one that makes the
predicted process dynamic output equal to a desired dynamic output conveniently predefined.
The predictive control strategy may be generalized and implemented through a predictive model
and a driver block (see figure 2.6). The predictive control generates, from the previous input
and output process variables, the control signal that makes the predicted process output equal
to the desired output. In fact, predictive control results in a simple computational scheme with
parameters, having clear physical meaning and handling of time delays related to the actuators
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in the control system. Predictive control has been shown to be an effective strategy for structural
control [67, 61]

Figure 2.6: Basic block diagram for predictive control system (PCS)

Model Based Predictive Control

The performance of this technique depends significantly on the prediction made by the model.
The basic strategy of predictive control implies the direct application of the control action in
a single-step prediction, thus the predictive control must be formulated in discrete time. At
each sampling instant k, the desired output for the next instant k + 1 is calculated, which is
denoted by yd(k+1|k). The basic predictive control strategy can be summarized by the condition
ŷ(k + 1|k) = yd(k + 1|k), whit ŷ(k + 1|k) the output predicted at instant k for the next instant
k + 1 and the control u(k) to be applied at instant k must ensure the above condition. An
essential feature of the model based predictive control is that the prediction for instant k + 1,
necessary to establish the control action u(k + 1), is made based on the information of the
outputs y(·) and the inputs u(·) known at the instant k and at preceding instants. However,
such prediction may differ from the real output, which will be measured at instant k + 1, thus
the real measurement at k + 1 is used as the initial condition instead of the output that was
predicted for this instant, which is essential for the effectiveness of the predictive control.

At the NatHaz Modelling Laboratory at the University of Notre Dame researchers are study-
ing the design and development of the Model Predictive Control. It has been effectively shown
to be feasible for structural control applications in [72]. In [82] a predictive control in civil en-
gineering was employed. In [60] the predictive control was used to control individually the first
few shape modes to reduce the overall structural response. In [102] The Rodellar’s predictive
control method in a hybrid control system was used.

Adaptive Predictive Control

An adaptive predictive control system, consists in the combination of a predictive control system
and an adaptive system, such as is shown in the figure 2.7 [67]. In an adaptive system, the
predictive model gives an estimation of the process output at instant k + 1 using the model
parameters estimated at instant k, the control signals and the process outputs already applied
or measured at previous instants. The predictive model calculates the control action u(k) in
order to make the predicted output at instant k + d equal to the driving desired output at the
same instant. After a certain time for adaptation, the process output should follow a driving
desired trajectory (DDT) with a tracking error that is always bounded in the real case or is zero
at the limit in the ideal case and the (DDT) should be physically realizable and bounded.
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Figure 2.7: Overall block diagram of an adaptive predictive control system

2.3.4 Conclusions

It is difficult to develop a control strategy which can include all the aspects that affect the control
system performance. The principal problem is that there is not any existing control theory that
takes into account all the aspects related to structural control. However, it seems possible to
find some new strategies for structural control design including every one of these aspects and
to obtain some reasonable theoretical and implementable solutions.





Chapter 3

Open Problems in Structural Control

3.1 Introduction

In structural control, similar to other application fields, the main objective is to develop in-
tegrated control methodologies that are robust, effective, implementable, reliable and with the
minimum control effort. However, sometimes it is difficult due to some problems such like nonlin-
earities, uncertainties, dynamic coupling and measurement limitation. During years researchers
have been working in the obtention of control laws that consider one o more of such problems,
however this is still an open research field and new control methodologies must be investigated.
This chapter is devoted to present some of the main structural control design problems and
different control laws approaches. The methodology followed in this thesis consists in using
numerical and experimental structural models, that contain one o more control problems and
designing and validating the controllers proposed. The control laws are designed using control
techniques traditionally applied: Lyapunov stability theory, Sliding Mode Control and Clipped-
Optimal control, one recently introduced: Backstepping Control and one considered new in this
control area : Quantitative Feedback Theory.

3.2 Unknown Disturbances

Structural disturbances, such as earthquake accelerations, heavy loads, strong winds, crossing
vehicles, are of unknown and unpredictable nature. It is not possible to know exactly when
a disturbance is going to occur and which is its dynamic behaviour. This unpredictable and
unknown nature, is a big limitation for designing effective control systems. If a variable as-
sociated with the disturbance (i.e. acceleration or force) would be available online or at least
its dynamic behaviour would be predicted, such information could be included in the control
law and computation of the control action would be closer to the real requirements to reduce
vibrations in the structure. A first approximation in order to consider the disturbance in the
control law is by assuming that a bounded value (based on historic records and knowledge of
experts) of its magnitude can be assigned. Concretely, the unknown disturbance force f(t) is
bounded by |f(t)| ≤ F0 for all t ≥ 0, with F0 being some known positive constant.

This problem will be considered for all the structural systems in chapter 4 and for all the
experimental prototypes in chapter 5.

15
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3.3 Measurements Limitations

When a real time feedback control is used but the state variable measured does not take the real
value, the effectiveness of control strategy may be reduced and the stability guaranty may also
be failed in practice. Depending on the accuracy of the measurement devices there is always
uncertainty concerning the measured variables, thus this condition must be considered at the
moment of using the measurements as feedback variables [80]. An additional limitation in civil
engineering structures is that not all the state variables can be directly measured and normally
only a few of sensors are installed in the structure because of space limitations or implementation
problems. Thus the on-line knowledge of all state variables at any place of the structure most
of times is not possible. On other hand if state variables could be measured at any place of the
structure, measurements far away from the place where the control device is installed are not
always reliable when structure is being excited. Thus, the control strategy should be focused on
only using the on-line measurements at points closer to the installed control device.

This challenge will be considered in the design of the control laws for the structural systems A and
C in chapter 4 and for experimental prototypes B and C in chapter 5. Lyapunov stability theory,
Sliding Mode Control, Backstepping Control and Quantitative Feedback Theory techniques are
used to design the control laws.

3.4 Dynamic Coupling

There is a class of structures where the excitation is induced by the coupling with another
dynamic system during a time period. Normally, the dynamics of exciting system are of un-
known nature and normally online measurements are not available. This type of systems can
be modelled by means of two or more coupled subsystems, where one of them contains all the
measurable dynamics. So, the open problem here is to consider such unknown dynamics in the
controller design, ensuring at least the global boundedness of the controlled system.

This challenge will be considered in the design of the control laws for the structural system B
in the chapter 4. Lyapunov stability theory and Sliding Mode Control techniques were used to
design the control laws.

3.5 Actuator Dynamics

From the control design point of view, an ideal control device is that which can deliver exactly
the desired command force. However, in real conditions it is not possible since actuator dynamics
are inherent in the device. The most significant dynamics presented in active control devices
correspond to saturation, time delays and friction forces, while for semiactive control devices
the most significant are the hysteresis phenomenon and state variables dependence. This last
dynamics is related with the dissipative nature of the semiactive device, whose force delivered
depends on structural variables such as velocities or displacements. Thus, these devices are
commanded by means of voltage signal in place of a force signal.
In structural control, unpredictable events such as earthquakes occurred in very short time
period a fast and effective control action is required. Thus, actuator dynamics are an important
aspect to take into account in order to achieve an adequate control action. This is a challenge
presented in this type of systems.
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3.5.1 Hysteretic Dynamics

The hysteresis phenomenon is an important dynamics in semiactive and passive structural con-
trol devices. In this thesis the semiactive device studied corresponds to the Magnetorheological
MR damper. The reason to study this kind of device is because its promising future and real
applications that have been already initiated. Two challenges are contained in this problem:
The first one is to consider the hysteretic behaviour in the controller design and the second one
to find a commanding voltage signal in place of a commanding force signal.
The first challenge has not been sufficiently studied in structural control. A solution to this
problem is based on the controller design by using Backstepping Control Algorithm. This con-
trol approach has been recently introduced in structural control ([41]-[44],[66]. The control
approach consists in obtaining a desired commanding force and then computing an equivalent
commanding voltage by estimating the nonlinear variable z contained in the dynamics equation
of the MR damper. The Backstepping technique consists in the step-by-step construction of
a transformed system with state ei = yi − αi−1, i = 1, . . . , n, where αi is the so-called virtual
control signal at the design step i. It is computed at step i + 1 to drive e = [e1, . . . , en]T to the
equilibrium state [0, . . . , 0]T , which can be verified through a standard analysis (i.e. Lyapunov
analysis). The Lyapunov functions computed at each step are used to determine the most suit-
able αi. The last stabilizing signal (αn) is the true control u(t), which is applied directly to the
original system. Some authors have utilized these strategies to solve specific problems [90, 9, 71].

For the second challenge a solution has been stated by using the Clipped-Optimal control
[21, 19, 107]. The control algorithm consists in appending m force feedback loops to induce
each MR damper to produce approximately a desired control force by applying an equivalent
commanding voltage signal.

In the design of a structural control law, the new states ei = yi − yri correspond to the error
between the states to be controlled yi and the desired output yri (normally set to zero or a
minimum vibration value). The total candidate Lyapunov function includes the energy of each
new state variable e2

i , an error energy z̃2, in order to verify that stability of the system is kept in
spite of estimating z. The error z̃ = z − ẑ corresponds to the difference between the real value
of z and the estimated value ẑ.

The two control challenges derived from this problem, will be considered in the design of control
laws for the structural systems A and C in chapter 4, and for the experimental prototype
A. Backstepping control technique is used to design the controllers and additionally for the
experimental model the clipped-optimal technique is used in combination with Quantitative
Feedback Theory and Backstepping control technique

3.5.2 Actuator Time Delay and Friction Force

Control devices with a considerable time delay is a factor to take into account in the control
law design, since one of requirements in control of structures is that its control action must be
fast. That is because disturbances, such as seismic forces, occur in short time periods with a
big destruction action. In this thesis a time delay will be included in the actuator dynamics in
the form of a first order time lag. Friction force is also considered in active hydraulic actuators.
For the case of some semiactive devices the time delay (>10ms) is considerable and it must
be taken into account in the control law design. For control design purposes the time delay
τ is approximated by a first order time lag. By using a direct Lyapunov function or Sliding
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Mode Control theory, a desired command force v is obtained and then an equivalent control
command is derived by using the actuator dynamics equation. Thus, the force command tracks
asymptotically the real force. A new Lyapunov function that includes the error between the
desired and real force is defined and then negativity of its derivative is demonstrated.
This control challenge is studied in the design of control laws for the structural systems A, B and
C in chapter 4. Implementation of the control approaches is made on the experimental prototype
C in chapter 5. The control techniques used are Lyapunov stability theory and Sliding Mode
Control.

3.6 Uncertain Structural Parameters

Most of structural control system designs are based on mathematical model. This is because
structural models are easily derivable by using control oriented models such as the Finite Element
Model (FEM). However, in the construction of such mathematical models there are inherent un-
certainties, which produces that response of the real system can not be exactly reproduced. For
example to obtain a FEM model, it is necessary to concentrate parameters in a finite number of
nodes. It implies that parametric values of nodes are approximated values and uncertainties are
presented. Uncertainties are among others reasons, because unconsidered parametric nonlinear-
ities, parameters variation by excitation or aging (structured uncertainties), neglected dynamics
(unstructured uncertainties) or may result from non-deterministic features of the structure. Ma-
terials properties in structures, such as stiffness or damping, cannot be estimated exactly and
strong assumptions must be done. For example, concrete contains different phases during its
drying, thus different values of stiffness and damping are presented. Only after having got dried
a stable value of its properties may be obtained. However, in that state there does not exist
an adequate measurement equipment that estimates such properties. Then, only theoretical ap-
proximations can be applied, through coefficients established such as young modulus. On other
hand a source of uncertainty is by considering that stiffness and damping are linear parameters
under dynamics conditions of structure, however a time variation is presented.
The uncertain problem becomes more complicated when it is tried to design a controller that
reduce the vibration modes of the structure, which are directly related with the excitation fre-
quencies. An uncertain external disturbance could excite the structure at the natural frequencies
which can produce such undesirable vibration modes. An example of such shape modes for a
cable-stayed bridge are presented in figure 3.1 [25].
Thus, the challenge consists in considering such uncertainties, but also taking into account the
behaviour of the controlled structure in the frequency domain. The problem of controlling
uncertain structures has gained the attention of an increasing number of researchers during last
years [64, 63, 105, 103, 29], most of them design in the time domain.
An interesting control technique studied here and that results useful and adequate for this kind
of systems is the Quantitative Feedback Theory (QFT). Today, it is one of well known effective
frequencial techniques for controlling different types of practical processes. The main properties
of QFT are: i). the controller design procedure is rigorous, transparent and systematic, and
ii). inclusion of plant uncertainties and formulation performance’s specifications is relatively
easy. In this sense, the quantitative formulation of plant uncertainty and different performance
specifications are essential for the feedback control.
Structural systems A and C in chapter 4 have been used to design and numerically verify QFT
controllers, while experimental prototypes A and C in chapter 5 were used for their implemen-
tation. A brief explanation of the QFT technique is included in the following section.

CAICEDO
Note
Unmarked set by CAICEDO
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Figure 3.1: Representative Mode Shapes of the Bridge Evaluation Model

3.6.1 QFT LTI design

The basic developments with QFT theory are focused on the control design problem for uncertain
Linear Time Invariant (LTI) systems. Consider the system of the figure 3.2 as the basic structure.
R represents the command input set, P the LTI plant set and T the OK transfer function set.
For each R ∈ RRR, P in PPP , the closed-loop output will be Y (s) = T (s)R(s) for some T in TTT . For
a large class of LTI problems, QFT based design is executable; i.e., a pair of controllers F (s)
and G(s) can be found to guarantee that Y (s) = T (s)R(s).

Figure 3.2: LTI structure

Suppose that the LTI plant P is an uncertain but known member of the set PPP . The designer
is free to choose the LTI prefilter F and the loop compensator G in order to ensure that the

system transfer function T =
FPG

1 + PG
satisfies the assigned specifications. This gives an OK set

MMM for |T (j)|, to be achieved for all P ∈ PPP , with yu(t) and yL(t) or BU (jω) and BL(jω) being
the upper or lower bounds on M (see figure 3.3).
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Figure 3.3: Bounds allowed for M

It is highly desirable to have the possibility of designing either F or G simultaneously. This
can be easily done by considering the variation in log10|T |.

Δlog|T (jω)| = Δ
∣∣∣∣ L(jω)
1 + L(jω)

∣∣∣∣ (3.1)

By eliminating F , the purpose of G in L = PG is to ensure that the variation R(jω) = BU (jω)−
BL(jω) allowed in M(ω) = |T (jω)|, in figure 3.3, is not exceeded at each ω.

The Logarithmic Complex Plane (Nichols Chart) is a highly transparent medium for visu-
alizing the design procedure for the above purpose. It consists of locking constant M = |T |,
and Arg(T ) in the logarithmic L plane: Angle(L) in degrees, Magnitude(L) in db (20log10|L|).
Arg(T ) is not needed.

Four steps must be followed to obtain G and F .

Step 1. Plant Templates (P ) and Loop Templates (L = PG). In this step, it is tried to
display on the Nichols Chart the existent plant uncertainty. At each frequency, P (jω) will
be a complex number. Because of plant uncertainty, the plant template P (jω) is a set of
complex numbers corresponding to a set of uncertain plants at each frequency ω . For example,
for the plant P (s) = k/s(s + a) with parametric uncertainties k ∈ [1 5] and a ∈ [4 8], the
plant templates at ω=5,10 rad/s are given by the set of complex numbers shown in figure 3.4:
P (j[5, 10]) = k/[5, 10]/(j[5, 10] + a), k ∈ [1 5], a ∈ [4 8]. According to figure 3.3 a variation δ(5)
of 5.3db for M(5) = |T (j5)| and δ(10) of 4.9 db for M(10) = |T (j10)| are allowed. Here, the
idea is to find the bounds on L(j5), for example to assure the last condition. Since L = PG
varies with P , it is convenient to choose a nominal PN giving a nominal LN = PNG, for this
purpose. Values used for nominal plant are: k = 1, a = 4, so 1/PN = s2 + 5s. The nominal
plant PN (which corresponds to the nominal loop template LN = PNG value) is marked 1 in
figure 3.4. Note that the template of L = PG, is isometric to the template of P . The template
L(jω) is obtained by shifting the plant template P (jω), by Angle(G(ω)) horizontally, by |G(jω)|
vertically. Its shape and size is the same as the template P .
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Figure 3.4: Plant templates at ω=10,30

Step 2. Bounds on the nominal LN (jω). In this step, the design tool is the nominal loop
template LN (jω). By making it the smallest possible, specifications can be satisfied and eco-
nomic (quantitative) control is obtained. Simply manipulate the plant = loop template on the
Nichols chart, until (at any fixed angle), the minimum |LN | is found, then specifications are
satisfied. It is seen that this |LN |min is a function of Angle(LN ). The resulting curve is called
the bound B(jω) on LN (jω). One systematized procedure to find each bound on B(jωi) is
presented in [6].

Figure 3.5: All bounds in the Nichols Chart

Step 3. The Universal High-Frequency Bound UH( B). For ω >> 1, the templates P (jω)
are almost vertical lines, because P (s) is close to k/s2 at such large s. So, uncertainty of P
is approximately the k uncertainty. In this frequency range the allowed M variation is larger
than the plant uncertainty. This means that while the sensitivity reduction is obtained in one
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frequency range, in other range this may be worse than an open loop system (no feedback
control). However, sensitivity to the plant is not the only matter of concern, there is also the
effect of disturbances (W , V and D). An additional constraint γ in this “higher” frequency range
must be added. It can be recognized by the specifications, allowing LN to trend increasingly to
-1, where the sensitivity becomes very large. This constraint determines the nominal bound LN

at high frequencies. The fact that in the higher frequency the plat template is a fixed vertical
line, leads to universal high frequency bound (UHωB). To find γ in the Nichols Chart (i.e., locus
for which |L/(1 + L)| = γ) the exclusion zone is projected downward by the amount of the k
uncertainty (V = Log(kmax) − Log(kmin). This gives the entire UHωB.

Step 4. Find LN (jω) which satisfies its bounds B(ω). The idea is to design a controller G(s),
which allows the function L(s) = G(s)P (s) to accomplish the specifications defined by means
of the bounds (see figure 3.5). By considering the most restrictive conditions from this set of
bounds, the resulting bound is found by intersecting the constrained bounds (figure 3.6).

Figure 3.6: Intersection of bounds

By taking into account such bound, the optimal design is ensured if for each ωi, LN (jωi) is
in its corresponding bound. In a practical way, LN (jω) is designed to be as near as possible to
B(jω), in order to keep minimum the bound width of T (jω). A basic controller kc/s is used
as initial, and poles or zeros are added according to the needs to accomplish the specifications.
One possible loop LN that accomplishes the specifications of the example is shown in figure 3.7.
There exists a MATLAB toolbox, which contains some functions that have been written for this
purpose.

Step 5. Design of Feedback Controller and Prefilter F (s). The controller G(s) is available
from LN (G(s) = LN (s)/PN (s)). Under design conditions LN may result with excess of pole over
zeros, however since the design has 2 DOFs (G(s) and L(s)), the excess of poles is not a problem.
G has been computed to assure that the allowed variation in |T (jω)|, Mmax − Mmin = δ(ω)
be satisfied for all ω. But, suppose for example that at some δ(ω1), the specification dictates
Mmax = 8db, Mmin = 1db, then δ(ω1) = 7db, at this frequency Mmax = −2db, Mmin =
−8db, with variation of 6<7. Although of the accomplishment of variation specification, the
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M specification has not been satisfied. Since |T | = |F |M , the function of F is to maintain
the actual OK variation inside the M specification. This is achieved by assigning bounds on
|F (jω)| : Log{Fmin(jω)} < Log{F (jω)} < Log{Fmax(jω)} and additionally to ensure that
lims→0F (s) = 1. For the example Log{Fmin(jω)} = 1 − (−8) = 9db and Log{Fmax(jω)} =
8− (−2) = 10db. The free range of |F | = 10− 9 = 1db is precisely the amount of overdesign of
G(jω), which gives a variation of 6 db, while a variation of 7 db is allowed by the specifications.
The results of including F are graphically shown in figure 3.8.

Figure 3.7: A possible final loop LN

Figure 3.8: Effect of including F (jω)

3.6.2 QFT controller for uncertain structures

Taking into account that in structural control the main control objective is to reduce vibrations
to zero if it is possible, the reference point r cab ne set to zero all time and a prefilter does not
have sense in this kind of problems. Therefore, the structural control scheme is that shown in
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figure 3.9. In which V represents the external disturbance of the structure plus other possible
terms that cannot be included in the plant but a bounded value can be assigned. The output Y
corresponds to the state variable to be controlled and U represents the force developed by the
control devices at the point where the output Y is measured. The plant P contains the structural
parameters directly related with the variable to be controlled, while the other nonmeasurable
states are not included or included as a bounded value. Terms related with other measurable
states are added to input U , and then the force f that the control device must develop is obtained
by doing the respective difference of U minus the other added terms. An equivalent plant is
found from the motion equation of the structure and for the node where the control device is
installed. If more than one device is present in the structure, the respective plants are obtained
and in some cases the input U can be combination of forces from different actuators.

Figure 3.9: LTI structure for structural control



Chapter 4

Structural Control Approaches

This chapter present the design and numerical verification of control law approaches for struc-
tural systems that contain one or more structural control problems. The methodology followed
in this chapter is: first the structural system and its control problems are stated, then numerical
results of the controlled and uncontrolled structural system are presented. Three structural
systems are studied, whose control configurations present one or more problems presented in
chapter 3.

4.1 Structural System A: 10-story Base Isolated Structure

Consider a nonlinear base isolated building structure as shown in Figure 4.1, whose dynamic
behavior can be described by means of a model composed of two coupled subsystems, namely,
the main structure (Sr) and the base isolation (Sc):

Sr : MMMq̈qqr + CCCq̇qqr + KqKqKqr = [c1, 0, ..., 0]T q̇c + [k1, 0, ..., 0]T qc .

Sc : m0q̈c + (c0 + c1)q̇c + (k0 + k1)qc − c1q̇r1 − k1qr1 = −c0ḋ − k0d + fN .

fN = −sgn(q̇c − ḋ)[μmax − Δμe−ν|q̇c−ḋ|]G (4.1)

This model assumes that the structure has a linear behavior due to the effect of the base isolation.
This behavior is represented by the positive definite mass, damping and stiffness matrices MMM ,
CCC and KKK ∈ IR n×n respectively.

MMM = diag([m1 m2 . . . mn]) ; (i = 1, 2, ..., n) (4.2)

CCC =

⎡
⎢⎢⎢⎢⎣

c1 + c2 −c2 0 · · · 0
−c2 c2 + c3 −c3 · · · 0

...
...

... · · · ...
0 0 0 · · · cn

⎤
⎥⎥⎥⎥⎦ KKK =

⎡
⎢⎢⎢⎢⎣

k1 + k2 −k2 0 · · · 0
−k2 k2 + k3 −k3 · · · 0

...
...

... · · · ...
0 0 0 · · · kn

⎤
⎥⎥⎥⎥⎦

qqqr = [ qr1 , qr2 , · · · , qrn ]T ∈ IR n represents the horizontal displacements of each floor with re-
spect to an inertial frame. The base isolation is described as a single degree of freedom with
horizontal displacement qc ∈ IR . It is assumed to exhibit a linear behavior characterized by
mass, damping and stiffness m0, c0 and k0, respectively, plus a nonlinear behavior represented
by a force fN supplied by a frictional isolator with G being the force normal to the friction
surface, μ the friction coefficient, ν a constant, μmax the coefficient for high sliding velocity and

25
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Δμ the difference between μmax and the friction coefficient for low sliding velocity. The term
−c0ḋ−k0d is a dynamic excitation force acting on the base due to the horizontal seismic ground
motion represented by inertial displacement d(t) and velocity ḋ(t) at each time instant t.

In general, the base isolator (passive control device) can achieve satisfactory performance if
its resonance frequency is well tuned. However, it is very difficult to make such tuning in practice
due to the lack of information on the forthcoming earthquake [91, 8]. Another serious problem
is that sometimes the peak response of absolute base displacement is so large as to exceed the
elastic limit of the base isolator. The main purpose for the use of active and semiactive con-
trollers in combination with the passive controller (base isolator) is to reduce the peak response
of the absolute base displacement so that the base isolator works always in the elastic region
and also to attenuate the dependence of structural performance on the resonance frequency of
the base isolator.

Figure 4.1: A 10-story base isolated building

4.1.1 Control Configuration 1

Usually, the semiactive control devices have to be installed in all stories of the building to guaran-
tee the global stability of the whole base-structure system. In the present control configuration,
we only use semiactive controllers at the base and the first floor to adjust the stiffness ki(t) and
the damping ci(t) (i = 0, 1), as illustrated in Figure 4.1. In this way, the number of semiactive
control devices is significantly reduced. The following equations of motion of the base and the
first floor will be used in the controller design:

Sr1 : m1q̈r1 + c1q̇r1 + k1qr1 = α + β . (4.3)
Sc : m0q̈c + [c0 + c1]q̇c + [k0 + k1]qc = c1q̇r1 + k1qr1 − c0ḋ − k0d + fN . (4.4)

where
α =: c1q̇c + k1qc and β =: c2[q̇r2 − q̇r1] + k2[qr2 − qr1] (4.5)
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It is well accepted that the movement of the building Sr is very close to the movement of a
rigid body due to the base isolation [91]. Then it is reasonably to assume that the inter-story
motion of the building will be much smaller than the absolute motion of the base. Hence, the
right-hand terms of the equation (4.3) can be simplified as: α + β ≈ α = c1q̇c + k1(t)qc. A
numerical verification of the above assumption can be found in Figure 2. Consequently, the
following simplified equation of motion of the first floor can be used in the subsequent controller
design:

Sr1 : m1q̈r1 + c1q̇r1 + k1qr1 = c1(t)q̇c + k1(t)qc . (4.6)

The semiactive controller is designed to provide adaptive damping and stiffness as being
functions of the absolute motion. Concretely, the operation of control system is based on the
on-line modification of the stiffness and the damping parameters of both the base (k0(t); c0(t))
and the first floor (k1(t); c1(t)). It is assumed that these parameters can take any value within
prescribed bounds. That is,

ki(t) = k∗
i + Δk

i (t); ci(t) = c∗i + Δc
i (t); i = 0, 1 (4.7)

where k∗
i and c∗i are considered generally as the nominal values of ki(t) and ci(t). Suppose that

Δk
i (t) and Δc

i (t) can be adjusted by control signals uk
i (t) and uc

i (t) (i = 0, 1). For instance,
without loss of generality, let

Δk
i (t) = δk

i uk
i (t); Δc

i (t) = δc
i u

c
i (t); uk,c

i (t) ∈ [−1, 1] (4.8)

where

k∗
i =

1
2
(k+

i + k−
i ); c∗i =

1
2
(c+

i + c−i ); δk
i =

1
2
(k+

i − k−
i ); δc

i =
1
2
(c+

i − c−i ) (4.9)

By taking into account the actuator dynamics, such as time delay and frictional force, the real
control forces vk

i (t) and vc
i (t) generated by the semiactive controllers to the structure are given

as follows

vk
0 = Δk

0qc + P k
a0

q̇c; vc
0 = Δc

0q̇c + P c
a0

q̇c

vk
1 = Δk

1(qc − qr1) + P k
a1

(q̇c − q̇r1) vc
1 = Δc

1(q̇c − q̇r1) + P c
a1

(q̇c − q̇r1)
(4.10)

with

Δk
i = δk

i uk
i − τk

i Δ̇k
i ; Δc

i = δc
i u

c
i − τ c

i Δ̇c
i (4.11)

i.e.

uk
i =

1
δk
i

[
Δk

i − τk
i Δ̇k

i

]
; uc

i =
1
δc
i

[
Δc

i − τ c
i Δ̇c

i

]
(4.12)

where τk
i and τ c

i are time constants of the actuator dynamics for the stiffness and damping
changing, P k

ai
and P c

ai
are the parameters related to the frictional forces existed in the actuator.

Concretely, the control forces generated by the semiactive control device are formulated as:

vk
0 = (δk

0uk
0 − τk

0 Δ̇k
0)qc + P k

a0
q̇c vc

0 = (δc
0u

c
0 − τ c

0Δ̇c
0)q̇c + P c

a0
q̇c

vk
1 = (δk

1uk
1 − τk

1 Δ̇k
1)(qc − qr1) + P k

a1
(q̇c − q̇r1) vc

1 = (δc
1u

c
1 − τ c

1Δ̇c
1)(q̇c − q̇r1) + P c

a1
(q̇c − q̇r1)

(4.13)
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By substituting the above control laws into the dynamic equations of the base(equation (4.4))
and the first floor (equation (4.6)), we obtain

q̈c =
1

m0

[
−(c∗0 + c∗1 + P k

a0
+ P c

a0
+ P k

a1
+ P c

a1
)q̇c − (k∗

0 + k∗
1)qc + (c∗1 + P k

a1
+ P c

a1
)q̇r1 + k∗

1qr1 + f

−uk
0δ

k
0qc + τk

0 Δ̇k
0qc − uc

0δ
c
0q̇c + τ c

0Δ̇c
0q̇c − δk

1uk
1(qc − qr1) + τk

1 Δ̇k
1(qc − qr1) − δc

1u
c
1(q̇c − q̇r1)

+τ c
1Δ̇c

1(q̇c − q̇r1)
]

(4.14)

q̈r1 =
1

m1

[
−(c∗1 + P k

a1
+ P c

a1
)q̇r1 − k∗

1qr1 + (c∗1 + P k
a1

+ P c
a1

)q̇c + k∗
1qcδ

k
1uk

1(qc − qr1) − τk
1 Δ̇k

1(qc−

qr1) + δc
1u

c
1(q̇c − q̇r1) − τ c

1Δ̇c
1(q̇c − q̇r1)

]
(4.15)

Controllers Design

Two controllers are designed for this configuration. Controller 1 is based on the Lyapunov
stability theory, while contoller 2 is based on the Sliding Mode Control (SMC) technique.
Controller 1.

Define the Lyapunov function candidate as

V (xxx, t) =
1
2
xxxT (t)PxPxPx(t) (4.16)

where PPP =∈ R4×4 is the positive definite solution of the Lyapunov equation

PAPAPA + AAAT PPP + QQQ = 0 (4.17)

for a given symmetric positive definite matrix QQQ.
Now, define xxx = [qr1 , q̇r1 , qc, q̇c]T , uuu = [uk

1, u
c
1, u

k
0, u

c
0]

T and z = [Δ̇k
1, Δ̇

c
1, Δ̇

k
0, Δ̇

c
0]

T . Then, the
following state equation is obtained

ẋxx(t) = AxAxAx(t) + BBB(xxx, t)uuu(t) + C(xxx, t)zzz(t) + FFF (xxx, t) (4.18)

where

AAA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0
−k∗

1

m1
−c∗1 + P k

a1 + P c
a1

m1

k∗
1

m1

c∗1 + P k
a1 + P c

a1

m1
0 0 0 1
k∗

1

m0

c∗1 + P k
a1 + P c

a1

m0
−k∗

0 + k∗
1

m0
−c∗0 + c∗1 + P k

a0 + P c
a0 + P k

a1 + P c
a1

m0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

BBB(xxx, t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
δk
1 (qc − qr1)

m1

δc
1(q̇c − q̇r1)

m1
0 0

0 0 0 0

−δk
1 (qc − qr1)

m0
−δc

1(q̇c − q̇r1)
m0

−δk
0qc

m0
−δc

0q̇c

m0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

CCC(xxx, t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

−τk
1 (qc − qr1)

m1
−τ c

1(q̇c − q̇r1)
m1

0 0

0 0 0 0
τk
1 (qc − qr1)

m0

τk
1 (q̇c − q̇r1)

m0

τk
0 qc

m0

τ c
0 q̇c

m0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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FFF (xxx, t) =

⎡
⎢⎢⎢⎢⎣

0
0
0
1

m0

⎤
⎥⎥⎥⎥⎦ f [qc(t), q̇c(t), d(t), ḋ(t)] (4.19)

Suppose that the seismic excitation (d, ḋ) is unknown but bounded,

‖f [qc(t), q̇c(t), d(t), ḋ(t)]‖ ≤ φ0 , (4.20)

where φ0 is a known constant. Then

‖FFF (xxx, t)‖ ≤ 1
m0

‖f [qc(t), q̇c(t), d(t), ḋ(t)]‖ ≤ F0 (4.21)

consequently F0 = φ0/m0 is a known constant.

By using eqns. 4.16-4.21, the derivative of V (xxx, t) is obtained

V̇ (xxx, t) = −1
2
xxxT QxQxQx + xxxT PbPbPbk

0u
k
0 + xxxT PbPbPbc

0u
c
0 + xxxT PbPbPbk

1u
k
1 + xxxT PbPbPbc

1u
c
1 + xxxT PcPcPck

0Δ̇
k
0 + xxxT PcPcPcc

0Δ̇
c
0

+xxxT PcPcPck
1Δ̇

k
1 + xxxT PcPcPcc

1Δ̇
c
1 + xxxT PFPFPF (4.22)

where
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It can be verified from the above relations that

ccck
i = −τk

i

δk
i

bbbk
i ; cccc

i = −τ c
i

δc
i

bbbc
i ; (i = 0, 1) (4.23)

The control objective is to minimize V̇ (xxx, t) for every (xxx, t). The semiactive control signals that
result in the minimum of V̇ (xxx, t) for uk

i (t) ∈ [−1, 1] and uc
i (t) ∈ [−1, 1] are

uk,c
i = −sgn(xxxT PbPbPbk,c

i ); i = 1, 2 (4.24)

Now, rewrite the expression of V̇ (xxx, t) into the following form

V̇ = −1
2
xxxT QxQxQx + xxxT PbPbPbk

0(δ
k
0uk

0 − τk
0 Δ̇k

0) + xxxT PbPbPbc
0(δ

c
0u

c
0 − τ c

0Δ̇c
0) + xxxT PbPbPbk

1(δ
k
1uk

1 − τk
1 Δ̇k

1) +

+xxxT PbPbPbc
1(δ

c
1u

c
1 − τ c

1Δ̇c
1) + xxxT PFPFPF (4.25)
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By applying the semiactive control laws in eqn.(4.24), we can show that

xxxT PbPbPbk
i (δ

k
i uk

i − τk
i Δ̇k

i ) < 0; xxxT PbPbPbc
i (δ

c
i u

c
i − τ c

i Δ̇c
i ) < 0; i = 1, 2 (4.26)

In fact, if xxxT (t)PbPbPbk
0(xxx, t) > 0 for t ≥ ts then uk

0(t) = −1. In this case, we get from eqn.(4.11)
that

Δk
0(t) = −δk

0

(
1 − e−(t−ts)/τk

0

)
; Δ̇k

0(t) = − δk
0

τk
0

e−(t−ts)/τk
0 ≥ − δk

0

τk
0

(4.27)

thus the first relation in eqn.(4.26) for i=1 is accomplished. If xxxT (t)PbPbPbk
0(t) < 0 that implies

uk
0(t) = −1, then we obtain that k0(t) ≤ δk

0/τk
0 . Therefore, the first relation in eqn.(4.26) for

i=1 is also accomplished. The remaining relations derived form eqn.(4.26) can be proved in a
similar way.

Denote that

θ(xxx) = xxxT PbPbPbk
0(δ

k
0uk

0 − τk
0 Δ̇k

0) + xxxT PbPbPbc
0(δ

c
0u

c
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0) + xxxT PbPbPbk

1(δ
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1uk
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1 Δ̇k

1) + xxxT PbPbPbc
1(δ

c
1u

c
1 − τ c

1Δ̇c
1)

then, θ(xxx) < 0 and the equation (4.25) can be rewritten as

V̇ = −1
2
xxxT QQQxxx + θ(xxx) + xxxT PPPFFF (4.28)

Since QQQ and PPP are positive definite matrices, using (4.21) we may write

V̇ ≤ −1
2
λmin(QQQ)||xxx(t)||2 + θ[xxx(t)] + λmax(PPP )F0||xxx(t)|| (4.29)

where λmin and λmax represent the minimum and maximum eigenvalue, respectively.

The compact set K = {xxx ∈ IR 4 |V (xxx) ≤ γ} is a global uniform attractor for the semiactively
controlled system (4.29), where

γ = max{V (xxx)|xxx ∈ IR 4, ψ(xxx) ≤ 0},

with
ψ(xxx) =

1
2
λmin(QQQ)‖xxx‖2 − θ(xxx) − λmax(PPP )F0‖xxx‖ (4.30)

By using the property that

λmin(PPP )
2

‖xxx‖2 ≤ V (xxx, t) ≤ λmax(PPP )
2

‖xxx‖2 (4.31)

it is easy to find that the set B = {xxx ∈ IR 4 | ‖xxx‖ ≤ ρ}, with

ρ =

√
2γ

λmin(PPP )
, (4.32)

is the smallest ball that contains the attractor K. This is called the ball of ultimate boundedness
in the literature[9]. In control practical terms, this is a ball such that any trajectory entering at
certain time T remains there for all t > T .
Controller 2
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The sliding function σσσ(t) = [σ0(t), σ1(t)]T ∈ IR 2 is defined with:

σ0(t) = q̇c(t) + λ0qc(t); σ1(t) = q̇r1(t) + λ1qr1(t) (4.33)

where λ0 and λ1 are scalars to be chosen to guarantee the closed–loop stability of the base isolated
structure. By following the SMC theory, a Lyapunov function is defined as V = 1

2σσσT (t)σσσ(t) and
sliding motion will be generated if V̇ < 0 for t ≥ 0. Then by deriving σ and replacing q̈r1 and
q̈c from (4.15), the derivative of V is expressed as:

V̇ = S1 + S2 + S3 (4.34)

with

S1 = Sk
0 + Sc

0 + Sk
1 + Sc

1 S2 = Sk
0d

+ Sc
0d

+ Sk
1d

+ Sc
1d

(4.35)

S3 = −m−1
1 σ1[c∗1(q̇r1 − q̇c) + k∗

1(qr1 − qc) + c∗2(q̇r1 − q̇r2) + k∗
2(qr1 − qr2)] − m−1

0 σ0[c∗0q̇c

+k∗
0qc + c∗1(q̇c − q̇r1) + k∗

1(qc − qr1) + f(qc, q̇c, d, ḋ)] + λ0σ0q̇c + λ1σ1q̇r1 (4.36)

where S1 contains all terms which can be controlled, S2 contains the terms related with actuator
time delay effects and S3 contains the rest uncontrollable and unmeasurable terms with, i.e.
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By individually minimizing the functions Sc
0, Sk

0 , Sc
1, Sc

1 the following semiactive control laws
are found:

uk
0 = sgn(σ0qc) uk

1 = sgn[(m−1
1 σ1 − m−1

0 σ0)(qr1 − qc)]
uc

0 = sgn(σ0q̇c) uc
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1 σ1 − m−1
0 σ0)(q̇r1 − q̇c)]

(4.37)

The above semiactive control laws ensure negativity of S1, moreover negativity of S1 + S2 can
also be demonstrated. By adding the first terms of S1 and S2 we have:
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0 σ0qc(δk
0uk
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0 δ̇k

0 ) < 0. (4.38)

In fact, if σ0qc > 0 for t ≥ ts then uk
0 = 1 and (δk

0 (1) − τk
0 Δ̇k

0) > 0 or equivalently Δ̇k
0 < δk

0τk
0

must be accomplished. In this case we get from (4.11) that:

Δk
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(4.39)

If σ0qc < 0 that implies uk
0 = −1, then we obtain Δk

0 ≥ −δk
0/τk

0 . Therefore, the negativity
of Sk

o + Sk
0d

is ensured. In a similar way additions of terms in S1 and S2 are demonstrated
to be negative and consequently S1 + S2 results to be negative for all t ≥ ts. Therefore, it is
demonstrated that S1 + S2 keeps its negativity in spite of actuator dynamics.

Numerical Results

As an application example, a 10-story base isolated building structure is considered in the
numerical simulation. The mass of each floor, including that of the base, is 6 × 105 kg. The
stiffness of the base is 1.184×107N/m and its damping ratio is 0.1. The stiffness of the structure
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varies in 5×107N/m between floors, from 9×108N/m the first one to 4.5×108N/m the top one
with damping ratio 0.05. A frictional device is used for the base isolation, where the nonlinear
force fN is described by the next equation

fN (qc, q̇c, d, ḋ) = −sgn(q̇c − ḋ)[μmax − Δμe−ν|q̇c−ḋ|]G (4.40)

with G =
10∑
i=1

mi, μ = 0.1, ν = 2.0, μmax = 0.185 and Δμ = 0.09. In the simulation, the seismic

excitation has been that of the El Centro (1940) earthquake as shown in Figure 3.

The semiactive device is used with τk
i = τ c

i = 1ms, δk
0 = 1.184 × 107 N/mV , δc

0 = 2.176 ×
105 Ns/mV , δc

1 = 9.487 × 105 Ns/mV , δk
1 = 9.0 × 108 N/mV , P c

a0
= P k

a0
= 2.176 × 104 m2,

P c
a1

= P k
a1

= 9.487 × 104 m2.
Both passive case (pure base isolation) and hybrid case (base isolation plus semi-active

control) are studied. The semiactive sliding mode control law in equation (4.37) is used with
λ0 = 1.0, λ1 = 3.0, while the semiactive Lyapunov stability theory based control law in equations
(4.17) and (4.51) is used with

PPP =

⎡
⎢⎢⎢⎣

116120000 −194.07 −103520000 −194.07
−194.07 0.69176 196.67 0.56275

−103520000 196.67 104270000 194.12
−194.07 562.75 194.12 0.56282

⎤
⎥⎥⎥⎦

Figure 4.2: Absolute peak values a). Displacement, b). Velocity c). Acceleration

It is observed that semiactive controller reduces the peak response of absolute displacements
of the base from a margin of ±5.5cm (a reduction about 42.7%). and the 10th floor from a
margin of ±5cm (a reduction about 38.8%). See figures 4.3 and 4.4. It was also observed in
the figure 4.2 that the semiactive controllers reduce the peak response of the base on a margin
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of ±5.6cm (43.08%) and of the others floors from 5.5 cm (42.31%) to 5.6cm (42.42%). The
reduction of the peak inter-story displacement was from 5.65× 10−3cm (3.6%) to 0.19 (45.65%).
It was seen a reduction of the peak inter-story displacement in the upper floors, for example for
the top floor is about 0.5597[m/s2] (38.55%). The reduction of the peak velocity in the base is
of 0.012m/s (6.85%) and for the floors is from 0.035m/s (29.12%) to 0.075m/s (32.85%). Both
controllers perform well, however SMC controller is more effective than Lyapunov controller, in
reducing velocity at the half level of the structure.

Figure 4.3: Absolute 1st floor displacement

Figure 4.4: Absolute 10th floor displacement

4.1.2 Control Configuration 2

Consider the same nonlinear base isolated building structure of figure 4.1, but in this case only
one MR damper is installed at the base in parallel with a nonlinear passive isolator. The dynamic
behavior at the base level is expressed as:

mÿ + cẏ + ky + fbf = Φ(ẏ, ḋ) + fg + fc (4.41)
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with

Φ(ẏ, ḋ) = −sgn(ẏ − ḋ)[μmax − Δμe−ν|ẏ−ḋ|]Q (4.42)
fg = −cḋ − kd and fbf = cbf (ẏ − ẏf ) + kbf (y − yf ) (4.43)

where y, yf ∈ IR represent the horizontal displacements of the base and the first floor. A
semiactive control force fc is applied by means of a MR damper.

The hysteretic behavior of the MR damper is described by using the so-called Bouc-Wen
model. The MR damper force is represented by a linear part related to the transversal velocity
ẋ plus a nonlinear part related to a nonlinear and nonphysical variable z, given by:

f = fl + fnl = −δẏ − αz (4.44)

where δ is a damping parameter and α is a positive value that relates the hysteretic behavior of
the MR damper force to the evolutionary variable z. z is governed by

ż = −γ|ẋ|z|z|n−1 − βẋ|z|n + Aẋ (4.45)

where the parameters γ, β, n and A are of constant values and are previously adjusted by using
parameter identification in order to control the linearity under the unloading condition and to
obtain the smoothness of the transition from the pre-yielded to the post-yielded region.

For control purposes, the parameters δ and α are made to be dependent on the commanding
voltage signal v, according to what have been proposed by [21, 107]

α = α(v) = αa + αbv and δ = δ(v) = δa + δbv (4.46)

The following assumptions complete the description of semi-actively controlled base isolated
structure.
Assumption 1. The displacements and velocities of the base and the first floor are measurable.
Assumption 2. The unknown seismic excitation d(t) and ḋ(t) are bounded by |d(t)| ≤ Dd and
|ḋ(t)| ≤ Dv for all t ≥ 0 where Dd and Dv are known positive constants.Under this assumption,
it is easy to verify that the unknown disturbance force fg(t) is bounded by |fg(t)| ≤ F for all
t ≥ 0, with F being some known positive constant.

Controller Design

For the present configuration, a controller based on the Backstepping technique is designed.
The control objective is to design a backstepping controller such that the closed-loop system is
globally stable and consequently the structural vibration is attenuated.

First, rewrite the dynamic equation (4.41) into the following state equation:

ẏ1 = y2 (4.47)

ẏ2 = − 1
m

[
cy2 + ky1 + fbf (y1, y2, ẏf , yf ) − Φ(y2, ḋ) − fg(d, ḋ) − fc(y2, z, v)

]
(4.48)

where y1 =: y and y2 =: ẏ.
The following standard variables, typically adopted in the literatures of backstepping control,

are used for controller design:

e1 = y1; ė1 = y2; e1ė1 = e1y2;
α1 = −h1e1; α̇1 = −h1y2;
e2 = y2 − α1; ė2 = ẏ2 + h1y2; e2ė2 = e2(ẏ2 + h1y2);

(4.49)
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By using equations (4.47) to (4.49), it is obtained:

e2ė2 = −e2

m
[cy2 + ky1 + fbf − Φ − fg + αaz + δay2 + (αbz + δby2)v − mh1y2] (4.50)

In order to achieve the asymptotic error suppression, the following control law is derived for
giving the commanding voltage signal to the MR damper:

v =
−(c + δa − mh1)y2 − ky1 − fbf + Φ + fg − αaz + me1 + h2e2

αbz + δby2
(4.51)

However, since Φ, fg and z contain unmeasurable variables, the control law (4.51) is not imple-
mentable in practice. In order to overcome the measurement limitation problem, some approx-
imation and estimation are made below.

Approximation and bounding of the restoring force Φ
The objective of making the approximation of the restoring force is to find a linear part of Φ

associated with measurable variables so as to reduce the computing effort. When a base isolator
is well tuned for incoming seismic excitation, very small relative movement is achieved such that
ν|y2 − ḋ| < 1 during a time period T0. This fact can be verified for some standard (El Centro,
Taft) earthquake records as shown in Figure 1. In this case, Euler approximation approach can
be employed in the following way:

e−ν|y2−ḋ| 	 1
1 + ν|y2 − ḋ| + ν2

2 |y2 − ḋ|2 + ν3

6 |y2 − ḋ|3 (4.52)

Thus, the approximated restoring force Φ̄ is obtained

Φ̄ = −sgn(y2 − ḋ)

[
μmax − Δμ

(
1

1 + ν|y2 − ḋ| + ν2

2 |y2 − ḋ|2 + ν3

6 |y2 − ḋ|3
)]

Q (4.53)

Denote |y2 − ḋ|0 as the maximum value of |y2 − ḋ|. It is known from equation (4.42) that the
maximum restoring force, Φ̄max is obtained with |y2 − ḋ|0. By replacing this value in equation
(4.53), the next consideration can be made:

Φ̄ ≤ Δ0 + Δ1Dv − Δ1y2 (4.54)

where

Δ0 =

(
μmax − Δμ

1 + ν|y2 − ḋ|0 + ν2

2 |y2 − ḋ|20 + ν3

6 |y2 − ḋ|30

)
Q (4.55)

Δ1 =

⎛
⎝ μmax

[
ν + ν2

2 |y2 − ḋ|0 + ν3

6 |y2 − ḋ|20
]

1 + ν|y2 − ḋ|0 + ν2

2 |y2 − ḋ|20 + ν3

6 |y2 − ḋ|30

⎞
⎠Q (4.56)

by taking into account the result of base isolation
∣∣∣y2 − ḋ

∣∣∣
0

<
1
ν

.

Estimation of the evolutionary variable z
Since the variable z cannot be directly measured, an estimated value ẑ is obtained:

˙̂z = −γ|y2|ẑ|ẑ|n−1 − βy2|ẑ|n + Ay2 (4.57)
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Define z̃ = z − ẑ as the estimation error between the real value z and the estimated value ẑ,
then

z = z̃ + ẑ; ˙̃z = ż − ˙̂z (4.58)

By taking z̃ = e2, the denominator of the commanding voltage signal v can be replaced by
δby2 + αbẑ + αbz̃ = δby2 + αbẑ + αbe2.

Now, an implementable law, based upon the bounded values of fg and Φ and the estimated
value of z, is adopted for the backstepping control:

v =
−(c + Δ1 + δa − mh1)y2 − ky1 − fbf + (Δ0 + Δ1Dv + F )sgn(e2) − αaẑ + me1

αbẑ + δby2 + αbe2
(4.59)

for all αbẑ + δbx2 + αbe2 
= 0 and otherwise v = 0. Moreover, for some types of MR dampers
(Spencer et al, 1997; Yi et al, 1998), the constraints γ ≥ |β| ≥ 0 and n = 1 must be satisfied by
the control law.

Stability Analysis

In order to verify the closed-loop stability, the following Lyapunov function candidate is defined:

V =
1
2
e2
1 +

1
2
e2
2 +

1
2
z̃2 (4.60)

V̇ = e1ė1 + e2ė2 + z̃ ˙̃z (4.61)

From equations (4.49), (4.50) and (4.59), one obtains:

e1ė1 = e1y2 (4.62)

e2ė2 = −e2

m
[−Φ − Δ1y2 − fg + αaz̃ + (Δ0 + Δ1Dv + F )sgn(e2) + me1]

= − 1
m

[(Δ0 + Δ1Dv)|e2| − (Φ + Δ1y2)e2 + F |e2| − fge2] − e1e2 − h2e
2
2 (4.63)

with h2 =
αa

m
.

From equations (5.19) and (5.20), one gets:

z̃ ˙̃z = z̃(ż − ˙̂z) = −z̃ [ γ |y2| (z |z|n−1 − ẑ |ẑ|n−1) − βy2( |z|n − |ẑ|n) ] (4.64)

For n = 1,

z̃ ˙̃z = −γ |y2| z̃2 − βy2z̃ ( |z| − |ẑ| ) ≤ −( γ − |β| ) |y2| z̃2 ≤ 0 (4.65)

Finally, the derivative Lyapunov function becomes:

V̇ = e1ė1 + e2ė2 + z̃ ˙̃z

= − 1
m

[(Φ̄ + Δ1y2)|e2| − (Φ + Δ1y2)e2 + F |e2| − fge2] − h1e
2
1 − h2e

2
2 − ( γ − |β| ) |y2| z̃2 ≤ 0

Therefore, stability of the closed-loop system is ensured.
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Numerical Results

From equation (4.59) the following control law is employed:

v =
−(c + δa + Δ1 − mh1)y2 − ky1 − fbf + (Δ0 + Δ1Dv + F )sgn(e2) − αaẑ + me1

αbẑ + δby2 + αbe2
(4.66)

with γ = β = 3 × 102 m−1, A = 120, αa = 4.5 × 104, αb = 3.6 × 104, δa = 3 × 102 kNs/m, δb =
1.8× 102 kNs/m, Δ0 = 2.87× 102 kN , Δ1 = 1.63× 103 kNs/m, Dv = 0.32, F = 1.45× 103 kN ,
h1 = 1.5 and h2 = 86.3.

Both passive (pure base isolation) and hybrid case (base isolation plus semiactive control) are
studied in the presence of the Taft earthquake. From figure 4.5 it is seen that by using the
backstepping controller, peak vibrations are more reduced than with the MR damper in on
state (passive on). It is also seen that the absolute displacement of the base has been significant
reduced by using the semiactive controller such that the base isolator can work safely within its
elastic region and the structural acceleration has been kept small so that the human comfort
is guaranteed. On other hand figure 4.8(a) gives the control force supplied by the MR damper
during the seismic excitation, while figure 4.8(b) shows the hysteretic behavior of MR damper.

A semiactive backstepping control scheme has been proposed for the vibration attenuation of
civil engineering structures. In the control design, frictional nonlinearity of the base isolator and
hysteretic dynamics of the semiactive MR damper have been taken into account. In this way,
the control system has a better performance in real operation conditions. The peak response of
the absolute movements of the base and main structure has been significantly reduced by using
the hybrid control scheme as compared with the purely passive controlled case.

Figure 4.5: Peak Vibrations Profiles a). Displacement b). Velocity c).Acceleration
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Figure 4.6: Absolute displacement of the 1st floor

Figure 4.7: Absolute displacement of the 10th floor

(a) Force (b) Hysteretic behaviour

Figure 4.8: MR damper dynamics
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4.1.3 Control Configuration 3

Consider the same 10-story base isolated building of figure 4.1, but now actively controlled at
the base level. The main purpose of using an active controller is to reduce the peak response of
the absolute base displacement and to attenuate the dependence of structural performance on
the resonance frequency of the base isolator.

QFT Controller Design

The QFT controller design is made by doing the next considerations. i) The stiffness at the base
is an uncertain parameter and its value varies between [0.97 1.03]*k0N , where k0N is the nominal
value of k0. Consequently, c0 is also uncertain and takes the value of c0 = 2ξ

√
k0m. ii). The

earthquake acceleration is considered as uncertain but bounded; i.e., |f(t)| ≤ F for all t ≥ 0.
iii). Only local measurements of displacement and velocity are available, which contain a noise
percentage of 5%. The design conditions for the QFT controller are: i) The displacement at the
base be less than 0.03 m for the uncertain but bounded disturbance and ii) The displacement
be less than 0.01 m for a measurement with 5% of white noise. For design purposes the motion
equation of the base is represented in the following Laplace form:

qc(s) =
1

m0s
2 + c0s + k0

[−(sc1 + k1)(qc(s) − qr1(s)) + f(s) − u(s)] (4.67)

Since the relative movement between the base and the first floor is very small with respect
to the absolute movement of the base, the term is neglected to simplify the design procedure.
According to the LTI structure presented in figure 3.9, the plant is described by:

P (s) =
1

m0s2 + c0s + k0
(4.68)

The problem is reduced to design a QFT controller G for a SISO LTI system, in the presence of
uncertain parameters k0 and c0 in the plant, disturbance f at the input of the plant and noise
N in the measurement. Then, the equation of the system in close loop is expressed as:

qr =
P

1 + PG
f − PG

1 + PG
N (4.69)

And the frequencial specifications are formulated as:∣∣∣∣ P

1 + PG

∣∣∣∣ =
∣∣∣∣qr(jω)
f(jω)

∣∣∣∣ ≤ Ws3

∣∣∣∣ PG

1 + PG

∣∣∣∣ =
∣∣∣∣ qr(jω)
N(jω)

∣∣∣∣ ≤ Ws1

Disturbance Rejection Robust Stability
(4.70)

The mass of each floor, including that of the base m0, is 6 × 105 kg. The stiffness of the base
is 1.184 × 107 N/m and its damping ratio is 0.1. The stiffness of the structure varies in 5 × 107

N/m between floors, from 9×108 N/m the first one to 4.5×108 N/m the top one with damping
ratio 0.05. In the simulation, the seismic excitation has been that of the El Centro (1940)
earthquake. For the QFT design the bounds are Ws1 = 4 and Ws3 = 3.4 × 10−3 for all the
working frequencies. Concretely, the frequencies studied are [1.31 5.49 9.55 15.21 18.56 24.74
27.23 33.63 37.04 41.63 43.84] (rad/s), where resonance frequencies of the structure are included.
QFT controller design is done by using the MATLAB QFT toolbox. For the Loop Shaping step
the final loop for LN obtained on the Nichols chart is that shown in figure 4.9(a), while figure
4.9(b) presents the frequency analysis for the specification Ws1 . The transfer function G for the
controller resulting from LN is:

G(s) = 0.0882
1467s2 + 636.84s + 1
0.0352s2 + 2.167s + 1

(4.71)
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El Centro earthquake acceleration was applied to validate the QFT controller. Figure 4.10 shows
that the absolute displacement, velocity and acceleration have been attenuated at the base and
all floors, with respect to the purely passive case.

(a) Final loop LN (b) Analysis of Ws1

Figure 4.9: QFT controller design

Figure 4.10: Absolute peak values profiles of a). displacement b). Velocity c). Acceleration

4.2 Structural System B: Structure Uncertainly Excited by Tem-
porary Coupling

Consider the problem of active control of an elastically suspended bridge with crossing vehicles
as shown in Figure 4.11. The bridge section consists of a rigid platform with elastic mounts on
the left-hand and right-hand sides. The main variables to be measured are the vertical devi-
ation z of the center of mass of the bridge and the inclination Θ with respect to the horizon
of the bridge platform. Vibration of the bridge is produced when a truck crosses the bridge
with velocity v(t) within a time interval [t0, tf ]. Without the loss of generality, t0 is set to zero
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and tf denotes the final time of interaction between the structure and the truck. The truck
is modelled by a mass m with an elastic suspension of damping c and stiffness k. Additional
variables ξ, η and ζ are chosen according to Figure 4.11. The mass of the platform is given
by M , and the moment of inertia with respect to C by the parameter J . The active control is
implemented by two actuators located between the ground and the bridge at the left and the
right ends respectively. The actuators A1 and A2 supply vertical control forces Mu1 and Mu2

which complement the resistant passive forces F1 and F2 given by the elastic supports. u1 and
u2 are the control variables. The objective is to attenuate the vibration of the bridge induced
by the crossing vehicle by using active forces Mu1 and Mu2.

When the truck is not in the bridge (for t < 0 and t > tf ), the equation of motion of the
truck is m η̈ = k η0 − m g, where η0 is the position of relaxed suspension. When t ∈ [0, tf ], the
truck is crossing the bridge. Assume that the declination angle Θ is small, then the dynamic
motion of the truck is described by the following equation⎧⎪⎨

⎪⎩
mη̈ = F − mg

F : = k[η0 − (η + ζ)] − c(η̇ + ζ̇)
ζ : = z + (ξ − a)Θ

(4.72)

Figure 4.11: Actively controlled bridge platform with crossing vehicle

For t < 0 the bridge is in a steady state. For t ∈ [0, tf ], the dynamic behavior of the bridge
is described by the following equations of motion:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Mz̈ := M g + F − F1 − F2 − Mu1 − Mu2

JΘ̈ := (ξ − a)F + aF1 − bF2 + aMu1 − bMu2

F := k[η0 − (η + ζ)] − c(η̇ + ζ̇)
F1 := k1(−z1,0 + z − aΘ) + c1(ż − aΘ̇)
F2 := k2(−z2,0 + z + bΘ) + c2(ż + bΘ̇)

(4.73)

where z1,0 and z2,0 represent the vertical positions of relaxed left-hand and right-hand suspen-
sion, respectively.
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We consider the bridge as the main system and the truck as the attached uncertain sub-
system. The space state variables are split into the measurable ones, x := (z, Θ, ż, Θ̇)T , and
the unmeasurable ones y := (η, η̇)T . u := (u1, u2)T are control signals. The uncertain coupling
between the bridge and the truck is due to the scalar force F . When the truck has left the
bridge for t > tf , the two systems are obviously decoupled with F = 0 and then the equations
of motion of the bridge are{

M z̈ = M g − F1 − F2 − Mu1 − Mu2,

J Θ̈ = aF1 − bF2 + aMu1 − bMu2.
(4.74)

In the above models, consider that the structural parameters of the bridge (M , J , c1, c2, k1,
k2) are known, while the parameters related to the truck (m, c, k, η0, ξ, v) are assumed to be
uncertain but bounded; i.e.,

k

m
= ω0 + Δω with |Δω| ≤ ω̄

c

m
= σ0 + Δσ with |Δσ| ≤ σ̄ |v(t)| ≤ v̄

k

M
= Ω with Ω ≤ Ω̄

c

M
= Υ withΥ ≤ Ῡ |η0| ≤ η̄0

where ω0 and σ0 are known nominal values and ω̄, σ̄, Ω̄, Ῡ, η̄0 and v̄ are known bounds. Finally
the equations of motion (4.72) and (4.73) can be rewritten into the following form:{

ẋ = Acx + Bu + g(x,y, t),
ẏ = Ary + f(x,y, t)

(4.75)

where the parameters of the matrices Ac, B and Ar are known. The functions g and f include
the uncertain coupling effects.

Ac =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0
0 0 0 1

−k1 + k2

M

ak1 − bk2

M
−c1 + c2

M

ac1 − bc2

M
ak1 − bk2

J
−a2k1 + b2k2

J

ac1 − bc2

J
−a2c1 + b2c2

J

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.76)

B =

⎛
⎜⎜⎜⎜⎝

0 0
0 0
−1 −1
aM

J
−bM

J

⎞
⎟⎟⎟⎟⎠ , and g =

⎛
⎜⎜⎜⎝

0
0
g3

g4

⎞
⎟⎟⎟⎠ (4.77)

Here for t ∈ [0, tf ]:

g3(x,y, t) := − k

M
z − 1

M
[k(ξ(t) − a) + cv]Θ − c

M
ż − c

M
(ξ(t) − a)Θ̇ − k

M
η − c

M
η̇ +

k

M
η0

+
k1

M
z1,0 +

k2

M
z2,0 + g (4.78)

g4(x,y, t) := − k

J
(ξ(t) − a)z − 1

J
[k(ξ(t) − a)2 + cv(ξ(t) − a)]Θ − c

J
(ξ(t) − a)ż − c

J
(ξ(t) − a)2Θ̇

− k

J
(ξ(t) − a)η − c

J
(ξ(t) − a)η̇ +

k

J
(ξ(t) − a)η0 − ak1

J
z1,0 +

bk2

J
z2,0 (4.79)

while, for t > tf ,

g3 :=
k1

M
z1,0 +

k2

M
z2,0 + g g4 := −ak1

J
z1,0 +

bk2

J
z2,0 (4.80)
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Ar :=

(
0 1

−ω0 −σ0

)
f(x,y, t) :=

(
0
f2

)
(4.81)

For t ∈ [0, tf ],

f2 = − k

m
z − 1

m
[k(ξ(t) − a) + cv]Θ − c

m
ż − c

m
(ξ(t) − a)Θ̇ − Δωη − Δση̇ +

k

m
η0 − g (4.82)

and for t > tf ,

f2 = −Δωη − Δση̇ +
k

m
η0 − g (4.83)

Denote e = (e1, e2)T

ei(x,y, t) = ei,1(t)z + ei,2(t)Θ + ei,3(t)ż + ei,4(t)Θ̇ + ei,5(t)η + ei,6(t)η̇ + ei,7(t) (4.84)

Now, it can be verified that Ac and Ar are stable matrices and the function e(x,y, ·) is con-
tinuous for all t except a set {0, tf} and there exist known non-negative scalars αc

i , αr
i , δi, such

that, for all x,y and t, one has

g = [B1 , B2 ] [ e1 , e2 ]T (4.85)

where

B1 =

⎛
⎜⎜⎜⎜⎝

0
0
−1
aM

J

⎞
⎟⎟⎟⎟⎠ , B2 =

⎛
⎜⎜⎜⎜⎝

0
0
−1

−bM

J

⎞
⎟⎟⎟⎟⎠ (4.86)

and
‖ei(x,y, t)‖ ≤ αc

i‖x‖ + αr
i ‖y‖ + δi (4.87)

with

αc
i =

√
α2

1 + α2
2 + α2

3 + α2
4 αr

i =
√

α2
5 + α2

6 δi = α7 (4.88)

where

α1 = Ω̄ α3 = Ῡ α5 = Ω̄ α6 = Ῡ

α2 =

⎧⎪⎪⎨
⎪⎪⎩

1
(a + b)

(
Ω̄a2 + (aΩ̄ + Ῡv̄)a + aῩv̄

)
, if a ≥ b

1
(a + b)

(
Ω̄b2 + (bΩ̄ + Ῡv̄)b + bῩv̄

)
, if a < b

α4 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2a2

(a + b)
Ῡ, if a ≥ b

2b2

(a + b)
Ῡ, if a < b

α7 = max
{

1
(a + b)

[
Ω̄(a + b)η̄0 +

(a + b)k1z1,0 + g

M

]
,

1
(a + b)

[
Ω̄(a + b)η̄0 +

(a + b)k2z2,0 + ag

M

]}

Indeed, solving the linear system g = Be, it is easy to get that e = (e1, e2)T , where

e1 =
−bMgc,3 + Jgc,4

(a + b)M
; e2 = −aMgc,3 + Jgc,4

(a + b)M
(4.89)
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4.2.1 Controller Design

The objective of active control is to attenuate the vibration of the bridge induced by a crossing
truck through the uncertain coupling between the dynamics of the bridge and the truck. The
controller design should only consider the feedback information of the bridge, while that of the
truck is considered unknown. By taking into account this control challenge, two active controllers
are designed, the first one is based on the Lyapunov stability theory, while the second on the
Sliding Mode Control theory.

Controller 1

Define a candidate Lyapunov function:

V (xxx) =
1
2
xxxT (t)PPPxxx(t) (4.90)

By using equation (4.75), the derivative of V(xxx) is obtained

V̇ (xxx) = xxxT PBPBPB1u1 + xxxT PBPBPB2u2 + xxxT PBPBPB1e1 + xxxT PBPBPB2e2 − 1
2
xxxT QQQxxx ≤ H(xxx, uuu) + H(yyy)(4.91)

where

H(yyy) =: (αr
1||xxxT PBPBPB1|| + αr

2||xxxT PBPBPB2||) · ||yyy|| (4.92)

and

H(xxx, uuu) =: H1(xxx, uuu1) + H2(xxx, uuu2) − 1
2
xxxT QQQxxx (4.93)

where

Hi(xxx, uuui) = δi||xxxT PBPBPBi|| + αc
i ||xxxT PBPBPBi|| · ||xxx|| + xxxT PBPBPBiui (4.94)

Since the state variable yyy(t) of the coupled uncertain subsystem (the truck) is usually not
measurable, the objective of control is to minimize the V̇ (xxx) by making the H(xxx, uuu) < 0. Denote
uuud

i (t) as the “desired” control signal (without taking into account the actuator dynamics). Then
the following “desired ” control law will be used to minimize the equation (4.94):

uuud
i = −kkkc

ixxx − (δi + αc
i ||xxx||)sgn(xxxT PBPBPBi) ; kkkc

i =
1
4
BBBT

i PPP (4.95)

It is easy to verify that H(xxx, uuu) < 0 is accomplished. In practice, the continuous approximation
is used for the control law (4.115) to attenuate the high-frequency chattering

sgn(·) =⇒ (·)
|(·)| + γ

(4.96)

where 0 < γ < 1. Thus, the corresponding continuous “desired” control law is

uuud
i = −kkkc

ixxx − (δi + αc
i ||xxx||)

xxxT PBPBPBi

|xxxT PBPBPBi| + γi
(4.97)

Now, assume that a hydraulic actuator is used for the implementation of the control action
generated by the “desired” controllers (4.115) or (4.117). The dynamic behavior of the hydraulic
actuator is described by the following equation ([33]):

vi(t) = Pvi u̇i(t) + Pliui(t) + Pai ż(t), i = 1, 2 (4.98)
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where

Pvi =
Cvi

4βiPai

, Pli =
Cli

Pai

, Pai > 0 (4.99)

The equation (4.98) represents the internal dynamics of a hydraulic actuator’s chamber, with
ui(t) being the average output actuator force, vi(t) the total fluid flow rate of the actuator’s
chamber, Pai the actuator effective piston’s area, Cvi the chamber’s volume, βi the bulk modulus
of the hydraulic fluid, Cli the coefficient of leakage and żi(t) the velocity of the piston.

Denote ũuu(t) as the tracking error between the “real” control action uuu(t) and the “desired”
control action uuud(t); i.e.,

ũuu(t) = uuu(t) − uuud(t) (4.100)

By taking into account the actuator dynamics, the control force to be applied to the bridge
platform take the form

vi(t) = Pvi u̇
d
i (t) + Pliu

d
i (t) + Pai ż(t), i = 1, 2 (4.101)

Define a new Lyapunov function candidate V (xxx, ũuu)

V (xxx, ũuu) = V1(xxx) + V2(ũuu) (4.102)

with

V1(xxx) =
1
2
xxxT PPPxxx V2(ũuu) =

1
2
ũuuT PPP−1

l PPP vũuu (4.103)

where
PPP l = diag(Pl1 , Pl2) and PPP v = diag(Pv1 , Pv2)

The controller design is made through the minimization of the derivative of a Lyapunov function
candidate. From the eqn.(4.100)

uuu(t) = uuud(t) + ũuu(t) (4.104)

Then, the derivative of V (xxx, ũuu) is obtained as follows by using eqns. (4.115), (4.98) and (4.100):

V̇ (xxx, ũuu) ≤ H(xxx, uuu, ũuu) + H(yyy) (4.105)

where

H(xxx, uuu, ũuu) =: H(xxx, uuu) − ũuuT ũuu − 1
4
xxxT PBBPBBPBBT PxPxPx + xxxT PBPBPBũuu

= H(xxx, uuu) − (ũuu − 1
2
xxxT PBPBPB)T (ũuu − 1

2
xxxT PBPBPB) ≤ H(xxx, uuu) < 0 (4.106)

Therefore, the “real” control action uuu(t) (taking into account the actuator dynamics) can
minimize the derivative of Lyapunov function V̇ (xxx, ũuu) by making H(xxx, uuu, ũuu) < 0, which is similar
to the case when a “desired” control action uuud(t) (without taking into account the actuator
dynamics) is applied to the bridge platform.
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Controller 2

Define a sliding function as follows

σσσ(t) = DxDxDx(t) with σi(t) = dddT
i xxx(t) (i = 1, 2) (4.107)

where DDD = [ddd1, ddd2]T ∈ IR 2×4 is a matrix to be chosen by the designer in order to guarantee the
asymptotic stability of the closed-loop system in sliding mode

ẋxx(t) =
[
III4 − BBBc(DBDBDBc)−1DDD

]
AAAcxxx(t) (4.108)

For the system (4.75), a simple choice for DDD is

DDD =

(
1 0 1 0
0 1 0 1

)
(4.109)

Consequently, the following two sliding functions are defined

σ1(t) = ż(t) + z(t); σ2(t) = Θ̇(t) + Θ(t) (4.110)

In order to design the sliding mode controller, define a Lyapunov function candidate:

V (σσσ) =
1
2
σσσT (t)σσσ(t) (4.111)

The derivative of the Lyapunov function is obtained as follows:

V̇ (σσσ) = σσσT σ̇σσ = σσσT [DADADAcxxx + DBDBDBcuuu + DBDBDBceee(xxx, yyy, t)] ≤ H(xxx, uuu) + H(yyy) (4.112)

where

H(xxx, uuu) =: σσσT {DADADAcxxx + DBDBDBcuuu} + ||σσσT || · ||DBDBDBc|| · {δc + αc
c||xxx||} (4.113)

H(yyy) =: αr
c ||σσσT || · ||DBDBDBc|| · ||yyy|| (4.114)

Since yyy(t) is usually not measurable, the objective of the sliding mode control is to minimize
σ by making negative V̇ (σσσ) and explicitly H(xxx, uuu) < 0. If we denote uuud(t) as the “desired”
control signal (without taking into account the actuator dynamics), then the following “desired
” sliding mode control law will be used for the generation of sliding motion:

uuud = −kkkcxxx − (DBDBDBc)−1{ψ0 + ψ1|z| + ψ2|Θ| + ψ3|ż| + ψ4|Θ̇|} [sgn (σ1) , sgn (σ2)]
T(4.115)

where

kkkc =
1
4
DBDBDBcDDD + (DBDBDBc)−1DADADAc; and ψi >

√
2αi||DBDBDBc||; i = 1, 2, 3, 4 (4.116)

It is easy to verify that if the controller gains are chosen to accomplish the relationships
eqns.(4.116)) then H(xxx, uuu) < 0. Approximating the control law (4.115) to attenuate the high-
frequency chattering, the corresponding continuous “desired” sliding mode control law is

uuud = −kkkcxxx − (DBDBDBc)−1{ψ0 + ψ1|z| + ψ2|Θ| + ψ3|ż| + ψ4|Θ̇|}
[

σ1

|σ1| + γ1
,

σ2

|σ2| + γ2

]T

(4.117)

By including the actuator dynamics of the hydraulic device and applying the control force
vvv(t) = [v1(t), v2(t)]T (4.98) to the bridge platform a new Lyapunov function candidate V (σσσ, ũuu)
is defined as

V (σσσ, ũuu) = V1(σσσ) + V2(ũuu); V1 =
1
2
σσσT σσσ; V2(ũuu) =

1
2
P−1

l Pvũuu
T ũuu (4.118)
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Then a derivative of V (σσσ, ũuu) is obtained as:

V̇ (σσσ, ũuu) ≤ H(xxx, uuu, ũuu) + H(yyy) (4.119)

where

H(xxx, uuu, ũuu) =: H(xxx, uuu) − 1
4
σσσT BBBT

c DDDT DBDBDBcσσσ + σσσT DBDBDBcũuu − ũuuT ũuu

= H(xxx, uuu) − (ũuu − 1
2
DBDBDBcσσσ)T (ũuu − 1

2
DBDBDBcσσσ) ≤ H(xxx, uuu) < 0 (4.120)

Therefore, the “real” control action uuu(t) (taking into account the actuator dynamics) can min-
imize the derivative of Lyapunov function V̇ (σσσ, ũuu) by making H(xxx, uuu, ũuu) < 0, which is similar
to the case when a “desired” control action uuud(t) (without taking into account the actuator
dynamics) is applied to the bridge platform.

4.2.2 Numerical Results

An actively suspended bridge platform is considered as the main system and the excitation is
induced by a truck when it crosses the bridge. The platform is excited by the crossing of the
truck for time t ∈ [0, 6] seconds, and after t = 6 seconds no excitation is evolved between the
platform and the truck.

The following parameters are used for the numerical simulation:
Nominal parameters and bounds for uncertainties: η̄0 = 1 [m], ω0 = 40 [N/(m kg)], ω̄ = 20
[N/(m kg)], σ0 = 1 [Ns/(m Kg)], σ̄ = 5 [Ns/(m Kg)], Ω̄ = 5 [N/(m kg)], Ῡ = 0.5 [Ns/(m Kg)],
v̄ = 8.33 [m/s] (v̄ = 30 [km/h]), k0 = 4 · 105 [N/m], c0 = 104 [Ns/m].
Bridge: M = 105 Kg, J = 2 · 107 Kg m2, a = b = 25 m, ki = 4 · 106 N/m and ci = 4 · 104 N s/m
for each i = 1, 2. z1,0 = z2,0 = −0.125 m, which correspond to the equilibrium position for the
platform without truck and no control.
Truck: The parameters of the truck, which are unknown for the controller design, are the
following: m = 104 Kg, v = 8.33 m/s (= 30 Km/h), k = 4 · 105 N/m, c = 104 N s/m, η0 = 0.75
m.
Hydraulic Actuator: The parameters of the hydraulic actuator are the following: Pa = 2.4×10−2,
Pv = 3.57 × 103 and Pl = 1.99 × 10−5.
With the above parameters, we obtain: ααα = [ 5 , 129.165 , 0.5 , 12.5 , 5 , 0.5 , 500.0025 ]T

The Lyapunov control law obtained in equations (4.101) and (4.117) has been numerically
implemented. The time history of structural vibration of the bridge platform for the uncontrolled
case (dash line) and the controlled case (solid line) are shown in figures 4.12 to 4.19. Concretely,
figures 4.12 and 4.13 show the main effect of the control, which is to add damping to the bridge
platform. Without control, the platform has very low damping, thus exhibiting a highly oscil-
latory response. The damping coefficients of the two end supports are c1 = c2 = 4 × 104 N
s/m, which corresponds to a damping factor of 4.5% approximately. The control modifies this
behavior, forcing a practically overdamped response. It is seen how the vertical deflection z of
the center of mass of the platform evolves slowly but smoothly towards its equilibrium position
with the truck. After t = 6 seconds the excitation disappears and the platform deflection evolves
to recover the initial equilibrium position. Figures 4.14 and 4.15 show that the inclination Θ of
the bridge has not been significantly improved because the linear control. Figures 4.16 and 4.17
show the dynamic of the truck. Finally, in figures 4.18 and 4.19 the control signals u1 and u2

are displayed, which are feasible for practical actuators.
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Figure 4.12: Vertical displacement of the bridge

Figure 4.13: Vertical velocity of the bridge

Figure 4.14: Inclination of the bridge

Figure 4.15: Inclination velocity of the bridge

Figure 4.16: Vertical vibration of the truck

Figure 4.17: Vertical velocity of the truck
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Figure 4.18: Control force of the 1st actuator

Figure 4.19: Control force of the 2nd actuator

Figure 4.20: Vertical vibration of the bridge

Figure 4.21: Inclination of the bridge

Figure 4.22: Control force of the 1st actuator

Figure 4.23: Control force of the 2nd actuator
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In the sliding mode controller design The matrix DDD is chosen as

DDD =

(
1 0 1 0
0 1 0 1

)
,

in order to have a reasonable trade-off between performance and control effort and the controller
gains are chosen as follows : Ψ = (ψ0, ψ1, ψ2, ψ3, ψ4)T = (1 × 10−3, 10, 258.33, 1, 25)T

Figures 4.20 to 4.23 show the dynamic behaviour of the controlled and uncontrolled structure.
It is seen how the vertical deflection z of the center of mass of the platform evolves slowly but
smoothly towards its equilibrium position with the truck (z = 0.125m). After t = 6 seconds
the excitation disappears and the platform deflection evolves to recover the initial equilibrium
position. Figure 4.21 shows that the inclination Θ of the bridge has been significantly improved.
Figures 4.22 and 4.23 display the control signals u1 and u2, which are feasible for practical
actuators too.

Two active control schemes, Lyapunov based controller and sliding mode controller, have
been numerically verified. It has been shown that vibration attenuation of a main system excited
by an temporarily coupled uncertain subsystem has been achieved, while actuator dynamics
(time delay and friction force) have been adequately taken into account in order to have a
control design closer to the real operation conditions of the hydraulic actuator.

4.3 Structural System C: Full Scale Two-Span Bridge

Consider a two-span bridge supported by three columns. At each of the three joints between
the columns and the superstructure, can exist active or semiactive control systems as illustrated
in Figure 4.24.

Figure 4.24: Example of a bridge prototype section with controllable friction devices (CFD) and elas-
tomeric bearings.

A finite element model is available to describe the dynamic behavior of the bridge [14].
Initially, the model has 3 degrees of freedom (DOF) in the directions (x, y, z) at each node. Figure
4.25 shows the model configuration for half of the bridge. In this case, we study the dynamic
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behavior of the beam structure in the transversal direction x only, where the seismic excitation
and the control forces are applied. After a model reduction by using static condensation, the
dynamic behavior of the beam structure and the supports is reasonably represented by the
displacements of the 10 nodes that are highlighted in figure 4.25. Their equation of motion is
the following:

MMMẍxx + CCCẋxx + KxKxKx = FFF , (4.121)

where xxx = [x1 , x2 , · · · , x10 ]T ∈ IR n represents the transversal displacements of each node.

The vector FFF ∈ IR n describes the external excitation force, such as a seismic action. MMM , CCC and
KKK ∈ IR 10×10 are the positive definite mass, damping and stiffness matrices, respectively, with

MMM = diag( [m1 m2 . . . m10] )

The damping matrix has been obtained with the Rayleigh-damping relation CCC = αMMM + βKKK, α
and β being positive constants. The following are the numerical values for MMM , and KKK

MMM = diag([0.6677, 1.7238, 0.2369, 0.6940, 0.4658, 1.3524, 0.4809, 1.7238, 0.2329, 0.3470]×104 Kg,

KKK=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.676 −0.028 −0.470 −0.581 0.135 0.056 0.224 −0.058 −0.001 −0.037
−0.028 0.815 0.012 −0.158 0.172 −0.056 0.055 −0.020 0.002 −0.006
−0.470 0.012 0.531 0.178 −0.279 0.178 −0.139 0.056 −0.008 0.016
−0.581 −0.158 0.178 1.741 −0.688 −1.023 0.085 −0.095 0.094 0.194
0.135 0.172 −0.279 −0.688 1.091 0.093 −0.484 0.108 0.038 0.095
0.056 −0.056 0.178 −1.023 0.093 2.460 −0.831 −0.310 0.082 −1.015
0.224 0.055 −0.139 0.085 −0.484 −0.831 1.550 0.282 −0.473 0.074
−0.058 −0.020 0.056 −0.095 0.108 −0.310 0.282 1.052 0.104 −0.091
−0.001 0.002 −0.008 0.094 0.038 0.082 −0.473 0.104 0.583 −0.314
−0.037 −0.006 0.016 0.194 0.095 −1.015 0.074 −0.091 −0.314 0.986

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×109N/m.

The damping matrix CCC is obtained with the Rayleigh-damping relation with α=0.52075 and
β=0.00325.

Figure 4.25: Finite element scheme of half of the bridge.

The nodes where the control devices are placed, will be referred as the controlled nodes,
since they are the only nodes directly influenced by the friction devices. The following equations



52 4. Structural Control Approaches

are used to describe the dynamics of the controlled nodes:

ẍ1 = − 1
m1

[c1,3(ẋ1 + ẋ3) + f1,3 + k1,3(x1 − x3) + m1ẍg] (4.122)

ẍ2 = − 1
m2

[c2,5(ẋ2 − ẋ5) + f2,5 + k2,5(x2 − x5) + m2ẍg] (4.123)

ẍ3 = − 1
m3

[c1,3(ẋ3 − ẋ1) − f1,3 + k3,1(x3 − x1) + c3,4(ẋ3 − ẋ4) + k3,4(x3 − x4) + c3,7(ẋ3 − ẋ7)

+k3,7(x3 − x7) + c3,8(ẋ3 − ẋ8) + k3,8(x3 − x8) + m3ẍg] (4.124)

ẍ5 = − 1
m5

[c2,5(ẋ2 − ẋ2) − f2,5 + k5,2(x5 − x2) + c5,4(ẋ5 − ẋ4) + k5,4(x5 − x4) + c5,6(ẋ5 − ẋ6)

+k5,6(x5 − x6) + c5,8(ẋ5 − ẋ8) + k5,8(x5 − x8) + c5,9(ẋ5 − ẋ9) + k5,9(x5 − x9)
+c5,10(ẋ5 − ẋ10) + k5,10(x5 − x10) − m5ẍg] (4.125)

where ẍg(t) is the ground acceleration. The above equations are extracted from the model
(4.121) and augmented with the functions f1,3 and f2,5, which represent the friction forces be-
tween the corresponding nodes due to the controllable friction devices.

4.3.1 Control Configuration 1

The first control configuration uses Controllable Friction Devices (CFD) put in parallel to elas-
tomeric bearings at each controlled nodes. Such control devices are semiactive because friction
force can be controlled by means of a small energy source, and additional energy is not delivered
to the structure. It is assumed that the friction forces supplied by the CFD devices have the
following form:

fi,j(ẋi, ẋj , t) = γi,j(t) (ẋi − ẋj); i = 1, 3; j = 2, 5 , (4.126)

where γi,j(t) are time functions which describe on-line controlled modifications of the damping
characteristics of the devices. It is assumed that these functions can take any value within
prescribed bounds such that

c∗i,j + γi,j = c∗i,j + [0, δi,j ] ∈
[
c−i,j , c+

i,j

]
; {i, j} = {(1, 3), (2, 5)}) (4.127)

where ci,j
± are known constants (prescribed bounds). They define extreme allowable values for

the total effective damping between nodes, where

c∗i,j =
c+
i,j + c−i,j

2
and δi,j =

c+
i,j − c−i,j

2
. (4.128)

Now consider that each friction device has a control actuator driven by a control signal ui,j and
assume that there is a first order time lag, such that the following model is adopted to relate
the control signal ui,j and the damping signal γi,j :

ui,j(t) =
1

δi,j
{τi,j γ̇i,j(t) + γi,j(t)} , (4.129)

where τi,j is a time constant. Then, the effective control forces (4.126) supplied by the friction
devices can be written in the form

φi,j(ẋi, ẋj , t) = δi,jui,j (ẋi − ẋj) − τi,j γ̇i,j(ẋi − ẋj) (4.130)
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By substituting the expression (4.130) for the pairs of nodes (1, 3) and (2, 5) into their
equations of motion (4.125), the following equations are obtained:

ẍ1 = − 1
m1

[(c1,3 + δ1,3u1,3 − τ1,3γ̇1,3) (ẋ1 − ẋ3) + k1,3(x1 − x3) + m1ẍg]

ẍ2 = − 1
m2

[(c2,5 + δ2,5u2,5 − τ2,5γ̇2,5) (ẋ2 − ẋ5) + k2,5(x2 − x5) − m2ẍg]

ẍ3 = − 1
m3

[(c1,3 + δ1,3u1,3 − τ1,3γ̇1,3) (ẋ3 − ẋ1) + k3,1(x3 − x1) + c3,4(ẋ3 − ẋ4) + k3,4(x3 − x4)

+c3,7(ẋ3 − ẋ7) + k3,7(x3 − x7) + c3,8(ẋ3 − ẋ8) + k3,8(x3 − x8) + m3ẍg]

ẍ5 = − 1
m5

[(c2,5 + δ2,5u2,5 − τ2,5γ̇2,5) (ẋ5 − ẋ2) + k5,2(x5 − x2) + c5,4(ẋ5 − ẋ4) + k5,4(x5 − x4)

+c5,6(ẋ5 − ẋ6) + k5,6(x5 − x6) + c5,8(ẋ5 − ẋ8) + k5,8(x5 − x8) + c5,9(ẋ5 − ẋ9)
+k5,9(x5 − x9) + c5,10(ẋ5 − ẋ10) + k5,10(x5 − x10) + m5ẍg]

Controller Design

The control objective is now to generate the signals ui,j through a feedback control law which
use information from the couples of nodes (1 − 3), (2 − 5). Two controllers have been designed
for this problem. The first controller is based on based on the Lyapunov stability theory and
the second one is based on the QFT approach.
Controller 1
Write the state space equation for the controlled nodes as follows:

żzz(t) = AzAzAz(t) + BBB(zzz, t)uuu(t) + CCC(zzz, t)ΥΥΥ(t) + EEE(zzz, t)zzzA(t) + FFF (t), (4.131)

where zzz(t) = [x1, x2, x3, x5, ẋ1, ẋ2, ẋ3, ẋ5]T , uuu(t) = [u1,3, u2,5]T , ΥΥΥ(t) = [γ̇1,3, γ̇2,5]T

zzzA(t) = [x4, x6, x7, x8, x9, x10, ẋ4, ẋ6, ẋ7, ẋ8, ẋ9, ẋ10]T

and

BBB(zzz, t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0(4, 1) c0(4, 1)
δ1,3(ẋ3 − ẋ1)

m1
0

0
δ2,5(ẋ5 − ẋ2)

m2

−δ1,3(ẋ3 − ẋ1)
m3

0

0 −δ2,5(ẋ5 − ẋ2)
m5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

AAA =

(
0(4, 4) 1(4, 4)

M−1
1 K1 M−1

1 C1

)

CCC(zzz, t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0(4,1) 0(4,1)

−τ1,3(ẋ3 − ẋ1)
m1

0

0 −τ2,5(ẋ5 − ẋ2)
m2

τ1,3(ẋ3 − ẋ1)
m3

0

0
τ2,5(ẋ5 − ẋ2)

m5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

FFF (zzz, t) =

⎡
⎢⎢⎢⎢⎢⎣

0(4, 1)
1/m1

1/m2

1/m3

1/m5

⎤
⎥⎥⎥⎥⎥⎦ ẍg(t)

The matrix EEE(zzz, t) ∈ IR 8×12 is not explicitly written for the sake of brevity.
Define the Lyapunov function candidate

V (zzz, t) =
1
2
zzzT (t)PzPzPz(t) , (4.132)
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By using equation (4.131), the derivative of V (zzz, t) is obtained:

V̇ (zzz, t) = −1
2
zzzT QzQzQz + zzzT PFPFPF + zzzT PbPbPb1,3(zzz)u1,3 + zzzT PbPbPb2,5(zzz)u2,5 + zzzT PcPcPc1,3(zzz)γ̇1,3+

zzzT PcPcPc2,5(zzz)γ̇2,5 + zzzT PEPEPEzzzA

(4.133)

where b1,3 and b2,5 correspond to the first an second column of BBB, respectively. Similarly, c1,3

and c2,5 correspond to the first an second column of CCC. By comparing terms between bi,j and
ci,j it is found that:

ccci,j = −τi,j

δi,j
bbbi,j = −Ti,jbbbi,j , for {i, j} = {(1, 3), (2, 5)} (4.134)

with Ti,j =
τi,j

δi,j

The control objective is to minimize V̇ (zzz, t) for every (zzz, t). The intuition underlying this
objective is to reduce the system response zzz by forcing the associated energy zzzT PPPzzz to be as
negative as possible. Then, the semiactive control signals that result in the minimum of V̇ (zzz, t)
for ui,j(t) are

ui,j = −sgn(zzzT PbPbPbi,j) , for {i, j} = {(1, 3), (2, 5)}. (4.135)

Stability Analysis

The analysis related to the negativeness of the time derivative of the Lyapunov function (4.132)
is as follows.
By substituting (4.134) and (4.135) into (4.133), we write

V̇ (zzz, t) = −1
2
zzzT QzQzQz − θ1,3(zzz, γ̇1,3) − θ2,5(zzz, γ̇2,5) + zzzT PEPEPEzzzA + zzzT PFPFPF . (4.136)

where

θ1,3(zzz, γ̇1,3) = zzzT PPPbbb1,3[sgn(zzzT PbPbPb1,3) + T1,3γ̇1,3] θ2,5(zzz, γ̇2,5) = zzzT PPPbbb2,5[sgn(zzzT PbPbPb2,5) + T2,5Δ̇2,5]

Let us analyze the sign of θ1,3 and θ2,5. Consider a time interval [t1, t2] where zzzT PPPbbb1,3 > 0.
Then, u1,3(t) = 1 for all t ∈ [t1, t2]. By solving the differential equation (4.129), we obtain

γ1,3(t) = −δ1,3[1 − e−(t−t1)/τ1,3 ], γ̇1,3(t) = − 1
T1,3

e−(t−t1)/τ1,3 ≥ − 1
T1,3

, ∀t ∈ [t1, t2], (4.137)

Then, we have that θ1,3(zzz, γ̇1,3) ≥ 0 for all t ∈ [t1, t2]. Consequently, it is proved that
θ1,3(zzz, γ̇1,3) ≥ 0 for all t ≥ 0. Following a similar reasoning, it can be proved that θ2,5(zzz, γ̇2,5) ≥ 0
for all t ≥ 0.

From the above analysis, it is concluded that the terms θ1,3 and θ2,5 reduce the time derivative
of the Lyapunov function in (4.133) except at particular time instants where θ1,3 = θ2,5 = 0.

Numerical Results

The seismic excitation has been that of the El Centro (1940) earthquake. The semiactive control
laws (4.135) have been used with the following matrix obtained by solving the Lyapunov equation
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(4.132), with QQQ being the identity matrix:

PPP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

258.4290 0.0000 −29.4716 −0.0000 0.3411 0.0000 0.1210 −0.0000
−0.0000 179.5009 −0.0000 32.3173 −0.0000 0.0842 −0.0000 0.0227
−29.4716 0.0000 116.4699 −0.0000 −0.3128 0.0000 −0.1209 −0.0000
0.0000 32.3173 0.0000 146.6417 −0.0000 0.1876 −0.0000 −0.0227
0.3411 −0.0000 −0.3128 −0.0000 0.0369 0.0000 0.0144 −0.0000
−0.0000 0.0842 −0.0000 0.1876 −0.0000 0.0117 −0.0000 −0.0017
0.1210 −0.0000 −0.1209 0.0000 0.0144 0.0000 0.0049 −0.0000
0.0000 0.0227 −0.0000 −0.0227 0.0000 −0.0017 0.0000 −0.0016

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The semiactive device is characterized by time constants τ1,3 = τ2,5 = 0.01 s, and δ1,3 = 7.6613×
105 Ns/m, δ2,5 = 2.8079 × 105 Ns/m.

Figures 4.26(a) to 4.27(b) show the time histories of the transversal displacements and veloc-
ities of the nodes 3 and 5 respectively, both for the uncontrolled case and for the case with the
semiactive control. We may observe a significant reduction in the response when the semiactive
controlled devices are in operation. Notice that these nodes are included in the state vector
zzz, whose reduction is the objective of the control design. The effective forces supplied by the
controllable friction devices at the nodes 3 and 5 (φ1,3 and φ2,5) are shown in Figures 4.29(a)
and 4.29(b). Although this study has not gone into the physical design of the devices, the level
of forces required to control the system seems to be feasible. It is also interesting to look at the
response of the nodes that are not in the control objective. Figures 4.28(a) and 4.28(b) show the
displacement and velocity of node 8, which is located in the middle between the two semiactive
controllers (see Figure 4.24). The displacement response obtained when the controllers are in
operation exhibits a significant reduction with respect to the uncontrolled one.

(a) displacement (b) Velocity

Figure 4.26: dynamics of node 3

(a) displacement (b) Velocity

Figure 4.27: dynamics of node 5
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(a) displacement (b) Velocity

Figure 4.28: dynamics of node 8

(a) φ1,3 (b) φ2,5

Figure 4.29: Control forces

Controller 2
The second controller is based on the QFT control theory. The control objective is to attenuate
structural vibrations when an uncertain but bounded seismic force Fg acts on the transversal
direction of the structure and stiffness and damping parameters are considered uncertain, varying
about 5% of their nominal value. A bounded noise signal is considered to be present in the
measurement of displacement.
Natural frequencies in the transversal direction presented in the structure are: [2.55 11.24 27.05
35.62 51.72 58.19 70.50 82.76 94.08 159.44] [Hz]. For simplicity of design, it is considered that
the nodes 1 and 2 behave as rigid bodies. Then, the nodes to be directly controlled corresponds
to those of the immediately upper side where the control devices are installed (nodes 3 and 5).
The dynamic behavior of the structure at the controlled nodes i = 3, 5, is rewritten as follows:

miẍi + ciẋi + kixi = miẍg − fi,j + fpdi
; i = 3, 5 (4.138)

with mi, ci, ki the mass, damping and stiffness of the node i respectively, xi the transversal
displacement at the node i, φi,j the control force applied at the node i and

f i
pd = ci2(ẋi− ẋ2)+ ci3(ẋi− ẋ3)+ . . .+ ci8(ẋi− ẋ8)+ki2(xi−x2)+ki3(xi−x3)+ . . .+ki8(xi−x8)

the force applied by the others nodes on the node i. cij and kij are respectively the damping
and stiffness between the node i and node j. For this case, we are going to consider that
the control device can develop a continuous friction force controlled by a continuous command
voltage ui,j , such that fi,j = ui,jδi,j(ẋi − ẋj). Thus the control force is limited to |fmax

i,j | =
umax

i,j δi,jmax(|ẋi − ẋj |).
From equation (4.138) the transfer function of the plants to be controlled are obtained as:

Pi,j(s) =
Xi(s)

fpdi
(s) − fi,j(s)

=
1

mis2 + cis + ki
(4.139)
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Local QFT controllers are designed for each plant. In the controller design, the uncertain but
bounded term fpdi

is not measurable and not directly controllable. Thus it is considered with
the unknown seismic force F0 as disturbance to the input of the plant. By using the QFT
MATLAB toolbox, the final nominal loops found are those shown in figures 4.30(a) and 4.30(b).
The controller functions Gi(s) derived for each control device (i=3,5) are respectively:

G1,3(s) =
161.1s2 + 162.1s + 1
0.0044s2 + 1.004s + 1

G2,5(s) = 0.99
151.6s2 + 152.6s + 1
0.01s2 + 1.01s + 1

(4.140)

Then the control commands are computed as: ui,j = Gi,jxi/(δi,j(ẋi − ẋj)) if (ẋi − ẋj) 
= 0,
sgn(Gi,jxi)=sgn(ẋi − ẋj) and 0 ≤ |Gi,jxi| < umax

i,j δi,j |(ẋi − ẋj)|, else ui,j = 0.

Numerical Results

El Centro earthquake acceleration was applied as disturbance signal. The control force developed
by the actuator at the node 3 is presented in figure 4.32, while figures 4.31(a) and 4.31(b)
show that the displacement and velocity at both controlled and uncontrolled nodes have been
attenuated.

(a) Controller 3 (b) Controller 5

Figure 4.30: Final loop shaping LN

Figure 4.32: Control force at the node 3.
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(a) Displacement (b) Velocities

Figure 4.31: Peak absolute vibration profiles

4.3.2 Control Configuration 2

The second control configuration consists of a hybrid control system. It is composed of a hys-
teretic passive isolator plus a MR damper installed at each joint between the column and the
superstructure, such as shown in figure 4.33. Identical control systems are installed at both
nodes. Here, the piers of the structure where the control system is supported, are considered
rigid bodies.

(a) Frontal View (b) DOF model

Figure 4.33: Full Scale Two-Span Bridge

By including the forces added by the new control configuration, we can rewrite the motion
equation for each controlled node (3 and 5), as follows:

ẍi = − 1
mi

[ciẋi + fpdi
+ Φi(ẋi, t) + miẍg + fci ] (4.141)
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with

Φi = Λikixi + (1 − Λi)Dikiz1 ż1 = D−1
i [−γ1|ẋi|z1|z1|n1−1 − β1ẋi|z1|n1 + A1ẋi]

fci(ẋi, t) = −δiẋi − αiz2 ż2 = −γ2|ẋi|z2|z2|n2−1 − β2ẋi|z2|n2 + A2ẋi]
fpdi

= cccdiΔẋΔẋΔẋdi + kkkdiΔxΔxΔxdi

(4.142)

The isolation scheme is modelled as a single degree of freedom system with mi, ci and ki

being the mass, damping and stiffness parameters of the controlled nodes, respectively. xi

represents the absolute transversal displacement at the ith node controlled. The restoring force
Φi characterizes the hysteretic behavior of the isolator, which usually consists of inelastic rubber
bearings. The dynamics of both isolator and MR damper is described by means of the so-called
Bouc-Wen model in the form of the equations (4.142). The restoring force is represented by the
superposition of an elastic component kixi and a hysteretic component (1 − Λi)Dikiz1, where
Di > 0 is the yield constant displacement and Λi ∈[0 1] is the post to pre-yielding stiffness ratio.
The MR damper force is represented by a linear part related to the transversal velocity plus a
nonlinear part related to the nonlinear variable z1. cccdi = [ci1 ci2 . . . cijcijcij ] and kkkdi = [ki1 ki2 . . . kij ].
ΔyΔyΔyd = [y−y1 y−y2 . . . y−yj ] is the relative displacement vector between the controlled node and
the other ones. For control purposes, the equation predicting the behavior of the MR damper
for a time-varying command voltage input ui is as follows:

αi = αi(ui) = αai + αbiui and δi = δi(ui) = δai + δbiui (4.143)

Assumption 1. Displacements and velocities at the controlled nodes are measurable.
Assumption 2. The unknown seismic excitation ẍg(t) is bounded by |ẍg(t)| ≤ X0 for all t ≥ 0,
where X0 is a known positive constant.
Under the assumption 2, it is easy to verify that the unknown disturbance force fgi(t) = miẍg(t)
is bounded by |fgi(t)| ≤ Fgi for all t ≥ 0, with Fgi being some known positive constant.

Controller Design

The control objective is to design a backstepping controller such that the closed-loop system
is globally stable and consequently the structural vibration is attenuated. Since nonlinear MR
dampers and hysteretic isolators are used in this problem, the backstepping technique is adequate
to design the controller.
First, rewrite the dynamic equation (4.141) into the following state equation:

ẏ1 = y2 ẏ2 =
1

m3
[ciy2 + fpd3 + Φ3 + fc3 − fg3]

ẏ3 = y4 ẏ4 =
1

m5
[c5y4 + fpd5 + Φ5 + fc5 − fg5]

(4.144)

where y1 = x3, y2 = ẋ3, y3 = x5 and y4 = ẋ5.
Then the following standard variables are used for controller backstepping design:

e1 = y1; ė1 = y2; e1ė1 = e1y2; η1 = −h1e1; η̇1 = −h1y2;
e2 = y2 − η1; ė2 = ẏ2 + h1y2; e2ė2 = e2(ẏ2 + h1y2);
e3 = y3; ė3 = y4; e3ė3 = e3y4; η2 = −h3e3; η̇2 = −h3y4;
e4 = y4 − η2; ė2 = ẏ4 + h3y4; e4ė4 = e4(ẏ4 + h3y4);

(4.145)

By using equations (4.144) and (4.145), we obtain:

e2ė2 = − e2

m3
[c3y2 + fpd3 − fg3 + Λk3y1 + (1 − Λ3)D3k3z13 + δa3y2 + αa3z23 + (δb3y2 + αb3z23)u3]

e4ė4 = − e4

m5
[c5y4 + fpd5 − fg5 + Λ5k5y3 + (1 − Λ5)D5k5z15 + δa3y4 + αa3z25 + (δb5y4 + αb5z25)u5]

(4.146)
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In order to achieve the asymptotic error suppression, the following control law is derived for
giving the commanding voltage signal to the MR damper:

u3 = −−(c3 + δa3 − m3h1)y2 − Λ3k3y1 − fpd3 + fg3 − (1 − Λ3)D3k3z13 − αa3z23 + m3e1 + h2e2

δb3y2 + αb3z23

u5 = −−(c5 + δa5 − m5h3)y4 − Λ5k5y3 − fpd5 + fg5 − (1 − Λ5)D5k5z13 − αa5z25 + m5e3 + h4e4

δb5y4 + αb5z25

(4.147)

However, since fpdi, fgi, z1i and z2i contain unmeasurable variables, the control law 4.147 is
not implementable in practice. In order to overcome the measurement limitation problem, some
considerations and estimations are made.

Estimation of the evolutionary variables z1i and z2i : Since the variables z1i and z2i (i=3,5)
cannot be directly measured and its right computation depends on the initial value z1i(0) and
z2i(0), estimated values ẑ1i and ẑ2i are obtained, by means of the next equations:

˙̂z13 = D−1
3 [−γ1|y2|ẑ13 |ẑ13 |n1−1 − β1y2|ẑ13 |n1 + A1y2] − (1 − Λ)D3k3

m3
e2

˙̂z23 = −γ2|y2|ẑ23 |ẑ23 |n2−1 − β2y2|ẑ23 |n2 + A2y2

˙̂z15 = D−1
5 [−γ1|y4|ẑ15 |ẑ15 |n1−1 − β1y4|ẑ15 |n1 + A1y5] − (1 − Λ)D5k5

m5
e4

˙̂z25 = −γ2|y4|ẑ25 |ẑ25 |n2−1 − β2y2|ẑ25 |n2 + A2y4

(4.148)

Define z̃ = z − ẑ as the estimation error between the real value z and the estimated value ẑ,
then

z1i = ẑ1i + z̃1i ; ż1i = ˙̂z1i + ˙̃z1i ; and z2i = ẑ2i + z̃2i ; ż2i = ˙̂z2i + ˙̃z2i (4.149)

By taking z̃23 = e2 and z̃25 = e4, the denominators of the commanding voltage signals ui can be
replaced by

δb3y2 + αb3z23 = αb3( ˙̂z23 + ˙̃z23) + δb3y2 = αb3( ˙̂z23 + e2) + δb3y2

δb5y4 + αb5z25 = δb5y4 + αb5( ˙̂z25 + ˙̃z25) = αb5( ˙̂z25 + e4) + δb5y4

Now, based upon the bounded values of fgi the estimated values of z1i and z2i , and considering
that fpdi

is not controllable, an implementable law is adopted for the backstepping control:

u3 = −−(c3 + δa3 − m3h1)y2 − Λk3y1 + F3sgn(e2) − (1 − Λ3)D3k3ẑ13 − αa3ẑ23 + m3e1

δb3y2 + αb3(ẑ23 + e2)
(4.150)

u5 = −−(c5 + δa5 − m5h3)y4 − Λk5y3 + F5sgn(e4) − (1 − Λ5)D5k5ẑ15 − αa5ẑ25 + m5e3

δb5y4 + αb5(ẑ25 + e4)
(4.151)

for all δb3y2 + αb3(ẑ23 + e2) 
= 0 and δb5y4 + αb5(ẑ25 + e4) 
= 0, otherwise u3=0 and u5=0.

Stability Analysis

In order to verify the closed-loop stability, the following Lyapunov function candidate is defined:

V =
1
2
e2
1 +

1
2
e2
2 +

1
2
e2
3 +

1
2
e2
4 +

1
2
z̃2
13

+
1
2
z̃2
23

+
1
2
z̃2
15

+
1
2
z̃2
25

(4.152)

V̇ = e1ė1 + e2ė2 + e3ė3 + e4ė4 + z̃13
˙̃z13 + z̃23

˙̃z23 + z̃15
˙̃z15 + z̃25

˙̃z25 (4.153)
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By using the equations (4.146), (4.148) and (4.151) and replacing them in (4.153), negativity of
V̇ can be demonstrated:

V̇ =
1

m3
[F3|e2| − fg3e2] − h1e

2
1 − h2e

2
2 − (γ1 − β1)D−1

3 |y2|z̃2
13

− (γ2 − β2)|y2|z̃2
23

+

1
m5

[F5|e4| − fg5e4] − h3e
2
3 − h4e

2
4 − (γ1 − β1)D−1

5 |y4|z̃2
15

− (γ2 − β2)|y4|z̃2
25

≤ 0

Therefore, stability of the closed-loop system is ensured.

Numerical Results

The couple of base isolator plus MR damper installed at each one of the two joints of the
structure (nodes 3 and 5), contain identical hysteretic dynamics. For the nodes 3 and 5:

kkkd3 = [0.5317, −0.4708, −0.2799, 0.1781, −0.1394, 0.1786, −0.0089, 0.0165] × 106 (kN/m)

kkkd5 = [−0.1394, 0.2243, −0.4844, 0.0856, 1.5509, −0.8317, −0.4735, 0.0741] × 106 (kN/m)

, while the values for vectors cccd3 and cccd5 are computed according with the Rayleigh-damping
relation. γ1=β1 =1.8×102 m−1, A1=72, α=0.6, k=5.9×103 kN/m, D=0.6, γ2=β2=3×102 m−1,
A2=120, δa=1.25×102 kN·s/m, δb=75 kN·s/mV, λa=6.25×104, λb=3.75×104, Fg=4.28×102 kN,
h1=1.5 and h2=0.2918.
El Centro earthquake has been studied as the external seismic excitation. Passive (pure base
isolation) and hybrid (base isolation + semiactive control) were studied. The time histories
of absolute displacements and velocities at the controlled node 1 and 5 are shown in figures
4.34(a)-4.36.

Additionally, figures 4.37 and 4.38 present the absolute displacement and velocity of the beam
at the uncontrolled node 4 . It is seen that the absolute displacement of both the controlled and
uncontrolled nodes has been significant reduced by using the semiactive controllers such that the
isolator can work safely within its elastic region and the structural acceleration has been kept
small so that the human comfort is guaranteed. Figure 4.34 presents the hysteretic behaviour
of the MR dampers during the seismic excitation.

(a) Node 1 (b) Node 5

Figure 4.34: Dynamics of the node 1
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Figure 4.35: Displacement of node 5

Figure 4.36: Velocity of node 5

Figure 4.37: Displacement of node 4

Figure 4.38: Velocity of node 4

Figure 4.39: Hysteretic behaviour of the MR
damper at the node 2

Figure 4.40: Hysteretic behaviour of the MR
damper at the node 5



Chapter 5

Experimental Verification

This chapter presents the most important experimental results obtained on three experimental
prototypes. The control configuration of the experimental prototypes contains one o more control
problems presented in chapter 3 and studied in chapter 4. Different control control approaches
studied in chapter 4 are implemented.

5.1 Experimental Prototype A. 6-story test building semiac-
tively controlled

Consider a linear building structure controlled by means of nonlinear semiactive MR dampers
installed at the lower floors, as shown in the figure 5.3. It is assumed that the control forces
provided by the control devices are adequate to keep the response of the primary structure from
exciting the linear region. The motion equation of the structure can be written as:

MMM sẍxx + CCCsẋxx + KKKsxxx = ΛfΛfΛf − MMM sΓΓΓẍg (5.1)

where xxx =vector of the relative displacements of the floors of the structure, ẍg ground accel-
eration, fff = [f1, f2, . . . , fm]T : vector of measured control forces, defined by (5.7)-(5.10) and
generated by the n MR dampers, Γ = column vector of ones, and Λ = vector determined by the
placement of the MR dampers in the structure. The MMM s, CCCs, KKKs matrices take the form:

MMM s = diag([m1, m2, . . . , mn]) (5.2)

KKKs =

⎡
⎢⎢⎢⎢⎢⎢⎣

k1 + k2 −k2 0 . . . 0
−k2 k2 + k3 −k3 . . . 0
0 −k3 k3 + k4 . . . 0
...

...
...

...
...

0 0 0 . . . kn

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.3)

CCCs =

⎡
⎢⎢⎢⎢⎢⎢⎣

c1 + c2 −c2 0 . . . 0
−c2 c2 + c3 −c3 . . . 0
0 −c3 c3 + c4 . . . 0
...

...
...

...
...

0 0 0 . . . cn

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.4)

where mi, ki, ci are respectively, the mass, stiffness and damping parameters in the floor i.
Equation (5.1) in state space form is as follows:

ż̇żz = AzAzAz + BfBfBf + EEEẍg (5.5)
yyy = CzCzCz + DfDfDf (5.6)

63
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where zzz = state vector and yyy = vector of measured outputs. Measurements available in this
system to determine the control action are the absolute accelerations of all floors of the structure
and the MR damper control forces. The ith MR damper can not be directly commanded to
generate a specified force fi, because its response is dependent on the local motion at the nodes
of the structure where the MR damper is attached. By commanding the voltage vi applied on
the MR dampers through the current driver, forces can be increased or decreased. The next
considerations should be taken into account in the design of control laws: (1). The control
voltage to the ith device is bounded within the range ui = [0, umax], (2). For a fixed set of
states, the magnitude of the applied force |fi| increases when ui increases and viceversa. (3).
The unknown seismic excitation ẍg(t) is bounded by |ẍg(t)| ≤ X0 for all t ≥ 0 where X0 is a
known positive constant.

5.1.1 Semiactive Control Devices

The semiactive control device used here is the MR damper. A simple mechanical model for the
MR damper such is shown in figure 5.1 has been previously developed and experimental results
[109, 108] have demonstrated that it accurately predicts the behavior of a MR damper. The
MR damper force is represented by means of the following equation:

f = δΔq̇ + αz (5.7)
ż = −γ|Δq̇|z|z|n−1 − βΔq̇|z|n + AaΔq̇ (5.8)

with Δq = qi − qj the difference of displacement at the ends of the device and z a evolutionary
variable that accounts for the history dependence of the response. The parameters γ, β, n and
Aa can be adjusted to control the linearity in the unloading and the smoothness of the transition
from the pre-yield to the post-yield region.[21, 97]. The parameters of the MR damper generally
depend on the commanding voltage signal u. Thus, for control purposes this dependence is
formulated as

α = α(u) = αa + αbu δ = δ(u) = δa + δbu (5.9)

The dynamics introduced by the current driver circuit are considered to be a first-order time
lag in the response of the device to changes in the command input. It it is expressed as:

u̇ = −η(u − v) (5.10)

where v is the command voltage applied to the control circuit.

Figure 5.1: Mechanical model of the MR damper



5.1. Experimental Prototype A. 6-story test building semiactively controlled 65

5.1.2 Experimental Setup

An experimental model has been designed and constructed at the WUSCEEL research group.
This test structure is a 6-story, single bay, steel frame, shown in the figure 5.2. The structure
is 188 cm tall and has a mass of 147 kg, distributed uniformly among the floors. A couple
of MR dampers is installed between the ground and first floor, and other couple between the
first and second floors of the structure. The control force of the devices being applied to the
structure is sensed by means of force transducers (PCB Piezotronics) placed in series with the
MR damper. Absolute accelerations are measured at each floor of the structure by means
of capacitive accelerometers (PCB Piezotronics, Depew, New York). The eight measurements
obtained from these devices are those used by the controller. Data acquisition, control actions
and system evaluation are implemented using a DSP-based real time control system by dSpace,
Inc., Paderbon, Germany. This system includes a 16-bit 16-analog input PC board (DSP2003)
and a 16-bit 8-analog output PC board (DSP2101).

Figure 5.2: Photograph of the test structure

The MR dampers used in the experiment are prototype devices, obtained from Lord Corp.
for testing and evaluation. It consists of two steel parallel plates (see figure 5.4) whose dimensions
are 4.45×1.9×2.5 cm. Forces are generated in the device when the moving plate, coated with
a thin foam saturated with MR fluid, slides between the two parallel plates. An electromagnet
consisting of a coil installed at one end of the devices, produces the magnetic field applied on
the MR fluid of the saturated foam. The center plate of the device is 0.495 cm thick, resulting
in a gap of 0.071 cm, thus a maximum force of 29 N can be generated by each device. Such force
is approximately 1.6% the weight of the structure. Power is supplied to the device by means of
a current amplifier where an output DC current between 0-1.2 Amp is present when an input
voltage between 0-4 volts is applied.
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Figure 5.3: Schematic diagram of the test structure

Ground excitations are obtained by means of a uniaxial seismic simulator, which consists
of a 1.5×1.5 m2 aluminium sliding table (PEGASUS) mounted on high-precision, low friction,
linear bearings. A schematic diagram of the experiment is presented in the figure 5.3.

Figure 5.4: Schematic diagram of shear mode MR damper

5.1.3 Identification of the System

Identification of Test Structure

In order to identify the present MIMO system a hybrid identification technique is used. The
reason to use a hybrid technique is due to that all the experimental input/output relationships
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are not available in this kind of systems. An ideal situation for identification would be that all
the input/output relationships (ground/ith floor acceleration and forces/ith floor acceleration)
be available, however for this problem only ground/ith floor acceleration relationships are avail-
able. An analytical model is updated by using identified modal parameters and optimization
algorithms in order to obtain closer real dynamics of the structure.
The methodology followed is: i). A white noise acceleration is used to excite the structure at
the ground level. ii). Then, experimental transfer functions from the ground to the ith floor
are obtained. iii). The Eigensystem Realization Algorithm (ERA) is applied to estimate the
dynamic properties of the experimental structure (i.e. damping factors and natural frequencies).
The finite impulse responses for each floor are required as inputs for the algorithm. Such
responses are computed by applying the Inverse Fast Fourier Transform IFFT on each transfer
function. iv). Based on the identified damping factors and natural frequencies, the mass and
stiffness parameters of the analytical model are optimized by using the FMINCON function
implemented in MATLAB and using as objective function the sum of the square error between
the experimental and computed magnitude data at each frequency of the transfer functions.
vi). Then damping matrix is optimized by using the same optimization function and defining
as objective function the sum of the square errors between the experimental and computed
acceleration values for each time sample, when a white noise excitation is applied at the ground
during n seconds. The damping matrix is computed based on the method proposed in [34] whose
equation is as follows:

CCCs = MMM sΦΦΦdiag(2hhhe[2πfffe])ΦΦΦ
T (5.11)

with ΦΦΦ = [φ1 φ2 . . . φn] the modal matrix, where φi are the eigenvectors of MMM−1
s KKKs, fffe are

the frequencies and hhhe the damping factors estimated by using the ERA. The initial parameters
used to optimize the damping matrix correspond to the damping factors, while natural frequen-
cies are maintained constant during the optimization. The identification process is graphically
represented in the figure 5.5.

Figure 5.5: Schematic diagram of the procedure used to identify the structure

Obtention of the Analytical Model

In order to obtain an adequate model of the structure that can be used to control design purposes,
the lumped-mass approach is considered. Thus, the linear equation (5.1) is used with stiffness
of each floor ki=273 (N/cm) and mass mi=0.227 (N·s2/cm). The natural damping factor was
assumed 1% for each floor and the natural frequencies obtained are: [1.39 4.08 6.54 8.62 10.19
11.18] (Hz).
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Obtention of experimental transfer functions

A white noise signal is used to excite the structure at the ground during 300 seconds. Ac-
celerations of each floor and the ground are recorded and transfer functions from de ground
acceleration to each floor acceleration are obtained directly from the data acquisition system.

Figure 5.6: Mode shapes of the experimental structure

Estimation of modal parameters

The damping factors and natural frequencies of the experimental structure are estimated by
using ERA. This algorithm consists in building a Hankel matrix by using the finite impulse
responses of each floor and according to the number of poles used to represent the trans-
fer functions [34]. In this case since the structure is 6-DOF, 12 poles are used. The natu-
ral frequencies and damping factors estimated are: [1.29 3.85 6.11 8.22 9.64 10.81] (Hz) and
[1.38 0.71 0.64 0.56 0.48 0.91] (%). The identified mode shapes of the structure are shown in
figure 5.6.

Optimization of Ms and Ks

Based on the mass and stiffness matrices obtained in the analytical model and the damping
matrix obtained by using the equation (5.11), with the experimental damping factors and the
analytical eigenvectors of M−1

s Ks, the stiffness and mass parameters are optimized in order to
obtain an analytical transfer function close to the experimental one. The FMINCON function
implemented in MATLAB is used, with the analytical stiffness and mass parameters used as
initial values and a objective function defined as the sum of the square errors between the the
experimental and analytical transfer function magnitude at each analysis frequency. Because
the last mode of the structure is close to 12 Hz, the transfer functions are analyzed up to 15
Hz. Figure 5.7 presents the plot of a transfer function (from ground acceleration to the fourth
floor) obtained by using the experimental data, the analytical model, and the model with the
optimized damping and mass parameters .

Optimization of Cs

After obtaining the optimal values for Ms and Ks, the damping factors are optimized by using the
FMINCON function. The damping factors estimated with ERA are used as initial values and the
objective function corresponds to the sum of the square errors resulting between the experimental
and computed accelerations at each floor when a with white noise of length 30 seconds is used as
ground acceleration. The resulting optimal damping factors are : [4.95 1.16 0.76 0.41 0.20 0.24]
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%. Experimental natural frequencies are maintained constant and damping matrix is computed
by using the equation (5.11). Figure 5.8 presents the experimental and computed, by using the
optimized parameters of Ms, Ks and Cs, acceleration at the fourth floor for a withe noise ground
acceleration.

Figure 5.7: Analytical and experimental transfer functions from ground to fourth floor acceler-
ation

Figure 5.8: Analytical and experimental fourth floor acceleration minimizing Cs

5.1.4 Identification of MR dampers

The identification of the MR dampers consists of two stages. The first stage consists of identifying
the MR dampers separately. It means to use an experimental configuration such that different
kind of displacements can be applied to each device and experimental displacement, velocity
and force measurements of the device are used to identify the parameters, based on the MR
damper dynamics equations (5.7)-(5.10). The second stage consists in updating the MR damper
parameters after being installed in the structure. In order to update such values, a variety
of representative tests, including sinusoidal excitations at different frequencies and amplitudes
being applied at the ground of the structure, are performed. Three configurations are studied:
(1) Two MR dampers installed between the base and the first floor (2) Two MR dampers
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installed between the first and second floor and (3) two MR dampers on each of the fist two
floors of the structure. Forces generated in each MR damper and accelerations of each floor are
recorded to identify and optimize the MR damper parameters. The FMINCON optimization
function is used to determine the optimal values. The values obtained in stage 1 are used as
initial values and the objective function is defined as the error between the experimental and
predicted accelerations of all floors. Predicted responses are obtained using the optimal Ms,
Cs and Ks matrices and updating the MR damper parameters of equations (5.7)-(5.10). The
optimal parameters obtained are: δa=0.0454; δb=0.0195; Aa=12; γ=300; β=300; η=80;. While
the parameters αa and αb varied between the four MR dampers in ranges of ∈ [45, 60] and
∈ [45, 90], respectively.
An integrated system model is obtained by using the optimal parameters of both structure and
MR damper after being installed in the structure. Some graphic results are shown in the figures
5.9 and 5.10.

Figure 5.9: Experimental and simulated MR damper forces

Figure 5.10: Experimental and simulated third floor acceleration with the optimized MR damper
parameters

5.1.5 Semiactive Control Algorithms

Different semiactive control algorithms for this kind of control systems have been already studied
[46, 47]. However, this study includes new control approaches based on Backstepping and QFT
control techniques studied in chapter 4.
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Backstepping Controller

Reordering equation (5.1), the motion equations for nodes 1 and 2, where the MR dampers are
installed, are expressed as

ẍ1 = − 1
m1

[
n∑

i=2

miẍi +
n∑

i=1

miẍg + k1x1 + c1ẋ1 + f1

]

ẍ2 = − 1
m2

[
n∑

i=3

miẍi − k1x1 − c1ẋ1 + (k1 + k2)x2 + (c1 + c2)ẋ2 + f2 +
n∑

i=2

miẍg

]
(5.12)

Rewrite the above dynamic equations into the following state equation:

ẏ1 = y2 ẏ3 = y4

ẏ2 = − 1
m1

[
n∑

i=2

miẍi +
n∑

i=1

miẍg + k1y1 + c1y2 + f1

]

ẏ4 = − 1
m2

[
n∑

i=3

miẍi − k1y1 − c1y2 + (k1 + k2)y3 + (c1 + c2)y4 + f2 +
n∑

i=2

miẍg

]
(5.13)

where y1 =: x1, y2 =: ẋ1, y3 =: x2 and y4 =: ẋ2.
The control objective is to design a backstepping controller such that the closed-loop system
is globally stable and consequently the structural vibration is attenuated. Thus, the following
standard variables, typically adopted in the literatures of backstepping control, are used for
controller design:

e1 = y1; ė1 = y2; e1ė1 = e1y2; α1 = −h1e1;
e2 = y2 − α1; ė2 = ẏ2 + h1y2; e2ė2 = e2(ẏ2 + h1y2)
e3 = y3; ė3 = y4; e3ė3 = e3y4; α2 = −h3e3;
e4 = y4 − α2; ė4 = ẏ4 + h3y4; e4ė4 = e4(ẏ4 + h3y4)

(5.14)

By replacing (5.13) into (5.14) and (5.14) it is obtained:

e2ė2 = − e2

m1

[
n∑

i=2

miẍi +
n∑

i=1

miẍg + k1y1 + (c1 − m1h1)y2 + f1

]

e4ė4 = − e4

m2

[
n∑

i=3

miẍi +
n∑

i=2

miẍg − k1y1 − c1y2 + (k1 + k2)y3 + (c1 + c2 − m2h3)y4 + f2

](5.15)

In order to achieve the asymptotic error suppression, the following control law is derived

f1 = −
n∑

i=2

miẍi −
n∑

i=1

miẍg − k1y1 − (c1 − m1h1)y2 + m1e1 (5.16)

f2 = −
n∑

i=3

miẍi −
n∑

i=2

miẍg + k1y1 + c1y2 − (k1 + k2)y3 − (c1 + c2)y4 + m2e3 (5.17)

However, the control laws 5.16 and 5.17 are not implementable in practice since they contain un-
measurable variables, such as z, ẍg and states. Ground acceleration is considered uncertain but
bounded, while states are estimated using a Kalman state estimator. On other hand, a voltage
command in place of a force command is required for the MR dampers. In order to overcome
this problem, two control law approaches are used. The first controller computes the equivalent
command voltage based on the equation (5.7), the force value obtained from (5.16 and 5.17) and
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a estimated value of the evolutionary z. The controller 2 uses the modified Clipped-Optimal
control algorithm used in [109] to compute the equivalent command voltage.

Backstepping Controller 1 (BE1)

By using (5.7) and (5.9), and the desired force values f1 and f2 obtained in (5.16) and (5.17)
the following control law is obtained:

ui =
fi − αaizi + δaiΔyi

αbi
zi + δbi

Δyi
; i = 1, 2 (5.18)

with Δy1 = y2 and Δy2 = y4 − y2. Since the variable zi cannot be directly measured, an
estimated value ẑi is obtained:

˙̂zi = −γi|Δyi|ẑi|ẑi|n−1 − βiΔyi|ẑi|n + AiΔyi (5.19)

Define z̃i = zi − ẑi as the estimation error between the real value zi and the estimated value ẑi,
then

zi = z̃i + ẑi; ˙̃zi = żi − ˙̂zi (5.20)

By taking z̃1 = e2, z̃2 = e4, the denominator of the commanding voltage signals u1 and u2 can
be replaced by δb1y2 + αb1 ẑ1 + αb1 z̃1 = δb1y2 + αb1 ẑ1 + αb1e2 and δb2(y4 − y2) + αb2 ẑ2 + αb2 z̃2 =
δb2(y4 − y2) + αb2 ẑ2 + αb2e4.
Now, an implementable law, based upon the bounded values of X0 and the estimated values of
zi, is adopted for the backstepping control:

u1 =
1

αb1(ẑ1 + e2) + δb1y2

[
−

n∑
i=2

miẍi − k1y1 − (−m1h1c1 + δa1)y2 + m1e1 − αa1z1

−
n∑

i=1

miX0sgn(e2)

]
(5.21)

u2 =
1

αb2(ẑ2 + e4) + δb2(y4 − y2)

[
−

n∑
i=3

miẍi + k1y1 + (c1 + δa2)y2 − (k1 + k2)y3 − (c1 + c2+

δa2)y4 − αa2z2 + m2e3 −
n∑

i=2

miX0sgn(e4)

]
(5.22)

for all αb1(ẑ1 + e2) + δb1y2 
= 0 and αb2(ẑ2 + e4) + δb2(y4 − y2) 
= 0, otherwise ui = 0. Moreover,
for some types of MR dampers [21]-[97], the constraints γ ≥ β ≥ 0 and n = 1 must be satisfied
by the control law.

Stability Analysis
In order to verify the closed-loop stability, the following Lyapunov function candidate is defined:

V =
1
2
e2
1 +

1
2
e2
2 +

1
2
e2
3 +

1
2
e2
4 +

1
2
z̃2
1 +

1
2
z̃2
2 (5.23)

V̇ = e1ė1 + e2ė2 + e3ė3 + e4ė4 + z̃1
˙̃z1 + z̃2

˙̃z2 (5.24)

From equations (5.15)-(5.17), (5.21)-(5.22), one obtains:

e1ė1 = e1y2 e3ė3 = e3y4
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e2ė2 = − e2

m1

[
−

n∑
i=1

mi[ẍg − X0sgn(e2)] + αa1 z̃1 + m1e1

]
(5.25)

= − 1
m1

n∑
i=1

mi[X0|e2| − ẍge2] − e1e2 − h2e
2
2

e4ė4 = − e4

m2

[
n∑

i=2

[ẍg − X0sgn(e4)] + αa2 z̃2 + m2e3

]
(5.26)

= − 1
m2

n∑
i=2

mi[X0|e4| − ẍge4] − e3e4 − h4e
2
4

with h2 =
αa1

m1
and h4 =

αa2

m2
.

From equations (5.8), (5.19)-(5.20), one gets:

z̃i
˙̃zi = z̃i

(
żi − ˙̂zi

)
= −z̃i

[
γi|Δyi|

(
zi|zi|n−1 − ẑi|ẑi|n−1

)
− βiΔyi (|z|n − |ẑi|n)

]
(5.27)

For n = 1,

z̃i
˙̃zi = −γi|Δyi|z̃2

i − βiΔyiz̃i (|zi| − |ẑi|) ≤ − (γi − βi) |Δyi|z̃2
i ≤ 0 (5.28)

Finally, the derivative Lyapunov function becomes:

V̇ = − 1
m1

n∑
i=1

mi [X0|e2| − ẍge2] − 1
m2

n∑
i=2

mi [X0|e4| − ẍge4] − h2e
2
2 − h4e

2
4 − (γ1 − β1) |y2|z̃2

1 −

(γ2 − β2) |y4 − y2|z̃2
2 ≤ 0 (5.29)

Therefore, stability of the closed-loop system is ensured.

Backstepping Controller 2 (BE2)
The controller consists in to use the desired forces f1 and f2 obtained in 5.16 and 5.17, re-
spectively, and to obtain an equivalent command voltage by using the modified clipped-optimal
technique. This technique was proposed in [18] for controlling a single MR damper and in [19] for
multiple MR devices, and experimentally verified in [107]. This algorithm consists in appending
m force feedback loops to induce each MR damper to produce approximately a desired control
force. Then, a command voltage signal is obtained as follows: When the i-th MR damper is
providing the desired optimal force (i.e. fi = fci) the voltage applied to the MR damper should
remain at the present value. If the magnitude of the desired optimal force is between the mini-
mal force f0i and the maximum force fmaxi , and the two forces have the same sign, the voltage
applied to the current driver is derived from a linear relation, experimentally obtained, between
the output force and the input voltage which takes the form: fi = f0i +m(ui −u0i). Otherwise,
the commanded voltage is set to zero. Thus, the control law for the i-th MR damper, using the
modified clipped-optimal is stated as:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ui = u0i + m−1(fi − f0i) if

{
sgn(fi) = sgn(fci)
|f0i | ≤ |fci | ≤ |fimax |

ui = umax if

{
sgn(fi) = sgn(fci)
|fci | > |fimax |

ui = 0 otherwise

This control approach is graphically represented in figure 5.11
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Figure 5.11: Graphical representation of the Clipped-Optimal control technique

QFT Controller

a QFT controller is implemented in order to avoid destructive structural vibration modes. The
objective is to reduce vibrations produced by an uncertain disturbance acting at the base of the
structure and that could excite the structure at the natural frequencies. Because MR damper
contains nonlinearities, a hybrid approach is used. It consists in finding a desired command force
based on QFT design and computing the equivalent command voltage based on the modified
clipped-optimal control technique. Two controllers are implemented in order to exploit some of
the advantages offered by QFT. The design of the first controller based on the analytical model,
while the design of second controller is based on experimental transfer functions from the ground
to the first floor and from the ground to second floor.
The next considerations are taken into account for control design purposes:
i) The mass, damping and stiffness parameters for the first and second floor are considered
unknown values varying between [0.97 1.03] times their nominal value ( i.e. mi = [0.971.03]∗miN ,
ci = [0.971.03] ∗ ciN and ki = [0.971.03] ∗ kiN , for i=1,2 ).
ii). The earthquake acceleration is considered as uncertain but bounded; i.e. |ẍg(t)| ≤ X − 0 for
all t ≥ 0.
iii). Only acceleration measurements in each floor are available. A noise percentage of 5% is
considered in this measurements.
The design specifications for the QFT controller are:
i) The magnitude of the transfer functions from the ground to the first and second floor for the
controlled structure must be less than 60% of the uncontrolled structure.
ii) The acceleration for floors 1 and 2 must be less than 0.01g when noise is present in the
feedback signal measurement.

QFT Controller 1 (QFT1)
By rewriting the motion equations of the structure for the first and second floor we have:

m1ẍ1 + c1ẋ1 + k1x1 =
6∑

i=2

miẍi +
6∑

i=1

miẍg − f1 (5.30)
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m2ẍ2 + c2(ẋ2 − ẋ1) + k2(x2 − x1) =
6∑

i=3

miẍi +
6∑

i=2

miẍg − f2 (5.31)

Transforming the above equations to the laplace domain:

ẍ1(s) =
s2

m1s2 + c1s + k1

[
6∑

i=1

miẍg −
(

6∑
i=2

miẍi + f1

)]
(5.32)

ẍ2(s) =
s2

m2s2 + c2s + k2

[
6∑

i=2

miẍg −
(

6∑
i=3

miẍi + f2 − (c2s + k2)ẍ1(s)

)]
(5.33)

By following the structure of the LTI system presented in figure 5.12 two controllers G1 and G2,
for controlling plants P1 and P2,respectively, are designed.

Figure 5.12: LTI system for floors 1 and 2 and using the analytical model

The transfer functions for such plants are derived from equations (5.32) and (5.33) as:

P1(s) =
s2

m1s2 + c1s + k1
P2(s) =

s2

m2s2 + c2s + k2
(5.34)

The control inputs u1 = G1ẍ1 and u2 = G2ẍ2 are related with the desired forces for the floors
1 and 2 by means of the following equations:

u1 =
6∑

i=1

miẍg + f1 (5.35)

u2 =
6∑

i=3

miẍi + f2 − (c2s + k2)ẍ1 (5.36)

Thus the desired forces f1 and f2 can be found by manipulating the above equations. The terms

of the right hand of equations (5.35)-(5.36), related with the ground acceleration (
6∑

i=j

miẍg,

j=1,2), are considered as a unknown disturbances at input of the plant with maximum values

of (D1 =
6∑

i=1

max(mi)X0, D2 =
6∑

i=2

max(mi)X0).

By using the QFT MATLAB Toolbox the final loops L1 = G1P1 and L2 = G2P2 are obtained.
They are shown in figures 5.13 and 5.14.
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Figure 5.13: Final loop LN for G1

Figure 5.14: Final loop LN for G2

The controllers G1 and G2 derived from the final loops L1 and L2 are respectively:

G1 = 0.674
0.1225s2 + 1.122s + 1

0.01118s3 + 0.0186s2 + 1.007s + 1
G2 = 0.8

0.4127s2 + 1.413s + 1
0.0009s3 + 0.0321s2 + 1.031s + 1

Finally, the command voltage is found by using the modified clipped-optimal technique and
based on the desired command forces computed from the equations (5.35) and (5.36).
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QFT Controller 2 (QFT2)

The design of the second QFT controller is based on the experimental transfer functions
from the ground acceleration to the each floor where the MR dampers are installed (floors 1 and
2). As shown in figure 5.15, a disturbance V related with the ground acceleration is presented
at the input of each plant, while the control signal U for each plant is related with the desired
control forces by means of the following equations:

u1(s) = G1(s)ẍ1(s) = f1 − f2 (5.37)
u2(s) = G2(s)ẍ2(s) = f2 (5.38)

By using equations (5.37) and (5.38), the desired command forces f1 and f2 are obtained.

Figure 5.15: LTI system for floors 1 and 2 and using the experimental transfer functions

The final loops obtained for G1 and G2 are shown in figures 5.16 and 5.17, repesctively.

Figure 5.16: Final Loop LN for the controller G1
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Figure 5.17: Final Loop LN for the controller G2

The transfer functions G1 and G2 derived from the final loops L1 and L2, respectively, are
the following:

G1 = 0.4
0.2532s3 + 1.453s2 + 2.2s + 1

0.07983s3 + 0.6449s2 + 1.565s + 1
G2 = 0.4

0.3689s3 + 1.935s2 + 2.566s + 1
0.101s3 + 0.7366s2 + 1.636s + 1

(5.39)

5.1.6 Experimental Results

The semiactive backstepping and QFT controllers are implemented on the 6-story test building.
Four kind of excitations are applied on the structure, three earthquakes (El Centro, Gebze and
Mexico) and a random white noise acceleration, in order to demonstrate the effectiveness and
robustness of the controllers. For El Centro earthquake acceleration three excitation amplitudes
(50, 100 and 125 % of its nominal value, referred as low, medium and high), are applied in order
to analyze the performance of the control system for different amplitude levels. Additionally,
two additional controllers (Lyapunov stability theory controller and Sliding Mode Controller)
and passive on state MR damper configuration are implemented in order to compare the perfor-
mance of the proposed controllers. Quantitative evaluation of the controllers is made by using
five evaluation criteria [93]. The first evaluation criterion considers the normalized peak floor
accelerations

J1 = max
i,t

( |ẍai(t)|
ẍmax

a

)
(5.40)

where the absolute acceleration of the ith floor of the structure ẍai(t) is normalized by the
maximum peak acceleration presented in the structure in the uncontrolled configuration and
denote as ẍmax

a .
The second evaluation criterion considers the normed peak floor acceleration response

J2 = max
i,t

(‖ẍai(t)‖
‖ẍmax

a ‖
)

(5.41)
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Table 5.1: Uncontrolled Structural Responses

Amplitude |ẍmax
a | ||ẍmax

a || |Fmax
b | ||Fmax

b ||
El Centro Earthquake

Low 113,86 2396 34,6 781
Medium 229,14 4254 66,8 1495
High 351,12 6564 96,9 2244

Gebze Earthquake
Low 89,7 1572 29,6 2866
Medium 111,27 1872 55,3 4603
High 237,6 3470 49,3 5318

Mexico Earthquake
Low 397,9 995 107,9 1313
Medium 864,7 2085 188,2 2190

where ‖ẍai(t)‖ =
√∫ tf

0 ẍ2
ai(t)dt; and the absolute accelerations of the ith floor ẍai(t), are nor-

malized by ‖ẍmax
a ‖.

The third evaluation criterion considers the maximum base shear generated in the controlled
configuration

J3 = max
t

∣∣∣∣∣
6∑

i=1

miẍai(t)
Fmax

b

∣∣∣∣∣ (5.42)

where Fmax
b is the maximum base shear in the uncontrolled configuration.

The fourth evaluation criterion corresponds to the normed/nondimensionalized base shear.

J4 =

∣∣∣∣∣
∣∣∣∣∣

6∑
i=1

miẍai(t)

∣∣∣∣∣
∣∣∣∣∣

‖Fmax
b ‖ (5.43)

where ‖Fmax
b ‖ =

∣∣∣∣∣
∣∣∣∣∣

6∑
i=1

miẍai(t)

∣∣∣∣∣
∣∣∣∣∣ is the maximum normed uncontrolled base shear.

And the fifth evaluation criterion used here is a measure of the maximum control force per
device, given by

J5 = max
t,i

( |fi(t)|
W

)
(5.44)

where fi(t) is the force generated by the ith control device over the time story of each earthquake
and W = 1,446 N = weight of the structure.

Figures 5.20 and 5.21 show the response profiles of the peak acceleration measurements
for low and medium levels of El Centro earthquake, while figure 5.22 and 5.23 show those
of high levels of Mexico and Gebze earthquake, respectively. The above figures show clearly
the effectiveness of the controllers proposed for different kind of earthquakes. Additionally
it is seen that peak responses are reduced for all the floors of the structure. The passive-on
configuration results in general improves the structural responses with respect to the uncontrolled
case, however in the particular case for El Centro low amplitude, the third criterion is worst.
This means that structural responses are not ever improved by maintaining the MR dampers in
a constant voltage. For different types and levels of excitation, the proposed controllers perform
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better than the passive-on case and significant vibration reduction is obtained. The backstepping
controllers improve the structural response in a similar way than the Sliding Mode Controller
or Lyapunov controller, while the QFT controllers improve the structural responses better than
the others controllers implemented. For El Centro and Low amplitude Gebze earthquakes the
controller QFT1 reduction of the normed peak acceleration (evaluation criterion J1) is under
50%, while for Medium and high amplitude Gebze and Mexico earthquakes the reduction is under
63%. The QFT2 controller is the second best for the evaluation criterion J1. In general, the
same behaviour is observed for the evaluation criteria J2 to J4. According to evaluation criteria
J5, small control forces are required for all the semiactive control configurations implemented
and they result to be in general smaller than the passive-on case. Figures 5.18-5.19 show the
time history of the third and sixth floor acceleration, respectively, for a small excitation of El
Centro earthquake. It is seen that no only the peak responses are reduced, but also the response
throughout the earthquake. In general, the same behaviour is observed for all the controllers
implemented.

Figure 5.18: Third floor acceleration for small amplitude El Centro earthquake

Figure 5.19: Sixth floor acceleration for small amplitude El Centro earthquake
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Table 5.2: Normalized Experimental Responses

Control strategy J1 J2 J3 J4 J5

Low amplitude El Centro earthquake

Passive on 0,8159 0,4256 1,1107 0,5711 0,0499

BE+Clipped 0,6252 0,4080 0,8519 0,7654 0,0432

BE+ẑ 0,6554 0,3432 0,8063 0,4298 0,0078

QFT1 0,4179 0,2525 0,4296 0,3158 0,0241

QFT2 0,4748 0,2430 0,5472 0,3318 0,0155

Lyapunov 0,7965 0,3997 0,8462 0,5341 0,0507

SMC 0,6149 0,3557 0,8447 0,5342 0,0380

Medium Amplitude El Centro earthquake

Passive on 0,6350 0,2804 0,6077 0,3244 0,0159

BE+Clipped 0,5178 0,3533 0,6649 0,6090 0,0440

BE+ẑ 0,5802 0,3637 0,6993 0,4507 0,0516

QFT1 0,4633 0,2428 0,5574 0,3120 0,0451

QFT2 0,5262 0,2691 0,5938 0,3197 0,0269

Lyapunov 0,6182 0,4009 0,8462 0,4960 0,0566

SMC 0,5639 0,3282 0,5999 0,4262 0,0457

High amplitude El Centro earthquake

Passive on 0,6965 0,2996 0,7183 0,3369 0,0146

BE+Clipped 0,5119 0,3050 0,6229 0,5264 0,0428

BE+ẑ 0,5705 0,3046 0,6105 0,3727 0,0554

QFT1 0,4720 0,2283 0,5889 0,3003 0,0491

QFT2 0,5747 0,2581 0,6692 0,3116 0,0389

Lyapunov 0,5259 0,3382 0,6898 0,4221 0,0570

SMC 0,4846 0,2917 0,5617 0,3673 0,0423

Low amplitude Gebze earthquake

Passive on 0,8250 0,4530 0,8423 0,5252 0,0407

BE+Clipped 0.6123 0.3021 0.4122 0.3342 0.0128

BE+ẑ 0,6054 0,3126 0,4052 0,3521 0,0227

QFT1 0,4105 0,2394 0,3974 0,2521 0,0149

QFT2 0,4051 0,2470 0,3855 0,2700 0,0144

Lyapunov 0,7902 0,3793 0,6567 0,4053 0,0348

SMC 0,5897 0,3087 0,3973 0,3234 0,0512
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Table 5.3: Normalized Experimental Responses Part 2

Control strategy J1 J2 J3 J4 J5

Medium amplitude Gebze earthquake

Passive-on 0,8236 0,4985 0,7654 0,4567 0,0360

BE+Clipped 0,6296 0,3399 0,4065 0,2055 0,0143

BE+ẑ 0,6026 0,3432 0,4158 0,1998 0,0192

QFT1 0,6258 0,3418 0,4197 0,2236 0,0101

QFT2 0,6165 0,3365 0,4203 0,2173 0,0103

Lyapunov 0,8721 0,5091 0,7089 0,3844 0,0407

SMC 0,6070 0,3296 0,3951 0,2085 0,0360

High amplitude Gebze earthquake

Passive-on 0,6250 0,4250 0,7856 0,5254 0,0472

BE+Clipped 0,4766 0,3451 0,7658 0,5433 0,0378

BE+ẑ 0,4666 0,3513 0,7342 0,5332 0,042

QFT1 0,3661 0,2469 0,4971 0,3434 0,0383

QFT2 0,4020 0,2647 0,5018 0,3282 0,0192

Lyapunov 0,5689 0,3642 0,6465 0,4434 0,0432

SMC 0,4793 0,3520 0,7471 0,5810 0,0415

Low amplitude Mexico earthquake

Passive-on 0,6892 0,4527 0,6987 0,4876 0,0551

BE+Clipped 0,6148 0,3871 0,5839 0,4168 0,0496

BE+ẑ 0,6027 0,3928 0,5921 0,4063 0,0462

QFT1 0,5256 0,3044 0,5880 0,3617 0,0532

QFT2 0,5273 0,3005 0,5838 0,3578 0,0489

Lyapunov 0,6720 0,4042 0,6250 0,4523 0,0312

SMC 0,6232 0,3526 0,5382 0,0.4025 0,0501

High amplitude Mexico earthquake

Passive-on 0,5983 0,3675 0,6910 0,4859 0,0652

BE+Clipped 0,5954 0,3601 0,6812 0,4771 0,0668

BE+ẑ 0,6126 0,3734 0,6621 0,4523 0,0557

QFT1 0,5630 0,3208 0,6641 0,4507 0,0596

QFT2 0,6382 0,3536 0,6757 0,4485 0,0536

Lyapunov 0.5921 0.3521 0.6823 0.4725 0.0572

SMC 0,6042 0,3642 0,6817 0,4806 0,0585



5.1. Experimental Prototype A. 6-story test building semiactively controlled 83

Figure 5.20: Peak absolute acceleration profiles
for Low Amplitude El Centro

Figure 5.21: Peak absolute acceleration profiles
for Medium Amplitude El Centro

Figure 5.22: Peak absolute acceleration profiles
for high Gebze earthquake

Figure 5.23: Peak absolute acceleration profiles
for High Mexico earthquake
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5.2 Experiment Prototype 2 : Pseudo-dynamic test sub-structure

Consider a semi-actively controlled two-span bridge with two columns and two joints. The total
length of the bridge is 150m. At each joint between the column and the super-structure, there
is a Controllable Friction Device (CFD) put in parallel to the elastomeric bearings as illustrated
in Figure 4.24.

The model of the bridge has 3 degree of freedom (DOF) in the directions (x,y,z) at each
node. However, for experimental tests, only the dynamic behavior of the beam structure in
the transversal direction y, where the seismic excitation and control forces are applied, will be
studied. A finite element model is obtained and its graphical representation is shown in figure
4.25. The CFDs are located between the nodes 1 and 3 and the nodes 2 and 5, respectively,
which are referred to as controlled nodes since they are the only nodes directly influenced by
CFDs. After the model reduction by using static condensation, the dynamic behavior of the
beam structure is described by the following equation:

MẍMẍMẍ + CẋCẋCẋ + KxKxKx = FFF (t) (5.45)

where MMM , CCC and KKK are the (10x10) positive definite mass, damping and stiffness matrices,
respectively. MMM=diag(mi) and CCC = αMMM + βK, according to the Rayleigh-damping relation
and with α and β being some positive constants. The vector xxx=[x1, x2,. . .,x10]T represents the
displacements of each node at the bridge with respect to an inertial frame. FFF (t) = MMMẍg(t)+Φ(t)
are external forces induced by the seismic acceleration ẍg(t) and supplied by the CFDs with
Φ(t)=[-φ1,3(t), -φ2,5(t), φ1,3(t), 0, φ2,5(t), 0, 0, 0, 0, 0]T

The CFD is the friction device UHYDE-fbr, which dissipates energy due to solid sliding
friction. The name is an abbreviation for Uwe’s HYsteretic DEvice, f for friction and br for
bridges. The patented sliding mechanism consists of two-steel plates and a set of bronze inserts.
One of the steel plates serves as guidance for the bronze inserts. The other plate has a specially
prepared surface, which is in contact with the inserts, forming the sliding surface, as displayed
in Figure 5.24.

Figure 5.24: Controllable Friction Device (UHYDE-f-br)

While the device itself has an ideal elastic-plastic characteristics, elastic joint stiffness after
sliding will remain due to parallel elastomeric bearings. An easy adjustment of the friction force
is accomplished by gas pressure. There is an air-tight chamber behind one of the steel plates. A
gas tank with electronic control unit varies the pressure, thus changes the normal force at the
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sliding surface and the friction force. Quite different force-displacement characteristics, including
viscous damping, can be achieved. The gas pressure can also be governed by a control command.
Since no external energy is needed for controlling the dynamic behavior of the structure, but
only for adjustment of the gas pressure, this concept belongs to the family of semiactive control.

The aim of implementing this experimental prototype is to evaluate experimentally semi-
active control strategies applied to a realistic bridge structure subjected to severe earthquake
ground motion. For this purpose, the sub-structure pseudo-dynamic test method is used. It al-
lows a realistic full-scale test without having to build a real bridge. There is no other facility in
Europe but ELSA in Joint Research Center-ISPRA that allows these tests by using the reaction
wall.

5.2.1 Controller design

The control objective is to attenuate the structural vibration based upon two semiactive control
algorithms. The first one is a linear controller based on the Lyapunov stability theory and
the second one is a nonlinear controller based on the sliding mode control theory. The next
considerations are taken into account:
i). The controllers for each device are designed as local controllers.
ii). The earthquake acceleration is considered unknown but bound, such that |ẍg| ≤ X0 for all
t ≥ 0 with X0 a known bound.
iii). Measurements of velocity and displacement are only available at the nodes where the control
devices are installed.

Lyapunov Stability Theory based Controller

Define the following candidate Lyapunov function:

V (t) =
1
2
z1z1z1

T PPP 1zzz1 +
1
2
z2z2z2

T PPP 2zzz2 (5.46)

where z1 = [x1, x3, ẋ1, ẋ3]T and z2 = [x2, x5, ẋ2, ẋ5]T correspond to state vectors at the directly
controlled nodes. PPP i (i = 1, 2) are the positive definite solution of the Lyapunov function
PPP iAAAi + AAAT

i PPP i + QQQi = 0. The design objective is to achieve the maxim dissipation of the energy
zzzT

i (t)PPP izzz1(t) induced by the system response zzzi by making V̇ (t) as negative as be possible for
every (zzzi, t).
By rewriting the state space equation (5.45) for zzz1 and zzz2 it is obtained:

żzz1(t) = AAA1zzz1(t) + BBB1(t)φ1,3(t) + ΓΓΓ1ẍg(t) + CCC1zzzA1(t) (5.47)
żzz2(t) = AAA2zzz2(t) + BBB2(t)φ2,5(t) + ΓΓΓ2ẍg(t) + CCC2zzzA2(t) (5.48)

where zzzA1 = [x2, x4, . . . , x10, ẋ2, ẋ4, . . . , ẋ10]T , zzzA2 = [x1, x3, x4, x6 . . . , x10, ẋ1, ẋ3, ẋ4, ẋ6, . . . , ẋ10]T ,
ΓΓΓ1 = [0, . . . , 0 m1,m3], ΓΓΓ2 = [0, . . . , 0 m2,m5].
By deriving V (t) and replacing 5.47 and 5.48 into the derivative, it is obtained:

V̇ (t) = −1
2
zzzT

1 Q1Q1Q1zzz1 − 1
2
zzzT

2 Q2Q2Q2zzz2 + zzzT
1 P1P1P1ΓΓΓ1ẍg + zzzT

2 P2P2P2ΓΓΓ2ẍg + zzzT
1 P1P1P1BBB1φ1,3 + zzzT

2 P2P2P2BBB2φ2,5 +

zzzT
1 P1P1P1CCC1zzzA1 + zzzT

2 P2P2P2CCC2zzzA2 ≤ H(zi, φi,j) + H(zAi) (5.49)

where

H(zi, φi,j) = −1
2
zzzT

1 Q1Q1Q1zzz1 − 1
2
zzzT

2 Q2Q2Q2zzz2 + ||zzzT
1 P1P1P1ΓΓΓ1||·||ẍg|| + ||zzzT

2 P2P2P2ΓΓΓ2||·||ẍg|| + zzzT
1 P1P1P1BBB1φ1,3

+zzzT
2 P2P2P2BBB2φ2,5

H(zAi) = ||zzzT
1 P1P1P1CCC1||·||zzzA1 || + ||zzzT

2 P2P2P2CCC2||·||zzzA2 || (5.50)
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Since the state vectors zzzA1 and zzzA2 are considered not measurable, the objective of control is
to minimize V by making H(zi, φi,j) negative. If φd

i,j is denoted as the “desired” control force
(without taking into account the actuator dynamics) the next “desired” control law is derived:

φd
1,3 = −1

4
BBBT

1 P1P1P1zzz1 − X0
||Γ1||
||BBB1||sgn(zzzT

1 P1P1P1BBB1) φd
2,5 = −1

4
BBBT

2 P2P2P2zzz2 − X0
||Γ2||
||BBB2||sgn(zzzT

2 P2P2P2ΓΓΓ2)(5.51)

The dynamic behavior of the UHYDE-fbr device is described by the following equation:

ui,j(t) =
1

kfi,j

(φi,j + τi,jφ̇i,j)sgn{ẋi(t) − ẋj(t)} {(i, j)} = [(1, 3), (2, 5)] (5.52)

where φi,j(t) is the average output actuator force, ui,j(t) the voltage signal applied to the ac-
tuator, τi,j is the actuator time delay and kfi,j

is a constant which relates the friction force
produced by the actuator with the voltage applied on the electronic control unit that controls
the pressure of the gas tank.
By taking into account the actuator dynamics, a control command law ui,j(t) is designed such
that the “real” actuator control force φi,j(t) tracks asymptotically the “desired” actuator control
force φd

i,j(t) before obtained. Such control law is defined as:

ui,j(t) =
1

kfi,j

(φd
i,j + τi,jφ̇

d
i,j)sgn{ẋi(t) − ẋj(t)} {(i, j)} = [(1, 3), (2, 5)] (5.53)

Denote φ̃i,j(t) as the tracking error between the “real” control action φi,j(t) and the “desired”
control action φi,j(t); i.e.,

φ̃i,j = φi,j − φd
i,j {(i, j)} = [(1, 3), (2, 5)] (5.54)

Now, redefine a Lyapunov function as:

V (zzzi, φ̃i,j) = V1(zzzi) + V2(φ̃i,j) (5.55)

V1(zzzi) =
1
2
z1z1z1

T PPP 1zzz1 +
1
2
z2z2z2

T PPP 2zzz2 V2(φ̃i,j) =
1
2
τ1,3φ̃

2
1,3 +

1
2
τ2,5φ̃

2
2,5 (5.56)

From equation (5.54) it is obtained that φi,j = φd
i,j + φ̃i,j . By using such relation and equations

(5.51)-(5.53) the derivative of V (zzzi, φ̃i,j) is the following:

V̇ (zzzi, φ̃i,j) ≤ H(zi, φi,j , φ̃i,j) + H(zAi) (5.57)

where

H(zi, φi,j , φ̃i,j) := H(zi, φi,j) − φ̃2
1,3 − φ̃2

2,5zzz
T
1 P1P1P1BBB1φ̃1,3 + zzzT

2 PPP 2BBB2φ̃2,5

≤ −1
2
zzzT

1 Q1Q1Q1zzz1 − 1
2
zzzT

2 Q2Q2Q2zzz2 + (||zzzT
1 P1P1P1ΓΓΓ1|| + ||zzzT

2 P2P2P2ΓΓΓ2||)(ẍg − X0)

−(
1
2
zzzT

1 P1P1P1BBB1 − φ̃1,3)2 − (
1
2
zzzT

2 P2P2P2BBB2 − φ̃2,5)2 ≤ 0 (5.58)

Therefore, the “real” control action ui,j(t) (taking into account the actuator dynamics) can
minimize V̇ (zzzi, φ̃i,j) by making H(zi, φi,j , φ̃i,j) ≤ 0. Because semiactive characteristics of the
control device only positive voltage values can be applied, thus for negative voltage values derived
from the control law, the action is ui,j = 0.
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Sliding Mode Controller

Define sliding functions as follows:

σA = DDD1zzz1 with σ1 = dT
i z1 i = 1, 3 (5.59)

σB = DDD2zzz2 with σi = dT
i z2 i = 2, 5 (5.60)

(5.61)

where D1 = [d1d3]T , D1 = [d2d5]T ∈ RRR2×4 are matrices to be chosen by the designer in order to
guarantee the asymptotic stability of the closed-loop system in sliding mode. For the present
design, a simple choice for Di is

D1 =

(
λ1 0 1 0
0 λ3 0 1

)
D2 =

(
λ2 0 1 0
0 λ5 0 1

)
(5.62)

with λi is a constant to be selected by the designer. Consequently, the following four sliding
functions are defined:

σ1 = λ1x1 + ẋ1 σ3 = λ3x3 + ẋ3 (5.63)
σ2 = λ2x2 + ẋ2 σ5 = λ5x5 + ẋ5 (5.64)

When the system is in sliding mode, σi(t) = 0, (i = 1,2,3,5), one has:

xi(t) = xi(ts)e−(t−ts) (5.65)

where ts is the time instant when sliding motion is generated in the system. Thus, the closed-loop
control system in sliding mode is exponentially stable.
In order to design the sliding mode controller, define a Lyapunov function candidate:

V (t) =
1
2
σT

AσA +
1
2
σT

BσB (5.66)

The derivative of the Lyapunov function is obtained as follows:

V̇ = σT
Aσ̇A + σT

Bσ̇B

= σT
AD1 [AAA1zzz1 + BBB1φ1,3 + ΓΓΓ1ẍg + CCC1zzzA1 ] + σT

BD2 [AAA2zzz2 + BBB2φ2,5 + ΓΓΓ2ẍg + CCC2zzzA2 ]
≤ H(zzzi, φi,j) + H(zAi) (5.67)

where

H(zzzi, φi,j) =: σT
AD1 [AAA1zzz1 + BBB1φ1,3] + ||σT

A||·||D1ΓΓΓ1||·||ẍg|| + σT
BD2 [AAA2zzz2 + BBB2φ2,5]

+||σT
B||·||D2ΓΓΓ2||·||ẍg|| (5.68)

H(zAi) =: σT
AD1CCC1zzzA1 + σT

BD2CCC2zzzA2 (5.69)

The term H(zAi) is uncontrollable and V will be minimized by making negative H(zzzi, φi,j) .
Then, the “desired” control force is as follows:

φd
i,j = −

{
1
4
σADDDiBBBi + BBB−1

i AAAizzzi − X0
||Γi||
||BBBi||sgn(DT

i σA)
}

{i, j} = {(1, 2), (3, 5)} (5.70)

By taking into account the actuator dynamics (eq. ) a command voltage is obtained by using
5.53. A new candidate Lyapunov function is defined as:

V (σσσi, φ̃i,j) = V1(σσσi) + V2(φ̃i,j) (5.71)

V1(σσσi) = σT
Aσ̇A + σT

Bσ̇B V2(φ̃i,j) =
1
2
τ1,3φ̃

2
1,3 +

1
2
τ2,5φ̃

2
2,5 (5.72)
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By using 5.54, 5.67 and 5.70 it can be demonstrated that:

V̇ (σσσi, φi,j) ≤ H(zzzi, φi,j , φ̃i,j) + H(zAi) (5.73)

where

H(zzzi, φi,j , φ̃i,j) = −
{

(||σT
1 ||·||D1Γ1|| + ||σT

2 ||·||D2Γ2||).(X0 − ||ẍg||) + (
1
2
σσσADDD1BBB1 − φ̃1,3)2

+(
1
2
σσσBDDD2BBB2 − φ̃2,5)2

}
≤ 0 (5.74)

Therefore V (σσσi, φ̃i,j) is minimized. Newly, the condition of ui,j ∈ [0umax
i,j ] should be accom-

plished.

5.2.2 Experimental Setup

According to the pseudo-dynamic test concept, three joints of this kind are used as test spec-
imen, while the bridge structure is simulated by a computer model. Three joints acting in a
horizontal plane, which are the joints of a two-span bridge model, are tested simultaneously in
one experiment. A photography of the experiment is presented in figure 5.25, while a schematic
diagram is presented in figure 5.26. Using substructuring algorithms, the bridge dynamics are
simulated on a computer, the demand of joint displacements is put out. Measured restoring
forces are fed back into the computer. Thus, a realistic response of a full-scale bridge is obtained
in the tests.

Figure 5.25: Photograph of the pseudo-dynamic test substructure
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Figure 5.26: Schematic diagram of the test substructure

5.2.3 Experimental results

Experimental tests consistent of controlled displacements and under constant normal force and
varying frequency are applied on the CFD device in order to study the influence of the exci-
tation frequency on the the friction coefficient. No significant dependence is established. The
average friction coefficient determined is: μ=0.45. A linear relationship is assumed between the
normal force (and thus the input voltage), and the friction force (a constant friction coefficient),
according to the ranges defined in table 5.4. In laboratory tests, the device deformations are
limited to ± 100 mm.

Table 5.4: Magnitudes and range of values for the UHYDE-fbr control device

Value Normal Force Friction Force [kN] Pressure [bar] Voltage [V]
Minimum 0 0 0 0
Maximum 5000 2250 10 10

Numerical simulations of the optimized passive system under an excitation of a simulated ac-
celeration history according to EC8, soil class B and maximum acceleration of 0.35g indicate a
friction force of 2250 kN and maximum device deformation of ± 100 mm. Therefore, the friction
force is scaled when feeding back into the pseudodynamic algorithm. The scale factor for the
friction force is 1:25. The scale factor for the time in the pseudodynamic test is 1:10.

El Centro scaled acceleration EC8 (see figure 5.27) are applied to the structure by means of the
reaction wall, in order to evaluate different control configurations of the device. Three control
configurations are defined: uncontrolled, passive-on and semiactive. Experimental results for the
first two configurations are available until now, and the semiactive tests will be made in next
future. Figure 5.28 presents the experimental displacements at node 3 for the structure with
passive-on control, while figures 5.30 and 5.29 the forces delivered ant its dynamic behaviour.
Figure 5.31 presents the simulated and experimental displacement at the node 3, for a passive-on
(u1,3=10v) configuration. It is seen that the simulated response is close to the experimental one,
thus the model used both the structure and the actuator are adequate.
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Figure 5.27: El Centro scaled acceleration (EC8)

Figure 5.28: Experimental displacement at the node 3

Figure 5.29: Dynamic behaviour of the UHYDE-fbr device in passive-on state
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Figure 5.30: Experimental forces delivered by the UHYDE-fbr device in passive-on state

Figure 5.31: Experimental and simulated displacement for the node 3

Numerical simulation were done for the controlled and uncontrolled structure. Figure 5.32
presents the simulated displacement for the node 3. In general, similar responses are obtained
for the others nodes. It is seen that structural vibrations are reduced with both SMC controller
and Lyapunov stability theory based controller. However the advantage of using the nonlinear
controller (SMC) is that parameters of the structure or actuator can be considered uncertain.
On the contrary, using directly the Lyapunov controller, the matrix P cannot be solved if some
of its elements are uncertain values.

Figure 5.32: Simulated absolute displacement at node 3
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5.3 Experimental Prototype 3. 2-story Actively Controlled Test
Building

The third experimental prototype corresponds to a 2-story test building fabricated by QUANSER
Consulting and available in the MICELab Research Group. A photo of such prototype is shown
in figure 5.33. It is actively controlled at the top level by means of an Active Mass Damper
(AMD). A voltage of ±5v is applied to the servomotor of the AMD to produce horizontal move-
ment on a carrier medium at the top. Absolute accelerations of both floors can be measured
such as the displacement of the AMD. Different kinds of horizontal ground accelerations can be
reproduced by means of a shake table whose movement is transmitted by a 1 Hp brushless ser-
vomotor. The main specifications of the shake table are: peak acceleration of 2.5g, stroke ±3in
and maximum force of 700N. The controllers of both shake table and AMD are implemented on
a PC. Signals are recorded from and applied on the structure by using a 16-bit 8-input, 8-output
data acquisition card. Controllers are programmed by using Simulink and WinCon software.

Figure 5.33: Photo of the 2-story test building

An numerical model is provided by Quanser Consulting, which is derived from an equivalent
mechanical model (see figure 5.34). The Lagrangian formulation is used to derive the dynamic
equations based on the kinetic and potential energies in the system. Finally, the dynamics
equations are linearized about the quiescent point and a dynamics equations for the top floor of
the structure are obtained. The equations are as follows:

m2ẍ2 + k2x2 + a1ẋc = a2u (5.75)
mcẍc + k2x2 + a3ẋc = a4u (5.76)

where x2 is the displacement at the second floor, xc displacement of the cart, u voltage signal
applied to the cart motor, m2 and mc masses of the second floor and cart, respectively. k2

corresponds to the equivalent stiffness of the second floor and a1 . . . a4 are constants values that
relate the mechanical and electrical properties of the cart motor.
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Figure 5.34: Mechanical model for a building with AMD

By substituting system parameters and introducing an integrator for alpha, the following
linear model about the quiescent point was obtained.

ẋ̇ẋx = AAAxxx + BBBu (5.77)
(5.78)

with

AAA =

⎡
⎢⎢⎢⎣

0 0 1 0
0 0 0 1

−140.88 0 0 6.68
140.88 0 0 −17.65

⎤
⎥⎥⎥⎦ BBB = [ 0 0 −1.49 3.95 ] (5.79)

xxx = [ xf xc ẋf ẋc ] (5.80)

Figure 5.35: Experimental transfer functions from the ground to 1st and 2nd floor
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The frequency response for the two floors is obtained by applying a sine sweep signal from 1
Hz to 15 Hz with a 0.2 cm amplitude on the shake table. Figure 5.35 shows the transfer functions
from the ground to both floors, where the natural frequencies correspond to [2.08 6.12] [Hz].

The main purpose of using an active controller (AMD) in this experiment is to verify, at
laboratory level, the reduction of vibrations of high rise buildings when external forces such as
earthquakes act on them. Two goals then should be derived by reducing structural vibrations:
To void damages in the structure and maintain human comfort. From the control view point,
the objective is to reduce absolute displacement and velocities at the second floor and the cart
at the most significant excitation frequencies (included the natural frequencies).

5.3.1 Controller Design

Two controllers are designed. The first is based on the QFT control approach and the second is
based on the Lyapunov stability theory.

Controller 1

The QFT controller design is made by making the next considerations. i) The stiffness is an
uncertain parameter but bounded around its nominal value [0.97 1.03]*k2N . ii). An uncertain
but bounded earthquake acceleration acts as disturbance in the structure and iii). Only mea-
surements of acceleration at the second floor and displacement of the cart are available. Such
measurements contain a white noise of around 5% the measured value. The design specifications
for the QFT controller are: i) The displacement at the second floor be less than 0.03 m for an
uncertain but bounded disturbance and ii) less than 0.005 m when white noise signal is present
at the measurement. For design purposes the equations (5.75) and (5.76) are expressed in only
one equation. Such equation represents the equivalent plant P of a LTI structure such as that
presented in figure 3.2. The system equations represented in Laplace form are:

(m2s
2 + k2)x2(s) + a1sxc(s) = a2u(s) (5.81)

(mcs
2 + a3)xc(s) + k2x2(s) = a4u(s) (5.82)

By using the above equations, the transfer function of the plant P (s) = x2(s)/u(s) takes the
form:

P (s) =
a2mcs + a2a3 − a1a4

m2mcs3 + m2a3s2 + mckcs + k2a3 − k2a1
(5.83)

The problem is reduced to design a QFT controller (G) for a SISO LTI system, in the presence
of uncertain parameters in the plant, disturbance (V ) at the input of the plant and white noise
(N) in the measurement. Then, the frequencial specifications are:∣∣∣∣ PG

1 + PG

∣∣∣∣ =
∣∣∣∣x2(jω)
N(jω)

∣∣∣∣ ≤ Ws1

∣∣∣∣ P

1 + PG

∣∣∣∣ =
∣∣∣∣x2(jω)
V (jω)

∣∣∣∣ ≤ Ws3 (5.84)

Since the displacement cannot be directly measured, a state estimator is used. (See details
in the Quanser Innovative Educate Manual). The parametric values are: mc=0.85 kg, m2=1.15
kg, k2=162 N/m, a1=7.682 N·s/m, a2=1.7189 N/v, a3= 20.3024 N·s/m a4= 4.5428 N/v. For
the QFT design the bounds are Ws1=2 and Ws3=5×10−4 for all the work frequencies. QFT
controller design is done by using the MATLAB QFT toolbox. Figure 5.36 shows the design of
the final loop for LN on the Nichols chart. The transfer function G derived from LN is:

G(s) = 15.1693
24.8309s + 1
0.0332s + 1

(5.85)
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Figure 5.36: Final Loop LN

A sweep sine signal from 1 to 2 Hz during 20 seconds (see figure 5.37) is applied as distur-
bance. Absolute displacement at the second floor of the controlled and uncontrolled structure is
shown in figure 5.39. It is seen that structural vibration are reduced at all the frequencies range
by using the QFT controller.

Figure 5.37: Sweep excitation signal
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Figure 5.38: Absolute displacement at the second floor

Controller 2

The second controller designed, is based on the Lyapunov stability theory. Consider the next
candidate Lyapunov function:

V =
1
2
xxxT PPPxxx (5.86)

Its derivative take the form

V̇ = −1
2
xxxT QQQxxx + xxxT PPPBBBu (5.87)

Then, the control law obtained, by minimizing V is:

u = −kxxx = −(PBPBPB)T xxx (5.88)

By using the estimated state vector, the final control law is:

u = −(PBPBPB)T x̂̂x̂x (5.89)

The control law (5.88) is implemented with QQQ=diag([5000 0.0001 10 0.0001]).

5.3.2 Experimental Results

A sine sweep signal is applied as ground acceleration. The vibrations for the first and second
floor of the structure for uncontrolled and controlled cases are those shown in figure 5.39 and
5.40
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Figure 5.39: Absolute acceleration at the first floor

Figure 5.40: Absolute acceleration at the second floor

From the above figures it is observed that both controllers reduce vibrations at the floors
1 and 2, for a ground acceleration reach in frequencies. However, the QFT controller is more
effective, because vibration modes of the structure has been taken into account in the controller
specifications.





Chapter 6

Conclusions and Future Work

This thesis focuses on the design of robust control laws that can effectively reduce vibrations
of structures subjected to unknown disturbances such as earthquakes strong winds or coupled
dynamic loads. Parameters of the structure are considered uncertain and measurement of states
limited. Actuator dynamics of type hysteresis, time delay and friction force are included in the
design.

The main contributions and remarks derived from this thesis are the following:

Many problems presented in the design of structural control laws influence considerably on
the control system performance. The consideration of all the problems presented in a structural
control system is a difficult task and can be considered as a big challenge in the controller design.
In this thesis robust structural control laws have been designed taking into account the most
important open structural control problems, presented in most of the structural control systems,
such as parametric uncertainty, actuator dynamics, unknown disturbances, dynamic coupling
and measurement limitation. Thus, the main contribution of this thesis is the consideration of
all the above open structural control problems and the obtention of robust control laws that can
effectively improve structural dynamics.

The design of a robust control law for structures with uncertain parameters, unknown distur-
bances and measurement limitation has been satisfactorily achieved by using the QFT control
theory. Numerical and experimental structural models have been used to verify of the control
approach. The originality in this design is that by first time a structural control laws is based on
QFT control technique. Parametric uncertainty is an significant open structural control problem
and here it has been dealt with the additional advantage of designing in the frequency domain.
It facilitates defining a desired structural behavior at different excitation frequencies included
the resonance frequencies. Another aspect to highlight is that the proposed control approach
has been also numerically verified and successfully implemented on experimental prototypes.

The problem of designing control laws for actuator with hysteretic dynamics has been solved
by using the Backstepping control technique. The actuators used are semiactive Magnetorheolog-
ical dampers, whose dynamic behaviour is represented by means of the the hysteretic Bouc-Wen
model. The main contribution is that the problem of actuator hysteretic dynamics has been sat-
isfactorily solved by using a control technique recently introduced in structural control. By the
first time in the structural control application, experimental studies of Backstepping structural
controllers have been successfully done.

99
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Robust structural control laws for structures with unknown disturbances, dynamics coupling,
measurement limitation and actuator dynamics (time delay and friction force) have been pro-
posed and satisfactorily verified on numerical models and experimental prototypes. Control laws
have been based on Lyapunov stability theory and Sliding Mode Control approach. The main
contribution here is that these structural control problems have been solved by using techniques
known in structural control, but additionally experimental tests have been realized.

Some future research topics that can be studied in the future are here discussed.

In this thesis different robust control laws that consider open structural control problems
have been proposed. However the methodologies used here could be extended to other control
areas, since the control problems similar to those studied here can be presented in other systems.

Open structural control problems have been solved by using innovative control techniques
such as a Backstepping or QFT. The study of this control techniques could be enhanced to
solve other control problems and could be combined with other theories such as Linear Matrices
Inequalities approach and Modal Intervals arithmetical theory.

Robust structural control laws proposed in this thesis have been implemented on prototypes
scaled to laboratory level. The next step should be the use of experimental prototypes close to
full scale.
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104 BIBLIOGRAPHY
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